八年级数学-一次函数专项训练试题附答案解析

合集下载

八年级数学下册第十九章一次函数考点精题训练(带答案)

八年级数学下册第十九章一次函数考点精题训练(带答案)

八年级数学下册第十九章一次函数考点精题训练单选题1、如果一个正比例函数的图象经过不同象限的两点A(3,m)、B(n,﹣2),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0答案:B分析:利用正比例函数的性质,可得出点A,B分别在一、三象限,结合点A,B的坐标,可得出m>0,n<0.解:∵一个正比例函数的图象经过不同象限的两点A(3,m)、B(n,﹣2),∴点A,B分别在一、三象限,∴m>0,n<0.故选:B.小提示:此题考查了正比例函数的性质,牢记“当k>0时,正比例函数y=kx的图象在第一、三象限;当k<0时,正比例函数y=kx的图象在第二、四象限”是解题的关键.2、下列变化过程中,y是x的正比例函数是()A.某村共有105m2耕地,该村人均占有耕地y(单位:m2)随该村人数x(单位:人)的变化而变化B.一天内,温岭市气温y(单位:℃)随时间x(单位:时)的变化而变化C.汽车油箱内的存油y(单位:升)随行驶时间x(单位:时)的变化而变化D.某人一年总收入y(单位:元)随年内平均月收入x(单位:元)的变化而变化答案:D分析:根据正比例函数的定义逐项判断即可.,故y不是x的正比例函数;解:A.由题意得:y=105xB.因为温岭市一天的气温早晚较低,中午较高,故y不是x的正比例函数;C.因为在行驶时间为零时汽车油箱内的存油y不是零,故y不是x的正比例函数;D.由题意得:y=12x,故y是x的正比例函数;故选:D.小提示:本题考查了正比例函数的定义,一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,且k≠0),那么y就叫做x的正比例函数3、已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小答案:C分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.将直线y=x﹣1向上平移2个单位长度后得到直线y=x﹣1+2=x+1,A、直线y=x+1经过第一、二、三象限,错误;B、直线y=x+1与x轴交于(﹣1,0),错误;C、直线y=x+1与y轴交于(0,1),正确;D、直线y=x+1,y随x的增大而增大,错误,故选:C.小提示:本题主要考查了一次函数图象与几何变换,正确把握变换规律以及一次函数的图象和性质是解题的关键.4、A,B两地相距120km,甲、乙两人分别从两地出发相向而行,甲先出发,如图,l1,l2分别表示两人离A 地的距离s(km)与时间t(h)之间的关系,则当甲到达A地时,乙距离A地()A.56kmB.60kmC.80kmD.40km答案:B分析:先求出直线l2的解析式,从而求出当t=2.8时,s=36,由此即可求出直线l1的解析式,进而求出甲到达目的地的时间,由此即可得到答案.解:由题意可知,甲,乙的函数图象分别为l1,l2.∵l2经过点(1,0)和(7,120),∴l2:s=20t−20,当t=2.8时,s=36,∴由(0,120),(2.8,36)得l1:s=−30t+120,令−30t+120=0,解得t=4,将t=4代入l2,得s=60.∴当甲到达A地时,乙距离A地60km.故选B.小提示:本题主要考查了从函数图象获取信息,一次函数的应用,正确读懂函数图象是解题的关键.5、某次物理实验中,测得变量V和m的对应数据如下表,则这两个变量之间的关系最接近下列函数中的()A.V=m+1B.V=2m C.V=3m−1D.V=m.答案:A分析:观察这几组数据,找到其中的规律,然后再答案中找出与之相近的关系式.解:有四组数据可找出规律,2.41-1=1.41,接近12;4 .9-1=3.9,接近22;10 .33-1=9.33,接近32;17 .21-1=16.21,接近42;25 .93−1=24.93,接近52;37 .02−1=36.02,接近62;故m与v之间的关系最接近于v=m2+1.故选:A.小提示:本题是开放性题目,需要找出题目中的两未知数的律,然后再答案中找出与之相近的关系式.6、下列函数中,属于正比例函数的是()A.y=x2+2B.y=−2x+1C.y=1x D.y=x5答案:D分析:根据正比例函数的定义逐个判断即可.解:A.不是正比例函数,故本选项不符合题意;B.是一次函数,但不是正比例函数,故本选项不符合题意;C.不是正比例函数,故本选项不符合题意;D.是正比例函数,故本选项符合题意;故选:D.小提示:本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b(k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数也叫正比例函数.7、图是某人骑自行车出行的图象,从图象中可以得到的信息是()A.从起点到终点共用了50min B.20~30min时速度为0C.前20min速度为4km/ℎD.40min与50min时速度是不相同的答案:B分析:分别根据函数图象的实际意义可依次判断各个选项是否正确.A、从起点到终点共用了60min,故本选项错误;B、20~30min时速度为0,故本选项正确;C、前20min的速度是5km/ℎ,故本选项错误;D、40min与50min时速度是相同的,故本选项错误.故选:B.小提示:本题考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.8、A′是点A(1,2)关于x轴的对称点.若一个正比例函数的图象经过点A′,则该函数的表达式为()A.y=12x B.y=2x C.y=−12x D.y=−2x答案:D分析:先求得A′的坐标,然后设该正比例函数的解析式为y=kx(k≠0),再把点A′的坐标代入求出k的值即可.解:∵A′是点A(1,2)关于x轴的对称点.∴A′(1,−2),设该正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点A′(1,−2),∴−2=k,解得k=−2,∴这个正比例函数的表达式是y=−2x.故选:D.小提示:本题考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.9、若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x1答案:B分析:利用一次函数的增减性判定即可.解:由y=−2x+m知,函数值y随x的增大而减小,∵3>-1>-2,A(x1,−1),B(x2,−2),C(x3,3),∴x2>x1>x3.故选:B.小提示:本题考查了一次函数的增减性,解题的关键是通过k=-2<0得知函数值y随x的增大而减小,反之x随y的增大也减小.10、某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y 与x满足的函数关系是()A.正比例函数关系B.一次函数关系C.反比例函数关系D.二次函数关系答案:B分析:根据矩形周长找出关于x和y的等量关系即可解答.解:根据题意得:2x+y=40,∴y=−2x+40,∴y与x满足的函数关系是一次函数;故选:B.小提示:本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列式.填空题11、在平面直角坐标系中,已知一次函数y=−2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1___y2.(填“>”“<”“=”)答案:>分析:根据一次函数的性质,当k<0时,y随x的增大而减小.解:∵一次函数y=−2x+1中k=−2<0,∴y随x的增大而减小,∵x1<x2,∴y 1>y 2.所以答案是:>.小提示:本题考查一次函数的增减性,熟悉性质是关键.12、已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x 的形如y =a c x +b c 的一次函数称为“勾股一次函数”.若点P (−1,√33)在“勾股一次函数”的图象上,且Rt △ABC 的面积是4,则c 的值是__________.答案:2√6 分析:依据题意得到三个关系式:a −b =−√33c,ab =8,a 2+b 2=c 2,运用完全平方公式即可得到c 的值. 解:∵点P (−1,√33)在“勾股一次函数”y =a c x +b c 的图象上, ∴√33=−a c +b c ,即a −b =−√33c , 又∵a ,b ,c 分别是Rt △ABC 的三条边长,∠C =90°,Rt △ABC 的面积是4,∴12ab =4,即ab =8, 又∵a 2+b 2=c 2,∴(a −b )2+2ab =c 2,即∴(−√33c)2+2×8=c 2,解得c =2√6(负值舍去),所以答案是:2√6.小提示:考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.13、在弹性限度内,弹簧挂上物体后会伸长,已知一弹簧的长度y (cm )与所挂物体的质量x (kg )之间的关系如下表:答案:y =12+0.5x分析:由表中的数据可知,x =0时,y =12,并且每增加1千克的重量,长度增加0.5cm ,所以y =0.5x +12. 解:根据上表y 与x 的关系式是:y =12+0.5x .所以答案是:y =12+0.5x小提示:本题考查了函数关系式,需仔细分析表中的数据,进而解决问题;关键是写出解析式.14、如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组{2x +m <−x −2−x −2<0的解集为_____.答案:﹣2<x <2分析:先将点P (n ,﹣4)代入y=﹣x ﹣2,求出n 的值,再找出直线y=2x+m 落在y=﹣x ﹣2的下方且都在x 轴下方的部分对应的自变量的取值范围即可.∵一次函数y=﹣x ﹣2的图象过点P (n ,﹣4),∴﹣4=﹣n ﹣2,解得n=2,∴P (2,﹣4),又∵y=﹣x ﹣2与x 轴的交点是(﹣2,0),∴关于x 的不等式组{2x +m <−x −2−x −2<0的解集为−2<x <2. 故答案为−2<x <2.小提示:本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n 的值,是解答本题的关键.15、如图,已知直线y =3x +b 与y =ax ﹣2的交点的横坐标为﹣2,则关于x 的方程3x +b =ax ﹣2的解为x =_____.答案:﹣2分析:直线y=3x+b与y=ax-2的交点的横坐标为-2,则x=-2就是关于x的方程3x+b=ax-2的解.解:∵直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,∴当x=﹣2时,3x+b=ax﹣2,∴关于x的方程3x+b=ax﹣2的解为x=﹣2.故答案为﹣2.小提示:本题考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.解答题16、在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km,超市离学生公寓2km,小琪从学生公寓出发,匀速步行了12min到阅览室;在阅览室停留70min后,匀速步行了10min到超市;在超市停留20min后,匀速骑行了8min返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离y km与离开学生公寓的时间xmin之间的对应关系.请根据相关信息,解答下列问题:(1)填表:①阅览室到超市的距离为___________km;⁄;②小琪从超市返回学生公寓的速度为___________km min③当小琪离学生公寓的距离为1km时,他离开学生公寓的时间为___________min.(3)当0≤x≤92时,请直接写出y关于x的函数解析式.答案:(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当0≤x≤12时,y=0.1x;当12<x≤82时,y=1.2;当82<x≤92时,y=0.08x−5.36分析:(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当0≤x≤92时,y关于x的函数解析式.(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x=8时,离学生公寓的距离为8×0.1=0.8;在12≤x≤82时,离学生公寓的距离不变,都是1.2km故当x=50时,距离不变,都是1.2km;在92≤x≤112时,离学生公寓的距离不变,都是2km,所以,当x=112时,离学生公寓的距离为2km故填表为:①阅览室到超市的距离为2-1.2=0.8km;②小琪从超市返回学生公寓的速度为:⁄;2÷(120-112)=0.25km min③分两种情形:当小琪离开学生公寓,与学生公寓的距离为1km 时,他离开学生公寓的时间为:1÷0.1=10min ;当小琪返回与学生公寓的距离为1km 时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min ;所以答案是:①0.8;②0.25;③10或116(3)当0≤x ≤12时,设直线解析式为y =kx ,把(12,1.2)代入得,12k =1.2,解得,k =0.1∴y =0.1x ;当12<x ≤82时,y =1.2;当82<x ≤92时,设直线解析式为y =mx +n ,把(82,1.2),(92,2)代入得,{82m +n =1.292m +n =2解得,{m =0.08n =−5.36∴y =0.08x −5.36,由上可得,当0≤x ≤92时,y 关于x 的函数解析式为{y =0.1x (0≤x ≤12)y =1.2(12<x ≤82)y =0.08x −5.36(82<x ≤92). 小提示:本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.17、如图,点A (1,4)在正比例函数y =mx 的图象上,点B (3,n )在正比例函数y =23x 的图象上.(1)求m,n的值;(2)在x轴找一点P,使得PA+PB的值最小,请求出PA+PB的最小值.答案:(1)m=4,n=2(2)2√10分析:(1)利用待定系数法求解m、n值即可;(2)作点A关于x轴对称的点A′,连接A′B,交x轴于点P,此时PA+PB的值最小,最小值为PA+PB=PA′+PB=A′B.过点A′作A′H∥x轴,过点B作B′H∥y轴,A′H和B′H相交于点H,求出A′B的长即可.x的图象上.(1)解:∵点A(1,4)在正比例函数y=mx的图象上,点B(3,n)在正比例函数y=23∴4=m×1,n=2×33∴m=4,n=2.(2)解:作点A(1,4)关于x轴对称的点A′(1,-4),连接A′B,交x轴于点P,此时PA+PB的值最小,PA+PB=PA′+PB=A′B.过点A′作A′H∥x轴,过点B作B′H∥y轴,A′H和B′H相交于点H,在Rt△A′HB中,∠H=90°,则A′B=√A′H2+BH2=√22+62=2√10,∴PA+PB的最小值为2√10.小提示:本题考查正比例函数图象上点的坐标特征、最短路径问题、坐标与图形变化、勾股定理,熟练掌握最短路径的解题方法是解答的关键.18、某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中的所走路程s(米)与时间t(分)之间的关系.(1)学校离他家米,从出发到学校,王老师共用了分钟;王老师吃早餐用了分钟.(2)观察图形直接回答王老师吃早餐以前的速度快还是吃完早餐以后的速度快?答案:(1)1000,25,10;(2) 吃完早餐以后速度快.分析:(1)由于步行前往学校,途中在路边一饭店吃早餐,那么行驶路程S(米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后到学校,根据图象可以直接得到结论;(2)根据路程与时间图,坡度越陡,速度越快即可得出结论;(1)由图象可得:学校离他家1000米,从出发到学校,王老师共用了25分钟,王老师吃早餐所用的时间为:20-10=10分钟,所以答案是:1000,25,10;(2) 由图象可知,吃完早餐以后的坡度比吃完早餐前陡,故吃完早餐以后速度快.小提示:本题考查了函数的图象,此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.。

知识点详解人教版八年级数学下册第十九章-一次函数专项练习试题(含解析)

知识点详解人教版八年级数学下册第十九章-一次函数专项练习试题(含解析)

人教版八年级数学下册第十九章-一次函数专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是()A.B.C.D.2、小斌家、学校、小川家依次在同一条笔直的街道上,小斌家离学校有2800米,某天,小斌、小川两人分别从自己家中同时出发,相向而行,出发4分钟后,两人在学校相遇,小川继续前行,小斌在学校取好书包后,掉头回家,两人在运动过程中均保持速度不变,两人之间的距离y(米)与小斌出发的时间x(分钟)的关系如图所示(小斌取书包的时间、掉头的时间忽略不计),则下列选项中错误的是()A .小斌的速度为700m/minB .小川的速度为200m/minC .a 的值为280D .小川家距离学校800m3、若点(2,)A m 在一次函数27y x =-的图象上,则点A 到x 轴的距离是( )A .2B .2-C .3D .3-4、如图,l 1反映了某公司产品的销售收入与销售量的关系;l 2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )A .小于12件B .等于12件C .大于12件D .不低于12件5、下列函数中,自变量的取值范围选取错误的是( )A .y =2x 2中,x 取全体实数B .y =11x +中,x 取x ≠-1的实数 C .yx 取x ≥2的实数 D .y中,x 取x ≥-3的实数 6、如果函数y =(2﹣k )x +5是关于x 的一次函数,且y 随x 的值增大而减小,那么k 的取值范围是( )A.k≠0B.k<2 C.k>2 D.k≠27、一次函数y=﹣3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=29、在同一平面直角坐标系中,一次函数y=kx+b与正比例函数y=﹣bkx(k,b是常数,且kb≠0)的图象可能是()A.B.C.D.10、已知两个一次函数y1=ax+b与y2=bx+a,它们在同一平面直角坐标系中的图象可能是下列选项中的()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(2,1)-,点P在y轴上,当PA PB+的值最小时,P的坐标是______.2、如图,已知直线:l y=,过点M(1,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x 轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法M的坐标为_____.继续下去,则点n3、已知一次函数y =ax -1,若y 随x 的增大而减小,则它的图象不经过第______象限.4、一次函数23y kx k =+-的图象经过第一、三、四象限,则k 的取值范围是______________.5、如图所示,直线2y x =+与两坐标轴分别交于A 、B 两点,点C 是OB 的中点,D 、E 分别是直线AB 、y 轴上的动点,当CDE ∆周长最小时,点D 的坐标为_____.三、解答题(5小题,每小题10分,共计50分)1、如图.在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1.(1)求k ,b 的值;(2)若点D 在y 轴负半轴上,且满足S △SSS =√3S △SSS ,求点D 的坐标.2、如图,已知直线AB的解析式为y=x+m,线段CD所在直线解析式为y=﹣x+n,连接AD,点E为线段OA上一点,连接BE,使得∠EBO=2∠BAD.(1)求证:△AOD≌△BOC;(2)求证:BE=EC;(3)当AD=10,BE=5√5时,求m与n的值.3、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.(1)小红、小华谁的速度快?(2)出发后几小时两人相遇?(3)A,B两地离学校分别有多远?4、甲、乙两家采摘园的草莓品质相同,销售价格都是每千克50元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买100元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过6千克后,超过部分五折优惠.优惠期间,设某游客的草莓采摘量为x(x>6)千克,在甲采摘园所需总费用为y1元,在乙采摘园所需总费用为y2元.(1)求y1、y2关于x的函数解析式;(2)如果你是游客你会如何选择采摘园?5、如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.---------参考答案-----------一、单选题1、C【解析】【分析】由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,∴k<0,∴-k>0,∴一次函数y=kx-k的图象经过一、二、四象限;故选:C.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.2、C【解析】【分析】根据路程÷时间求速度可判断A、B;利用小川继续行走的时间×小川的速度求出a的值,可判断C;利用开始小斌与小川的距离-小斌到学校的距离可判断D.【详解】解:∵小斌家离学校有2800米,出发4分钟后到学校,∴v小斌=2800=700m/min4,故选项A正确;∵小川家离学校有3600-2800=800米,出发4分钟后到学校,∴v小川=800=200m/min4,故选项B正确;小川继续前行,小斌在学校取好书包后,4分钟后掉头回家,小川行走的路程为:200m/min×(8-4)=800m,∴a的值为800m,故选项C不正确;∵小川家离学校有3600-2800=800米,故选项D正确.故选C.【点睛】本题考查行程问题函数图像信息获取与处理,理解图像横纵轴的意义,折点的含义,终点位置的意义,掌握函数图像信息获取与处理的方法,理解图像横纵轴的意义,折点的含义,终点位置的意义是解题关键.3、C【解析】【分析】点A 到x 轴的距离,就是点A 的纵坐标m 的绝对值|m |,所以,将点A (2,m )代入一次函数y =2x -7,求出m 的值即可.【详解】 解:点(2,)A m 在一次函数27y x =-的图象上,(2,)A m ∴满足一次函数的解析式27y x =-,2273m ∴=⨯-=-,∴点A 到x 轴的距离是|3|3-=,故选:C .【点睛】本题考查了一次函数图象上的点的坐标特征,在这条直线上的点的坐标一定适合这条直线的解析式.4、C【解析】【分析】根据图象找出1l 在2l 的上方即收入大于成本时,x 的取值范围即可.【详解】解:根据函数图象可知,当12x >时,12l l >,即产品的销售收入大于销售成本,该公司盈利. 故选:C .【点睛】本题考查函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象得到该公司盈利时x 的取值范围是本题的关键.5、D【解析】【分析】根据分式的分母不能为0、二次根式的被开方数的非负性即可得.【详解】解:A 、22y x =中,x 取全体实数,此项正确;B 、10x +≠,即1x ≠-,11y x ∴=+中,x 取1x ≠-的实数,此项正确; C 、20x -≥,2x ∴≥,y ∴=x 取2x ≥的实数,此项正确;D 、30x -≥,且30x -≠,3x ∴>,y ∴中,x 取3x >的实数,此项错误; 故选:D .【点睛】本题考查了函数自变量、分式和二次根式,熟练掌握分式和二次根式有意义的条件是解题关键.6、C【解析】【分析】由题意()25y x k =-+,y 随x 的增大而减小,可得自变量系数小于0,进而可得k 的范围. 【详解】解:∵关于x 的一次函数()25y x k =-+的函数值y 随着x 的增大而减小,20k ∴-<,2k ∴>.故选C . 【点睛】本题主要考查了一次函数的增减性问题,解题的关键是:掌握在y kx b =+中,0k >,y 随x 的增大而增大,0k <,y 随x 的增大而减小. 7、A 【解析】 【分析】根据题目中的函数解析式和一次函数的性质,可以得到该函数不经过哪个象限. 【详解】解答:解:∵一次函数y =﹣3x ﹣4,k =﹣3,b =﹣4, ∴该函数经过第二、三、四象限,不经过第一象限, 故选:A . 【点睛】本题考查了一次函数的图象与性质,属于基础题型,熟练掌握一次函数的性质是解题的关键. 8、D 【解析】 【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.9、C【解析】【分析】根据一次函数的图象与系数的关系,由一次函数y=kx+b图象分析可得k、b的符号,进而可得bk的符号,从而判断by xk=-的图象是否正确,进而比较可得答案.【详解】解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,则bk<0;正比例函数by xk=-的图象可知bk>0,矛盾,故此选项不符合题意;B、由一次函数y=kx+b图象可知k>0,b>0;即bk>0,与正比例函数by xk=-的图象可知bk<0,矛盾,故此选项不符合题意;C、由一次函数y=kx+b图象可知k<0,b<0;即bk>0,与正比例函数by xk=-的图象可知bk>0,故此选项符合题意;D、由一次函数y=kx+b图象可知k>0,b<0;即bk<0,与正比例函数by xk=-的图象可知bk>0,矛盾,故此选项不符合题意;故选C.【点睛】此题主要考查了一次函数图象,注意:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象.10、B【解析】【分析】先由一次函数y1=ax+b图象得到字母系数的符号,再与一次函数y2=bx+a的图象相比较看是否一致.【详解】解:A、∵一次函数y1=ax+b的图象经过一二四象限,∴a>0,b>0;由一次函数y2=bx+a图象可知,b<0,a>0,两结论矛盾,故错误;B、∵一次函数y1=ax+b的图象经过一三四象限,∴a>0,b<0;由y2的图象可知,a>0,b<0,两结论不矛盾,故正确;C、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a>0,b>0,两结论矛盾,故错误;D、∵一次函数y1=ax+b的图象经过一二四象限,∴a<0,b>0;由y2的图象可知,a<0,b=0,两结论相矛盾,故错误.故选:B.【点睛】本题主要考查了一次函数图象与系数的关系,一次函数y kx b=+的图象有四种情况:①当k>0,b>0时,函数y kx b=+经过一、三、四象限;③当=+经过一、二、三象限;②当k>0,b<0时,函数y kx bk<0,b>0时,函数y kx b=+经过二、三、四象=+经过一、二、四象限;④当k<0,b<0时,函数y kx b限,解题的关键是掌握一次函数图像与系数的关系.二、填空题1、(0,1)【解析】【分析】如图,作点A关于y轴的对称点A',连接BA'交y轴于P,连接PA,点P即为所求.求出直线BA'的解析式即可解决问题;【详解】解:如图,作点A关于y轴的对称点A',连接BA'交y轴于P,连接PA,点P即为所求.设直线BA '的解析式为y =kx +b , ∵A '(−1,2),B (2,−1),则有:221k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=⎩, ∴直线BA '的解析式为y =−x +1, 令x =0,y =1 ∴P (0,1), 故答案为:(0,1). 【点睛】本题考查轴对称最短问题,一次函数的应用等知识,解题的关键是学会利用轴对称解决最短问题,学会构建一次函数解决交点坐标问题. 2、(4n ,0). 【解析】 【分析】先求出1OM 和2OM 的长,再根据题意得出4n n OM =,即可求出n M 的坐标. 【详解】解:直线l 的解析式是y ,60NOM ∴∠=︒,30∠=︒ONM .点M 的坐标是(1,0),//NM y 轴,点N 在直线y =上,NM ∴1OM = 22ON OM ∴==.又1NM l ⊥,即190ONM ∠=︒11244OM ON OM ∴===.同理,22144OM OM OM ==,23324444OM OM OM OM ==⨯=,⋯∴44n n n OM OM ==,∴点n M 的坐标是(4n ,0).故答案是:(4n ,0). 【点睛】本题主要考查一次函数图象上点的坐标特点,涉及到如何根据一次的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,熟悉相关知识的综合应用是解题的关键. 3、一 【解析】 【分析】由题意根据一次函数的性质可以判断k 的正负和经过定点(0,-1),从而可以得到该函数不经过哪个象限. 【详解】解:∵在一次函数y =ax -1中,若y 随x 的增大而减小, ∴a <0,该函数经过点(0,-1), ∴该函数经过第二、三、四象限,∴该函数不经过第一象限, 故答案为:一. 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 4、302k <<##0 1.5k << 【解析】 【分析】根据题意,得k >0,2k -3<0,求解即可. 【详解】∵一次函数23y kx k =+-的图象经过第一、三、四象限, ∴k >0,2k -3<0, ∴k 的取值范围是302k <<,故答案为:302k <<. 【点睛】本题考查了一次函数图像分布与k ,b 的关系,根据图像分布,列出不等式,准确求解即可. 5、53(,)44- 【解析】 【分析】作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接DF ,EG ,由轴对称的性质,可得DF =DC ,EC =EG ,故当点F ,D ,E ,G 在同一直线上时,△CDE 的周长=CD +DE +CE =DF +DE +EG =FG ,此时△DEC周长最小,然后求出F 、G 的坐标从而求出直线FG 的解析式,再求出直线AB 和直线FG 的交点坐标即可得到答案.【详解】解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接FG分别交AB、OA于点D、E,由轴对称的性质可知,CD=DF,CE=GE,BF=BC,∠FBD=∠CBD,∴△CDE的周长=CD+CE+DE=FD+DE+EG,∴要使三角形CDE的周长最小,即FD+DE+EG最小,∴当F、D、E、G四点共线时,FD+DE+EG最小,∵直线y=x+2与两坐标轴分别交于A、B两点,∴B(-2,0),∴OA=OB,∴∠ABC=∠ABD=45°,∴∠FBC=90°,∵点C是OB的中点,∴C(1-,0),∴G点坐标为(1,0),1==,BF BC∴F点坐标为(-2,1),设直线GF的解析式为y kx b=+,∴21k bk b+=⎧⎨-+=⎩,∴1313kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线GF的解析式为1133y x=-+,联立11332y xy x⎧=-+⎪⎨⎪=+⎩,解得5434xy⎧=-⎪⎪⎨⎪=⎪⎩,∴D点坐标为(54-,34)故答案为:(54-,34).【点睛】本题主要考查了轴对称-最短路线问题,一次函数与几何综合,解题的关键是利用对称性在找到△CDE 周长的最小时点D、点E位置,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.三、解答题1、(1){S=−1S=4;(2)(0,−12√3)【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出点S的坐标,根据点S、S的坐标,利用待定系数法即可求出S、S的值;(2)利用一次函数图象上点的坐标特征可求出点S 的坐标,设点S 的坐标为(0,S )(S <0),根据三角形的面积公式结合S △SSS =√3S △SSS ,即可得出关于S 的一元一次方程,解之即可得出S 的值,进而可得出点S 的坐标. 【详解】解:(1)当S =1时,S =3S =3, ∴点S 的坐标为(1,3).将S (−2,6)、S (1,3)代入S =SS +S , 得:{−2S +S =6S +S =3,解得:{S =−1S =4.(2)当S =0时,有−S +4=0, 解得:S =4, ∴点S 的坐标为(4,0).设点S 的坐标为(0,S )(S <0),∵S △SSS =√3S △SSS ,即−12S =√3×12×4×3, 解得:S =−12√3, ∴点S 的坐标为(0,−12√3). 【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出S 、S 的值;(2)利用三角形的面积公式结合S △SSS =√3S △SSS ,列出关于S 的一元一次方程. 2、(1)见解析;(2)见解析;(3)m =4√5,n =2√5 【解析】 【分析】(1)令x=0,求得y=m,令y=0,求得x=﹣m,得到OA=OB=m,同理得到OC=OD=n,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠ADB=∠BCO,根据三角形外角的性质得到∠BAD=∠BCD,设∠BAD =∠DCB=S,则∠EBO=2∠BAD=2S,求出∠ECB=∠EBC,于是得到结论;(3)由(1)知OA=OB=m,OC=OD=n,根据勾股定理即可得到结论.【详解】1)证明:在y=x+m中,令x=0,则y=m,令y=0,则x=﹣m,∴A(﹣m,0),B(0,m),∴OA=OB=m,在y=﹣x+n中,令x=0,则y=n,令y=0,则x=n,∴C(n,0),D(0,n),∴OC=OD=n,在△AOD与△BOC中,{SS=SS∠SSS=∠SSS=90°SS=SS,∴△AOD≌△BOC(SAS);(2)证明:由(1)知,OA=OB,OC=OD,∠AOB=∠COD=90°,∴∠OAB=∠OBA=∠ODC=∠CDO=45°,∵△AOD≌△BOC,∴∠ADB=∠BCO,∵∠ADO=∠ABO+∠BAD=45°+∠BAD,∠BCO=∠DCO+∠BCD,∴∠BAD=∠BCD,设∠BAD=∠DCB=S,则∠EBO=2∠BAD=2S,∴∠DBC=45°﹣S,∵∠ECB=∠DCO+∠BCD=45°+S,∠EBC=∠EBO+∠CBO=2α+45°﹣S=45°+S,∴∠ECB=∠EBC,∴BE=EC;(3)解:由(1)知OA=OB=m,OC=OD=n,∵∠AOD=∠BOE=90°,∴AO2+OD2=AD2,OB2+OE2=BE2,∵AD=10,BE=CE=5√5,∴m2+n2=102,m2+(5√5﹣n)2=(5√5)2,∴m=4√5,n=2√5.【点睛】本题考查了一次函数的综合题,全等三角形的判定和性质,勾股定理,等腰三角形的判定和性质,证得△AOD≌△BOC是解题的关键.3、(1)小华的速度快;(2)出发后1h两人相遇;(3)A地距学校200m,B地距学校500m4【解析】【分析】(1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;(2)观察横坐标,可得答案;(3)观察纵坐标,可得答案.【详解】解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),由横坐标看出都用了15min ,小红的速度是200÷15=403(m/min),小华的速度是500÷15=1003(m/min), 1003>403,小华的速度快. (2)由横坐标看出,出发后14h 两人相遇.(3)由纵坐标看出A 地距学校700-500=200(m),B 地距学校700-200=500(m).【点睛】本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.4、(1)S 1=30S +100,S 2=25S +150;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【解析】【分析】(1)根据题意列出关系式,化简即可得到结论;(2)分别令S 1=S 2,S 1>S 2,S 1<S 2求出对应x 的值或取值范围,从而得出结论.【详解】解:(1)由题意可得:S 1=100+50S ×0.6=30S +100, S 2=50×6+(S −6)×50×0.5=25S +150,即S 1关于x 的函数解析式是S 1=30S +100, S 2关于x 的函数解析式是S 2=25S +150;(2)当S1=S2时,即:30S+100=25S+150,解得S=10,即当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当S1>S2时,即:30S+100>25S+150,解得S>10,即当采摘量超过10千克时,选择乙采摘园;当S1<S2时,即:30S+100<25S+150,解得S<10,即当采摘量超过6千克且少于10千克时,选择甲采摘园;由上可得,当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园.【点睛】本题考查了一次函数的实际应用,正确理解题意列出函数关系式是解题的关键.5、(1)2x(0<x<2);(2)1;(3)y=6√3S(0<x≤1).y=12√3−6√3S(1<x<2).【解析】【分析】(1)根据点P运动的速度与时间的乘积即可得出AP=2x(0<x<2);(2)根据△ABC为等边三角形,AB=AC=4cm,得出∠ACB=∠A=60°,根据PQ⊥AB,当Q与C重合AC=2,即2x=2解方程时,△ACP为直角三角形,∠ACP=30°,根据30°直角三角形性质得出AP=12即可;(3)分两种情况,点Q在AC上,点Q在BC上,点Q在AC上,当0<x≤1时,在Rt△APQ中,PQ= 2√3S,根据△PQD为等边三角形,y=6√3S(0<x≤1);点Q在BC上,当1<x≤2时,BP=4﹣2x,先求出BQ=2BP=2(4﹣2x)=8﹣4x,在Rt△BPQ中,PQ=4√3−2√3S,根据△PQD为等边三角形,y=12√3−6√3S(1<x<2).【详解】解:(1)∵动点P从A出发,以2cm/s的速度沿AB向点B匀速运动,点P的运动时间是x(s)(0<x <2),∴AP=2x(0<x<2),故答案为2x(0<x<2);(2)如图,∵△ABC为等边三角形,AB=AC=4cm,∴∠ACB=∠A=60°,∵PQ⊥AB,当Q与C重合时,△ACP为直角三角形,∠ACP=30°,AC=2,∴AP=12即2x=2,解得x=1,故答案为1;(3)分两种情况,点Q在AC上,点Q在BC上,当点Q在AC上, 0<x≤1时,在Rt△APQ中,PQ=√SS2−SS2=√(2SS)2−SS2=√16S2−4S2=2√3S,∵△PQD为等边三角形,∴y=3PQ=6√3S.即y=6√3S(0<x≤1).当点Q在BC上,1<x≤2时,BP=4﹣2x,∴BQ=2BP=2(4﹣2x)=8﹣4x,在Rt△BPQ中,PQ=√SS2−SS2=√(8−4S)2−(4−2S)2=4√3−2√3S,∵△PQD为等边三角形,∴y=3PQ=3(4√3−2√3S)=12√3−6√3S,即y=12√3−6√3S(1<x<2).【点睛】本题考查动点问题,等边三角形性质,30°直角三角形的性质,解一元一次方程,勾股定理,掌握动点问题解题方法,等边三角形性质,30°直角三角形的性质,解一元一次方程,勾股定理是解题关键.。

八年级数学一次函数专项训练(含答案)

八年级数学一次函数专项训练(含答案)

16. 如 图 所 示 , 在 同 一 直 角 坐 标 系 中 , 一 次 函 数 y k1x , y k2 x , y k3x ,
y k4 x 的 图 像 分 别 是 l1 , l2 , l3 , l4 ; 那 么 k1 , k2 , k3 , k4 的 大 小 关 系


y l2
l1
O
l3 l4
3. 【答案】D
4. 【答案】A 【解析】 kx b 0 ,即 y 0 ,∴由图象看出与 x 轴交于点(-2,0)
5. 【答案】C 【解析】设该一次函数的解析式为 y=kx+b(k≠0),将点(5,0)、
{ ) { ) (10,-10)代入到
y=kx+b 中得,-100==51k+0k+b b
令 y 0 ,则 3x 2 0 ,解得 x 2 ,因此图象交 x 轴于点 ( 2 ,0)
3
3
∴函数
y
3x
2
与两坐标轴围成的三角形面积
S
1 2
2 3
2
2 3
19. 【答案】
y 1 x 2 ,它不是正比例函数,是一次函数.
3
【解析】依题意,设 y 2 kx , 整理得: y kx 2 将 x 3,y 1代入上式,得:1 3x 2 ∴ x 1
x
y l2
l1
O
l3 l4
x
三、解答题
17. 如图,在平面直角坐标系中,点 P x, y 是第一象限直线 y x 6 上的点, 点 A5, 0 , O 是坐标原点, PAO 的面积为 s ,求 s 与 x 的函数关系式.
y P① x, y①
O
A
x
18. 求一次函数 y 3x 2 的图象与两坐标轴围成的三角形面积.

八年级(初二)数学(一次函数)试卷试题附答案解析

八年级(初二)数学(一次函数)试卷试题附答案解析

一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。

(易错题)初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)

(易错题)初中数学八年级数学下册第四单元《一次函数》测试题(答案解析)

一、选择题1.已知A B ,两地相距240千米.早上9点甲车从A 地出发去B 地,20分钟后,乙车从B 地出发去A 地.两车离开各自出发地的路程y (千米)与时间x (小时)的函数关系如图所示,则下列描述不正确的是( )A .甲车的速度是60千米/小时B .乙车的速度是90千米/小时C .甲车与乙车在早上10点相遇D .乙车在12:00到达A 地2.如图1,将正方形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,其余各边均与坐标轴平行,直线l :y =x -3沿x 轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m ,平移的时间为t (秒),m 与t 的函数图象如图2所示,则图2中b 的值为( )A .52B .42C .32D .53.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .4.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .5.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( ) A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+6.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .58.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)9.函数2y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④11.某水电站蓄水池有2个进水口,1个出水口,每个进水口进水量1y 与时间x 的关系为1y x =,出水口出水量2y 与时间x 的关系为22y x =,已知某天0点到6点,进行机组试运行,试机时至少打开1个水口,且水池的蓄水量V 与时间的关系.如图所示:给出以下判断:①0到3点只进水不出水;②3点到4点,不进水只出水;③4点到6点不进水也不出水.则上述判断中一定正确的是( )A .①B .②C .②③D .①③12.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .经过第一、二、三象限 B .与x 轴交于()1,0- C .与y 轴交于()0,1D .y 随x 的增大而减小二、填空题13.如图1,在中,是边上一动点,设两点之间的距离为两点之间的距离为,表示与的函数关系的图象如图2所示.则线段的长为_____,线段的长为______.14.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.15.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.16.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a by x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.17.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.18.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.19.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.20.已知一次函数3y x 的图像经过点(,)P a b 和(,)Q c d ,那么()()b c d a c d ---的值为____________.三、解答题21.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长. (2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 24.在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y 与所挂物体的质量x 的几组对应值.所挂物体质量x/kg 0 1 2 3 4 5 弹簧长度y/cm283032343638是 ,因变量是 .(2)当所悬挂重物为6kg 时,弹簧的长度为 cm ;不挂重物时,弹簧的长度为 cm . (3)请直接写出弹簧长度y (cm )与所挂物体质量x (kg )的关系式,并计算若弹簧的长度为46cm 时,所挂重物的质量是多少kg ?(在弹簧的允许范围内)25.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.26.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围.【参考答案】***试卷处理标记,请不要删除1.C解析:C【分析】利用图象求出甲的速度为60千米/小时,进而求出乙的速度为90千米/小时,再求出两车相遇的时间,利用两人所用时间相差13小时得出相遇时间是几点及乙车到达A地是几点.【详解】解:∵甲车的速度为601=60(千米/小时),乙车的速度为60113=90(千米/小时),所以①②对;根据题意,甲乙相遇的时间:(240-60×13)÷(90+60)=2215,乙9点20分出发,经过2215小时(88分钟)甲乙相遇,也就是10点48分,所以③错;乙车到达A地的时间:240÷90=83,83+13=3,9+3=12,所以④对故选C.【点睛】本题主要考查了一次函数的综合应用,根据已知利用两车时间差得出代数式是解题的关键.2.A解析:A【分析】从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,从而判断正方形的边长为5,对角线长即可确定.【详解】解:从图2中,判定从有截长到截长消失,用12-2=10秒,根据正方形的对称性,截长从0到最大用5秒,所以正方形的边长为5,所以对角线长为故选A.【点睛】本题考查了坐标系中的平移问题,熟练掌握平移的规律,正方形的对称性,灵活运用数形结合的思想是解题的关键.3.A解析:A根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.4.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限, ∴k <0,b >0, ∴b >0,-k >0,∴一次函数y=bx-k 图象第一、二、三象限, 故选:B . 【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.5.C解析:C 【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式. 【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7, ∴c=-7,∴直线l的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.6.D解析:D【分析】分k>0、k<0两种情况找出函数y=kx及函数y=kx+x-k的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l1:y=kx,另一条为l2:y=kx+x-k,当k<0时,-k>0,|k|>|k+1|,l1的图象比l2的图象陡,当k<0,k+1>0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、三象限,故选项A正确,不符合题意;当k<0,k+1<0时,l1:y kx=的图象经过二、四象限,l2:y=kx+x-k的图象经过一、二、四象限,故选项B正确,不符合题意;当k>0,k+1>0,-k<0时,l1:y kx=的图象经过一、三象限,l2:y=kx+x-k的图象经过一、三、四象限,l1的图象比l2的图象缓,故选项C正确,不符合题意;而选项D中,,l1的图象比l2的图象陡,故选项D错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k>0、k<0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.【详解】解:42313312x y ax y a+=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x ay a⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.C解析:C【分析】先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB=5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32,故点C (0,32), 故选:C .【点睛】 本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.9.B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <, ∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.10.D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键. 11.A解析:A【分析】根据题意可以得出进水速度和出水速度,再根据图象中的折线走势,判断进水、出水状态解答即可.【详解】解:根据题意,每个进水口速度是每小时1万立方米,出水速度是每小时2万立方米, 由图象可知,①在0到3点,蓄水量每小时增加2万立方米,即0到3点只进水不出水,正确; ②在3点到4点,蓄水量每小时减少1万立方米,即打开一个进水口和一个出水口,错误;③在4点到6点,需水量没发生变化,即打开两个进水口和一个出水口,错误, 故选:A .【点睛】本题考查一次函数的图象与性质,能根据函数图象获取有效数据和所需条件是解答的关键.12.A解析:A【分析】根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答.【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,∴直线y kx b =+的解析式为2(2)123y x x =+-=+,∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确;当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误;∵k=2>0,∴y 随x 的增大而增大,故D 错误,故选:A .【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.二、填空题13.1325【分析】从图2的函数图象得知BD=x的最大值为7即BC=7同时AC=y=13再由图2中(113)知BD=1时AD=13作AE⊥BC于E利用等腰三角形的性质以及勾股定理即可求解【详解】由图2的解析:【分析】从图2的函数图象得知,BD=的最大值为7,即BC=,同时AC=y=,再由图2中(1,)知,BD=时,AD=,作AE⊥BC于E,利用等腰三角形的性质以及勾股定理即可求解.【详解】由图2的函数图象可知,BD=的最大值为7,∴BC=,此时点C、D重合,对应AC=y=,再由图2中(1,)知,BD=时,AD=,如图:作AE⊥BC于E,∵AC=AD=,BD=,BC=,∴DE=CE=DC=(BC- BD)=3,∴AE=,在Rt△ABE中,∠AEB=90,AE,BE= BD + DE =,∴AB=.故答案为:,.【点睛】本题主要考查了动点问题的函数图象,等腰三角形的性质,勾股定理的应用等知识,正确理解D点运动到何处时BD长最大以及点(1,)的意义是关键,同时也考察了学生对函数图象的观察能力.14.x<-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x<-1故答案为:x<-1【点睛】本题考查了一次函数与不等式的关系理解函数解析:x<-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.15.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°,∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3), 设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253.故答案为:y=-23x+253. 【点睛】 本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键.16.【分析】依据题意得到三个关系式:a+b=cab=10a2+b2=c2运用完全平方公式即可得到c 的值【详解】解:∵点在勾股一次函数的图象上把代入得:即∵分别是的三条边长的面积为10∴故∴∴故解得:故答解析:【分析】依据题意得到三个关系式:a+b=5c ,ab=10,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.【详解】解:∵点(15P ,在“勾股一次函数”a b y x c c =+的图象上,把(1)5P ,代入得:a b c c=+,即a b +=, ∵,,a b c 分别是Rt ABC 的三条边长,90C ∠=︒,Rt ABC 的面积为10, ∴1102ab =,222+=a b c ,故20ab =, ∴22()2a b ab c +-=,∴22220c ⎫-⨯=⎪⎪⎝⎭,故24405c =,解得:c =.故答案为:【点睛】此类考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.17.(或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2 解析:254(或6.25). 【分析】根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可.【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米, ∴父子共用时间20-20÷5=16秒,∴儿子的速度为10016=254米/秒, 故答案为:254. 【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 18.【分析】将不等式写成可以理解为一次函数当时求x 的取值范围由函数图象即可得到结果【详解】解:不等式可以写成即一次函数当时x 的取值范围由函数图象可得故答案是:【点睛】本题考查一次函数与不等式的关系解题的 解析:4x >【分析】将不等式1mx n ->写成1mx n ->,可以理解为一次函数y mx n =-,当1y >时,求x 的取值范围,由函数图象即可得到结果.【详解】解:不等式1mx n ->可以写成1mx n ->,即一次函数y mx n =-,当1y >时,x 的取值范围,由函数图象可得4x >.故答案是:4x >.【点睛】本题考查一次函数与不等式的关系,解题的关键是掌握利用一次函数图象解一元一次不等式的方法.19.【分析】根据中点坐标公式求得C 点坐标作点A 关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键. 20.-9【分析】根据一次函数图象上的点的坐标特征将点P (ab )和Q (cd )代入一次函数的解析式求出a−bc−d 的值然后整体代入所求的代数式并求值【详解】解:∵一次函数y =x +3的图象经过点P (ab )和Q解析:-9.【分析】根据一次函数图象上的点的坐标特征,将点P (a ,b )和Q (c ,d )代入一次函数的解析式,求出a−b 、c−d 的值,然后整体代入所求的代数式并求值.【详解】解:∵一次函数y =x +3的图象经过点P (a ,b )和Q (c ,d ),∴点P (a ,b )和Q (c ,d )满足一次函数的解析式y =x +3,∴b =a +3,d =c +3,∴b−a =3,c−d =−3;∴()()b c d a c d ---=(b−a )(c−d )=3×(−3)=-9;故答案为:-9.【点睛】本题考查了一次函数图象上点的坐标特征,经过函数的某点一定在函数的图象上,并且一定满足函数的解析式.三、解答题21.(1)80m/min ;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解; ()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m .【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)5;(2)1612,55F ⎛⎫- ⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合, OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯,即1153422FG ⨯⨯=⨯⨯,125FG =,在Rt OFG △中,由勾股定理得:165OG ==, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.(1)x ,y ;(2)40,28;(3)y=2x+28,9kg【分析】(1)根据自变量与因变量的定义解答即可;(2)由表格可知:不挂重物时,弹簧的长度为28cm ,重物每增加1kg ,弹簧长度增加2cm ,据此可求当所悬挂重物为6kg 时弹簧的长度;(3)根据(2)中分析可写出函数关系式,把y=46代入中求得的函数关系式,求出x 的值即可;【详解】解:(1)上述表格反映了弹簧的长度ycm 与所挂物体的质量xkg 这两个变量之间的关系.其中所挂物体的质量x 是自变量,弹簧的长度y 是因变量.(2)由表格可知不挂重物时,弹簧的长度为28cm ,∵重物每增加1kg ,弹簧长度增加2cm ,∴当所悬挂重物为6kg 时,弹簧的长度为38+2=40cm ;(3)∵重物每增加1kg ,弹簧长度增加2cm ,∴y=2x+28,把y=46代入y=2x+28,得出:46=2x+28,∴x=9,所以,弹簧的长度为46cm 时,此时所挂重物的质量是9kg .【点睛】本题主要考查了函数关系式和常量与变量的知识,解答本题的关键在于熟读题意并求出弹簧的长度与所挂物体的质量之间的函数关系式.25.(1)34k =;(2)()918804S x x =+-<<;(3)16,23⎛⎫- ⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭ 【分析】(1)把点E 的坐标()8,0-代入直线6y kx =+,即可求得答案;(2)根据三角形的面积公式列出解析式,根据题意求出自变量x 的取值范围;(3)根据“分得的两个三角形面积之比为1:2”的不确定性,进行分类讨论,再由同高三角形面积之比即为底之比可求得对角线交点的坐标,进而可求得直线HQ 的解析式,进而利用两一次函数解析式求得交点P 的坐标.【详解】解:(1)∵点()8,0E -在直线y kx b =+上∴086k =-+ ∴34k =. (2)∵34k = ∴直线的解析式为:364y x =+ ∵P 点在364y x =+上, ∴设3,4P x x b ⎛⎫+ ⎪⎝⎭∴OPA 以OA 为底的边上的高是364x + ∵点P 在第二象限 ∴336644x x +=+ ∵点A 的坐标为(6,0)-∴6OA = ∴366941824x S x ⎛⎫+ ⎪⎝⎭==+,即9184S x =+∵P 点在第二象限∴自变量x 的取值范围是:80x -<<∴OPA 的面积S 与x 的函数表达式为:()918804S x x =+-<<. (3)根据题意,PQ 是四边形EPOQ 的对角线∵不确定分得的两个三角形的比为1:2还是2:1∴有两种情况①当1121P EQPQO S S =时,1PQ 与x 轴交于1H ,如图:∵8EQ =∴18,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线1H Q 的解析式为324y x =-- ∴324364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴1632x y ⎧=-⎪⎨⎪=⎩ ∴116,23P ⎛⎫-⎪⎝⎭; ②当2212P EQP QO S S =时,2P Q 与x 轴交于2H ,如图:∵8EQ = ∴216,03H ⎛⎫- ⎪⎝⎭∵()0,2Q -∴直线2H Q 的解析式为328y x =-- ∴328364y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩∴64923x y ⎧=-⎪⎪⎨⎪=⎪⎩∴2642,93P ⎛⎫- ⎪⎝⎭∴综上所述,当点P 为16,23⎛⎫-⎪⎝⎭或642,93⎛⎫- ⎪⎝⎭时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2.【点睛】 本题考查了一次函数的知识,渗透了分类讨论、数形结合的数学思想,掌握待定系数法求一次函数解析式的一般步骤、根据三角形的面积公式列出解析式、根据三角形的面积关系求得点的坐标是解题的关键.26.(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,则233a b b =+⎧⎨-=⎩,解得:533a b ⎧=⎪⎨⎪=-⎩, ∴直线BC 的表达式为533yx ; (2)在直线3(0)y kx k =-≠中, 令x=0,则y=-3,即直线3(0)y kx k =-≠必经过(0,-3),∵直线3(0)y kx k =-≠与线段AB 没有交点,AC :33y x =--,BC :533y x , 可得k 的取值范围是:-3<k <53且k≠0. 【点睛】本题考查了一次函数表达式,一次函数图象上点的坐标特征,理解直线3(0)y kx k =-≠与线段AB 没有交点是解题的关键.。

八年级数学-一次函数练习题(含解析)

八年级数学-一次函数练习题(含解析)

八年级数学-一次函数练习题(含解析)一、单选题1.下列的点在函数y =13x -2上的是( ) A .(0,2) B .(3,-2) C .(-3,3) D .(6,0)2.当2x =时,函数41=-+y x 的值是( )A .-3B .-5C .-7D .-93.地表以下的岩层温度y 随着所处深度x 的变化而变化,在某个地点y 与x 的关系可以由公式3520y x =+来表示,则y 随x 的增大而( ).A .增大B .减小C .不变D .以上答案都不对4.下列不是一次函数关系的是( )A .矩形一条边的长固定,面积与另一条边的长的关系B .矩形一条边的长固定,周长与另一条边的长的关系C .圆的周长与直径的关系D .圆的面积与直径的关系5.已知函数()15my m x m =-+是一次函数,则m 的值为( ) A .1 B .1- C .0或1- D .1或1-6.若直线1y k x 1=+与2y k x 4=-的交点在x 轴上,那么12k k 等于( ) A .4 B .4- C .14 D .14- 7.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .38.一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >9.如果一次函数y=kx+b (k 、b 是常数,k≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <010.关于函数y =-x -2的图象,有如下说法:①图象过点(0,-2);②图象与x 轴的交点是(-2,0);③从图象知y 随x 增大而增大;④图象不经过第一象限;⑤图象是与y =-x 平行的直线.其中正确的说法有( )A .2种B .3种C .4种D .5种二、填空题 11.将直线12y x =-向上平移一个单位长度得到的一次函数的解析式为_______________. 12.函数y=kx+b 的图象平行于直线y=-2x ,且与y 轴交于点(0,3),则k=______,b=____.13.一次函数y =(2m -6)x +5中,y 随x 的增大而减小,则m 的取值范围是 ________.14.在一次实验中小明把一根弹簧的上端固定在其下端悬挂物体,如表所示,为测得的弹簧的长度()y cm 与所挂物体质量()x kg 的一组对应值.若所挂重物为7k g 时(在允许范围内),此时的弹簧长度为________cm .15.若直线y mx n =-+经过第一、二、三象限,则直线y nx m =-+不经过第________象限.三、解答题16.如图,正比例函数的图像经过点()1,2-,求此函数的解析式.17.已知y 与23x -成正比例,且当4x =时,10y =,求y 与x 的函数解析式.18.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.19.已知一次函数的图象经过A(−2,−3),A(1,3)两点. (1)求这个一次函数的表达式;(2)试判断点A(−1,1)是否在这个一次函数的图象上.20.如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足时,y1>y2.21.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.参考答案1.D【解析】A 选项:当x =0时,102223y =⨯-=-≠. 因此,点(0, 2)不在该函数的图象上. 故A 选项不符合题意.B 选项:当x =3时,132123y =⨯-=-≠-. 因此,点(3, -2)不在该函数的图象上. 故B 选项不符合题意.C 选项:当x =-3时,()132333y =⨯--=-≠. 因此,点(-3, 3)不在该函数的图象上. 故C 选项不符合题意.D 选项:当x =6时,16203y =⨯-=. 因此,点(6, 0)在该函数的图象上. 故D 选项符合题意.故本题应选D.2.C【解析】解:当2x =时,函数414217y x =-+=-⨯+=-,故选C.3.A【解析】解:由题目分析可知:在某个地点岩层温度y 随着所处深度x 的变化的关系可以由公式y=35x+20来表示,由一次函数性质,进行分析,因为35>0,故应有y 随x 的增大而增大.故选:A .4.D【解析】A 项,矩形的面积=一条边长×另一条边长,当矩形一条边的长固定,面积与另一条边的长的关系是一次函数关系,故本选项不符合题意;B 项,矩形的周长=2×一条边长+2×另一条边长,当矩形一条边的长固定,周长与另一条边的长的关系是一次函数关系,故本选项不符合题意;C 项,圆的周长=π×直径,圆的周长与直径的关系是一次函数关系,故本选项不符合题意;D 项,圆的面积=4π×直径2,圆的面积与直径的关系不是一次函数关系,故本选项符合题意.故选D .5.B【解析】 由题意可知:110m m =-≠⎧⎪⎨⎪⎩,解得:m=−1故选:B . 6.D【解析】解:令y 0=,则1k x 10+=, 解得11x k =-, 2k x 40-=, 解得24x k =, Q 两直线交点在x 轴上,1214k k ∴-=,12k 1k 4∴=-. 故选:D .7.A【解析】把(0,0)代入y=(k+2)x+k 2-4得k 2-4=0,解得k=±2,而k+2≠0,所以k=2.故选A .8.B【解析】∵将直线1l 向下平移若干个单位后得直线2l ,∴直线1l ∥直线2l ,∴12k k =,∵直线1l 向下平移若干个单位后得直线2l ,∴12b b >,∴当x 5=时,12y y >故选B .9.B【解析】∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.10.C【解析】①将(0,−2)代入解析式得,左边=−2,右边=−2,故图象过(0,−2)点,正确;②当y=0时,y=−x−2中,x=−2,故图象过(−2,0),正确;③因为k=−1<0,所以y随x增大而减小,错误;④因为k=−1<0,b=−2<0,所以图象过二、三、四象限,正确;⑤因为y=−x−2与y=−x的k值(斜率)相同,故两图象平行,正确.故选C.11.112y x=-+【解析】由平移的规律知,得到的一次函数的解析式为112y x=-+.12. -23【解析】∵y=kx+b的图象平行于直线y=−2x,∴k=−2,则直线y=kx+b的解析式为y=−2x+b,将点(0,3)代入得:b=3,故答案为:−2,3.【解析】解:∵y 随x 增大而减小,∴k<0,∴2m -6<0,∴m<3.14.32【解析】解:由表格可得:当所挂物体重量为1千克时,弹簧长20厘米;当不挂重物时,弹簧长18厘米,则y=2x+18,当所挂重物为7kg 时,弹簧的长度为:y=14+18=32(cm ).故答案为:32.15.一【解析】由直线y=-mx+n 的图象经过第一、二、三象限,∴-m >0,n >0,∴m<0,-n <0∴直线y=-nx+m 经过第二、三、四象限,∴直线y=-nx+m 不经过第一象限,故答案为:一.16.2y x =-.解:设该正比例函数的解析式为()0y kx k =≠.∵该正比例函数经过点()1,2-,则21k -=⨯,解得:2k =-.∴该正比例函数的解析式为:2y x =-.17.46y x =-【解析】设函数解析式为()()230y k x k =-≠,把4x =,10y =代入()23y k x =-,得:()1083k =-, 解得,2k =,所以,函数解析式为()22346y x x =-=-.18.(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x −2k+6的图象y 随x 的增大而减小, ∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.19.(1)A =2A +1;(2)点A (−1,1)不在这个一次函数的图象上.【解析】解:(1)设这个一次函数的表达式为A =AA +A .由题意得{−2A +A =−3,A +A =3, 解得{A =2,A =1,∴这个一次函数的表达式为A =2A +1.(2)当A =−1时,A =2×(−1)+1=−1≠1.∴点A (−1,1)不在这个一次函数的图象上.20.(1)m=3, n=4;(2)4;(3)x <2.【解析】(1)∵点A (2,n )在正比例函数y=2x 的图象上,∴n=2×2=4,∴A(2,4);∵点A (2,4)在一次函数y 1=(m ﹣2)x+2的图象上,∴4=2(m-2)+2,解得m=3,∴y 1=x+2.(2)当y 1=0时,x+2=0,即x=-2,∴点B 的坐标为(-2,0), ∴12442AOB S ∆=⨯⨯=. (3)观察图象可知,当x 满足x <2时,y 1>y 2.21.(1)y=x+1;(2)C (0,1);(3)1【解析】(1)∵正比例函数y=2x 的图象与一次函数y=kx+b 的图象交于点A (m ,2), ∴2m=2,m=1.把(1,2)和(-2,-1)代入y=kx+b ,得221k b k b +⎧⎨-+-⎩== 解得:11k b ⎧⎨⎩== 则一次函数解析式是y=x+1;(2)令x=0,则y=1,即点C (0,1);(3)令y=0,则x=-1.则△AOD 的面积=11212⨯⨯=.。

八年级(初二)数学(一次函数)试题附答案解析

八年级(初二)数学(一次函数)试题附答案解析

一、单选题(共7题;共14分)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B−E−D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是().A. 监测点AB. 监测点BC. 监测点CD. 监测点D2.把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为()A. y=2x﹣2B. y=2x+1C. y=2xD. y=2x+23.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为( )A. (√5)7B. 2(√5)7C. 2(√5)8D. (√5)94.如图所示,一次函数y=kx+b(k、b为常数,且k ≠0)与正比例函数y=ax(a为常数,且a ≠0)相交于点P,则不等式kx+b>ax的解集是()A. x>1B. x<1C. x>2D. x<25.如图,直线y=x+2与y轴相交于点A0,过点A0作x轴的平行线交直线y=0.5x+1于点B1,过点B1作y轴的平行线交直线y=x+2于点A1,再过点A1作x轴的平行线交直线y=0.5x+1于点B2,过点B2作y轴的平行线交直线y=x+2于点A2,…,依此类推,得到直线y=x+2上的点A1,A2,A3,…,与直线y=0.5x+1上的点B1,B2,B3,…,则A7B8的长为()A. 64B. 128C. 256D. 5126.同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是()A. x≤﹣2B. x≥﹣2C. x<﹣2D. x>﹣27.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A. M处B. N处C. P处D. Q处二、填空题(共6题;共6分)8.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+ b=________.9.设m、x、y均为正整数,且√m−√28=√x−√y,则(x+y+m)²=________.10.菱形0BCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为________.11.如图,在平面直角坐标系中,一次函数y=x+3 √2的图象与x轴交于点A,与y轴交于点B,点P在线12.已知一次函数的图象过点且不经过第一象限,设,则m的取值范值是________;13.如图,点A的坐标为(-2,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标是________.三、计算题(共1题;共5分)14.计算:(1)√2+1√8+(√3−1)0(2)(−12)−1−3√13+(1−√2)0+√12四、解答题(共2题;共20分)15.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价﹣进价)16.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4 √5,OCOA =12(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.五、综合题(共6题;共88分)17.已知四边形OABC是边长为4的正方形,分别以OA,OC所在的直线为x轴、y轴,建立如图1所示的平面直角坐标系,直线l经过A,C两点.(1)写出点A,点C坐标并求直线l的函数表达式;(2)若P是直线l上的一点,当△OPA的面积是5时,请求出点P的坐标;(3)如图2,点D(3,﹣1),E是直线l上的一个动点,求出使|BE﹣DE|取得最大值时点E的坐标和最大值(不需要证明).18.如下图所示,直线y=-1x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q2以每秒1个单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为________;(3)综上所述,若△OCQ是等腰直角三角形,则t的值为2或4. (3)若CQ平分△OAC的面积,求直线CQ 对应的函数表达式.19.如图,直线l:y=kx+6与x轴、y轴分别交于点B、C两点,点B的坐标是(-8,0),点A的坐标为(-6,0).(1)求k的值.(2)若点P是直线l在第二象限内一个动点,当点P运动到什么位置时,△PAC的面积为3?并求出此时直线AP的解析式.(3)在x轴上是否存在一点M,使得△BCM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.20.如图1,在平面直角坐标系中,直线l:y=34x+32与x轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒√2个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.21.已知:如图,直线l1:y1=−x+n与y轴交于A(0,6),直线l2:y2=kx+1分别与x轴交于点B(−2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)直接写出直线l1、l2的函数表达式;(2)求ΔABD的面积;(3)在x轴上存在点P,能使ΔABP为等腰三角形,求出所有满足条件的点P的坐标.22.如图,己知函数y= 4x + 4的图象与坐标轴的交点分别为点A、B,点C与点B关于x轴对称,动点P、3Q分别在线段BC、AB上(点P不与点B、C重合).且∠APQ=∠ABO(1)点A的坐标为________,AC的长为________;(2)判断∠BPQ与∠CAP的大小关系,并说明理由;(3)当△APQ为等腰三角形时,求点P的坐标.六、综合题(共1题;共11分)x+4的图像与x轴和y轴分别相交于A、B两点.动23.如图,在平面直角坐标系中,一次函数y=−23点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A 关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=1秒时,点Q的坐标是________;3(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.答案解析部分一、单选题1. C2. B3. B4. D5.【答案】 C6.【答案】 A7.【答案】 D二、填空题8.【答案】2.5 9.【答案】 256 10.【答案】( 2√3−3,2−√3 ) 11.【答案】59≤m ≤1 12.【答案】 3+3√2 13.【答案】 (−1,−1)三、计算题14.【答案】 (1) 原式=√2−1−2√2+1=−√2(2)原式=−2−√3+1+2√3=√3−1四、解答题15.【答案】 解:(1)由题意,得当0<x≤5时y=30.当5<x≤30时,y=30﹣0.1(x ﹣5)=﹣0.1x+30.5.∴y=;(2)当0<x≤5时,(32﹣30)×5=10<25,不符合题意,当5<x≤30时,[32﹣(﹣0.1x+30.5)]x=25,解得:x 1=﹣25(舍去),x 2=10.答:该月需售出10辆汽车.16.【答案】 (1)解:∵ OC OA =12 ,∴ 可设OC=x ,则OA=2x ,在Rt △AOC 中,由勾股定理可得OC 2+OA 2=AC 2 ,∴x 2+(2x )2=(4 √5 )2 , 解得x=4或x=-4(不合题意,舍去),∴OC=4,OA=8,∴A (8,0),C (0,4),设直线AC 解析式为y=kx+b ,∴ {8k +b =0b =4, 解得: {k =−12 ,∴直线AC 解析式为y= −12 x+4(2)解:由折叠的性质可知AE=CE ,设AE=CE=y ,则OE=8-y ,在Rt △OCE 中,由勾股定理可得OE 2+OC 2=CE 2 ,∴(8-y )2+42=y 2 , 解得y=5,∴AE=CE=5,∵∠AEF=∠CEF ,∠CFE=∠AEF ,∴∠CFE=∠CEF ,∴CE=CF=5,∴S △CEF = 12 CF•OC= 12 ×5×4=10,即重叠部分的面积为10;(3)解:由(2)可知OE=3,CF=5,∴E (3,0),F (5,4),设直线EF 的解析式为y=k′x+b′,∴ {3k ′+b ′=05k ′+b ′=4 , 解得: {k ′=2b ′=−6, ∴直线EF 的解析式为y=2x-6五、综合题17.【答案】 (1)解:∵四边形OABC 是边长为4的正方形,∴A (4,0)和C (0,4);设直线l 的函数表达式y=kx+b (k≠0),经过A (4,0)和C (0,4)得 {0=4k +b b =4, 解之得 {k =−1b =4, ∴直线l 的函数表达式y=﹣x+4(2)解:设△OPA 底边OA 上的高为h ,由题意等 12 ×4×h=5,∴h= 52, ∴|﹣x+4|= 52 ,解得x= 32 或132 ∴P 1( 32 , 52 )、P 2(132, −52 )(3)解:∵O 与B 关于直线l 对称,∴连接OD 并延长交直线l 于点E ,则点E 为所求,此时|BE ﹣DE|=|OE ﹣DE|=OD ,OD 即为最大值,如图2.∴﹣1=3k 1 , ∴k 1= −13∴直线OD 为 y =−13x ,解方程组: {y =−x +4y =−13x,得 {x =6y =−2 , ∴点E 的坐标为(6,﹣2). 又D 点的坐标为(3,﹣1) 由勾股地理可得OD= √10 .18.【答案】 (1)解:由 {y =−12x +3y =x解得: {x =2y =2 ,∴点C 的坐标为(2,2)(2)4 3)解:令- x +3=0,得x =6, ∴A(6,0). ∴点Q 的坐标为(3,0)时,CQ 平分△OCA 的面积. 设直线CQ 的函数表达式为y =kx +b. 把C(2,2),Q(3,0)代入y=kx+b 得: {3k +b =02k +b =2,解得k =-2,b =6, ∴当直线CQ 平分△OCA 的面积时,其对应的函数表达式为y =-2x +6. 19.【答案】 (1)解:直线l :y=kx+6过点B (-8,0), 0=-8k+6,K= 34(2)解:当x=0时,y= 34 x+6=6,∴点C 的坐标为(0,6) 如图,设点P 的坐标为(x , 34 x+6),∴S △PAC =S △BOC +S △BAP +S △AOC = 12 ×8×6- 12 ×2( 34 x+6)- 12 ×6×6=- 34 x取S △PAC =3,解得x=4,∴点P 的坐标为(4,3),设此时直线AP 的解析式为y=ax+b (a≠0), 将A (-6,0),P (-4,3)代入y=ax+b , 得 {-6a +b =0−4a +b =3 解得= a =32b =9,∴当点P 的坐标为(-44,3)时,△PAC 的面积为3,此时直线AP 的解析式为y= 32 x+9 (3)解:点M 的坐标为(-18,0)或(- 74 ,0)或(2,0)或(8,0) 20.【答案】 (1)解:将点B (2,m )代入 y =34x +32 得m=3 ∴ B(2,3)C(3,0)设直线BC 解析式为 y =kx +b 得到 {2k +b =33k +b =0 ∴ {k =−3b =9 ∴直线BC 解析式为 y =−3x +9(2)解:如图,过点O 作 OD//AB 交BC 于点D∴S △ABC =S △ABD , k AB =k OD =34 ∴直线OD 的解析式为y= 34x ,∴ 联立方程组{y =34xy =−3x +9解得 {x =125y =95∴D(125,95) (3)解:①如图,当P 点在y 轴负半轴时,作 M 1N ⊥OP 于点N ,∵直线AB 与x 轴相交于点A ,∴点A 坐标为(-2,0),∵∠APO+∠PAO=90°,∠APO+∠PNM 1=90° ∴∠PAO=∠PNM 1 , 又∵AP=PM 1 , ∠POA=∠PNM 1=90° ∴△AOP ≅ △PNM 1 , ∴PN=OA=2, 设OP=NM 1=m ,ON=m-2 ∴ M 1(m ,2−m)代入y =−3x +9 解得 m =72 ∴ M 1(72,−32) ②如图,作 M 2H ⊥OP 于点H可证明△AOP ≅ △PHM 2 ,设HM 2=n ,OH=n-2∴ M 2(n,n −2)代入y =−3x +9 ,解得 n =114,∴M 2(114, 34 ),∴综上所述 M 1(72,−32) 或M 2( 114, 34 ) (4)解:如图,作射线AQ 与x 轴正半轴的夹角为45°,过点B 作x 轴的垂线交射线AQ 于点Q ,作 EK ⊥AQ 于点K ,作 BT ⊥AQ 于点T ,∵∠CAQ=45°BG ⊥x 轴,B (2,3)∴AG=4,∴AQ=4 √2 ,BQ=7,t=BE 1+√2 =BE+EK≥BT ,由面积法可得: 12AQ ⋅BT =12BQ ⋅AG ∴ 12 ×4 √2 ×BT= 12 ×7×4,∴BT= 72√2 因此t 最小值为 72√2 . 21.【答案】 (1)解:∵直线 l 1 : y 1=−x +n 与y 轴交于A (0,6), ∴n =6, ∴直线 l 1 : y 1=x +6 ,∵ y 2=kx +1 分别与x 轴交于点B (−2,0),∴−2k +1=0, ∴k = 12 ,直线 l 2 : y 2=12x +1(2)解:设 l 1 与 x 轴交于点 E ,令 y 1=−x +6=0 ,得 x =6 , ∴点 E 坐标为 (6,0) , BE =8 . 由 {y =−x +6y =12x +1解得 x =103 , y =83 ,∴点 D 的坐标为 (103,83) , ∴ S ΔABD =S ΔABE −S ΔBDE =12×8×6−12×8×83=403.(3)解:在 RtΔAOB 中,由勾股定理可得 AB =√22+62=2√10 ,①当 BP =BA 时,满足条件的点 P 有两个,分别为 P 1(−2−2√10,0) , P 2(−2+2√10,0) ; ②当 AP =AB 时,由等腰三角形的三线合一可得 OP =OB ,于是满足条件的点 P 为 P 3(2,0) ; ③当 AP =AB 时,如图,设 OP =t ,则 AP =BP =t +2 ,在RtΔAOP中,AP2=AO2+OP2,∴(t+2)2=62+t2,解得t=8,∴P4(8,0).综上,满足条件的点P为P1(−2−2√10,0),P2(−2+2√10,0),P3(2,0),P4(8,0).22.【答案】(1)(3,0);5(2)解:∠BPQ=∠CAP.理由如下:∵点C与点B关于x轴对称,∴AB=AC,∴∠1=∠2,∵∠APQ=∠1,∴∠2=∠APQ,∵∠BPA=∠2+∠3,即∠BPQ+∠APQ=∠2+∠3,∴∠BPQ=∠3;(3)解:当PA=PQ,如图1,则∠PQA=∠PAQ,∵∠PQA=∠1+∠BPQ=∠APQ+∠BPQ=∠BPA,∴BP=BA=5,∴OP=BP﹣OB=1,∴P(0,﹣1);当AQ=AP,则∠AQP=∠APQ,而∠AQP=∠BPA,所以此情况不存在;当QA=QP,如图2,则∠APQ=∠PAQ,而∠1=∠APQ,∴∠1=∠PAQ,∴PA=PB,设P(0,t),则PB=4﹣t,∴PA=4﹣t,在Rt△OPA中,∵OP2+O A2=PA2,∴t2+32=(4﹣t)2,解得t= 78,∴P(0,78),综上所述,满足条件的P点坐标为(0,﹣1),(0,78).六、综合题23.【答案】(1)(4,0)(2)解:当点Q与原点O重合时,即OA=6, ∴AP= 12AO=3=3t, ∴t=1,①当0<t≤1时(如图1),∵一次函数与y轴交于B点,令x=0,∴y=4,∴B(0,4),即OB=4由(1)知OA=6,在Rt△AOB中,∴tan∠OAB= OBOA= 46= 23,∵AP=3t,∴OP=OA-PA=6-3t,∴P(6-3t,0),又∵点A关于点P的对称点为点Q,∴AP=PQ=3t,∴OQ=OA-AP-PQ=6-3t-3t=6-6t,∴Q(6-6t,0),∵四边形PQMN是正方形,∴PN=PQ=3t,MN∥AO,在Rt△APD中,∴tan∠PAD= PDPA= PD3t= 23,∴PD=2t,∴DN=PN-PD=3t-2t=t,∵MN∥AO,∴∠PAD=∠DCN,在Rt△DCN中,∴tan∠DCN= DNCN= tCN= 23,∴CN= 32t,∴S=S正方形PQMN-S△CDN,=(PQ)2- 12·DN·CN,=(3t)2- 12·t·32t,= 334t2,②当1<t≤ 43时(如图2),由①可知:DN=t,CN= 32t,OP=6-3t,PN=3t,∴S=S矩形POEN-S△CDN,=PO·PN-12·DN·CN,=(6-3t)×3t- 12·t·32t,=18t- 394t2,③当43<t≤2时(如图3),由①可知:PD=2t,OP=6-3t,OB=4,∴S=S四边形POBD,= 12·(PD+OB)·OP,= 12×(2t+4)×(6-3t),=-3t2+12t,综上所述:S={334t2,0≤t<1−394t2+18t,1≤t≤43−3t2+12,43<t≤2(3)解:解:如图4,由(2)中①可知:P(6-3t,0),Q(6-6t,0),PN=PQ=3t,A(6,0),∴M(6-6t,3t),N(6-3t,3t),∵T是正方形PQMN对角线的交点,∴T(6- 92t,32t),设直线AT解析式为:y=kx+b,∴{6k+b=0(6−92t)k+b=32t,解得:{k=−13b=2,∴AT解析式为:y=- 13x+2,∴点T是直线y=- 13x+2上一段线段上的点(-3≤x<6),同理可得直线AN解析式为:y=-x+6, ∴点N是直线y=-x+6上一段线段上的点(0≤x≤6),∴G(0,6),∴OG=6,∵OA=6,在Rt△AOG中,∴AG=6 √2,又∵T是正方形PQMN对角线的交点,∴PT=TN,∴OT+PT=OT+TN,∴当O、T、N在同一条直线上,且ON⊥AG时,OT+TN最小,即OT+PT最小, ∵S△AOG= 12·AO·GO= 12·AG·NO,∴NO= AO×GOAG =6√2=3 √2,∴OT+PT=OT+TN=ON=3 √2, 即OT+PT最小值为3 √2.。

八年级数学:一次函数(应用题)练习(含解析)

八年级数学:一次函数(应用题)练习(含解析)
A.8000,13200B.9000,10000
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.

人教版初二下《第19章一次函数》专项训练含答案

人教版初二下《第19章一次函数》专项训练含答案

人教版初二下《第19章一次函数》专项训练含答案专训1.用一次函数巧解实际中方案设计的应用名师点金:做一件情况,有时有不同的方案,比较这些方案,从中选择最佳方案作为行动打算,是专门必要的.解决这些问题时,先要弄清题意,依照题意构建恰当的函数模型,求出自变量的取值范畴,然后再结合实际问题确定最佳方案.合理决策问题1.某商场打算投入一笔资金采购一批紧俏商品,经市场调研发觉,假如本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;假如下月初出售可获利25%,但要支付仓储费8 000元.设商场投入资金x元,请你依照商场的资金情形,向商场提出合理化建议,说明何时出售获利较多.选择方案问题2.某教育行政部门打算今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,同时各自推出不同的优待方案.甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.假如你是那个部门的负责人,你应选择哪家宾馆更实惠些?最佳效益问题3.甲、乙两个商场出售相同的某种商品,每件售价均为3 000元,同时多买都有一定的优待.甲商场的优待条件是:第一件按原售价收费,其余每件优待30%;乙商场的优待条件是:每件优待25%.设所买商品为x件时,甲商场收费为y元,乙商场收费为y2元.1(1)分别求出y1,y2与x之间的关系式.(2)当甲、乙两个商场的收费相同时,所买商品为多少件?(3)当所买商品为5件时,应选择哪个商场更优待?请说明理由.专训2.全章热门考点整合应用名师点金:本章内容是中考的必考内容,要紧考查一次函数的图象与性质,求函数解析式及建立一次函数模型解决利润大小、方案选择等实际问题,题型涉及选择题、填空题与解答题.其热门考点可概括为:三个概念,两个图象,一个性质,四个关系,一个方法,两个应用.三个概念概念1变量与常量1.(1)设圆柱的底面半径R不变,圆柱的体积V与圆柱的高h的关系式是V =πR2h,在那个变化过程中常量和变量分别是什么?(2)设圆柱的高h不变,在圆柱的体积V与圆柱的底面半径R的关系式V=πR2h中,常量和变量分别又是什么?概念2函数2.两个变量之间存在的关系式是y2=x+1(其中x是非负整数),y是不是x 的函数?假如变为用含y的代数式表示x的形式,x是不是y的函数?请说明缘故.3.求下列函数中自变量的取值范畴:(1)y=-12x2-x+6;(2)y=-112x-3;(3)y=16x-9 3x-2.概念3一次函数4.当m,n为何值时,y=(5m-3)x2-n+(m+n)是关于x的一次函数?当m,n为何值时,y是关于x的正比例函数?两个图象图象1函数的图象5.小张的爷爷每天坚持体育锤炼,星期天爷爷从家里跑步到公园,打了一会儿太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时刻x(分钟)之间关系的大致图象是( )图象2一次函数的图象6.(中考·阜新)关于一次函数y=kx+k-1(k≠0),下列叙述正确的是( )A.当0<k<1时,函数图象通过第一、二、三象限B.当k>0时,y随x的增大而减小C.当k<1时,函数图象一定交于y轴的负半轴D.函数图象一定通过点(-1,-2)7.若有理数a,b,c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是( )一个性质8.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1的图象上的两点,则a与b的大小关系是( )A.a>b B.a=bC.a<b D.以上都不对9.已知一次函数的解析式是y=(k-2)x+12-3k.(1)当图象与y轴的交点位于原点下方时,判定函数值随着自变量的增大而变化的趋势;(2)假如函数值随着自变量的增大而增大,且函数图象与y轴的交点位于原点上方,确定满足条件的正整数k的值.四个关系关系1一次函数与正比例函数的关系10.下列函数中,哪些是一次函数?哪些是正比例函数?①y=-2x-1;②y=12x;③y=2x;④y=-x2-1;⑤2x-y=0;⑥y=-2(x-1).11.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求一次函数的解析式;(2)判定点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.(第11题)关系2 一次函数与一元一次方程的关系12.如图,在平面直角坐标系xOy 中,直线y =x +1与y =-34x +3交于点A ⎝ ⎛⎭⎪⎫87,157,两直线分别交x 轴于点B 和点C. (1)求点B ,C 的坐标; (2)求△ABC 的面积.(第12题)关系3 一次函数与二元一次方程(组)的关系13.下列各个选项中的网格差不多上边长为1的小正方形,利用函数的图象解方程5x -1=2x +5,其中正确的是( )关系4 一次函数与不等式(组)的关系14.已知一次函数y =kx +3的图象通过点(1,4).(1)求那个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.15.在同一平面直角坐标系中,画出一次函数y 1=2x -4,y 2=x +1的图象,依照图象求解下列问题:(1)二元一次方程组⎩⎨⎧y =2x -4,y =x +1的解;(2)一元一次不等式组⎩⎨⎧2x -4>0,x +1>0的解集.一个方法——待定系数法16.如图,一个正比例函数图象与一个一次函数图象交于点A(3,4),且一次函数的图象与y 轴相交于点B(0,-5).(1)求这两个函数的解析式; (2)求三角形AOB 的面积.(第17题)两个应用应用1给出解析式(或图象)解实际问题17.某游泳馆一般票价20元/张,暑期为了促销,新推出两种优待卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期一般票正常出售,两种优待卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、一般票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,要求出点A,B,C的坐标;(3)请依照函数图象,直截了当写出选择哪种消费方式更合算.(第18题)应用2只给语言叙述或图表情境解实际问题18.为改善生态环境,防止水土流失,某村打算在河堤坡面种植白杨树,现有甲、乙两家林场可提供相同质量的白杨树苗,其具体销售方案如下:(1)该村需要购买1 500棵白杨树苗,若都在甲林场购买所需费用为________元,若都在乙林场购买所需费用为________元;(2)分别求出y甲、y乙与x之间的函数关系式;(3)假如你是该村的负责人,应该选择到哪家林场购买树苗合算,什么缘故?答案专训11.解:设假如商场本月初出售,下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x,设假如商场下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2时,0.21x=0.25x-8 000,解得x=200 000;当y1>y2时,0.21x>0.25x-8 000,解得x<200 000;当y1<y2时,0.21x<0.25x-8 000,解得x>200 000.因此若商场投入资金为20万元,两种出售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若投入资金多于20万元,下月初出售获利较多.2.分析:设总人数是x人,当x≤35时,选择两家宾馆是一样的;当35<x≤45时,选择甲宾馆比较实惠;当x>45时,两家宾馆的收费能够表示成人数x 的函数,比较两个函数值的大小即可.解:设总人数是x人,甲宾馆的收费为y甲元,乙宾馆的收费为y乙元,当x≤35时,两家宾馆的费用是一样的;当35<x ≤45时,选择甲宾馆比较实惠;当x>45时,甲宾馆的收费y 甲=35×120+0.9×120×(x -35),即y 甲=108x +420,乙宾馆的收费y 乙=45×120+0.8×120(x -45)=96x +1 080. 当y 甲=y 乙时,108x +420=96x +1 080,解得x =55; 当y 甲>y 乙时,108x +420>96x +1 080,解得x>55; 当y 甲<y 乙时,108x +420<96x +1 080,解得x<55.综上可得,当x ≤35或x =55时,两家宾馆的费用是一样的; 当35<x<55时,选择甲宾馆比较实惠; 当x>55时,选择乙宾馆比较实惠.3.解:(1)当x =1时,y 1=3 000;当x >1时,y 1=3 000+3 000(x -1)×(1-30%)=2 100x +900.因此y 1=⎩⎨⎧3 000(x =1),2 100x +900(x >1,x 为整数).y 2=3 000x (1-25%)=2 250x (x 为正整数).(2)当甲、乙两个商场的收费相同时,2 100x +900=2 250x ,解得x =6.故甲、乙两个商场的收费相同时,所买商品为6件.(3)应选择乙商场更优待,理由如下:当x =5时,y 1=2 100x +900=2 100×5+900=11 400,y 2=2 250x =2 250×5=11 250,因为11 400>11 250,因此当所买商品为5件时,应选择乙商场更优待.专训21.解:(1)常量是π和R ,变量是V 和h. (2)常量是π和h ,变量是V 和R.2.解:在y 2=x +1中,当x 的值是0时,y 的值为±1,现在y 的值有两个,并不是唯独确定的,因此y 不是x 的函数.y 2=x +1变形为x =y 2-1后,关于y 的每一个值,另一个变量x 都有唯独确定的值与其对应,因此x 是y 的函数.5.B 6.C 7.A8.A 点拨:∵点M(1,a)和点N(2,b)在一次函数y =-2x +1的图象上,由一次函数图象性质可知一次函数y =-2x +1中函数值y 随x 的增大而减小,∴a>b.9.解:(1)因为图象与y 轴的交点位于原点下方,即点(0,12-3k)位于原点下方,因此12-3k<0,解得k>4.因此k -2>4-2>0,因此函数值随着自变量的增大而增大.(2)因为函数值随着自变量的增大而增大,因此k -2>0,解得k>2. 因为函数图象与y 轴的交点位于原点上方,因此12-3k>0,解得k<4. 因此k 的取值范畴为2<k<4. 因此满足条件的正整数k 的值为3. 10.解:一次函数:①②⑤⑥ 正比例函数:②⑤11.解:(1)在y =2x 中,令x =1,得y =2,则点B 的坐标是(1,2), 设一次函数的解析式是y =kx +b(k ≠0), 则⎩⎨⎧b =3,k +b =2,解得⎩⎨⎧b =3,k =-1. 故一次函数的解析式是y =-x +3.(2)点C(4,-2)不在该一次函数的图象上.理由:关于y =-x +3,当x =4时,y =-1≠-2,因此点C(4,-2)不在该函数的图象上.(3)在y =-x +3中,令y =0,得x =3,则点D 的坐标是(3,0),的交点的横坐标,因此画出y=5x-1与y=2x+5的图象即可.14.解:(1)把点(1,4)的坐标代入y=kx+3中,得4=k+3.∴k=1.∴一次函数的解析式为y=x+3.(2)由(1)知k=1,∴原不等式为x+3≤6.∴x≤3.点拨:(1)把点(1,4)的坐标代入y=kx+3中,用待定系数法求出k的值.(2)把求出的k值代入不等式kx+3≤6中,求出不等式的解集.15.解:图象略.(2)因为A点横坐标为3,因此A点到OB的距离为3.又因为B点纵坐标为-5,因此OB=5.一般票:y =20x.(2)把x =0代入y =10x +150,得y =150, ∴A(0,150). ∵⎩⎨⎧y =20x ,y =10x +150,∴⎩⎨⎧x =15,y =300.∴B(15,300).把y =600代入y =10x +150,得x =45.∴C(45,600).(3)当0<x<15时,选择购买一般票更合算;(注:若写成0≤x <15,也正确) 当x =15时,选择购买银卡、一般票的总费用相同,均比金卡合算; 当15<x<45时,选择购买银卡更合算;当x =45时,选择购买金卡、银卡的总费用相同,均比一般票合算; 当x>45时,选择购买金卡更合算.18.解:(1)5 900;6 000(2)当0≤x ≤1 000时,y 甲=4x ,当x>1 000时,y 甲=4 000+3.8(x -1 000)=3.8x +200,∴y 甲= ⎩⎨⎧4x (0≤x ≤1 000且x 为整数),3.8x +200(x>1 000且x 为整数).当0≤x ≤2 000时,y 乙=4x ,当x>2 000时,y 乙=8 000+3.6(x -2 000)=3.6x +800,∴y 乙=⎩⎨⎧4x (0≤x ≤2 000且x 为整数),3.6x +800(x>2 000且x 为整数).(3)由题意,得当0≤x ≤1 000时,两家林场白杨树苗单价一样,∴到两家林场购买所需费用一样.当1 000<x≤2 000时,甲林场有优待而乙林场无优待,∴当1 000<x≤2 000时,到甲林场购买合算;当x>2 000时,y甲=3.8x+200,y乙=3.6x+800,当y甲=y乙时3.8x+200=3.6x+800,解得x=3 000,∴当x=3 000时,到两家林场购买所需费用一样;当y甲<y乙时,3.8x+200<3.6x+800,解得x<3 000.∴当2 000<x<3 000时,到甲林场购买合算;当y甲>y乙时,3.8x+200>3.6x+800,解得x>3 000.∴当x>3 000时,到乙林场购买合算.综上所述,当0≤x≤1 000或x=3 000时,到两家林场购买所需费用一样,当1 000<x<3 000时,到甲林场购买合算;当x>3 000时,到乙林场购买合算.。

人教版初中八年级数学下册第十九章《一次函数》习题(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》习题(含答案解析)

一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时;③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t =或4.5.A .1B .2C .3D .4B解析:B【分析】 观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题.【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩=8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t ,即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确;④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t ,当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确, 综上所述,正确的有①②,共2个,故选:B .【点睛】 本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.2.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =D解析:D【分析】 本题通过右侧的图象可以判断出长方形的边长,然后选项计算,选项A 、B 、C 都可证正确,选项D ,面积为8时,对应x 值不为10,所以错误.【详解】解:由图2可知,长方形MNPQ 的边长,MN=9-4=5,NP=4,故选项A 正确;选项B ,长方形周长为2×(4+5)=18,正确;选项C ,x=6时,点R 在QP 上,△MNR 的面积y=12×5×4=10,正确; 选项D ,y=8时,即1852x =⨯,解得 3.2x =, 或()185132x =⨯-,解得9.8x =, 所以,当y=8时,x=3.2或9.8,故选项D 错误;故选:D .【点睛】本题考查了动点问题分类讨论,对运动中的点R 的三种位置都设置了问题,是一道很好的动点问题,读懂函数图象是解题关键.3.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得: 227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.4.甲乙两地相距3600m ,小王从甲地匀速步行到乙地,同时,小张从乙地沿同一路线匀速步行前往甲地,两人之间的路程(m)y 与小王步行的时间(min)x 之间的函数关系如图中的折线段AB BC CD --所示,已知小张先走完全程.结合图象,得到以下四个结论:①小张的步行速度是100m/min ;②小王走完全程需要36分钟;③图中B 点的横坐标为22.5;④图中点C 的纵坐标为2880.其中错误..的个数是( ) A .1 B .2C .3D .4B解析:B【分析】根据小张先走完全程可知,各个节点的意义,A 代表刚开始时两人的距离,B 代表两人相遇,C 代表小张到达终点,D 代表小王到达终点,根据这些节点的意义进行分析即可判断结论的正确与否.【详解】解:由图可知,点C 表示小张到达终点,用时36min ,点D 表示小王到达终点,用时45min ,故②错误;∴小张的步行速度为:360036100(/min)m ÷=,故①正确;小王的步行速度为:36004580(/min)m ÷=,点B 表示两人相遇,∴3600(10080)20(min)÷+=,∴两人20min 相遇,(20,0)B ,故③错误;∵362016(min)-=,∴从两人相遇到小张到终点过了16min ,∴16(10080)2880()m ⨯+=,∴小张到达终点时,两人相距2880m ,∴点C 的纵坐标为2880,故④正确,∴错误的是②③,故选:B .【点睛】本题考查一次函数的应用.解答本题的关键是明确题意,利用数形结合的思想解答. 5.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m <B .12m >C .m 1≥D .1m <A 解析:A【分析】 由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解: ∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y 1>y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12, 故选:A .【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.6.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<<B .03k <<C .04k <<D .30k -<<B解析:B【分析】 由直线1l 与x 轴的交点为()10B ,可得直线1l 轴的表达式为y =kx−k ,则1l 与y 轴交点(0,−k ),再由直线()2:30l y mx m =-<在第三象限交于点M 得出(0,−k )在原点和点(0,−3)之间,即可求解.【详解】解:∵直线()1:0l y kx b k =+≠与x 轴的交点为B (1,0),∴k +b =0,则b =−k ,∴y =kx−k ,直线()2:30l y mx m =-<与y 轴的交点坐标为(0,−3),则1l 与y 轴交点(0,−k )在原点和点(0,−3)之间,即:−3<−k <0,解得:0<k <3,故选:B .【点睛】本题考查了一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质并能利用数形结合的思想确定1l 与y 轴交点位置.7.如图,直线443y x =+与x 轴,y 轴分别交于A ,B 两点,点C 在OB 上,若将ABC 沿AC 折叠,使点B 恰好落在x 轴上的点D 处,则点C 的坐标是( )A .(0,1)B .20,3⎛⎫ ⎪⎝⎭C .30,2⎛⎫ ⎪⎝⎭D .(0,2)C解析:C【分析】 先求得点A 、B 的坐标分别为:(﹣3,0)、(0,4),由此可求得AB =5,再根据折叠可得AD =AB =5,故OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,CD =BC =4﹣m ,根据222CO OD CD +=列出方程求解即可.【详解】解:∵直线y =43x +4与x 轴、y 轴分别交于A 、B 两点, ∴当x =0时,y =4;当y =0时,x =﹣3,则点A 、B 的坐标分别为:A (﹣3,0)、B (0,4),∴AO =3,BO =4, ∴在Rt ABC 中,AB =22AO BO +=5, ∵折叠,∴AD =AB =5,CD =BC ,∴OD =AD ﹣AO =2,设点C (0,m ),则OC =m ,BC =4﹣m ,∴CD =BC =4﹣m ,在Rt COD 中,222CO OD CD +=,即2222(4)m m +=-,解得:m =32, 故点C (0,32), 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特征,题目将图象的折叠和勾股定理综合考查,难度适中.8.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D .D 解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.9.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-B解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.10.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④D解析:D【分析】 当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.二、填空题11.如图,在平面直角坐标系中,过点C (0,6)的直线AC 与直线OA 相交于点A (4,2),动点M 在直线AC 上,且△OMC 的面积是△OAC 的面积的14,则点M 的坐标为_____. (15)或(-17)【分析】利用待定系数法求出直线AC 的解析式得到OCOB 的长设M 的坐标为用OC 作底用含m 的式子表示和的面积利用已知条件求得m 的值即可得到M 的坐标【详解】设直线AC 的解析式为:解得:解析:(1,5)或(-1,7)【分析】利用待定系数法求出直线AC 的解析式,得到OC 、OB 的长.设M 的坐标为(),6m m -+,用OC 作底,用含m 的式子表示OMC 和OAC 的面积,利用已知条件14OMC OAC S S =△△求得m 的值,即可得到M 的坐标.【详解】设直线AC 的解析式为:y kx b =+()()064,2C A ,,642b k b =⎧∴⎨+=⎩,解得:16k b =-⎧⎨=⎩∴直线AC 的解析式为:6y x =-+∴B 点的坐标为:()6,0M 在直线AC 上∴设M 点坐标(),6m m -+在OMC 中,OC=6,M 到OC 的距离1h m = ∴1116322OMC S OC h m m =⋅⋅=⨯⋅= 在OAC 中,OC=6,A 到OC 的距离24h = ∴211641222OAC S OC h =⋅⋅=⨯⨯= 14OMC OAC S S =13124m ∴=⨯ 1m =11m =或21m =-M ∴的坐标为(1,5)或(-1,7).故答案为:(1,5)或(-1,7).【点睛】本题考查了待定系数法求一次函数解析式及三角形的面积求法.利用待定系数法求解一次函数解析式:①设出一次函数解析式的一般形式;②把已知条件代入解析式,得到关于待定系数的方程组;③解方程组,求出待定系数的值,代入解析式得到一次函数解析式. 12.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当1n =时,直线1:21l y x =-+与x 轴和y 轴分别交于点1A 和1B ,设11AOB (其中0是平面直角坐标系的原点)的面积为1S ;当2n =时,直线2l :3122y x =-+与x 轴和y 轴分别交于点2A 和2B ,设22A OB 的面积为2S ;……依此类推,直线n l 与x 轴和y 轴分别交于点n A 和n B ,设n n A OB 的面积为n S .则1S =________,123n S S S S +++⋅⋅⋅+=________.【分析】首先求得S1S2Sn 的值然后由规律:×=−求解即可求得答案【详解】当n =1时直线l1:y =−2x +1与x 轴和y 轴分别交于点A1和B1则A1(0)B1(01)∴S1=××1=∵当n =2时直线l 解析:1422n n + 【分析】 首先求得S 1,S 2,S n 的值,然后由规律:11n +×1n =1n −11n +求解即可求得答案. 【详解】当n =1时,直线l 1:y =−2x +1与x 轴和y 轴分别交于点A 1和B 1,则A 1(12,0),B 1(0,1), ∴S 1=12×12×1=14, ∵当n =2时,直线l 2:y =−32x +12与x 轴和y 轴分别交于点A 2和B 2, 则A 2(13,0),B 2(0,12), ∴S 2=12×13×12, ∴直线l n 与x 轴和y 轴分别交于点A n 和B n ,△A n OB n 的面积为S n =12×11n +×1n , ∴S 1+S 2+S 3+…+S n =12×12×1+12×13×12+…+12×11n +×1n =12×(1−12+12−13+…+1n −11n +) =12×(1−11n +) =22n n +. 故答案为:14,22n n +. 【点睛】此题考查了一次函数的应用.解题的关键是找到规律:△A n OB n 的面积为S n =12×11n +×1n 与11n +×1n =1n −11n +. 13.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.y=-x+【分析】先根据对角线相等的平行四边形是矩形证明▱ABCD 是矩形计算BD 的解析式得点A 和C 的坐标从而可得结论【详解】解:在▱ABCD 中∵AC=BD ∴▱ABCD 是矩形∴∠ADC=90°∵S △A 解析:y=-23x+253. 【分析】先根据对角线相等的平行四边形是矩形,证明▱ABCD 是矩形,计算BD 的解析式,得点A 和C 的坐标,从而可得结论.【详解】解:在▱ABCD 中,∵AC=BD ,∴▱ABCD 是矩形,∴∠ADC=90°, ∵S △AED =6,∴S ▱ABCD =AD•CD=4×6=24,∴AD×6=24,∴AD=4,∵A (2,n ),∴D (2,n-4),B (8,n ),B (8,n-4)∵BD 所在直线的解析式为1(0)y kx k k =++≠ ∴21=n-481k k k k n ++⎧⎨++=⎩,解得:237k n ⎧=⎪⎨⎪=⎩, ∴BD 所在直线的解析式为y=23x+7, ∴A (2,7),C (8,3),设直线AC 的解析式为:y=mx+a ,则2783m a m a +=⎧⎨+=⎩,解得:23253m a ⎧=-⎪⎪⎨⎪=⎪⎩, ∴AC 所在直线的解析式为:y=-23x+253. 故答案为:y=-23x+253. 【点睛】本题考查的是利用待定系数法求一次函数的解析式,矩形的性质和判定,坐标和图形的性质等知识,熟练掌握矩形的性质是解题的关键.14.如果一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,那么常数m 的取值范围为____.【分析】根据一次函数y=(m-2)x+m -3的图象经过第一二四象限可得函数表达式中一次项系数小于0常数项大于0进而得到关于m 的不等式组解不等式组即可得答案取值范围【详解】∵一次函数的图像经过第一二四 解析:12m <<【分析】根据一次函数y=(m-2)x+m -3的图象经过第一、二、四象限,可得函数表达式中一次项系数小于0,常数项大于0,进而得到关于m 的不等式组,解不等式组即可得答案取值范围.【详解】∵一次函数(2)1y m x m =-+-的图像经过第一、二、四象限,∴2010m m -<⎧⎨->⎩, 解得:1<m <2,故答案为:1<m <2【点睛】本题考查了一次函数y=kx+b (k≠0)的图象与系数的关系:对于一次函数y=kx+b (k≠0),k >0,b >0时,图象在一、二、三象限;k >0,b <0时,图象在一、三、四象限;k <0,b >0时,图象在一、二、四象限;k <0,b <0时,图象在二、三、四象限;熟练掌握一次函数的性质是解题关键.15.如图所示的平面直角坐标系中,点A 坐标为(2,2),点B 坐标为(﹣1,1),在x 轴上有点P ,使得AP+BP 最小,则点P 的坐标为_____.(00)【分析】先作点B 关于x 轴的对称点C 再连接AC求出AC 的函数解析式再把y=0代入即可【详解】解:如图作点B 关于x 轴的对称点C 再连接AC 点B 坐标为(﹣11)点B 关于x 轴的对称点C 的坐标为(-1- 解析:(0,0)【分析】先作点B 关于x 轴的对称点C ,再连接AC ,求出AC 的函数解析式,再把y=0代入即可.【详解】解:如图,作点B 关于x 轴的对称点C ,再连接AC ,点B 坐标为(﹣1,1),∴点B 关于x 轴的对称点C 的坐标为(-1,-1),在x 轴上有点P ,∴线段BP 和CP 关于x 轴对称,∴BP=CP ,∴AP+BP= CP+AP ,当AP+BP 取最小值时,最小值即为线段AC 的长,点A 坐标为(2,2),设直线AC 的方程为:y=kx+b ,∴代入A 、C 的坐标,221k b k b +=⎧⎨-+=-⎩,解得10k b =⎧⎨=⎩, ∴AC l y x =:,点P 的纵坐标为0,代入y=0,∴x=0,∴点P 的坐标为(0,0),故答案为:(0,0).【点睛】此题主要考查最短路线问题,综合运用了一次函数的知识,熟练掌握最短路线问题的求解方法是解题的关键.16.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为________.x =2【分析】交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解【详解】∵直线y =x+b 和y =ax ﹣3交于点P (21)∴当x =2时x+b =解析:x =2【分析】交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】∵直线y =x+b 和y =ax ﹣3交于点P (2,1),∴当x =2时,x+b =ax ﹣3=1,∴关于x 的方程x+b =ax ﹣3的解为x =2.故答案为:x =2.【点睛】本题考查了一次函数与二元一次方程(组):熟练掌握交点坐标同时满足两个函数的解析式是解题关键.17.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.【分析】根据中点坐标公式求得C 点坐标作点A关于x 轴的对称点A′连接A′C 交x 轴于点P 此时△ACP 周长最小求直线A′C 的解析式然后求其与x 轴的交点坐标从而求解【详解】解:∵为的中点∴C 点坐标为(11) 解析:23【分析】根据中点坐标公式求得C 点坐标,作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小,求直线A′C 的解析式,然后求其与x 轴的交点坐标,从而求解.【详解】解:∵()0,2A ,()2,0B ,C 为AB 的中点,∴C 点坐标为(1,1)作点A 关于x 轴的对称点A′,连接A′C ,交x 轴于点P ,此时△ACP 周长最小, 由对称的性质可得A′点坐标为(0,-2)设直线A′C 的解析式为y=kx+b ,将(0,-2),(1,1)代入解析式可得21b k b =-⎧⎨+=⎩,解得:2=3b k =-⎧⎨⎩∴直线A′C 的解析式为y=3x-2,当y=0时,3x-2=0,解得23x =∴点P 的坐标为(23,0) 故答案为:23.【点睛】本题考查一次函数与几何图形,掌握一次函数的性质,利用数形结合思想解题是关键. 18.在计算机编程中有这样一个数字程序:对于二个数a ,b 用min{,}a b 表示这两个数中较小的数.例如:min{1,2}1-=-,则min{1,22}x x +-+的最大值为________.【分析】分别画出函数的图象根据图象可知在时有最大值求出此时的值即可【详解】解:令函数联立得函数图象如下根据函数图象可知当时min{x+1-2x+2}的最大值为故答案为:【点睛】本题考查一次函数与一元解析:43【分析】分别画出函数1y x =+,22y x =-+的图象,根据图象可知min{1,22}x x +-+在13x =时有最大值,求出此时的值即可.【详解】解:令函数1y x =+,22y x =-+, 联立122y x y x =+⎧⎨=-+⎩得1343x y ⎧=⎪⎪⎨⎪=⎪⎩, 函数图象如下,根据函数图象可知, 当时13x =,min{x+1,-2x+2}的最大值为43, 故答案为:43. 【点睛】本题考查一次函数与一元一次不等式.掌握数形结合思想,能借助图形分析是解题关键. 19.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.20.已知一次函数y kx b =+的图象经过点(4,3)A 且与直线2y x =平行,则此函数的表达式为____.【分析】先求出k 再求出b 即可得到解答【详解】解:由题意可得k=2∴有y=2x+b ∵y=2x+b 的图象经过A (43)∴有2×4+b=3解之可得:b=-5∴所求的函数表达式为y=2x-5故答案为y=2x解析:25y x =-【分析】先求出k,再求出b,即可得到解答.【详解】解:由题意可得k=2,∴有y=2x+b,∵y=2x+b的图象经过A(4,3),∴有2×4+b=3,解之可得:b= -5,∴所求的函数表达式为y=2x-5,故答案为y=2x-5 .【点睛】本题考查一次函数的图象与性质,熟练掌握一次函数图象的平移是解题关键.三、解答题21.小慧家与文具店相距960m,小慧从家出发,沿笔直的公路匀速步行12min来到文具店买笔记本,停留3min,因家中有事,便沿原路匀速跑步6min返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y与时间x的函数图象;(3)根据图象回答,小慧从家出发后多少分钟离家距离为480m?解析:(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min) 612-=答:小慧返回家中的速度比去文具店的速度快80m/min (2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.22.天府七中科创小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,经过7min 同时到达C 点,乙机器人始终以60m/min 的速度行走,如图是甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的图象,请结合图象,回答下列问题.(1)A 、B 两点之间的距离是________m ,甲机器人前2min 的速度为________m/min . (2)若前3min 甲机器人的速度不变,求出前3min ,甲、乙两机器人之间的距离y (m )与他们的行走时间x (min )之间的关系式.(3)若前3min 甲机器人的速度依然不变,当两机器人相距不超过28m 时,求出时间a 的取值范围.解析:(1)70,95;(2)3570y x =-;(3)1.2 2.8t ≤≤或4.67t ≤≤.【分析】(1)根据图象结合题意,即可得出A 、B 两点之间的距离是70m .设甲机器人前2min 的速度为xm/min ,根据2分钟甲追上乙列出方程,即可求解;(2)先求出F 点的坐标,再设线段EF 所在直线的函数解析式为y =kx +b ,将()2,0E 、()3,35F 两点的坐标代入,利用待定系数法即可求解;(3)设()0,70D ,()2,0E ,根据图象可知两机器人相距28m 时有三个时刻(0~2,2~3,4~7)分别求出DE 所在直线的解析式、GH 所在直线的解析式,再令28y =,列出方程求解即可.【详解】(1)由题意可知,A 、B 两点之间的距离是70m ,设甲机器人前2min 的速度为m /min x ,根据题意得2(60)70x -=,解得95x =.(2)若前3min 甲机器人的速度不变,由(1)可知,前3min 甲机器人的速度95m/min , 则点F 纵坐标为:(32)(9560)35-⨯-=,即()3,35F ,设线段EF 所在直线的函数解析为:y kx b =+,将()2,0E ,()3,35F 代入,得20335k b k b +=⎧⎨+=⎩,解得3570k b '=⎧⎨=-⎩, 则线段EF 所在直线的函数解析式为:3570y x =-.(3)如图:设()0,70D ,()7,0H ,∵()0,70D ,()2,0E ,∴线段DE 所在直线的函数解析式为:3570y x =-+,()4,35G ,()7,0H ,∴线段GH 所在直线的函数解析式为:3524533y x =-+, 设两机器人出发min t 时相距28m ,由题意得:357028t -+=或357028t -=,或352452833t -+=, 解得: 1.2t =或28t =.或 4.6t =, 1.2 2.8t ∴≤≤或4.67t ≤≤时,两机器人相距不超过28m .【分析】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.23.如图,已知直线113y x =-+与x 轴、y 轴分别交于A 、B 两点,以线段AB 为直角边在第一象限内作等腰Rt ABC △,90BAC ∠=︒.(1)A 点坐标为________,B 点坐标为________;(2)求直线BC 的解析式;(3)点P 为直线BC 上一个动点,当S 3S AOP AOB =时,求点P 坐标.解析:(1)(3,0);(0,1).(2)直线BC 的解析式为y=12x+1.(3)点P 的坐标为(4,3)或(-8,-3).【分析】 (1)分别代入y=0,x=0,求出与之对应的x ,y 的值,进而可得出点A ,B 的坐标; (2)过点C 作CE ⊥x 轴于点E ,易证△ABO ≌△CAE ,利用全等三角形的性质可得出点C 的坐标,根据点B ,C 的坐标,利用待定系数法即可求出直线BC 的解析式; (3)利用三角形的面积公式结合S △AOP =3S △AOB ,即可求出点P 的纵坐标,再利用一次函数图象上点的坐标特征即可求出点P 坐标.【详解】解:(1)当y=0时,-13x+1=0, 解得:x=3,∴点A 的坐标为(3,0);当x=0时,y=-13x+1=1, ∴点B 的坐标为(0,1).故答案为:(3,0);(0,1).(2)过点C 作CE ⊥x 轴于点E ,如图所示.∵△ABC 为等腰直角三角形,∴AB=AC ,∠BAC=90°.∵∠OBA+∠OAB=90°,∠OAB+∠BAC+∠EAC=180°,∴∠OBA=∠EAC .在△ABO 和△CAE 中,90AOB CEA OBA EACAB CA ∠∠︒⎧⎪∠∠⎨⎪⎩====, ∴△ABO ≌△CAE (AAS ),∴AE=BO=1,CE=AO=3,∴OE=OA+AE=4,∴点C 的坐标为(4,3).设直线BC 的解析式为y=kx+b (k≠0),将B (0,1),C (4,3)代入y=kx+b ,得:143b k b ⎧⎨+⎩==, 解得:121k b ⎧⎪⎨⎪⎩==,∴直线BC 的解析式为y=12x+1. (3)∵S △AOP =3S △AOB ,即12OA•|y P |=3×12OA•OB , ∴12×3|y P |=3×12×3×1, ∴y P =±3. 当y=3时,12x+1=3, 解得:x=4,∴点P 坐标为(4,3);当y=-3时,12x+1=-3, 解得:x=-8,∴点P 的坐标为(-8,-3).∴当S △AOP =3S △AOB 时,点P 的坐标为(4,3)或(-8,-3).【点睛】本题考查了一次函数图象上点的坐标特征、全等三角形的判定与性质、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A ,B 的坐标;(2)利用全等三角形的性质,求出点C 的坐标;(3)利用三角形的面积结合S △AOP =3S △AOB ,求出点P 的纵坐标.24.科学研究发现.地表以下岩层的温度y (℃)与所处深度x (千米)之间近似地满足一次函数关系.经测量,在深度2千米的地方,岩层温度为90℃;在深度5千米的地方,岩层温度为195℃.(1)求出y 与x 的函数表达式;(2)求当岩层温达到1805℃时,岩层所处的深度.解析:(1)3520y x =+;(2)岩层所处的深度是51km【分析】(1)设y 与x 的函数关系式为y kx b =+,把()2,90,()5,195带入求解即可; (2)当1805y =时,求出x 的值即可;【详解】解:(1)设y 与x 的函数关系式为y kx b =+,2905195k b k b +=⎧⎨+=⎩, 解得,3520k b =⎧⎨=⎩, 即y 与x 的函数关系式为3520y x =+;(2)当1805y =时,18053520x =+,解得,51x =,即当岩层温达到1805℃时,岩层所处的深度是51km .【点睛】本题主要考查了一次函数的应用,准确分析计算是解题的关键.25.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD 和折线OABC 表示“龟兔赛跑”时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC 表示赛跑过程中_____________的路程与时间的关系,线段OD 表示赛跑过程中_______________的路程与时间的关系.赛跑的全程是_______________米. (2)乌龟用了多少分钟追上了正在睡觉的兔子?(3)兔子醒来,以48千米/时的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟?解析:(1)兔子;乌龟;1500;(2)14分钟;(3)28.5分钟【分析】(1)利用乌龟始终运动,中间没有停留,进而得出折线 OABC 和线段OD 的意义和全程的距离;(2)根据乌龟的速度及兔子睡觉时的路程即可得;(4)用乌龟跑完全程的时间+兔子晚到的时间−兔子在路上奔跑的两端所用时间可得.【详解】()1龟兔赛跑中,兔子在途中睡了一觉,通过图像发现AB 段S 没有发生变化,∴折线OABC 表示赛跑过程中兔子的路程与时间的关系,线段OO 则表示赛跑过程中乌龟的路程与时间的关系,赛跑的全程是1500米.()150025030V ==龟米/分钟, 50700,t ⨯=14t =.答:乌龟用了14分钟追上了正在睡觉的兔子.()83,48t v =千米/时800=米/分钟, 150********t -==分钟, 300.5129.5+-=分钟,29.5128.5-=分钟, 答:兔子中间停下睡觉用了28.5分钟.【点睛】 本题考查了函数图象,理解两个函数图象的交点表示的意义,从函数图象准确获取信息是解题的关键.26.如图,点(2,)A m -是直线33y x =--上一点,将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B .(1)若直线33y x =--与y 轴交于点C ,求直线BC 的表达式;(2)若直线3(0)y kx k =-≠与线段AB 没有交点,直接写出k 的取值范围. 解析:(1)533yx ;(2)-3<k <53且k≠0 【分析】(1)将点A 代入直线33y x =--,求出点A 坐标,再根据坐标平移得到点B 坐标,结合点C 坐标,利用待定系数法求解;(2)直线3(0)y kx k =-≠与线段AB 没有交点,结合AC 和BC 的表达式可得k 的取值范围.【详解】解:(1)∵点A 在直线33y x =--上,∴m=-2×(-3)-3=3,即点A 坐标为(-2,3),∵将点A 向下平移1个单位长度,再向右平移5个单位长度,得到点B ,∴点B 的坐标为(3,2),在33y x =--中,令x=0,则y=-3,即点C 坐标为(0,-3),设BC 的表达式为y=ax+b ,。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

八年级数学一次函数图象性质 专项练习题(含答案)

八年级数学一次函数图象性质 专项练习题(含答案)

参考答案 1、B 2、C ; 3、A 4、C 5、C 6、B 7、A 8、C 9、A 10、C 11、A 12、D 13、B 14、A 15、A 16、A 17、A 18、C 19、D 20、A 21、 22、y=23、答案为 1. 24、-3 25、一、二、三. 26、2 . 27、3 28、答案是:3. 29、答案为 y=3x+4. 30、(0,-1) ;
m313将直线ykx1向上平移2个单位长度可得直线的解析式为aykx3bykx1cykx3dykx114直线y2xb与x轴的交点坐标是20则关于x的方程2xb0的解是ax2bx4cx8dx1015如图直线ykxb与x轴y轴分别相交于点a30b02则不等式kxb0的解集是ax3bx3cx2dx216同一直角坐标系中一次函数y1k1xb与正比例函数y2k2x的图象如图所示则满足y1y2的x取值范围是ax2bx2cx2dx217点ax1y1点bx2y2是一次函数y2x4图象上的两点且x1x2则y1与y2的大小关系是ay1y2by1y20cy1y2dy1y218已知a320则一次函数yaxb的图象不经过6)在 y=k1x 上∴﹣6=3k1∴k1=﹣2 ∵点 P(3,﹣6)在 y=k2x﹣9 上∴﹣6=3k2﹣9∴k2=1; (2)∵k2=1,∴y=x﹣9∵一次函数 y=x﹣9 与 x 轴交于点 A 又∵当 y=0 时,x=9∴A(9,0). 33、(1) ;(2)23;
八年级数学一次函数图象性质 专项练习题
一、选择题: 1、下列函数(1)y=3πx;(2)y=8x-6;(3)y= ( ) A.4 个 2、函数 A.(3,5); B.3 个 C.2 个 D.1 个
1 ;(4)y= -8x;(5)y=5x2-4x+1 中,是一次函数的有 x

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》测试(含答案解析)

一、选择题1.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m >0B .m <0C .m >2D .m <22.如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B E D --运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1/cm s .现P ,Q 两点同时出发,设运动时间为()x s ,BPQ 的面积为2()y cm ,若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是( )A .296cmB .284cmC .272cmD .256cm 3.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 4.若一次函数y kx b =+(k b ,都是常数)的图象经过第一、二、四象限,则一次函数y bx k =+的图象大致是( )A .B .C .D .5.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =6.如图,已知在平面直角坐标系xOy 中.以(О为圆心,适当长为半径作圆弧,与x 轴交于点A ,与y 轴交于点,B 再分别以A B 、为圆心.大于12AB 长为半径作圆弧,两条圆弧在第四象限交于点C .以下四组x 与y 的对应值中,能够使得点(),1P x y -在射线OC 上的是( )A .2和1-B .2和2-C .2和2D .2和37.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .8.如图,在四边形ABCD 中,AD ∥BC ,∠B =60°,∠D =90°,AB =4,AD =2,点P 从点B 出发,沿B→A→D→C 的路线运动到点C ,过点P 作PQ ⊥BC ,垂足为Q .若点P 运动的路程为x ,△BPQ 的面积为y ,则表示y 与x 之间的函数关系图象大致是( )A .B .C .D .9.已知一次函数(6)1y a x =-+经过第一、二、三象限,且关于x 的不等式组1()0232113a x x x ⎧-->⎪⎪⎨+⎪+≥⎪⎩恰有 4 个整数解,则所有满足条件的整数a 的值的和为( ) A .9 B .11 C .15 D .1810.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 11.如图,在Rt ABC △中,90ACB ∠=︒,2AC BC ==,AB 的中点为D .以C 为原点,射线CB 为x 轴的正方向,射线CA 为y 轴的正方向建立平面直角坐标系.P 是BC 上的一个动点,连接AP 、DP ,则AP DP +最小时,点P 的坐标为( ).A .2,03⎛⎫ ⎪⎝⎭B .2,0⎛⎫ ⎪ ⎪⎝⎭C .10,0⎛⎫ ⎪ ⎪⎝⎭D .1,010⎛⎫ ⎪⎝⎭ 12.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <- 13.港口,,A B C 依次在同一条直线上,甲、乙两艘船同时分别从,A B 两港出发,匀速驶向C 港,甲、乙两船与B 港的距离y (海里)与行驶时间x (小时)之间的函数关系如图所示,则下列说法正确的有( )①,B C 两港之间的距离为60海里②甲、乙两船在途中只相遇了一次③甲船平均速度比乙船平均速度快30海里/时④甲船到达C 港时,乙船还需要一个小时才到达C 港⑤点P 的坐标为()1,30A .1个B .2个C .3个D .4个14.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <- 15.若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3二、填空题16.如图,两个一次函数y =kx+b 与y =mx+n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (-2,0),l 2与x 轴交于点C (4,0),则不等式组0<mx+n <kx+b 的解集为_____.17.已知A 、B 两地相距200千米,货车甲从A 地出发将一批物资运往B 地,行驶一段路程后出现故障,即刻停车与B 地联系.B 地收到消息后立即派货车乙从B 地出发去接运甲车上的物资,货车乙遇到货车甲后,用了30分钟将物资从货车甲搬运到货车乙上,随后以原速开往B 地,货车甲以原速的25返回A 地.两辆货车之间的路程()km y 与货车甲出发的时间()h x 的函数关系如图所示(通话等其他时间忽略不计).若点C 的坐标是()1.6,120,点D 的坐标是()3.6,0,则点E 的坐标是______.18.已知一次函数6y x =-+的图象上有两点()11,A y -,()22,A y ,则1y 与2y 的大小关系是______.19.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.20.函数1y x =-中自变量x 的取值范围是________. 21.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.22.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.23.函数1y x=-的定义域是______. 24.如图,已知一次函数y mx n =-的图像,则关于x 的不等式1mx n ->的解集是__________.25.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.26.已知正比例函数y kx =的图像经过点)(2,5A -,点M 在正比例函数y kx =的图像上,点)(3,0B ,且10ABM S =△,则点M 的坐标为______. 三、解答题27.如图直线27y x =-+与x 轴、y 轴分别相交于点C 、B ,与直线32y x =相交于点A .(1)求A 点坐标;(2)求OAC 的面积;(3)如果在y 轴上存在一点P ,使OAP △是等腰三角形,请直接写出P 点坐标;(4)在直线27y x =-+上是否存在点Q ,使OAQ 的面积等于6?若存在,请求出Q 点的坐标,若不存在,请说明理由.28.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 29.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.30.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留0.5h ,然后按原路原速返回,快车比慢车晚0.5h 到达甲地.快慢两车距各自出发地的路程()km y 与所用的时间()h x 的关系如图所示.(1)甲乙两地之间的路程为________km ;快车的速度为________km/h ;慢车的速度为_________km/h ;(2)出发________h ,快慢两车距各自出发地的路程相等;(3)快慢两车出发________h 相距250km .。

精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

精品试题冀教版八年级数学下册第二十一章一次函数专题练习试题(含答案解析)

八年级数学下册第二十一章一次函数专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,甲乙两人沿同一直线同时出发去往B 地,甲到达B 地后立即以原速沿原路返回,乙到达B 地后停止运动,已知运动过程中两人到B 地的距离y (km )与出发时间t (h )的关系如图所示,下列说法错误的是( )A .甲的速度是16km/hB .出发时乙在甲前方20kmC .甲乙两人在出发后2小时第一次相遇D .甲到达B 地时两人相距50km2、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限3、平面直角坐标系xOy 中,点P 的坐标为()3,44m m -+,一次函数4123y x =+的图像与x 轴、y 轴分别相交于点A 、B ,若点P 在AOB 的内部,则m 的取值范围为( )A .1m >-或0m <B .31m -<<C .10m -<<D .11m -≤≤4、一次函数21y x =-+的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限5、已知点()14,y -,()22,y 都在直线21y x =-+上,则1y 、2y 大小关系是( )A .12y y <B .12y y =C .12y y >D .不能计较6、已知正比例函数y =3x 的图象上有两点M (x 1,y 1)、N (x 2,y 2),如果x 1>x 2,那么y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7、如图,李爷爷要围一个长方形菜园ABCD ,菜园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为24m ,设边BC 的长为xm ,边AB 的长为ym (x >y ).则y 与x 之间的函数表达式为( )A .y =﹣2x +24(0<x <12)B .y =﹣12x +12(8<x <24)C .y =2x ﹣24(0<x <12)D .y =12x ﹣12(8<x <24) 8、如图,已知点(1,2)B 是一次函数(0)y kx b k =+≠上的一个点,则下列判断正确的是( )A .0,0k b >>B .y 随x 的增大而增大C .当0x >时,0y <D .关于x 的方程2kx b +=的解是1x =9、小豪骑自行车去位于家正东方向的书店买资料用于自主复习.小豪离家5min 后自行车出现故障,小豪立即打电话给爸爸,让爸爸带上工具箱从家里来帮忙维修(小豪和爸爸通话以及爸爸找工具箱的时间忽略不计),同时小豪以原来速度的一半推着自行车继续向书店走去,爸爸接到电话后,立刻出发追赶小豪,追上小豪后,爸爸用2min 的时间修好了自行车,并立刻以原速到位于家正西方500m 的公司上班,小豪则以原来的骑车速度继续向书店前进,爸爸到达公司时,小豪还没有到达书店.如图是小豪与爸爸的距离y (m )与小豪的出发时间x (min )之向的函数图象,请根据图象判断下列哪一个选项是正确的( )A .小豪爸爸出发后12min 追上小豪B .小李爸爸的速度为300m /minC .小豪骑自行车的速度为250m /minD .爸爸到达公司时,小豪距离书店500m10、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,下列说法中错误的是( )A .两人出发1小时后相遇B .王明跑步的速度为8km/hC .陈启浩到达目的地时两人相距10kmD .陈启浩比王明提前1.5h 到目的地第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、直线y 1=-x +m 和y 2=2x +n 的交点如图,则不等式-x +m <2x +n 的解集是_____.2、正比例函数(1)y k x =+图像经过点(1,-1),那么k =__________.3、如图,直线y =kx +b 交坐标轴于A ,B 两点,则关于x 的不等式kx +b <0的解集是_____.4、正比例函数y =kx (k 是常数,k ≠0)的图象是一条经过______的直线,我们称它为直线y =kx .5、已知函数()325m y m x -=-+是关于x 的一次函数,则m =______.三、解答题(5小题,每小题10分,共计50分)1、某校计划为在校运会上表现突出的12名志愿者每人颁发一件纪念品,李老师前往购买钢笔和笔记本作为纪念品,如果买10支钢笔和2本笔记本,需230元;如果买8支钢笔和4本笔记本,需220元.(1)求钢笔和笔记本的单价;(2)售货员提示:当购买的钢笔超过6支时,所有的钢笔打9折.设购买纪念品的总费用为w 元,其中钢笔的支数为a .①当6a >时,求w 与a 之间的函数关系式;②李老师购买纪念品一共花了210元钱,他可能购买了多少支钢笔?2、已知 A 、B 两地相距 3km ,甲骑车匀速从 A 地前往 B 地,如图表示甲骑车过程中离 A 地的路程 y 甲(km )与他行驶所用的时间 x (min )之间的关系.根据图像解答下列问题:(1)甲骑车的速度是 km/min ;(2)若在甲出发时,乙在甲前方 1.2km 的 C 处,两人均沿同一路线同时匀速出发前往 B 地,在第 4 分钟甲追上了乙,两人到达 B 地后停止.请在下面同一平面直角坐标系中画出乙离 B 地的距离 y 乙(km )与所用时间 x (min )的关系的大致图像;(3)在(2)的条件下,求出两个函数图像的交点坐标,并解释它的实际意义.3、如图,直线l 1的函数解析式为y =﹣x +1,且l 1与x 轴交于点A ,直线l 2经过点B ,D ,直线l 1,l 2交于点C .(1)求直线l 2的函数解析式;(2)求△ABC 的面积.4、如图,长方形AOBC 在直角坐标系中,点A 在y 轴上,点B 在x 轴上,已知点C 的坐标是(8,4).(1)求对角线AB 所在直线的函数关系式;(2)对角线AB 的垂直平分线MN 交x 轴于点M ,连接AM ,求线段AM 的长;(3)若点P 是直线AB 上的一个动点,当△PAM 的面积与长方形OACB 的面积相等时,求点P 的坐标.5、已知一次函数y kx b =+的图象经过点()1,1A --和()1,3B .(1)求此一次函数的表达式;(2)点()3,5C --是否在直线AB 上,请说明理由.-参考答案-一、单选题1、D【解析】【分析】由图可知甲10小时所走路程是160km,即得甲的速度是16km/h,可判定A;根据出发时甲距B地80千米,乙距B地60千米,可判断B;由图得乙的速度是6km/h,即可得甲2小时比乙多走20km,可判断C;甲5小时达到B地可求此时乙所走路程为30km,即得甲到达B地时两人相距30km,可判断D.【详解】解:由图可知:甲10小时所走路程是80×2=160(km),∴甲的速度是16km/h,故A正确,不符合题意;∵出发时甲距B地80千米,乙距B地60千米,∴发时乙在甲前方20km,故B正确,不符合题意;由图可得乙的速度是60÷10=6(km/h),∴出发2小时,乙所走路程是6×2=12(km),甲所走路程为16×2=32(km),即甲2小时比乙多走20km,∴甲乙两人在出发后2小时第一次相遇,故C正确,不符合题意;∵甲5小时达到B地,此时乙所走路程为5×6=30(km),∴甲到达B地时两人相距60-30=30(km),故D不正确,符合题意;故选:D.【点睛】本题考查一次函数的应用,解题的关键是理解图象中特殊点的意义.2、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B .【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.3、C【解析】【分析】 由4123y x =+求出A ,B 的坐标,根据点P 的坐标得到点P 在直线443y x =-+上,求出直线与y 轴交点C 的坐标,解方程组求出交点E 的坐标,即可得到关于m 的不等式组,解之求出答案.【详解】 解:当4123y x =+中y =0时,得x =-9;x =0时,得y =12, ∴A (-9,0),B (0,12),∵点P 的坐标为()3,44m m -+,当m =1时,P (3,0);当m =2时,P (6,-4),设点P 所在的直线解析式为y=kx+b ,将(3,0),(6,-4)代入, ∴4,43k b =-=,∴点P 在直线443y x =-+上, 当x =0时,y =4,∴C (0,4),4123443y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,解得38x y =-⎧⎨=⎩,∴E (-3,8), ∵点P 在AOB 的内部,∴3304448m m -<<⎧⎨<-+<⎩, ∴-1<m <0,故选:C ..【点睛】此题考查了一次函数与坐标轴的交点,两个一次函数图象的交点,解一元一次不等式组,确定点P 在直线443y x =-+上是解题的关键. 4、C【解析】【分析】根据一次函数的解析式,利用一次函数图象与系数的关系可得出一次函数21y x =-+的图象经过第一、二、四象限,此题得解.【详解】解:∵k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,∴一次函数y =-2x +1的图象不经过第三象限.故选:C .【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b >0⇔y=kx+b 的图象在一、二、四象限”是解题的关键.5、C【解析】【分析】根据一次函数的增减性解答.【详解】解:∵直线21y x =-+,k =-2<0,∴y 随着x 的增大而减小,∵点()14,y -,()22,y 都在直线21y x =-+上,-4<2,∴12y y >,故选:C .【点睛】此题考查了一次函数的增减性:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小,熟记性质是解题的关键.6、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x 1>x 2即可得出结论.【详解】∵正比例函数y =3x 中,k =3>0,∴y 随x 的增大而增大,∵x 1>x 2,∴y 1>y 2.故选:A .【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x 的系数的关系是解题的关键.7、B【解析】【分析】根据菜园的三边的和为24m ,进而得出一个x 与y 的关系式,然后根据题意可得关于x 的不等式,求解即可确定x 的取值范围.【详解】解:根据题意得,菜园三边长度的和为24m ,即224y x +=, 所以1122y x -+=,由y >0得,11202x -+>,解得24x <,当x y >时,即1122x x >-+,解得8x >,∴824x <<,故选:B .【点睛】题目主要考查一次函数的运用及根据条件得出不等式求解,理解题意,利用不等式得出自变量的取值范围是解题关键.8、D【解析】【分析】根据已知函数图象可得0,0k b <>,是递减函数,即可判断A 、B 选项,根据0x >时的函数图象可知y 的值不确定,即可判断C 选项,将B 点坐标代入解析式,可得2k b +=进而即可判断D【详解】A.该一次函数经过一、二、四象限∴ 0,0k b <>, y 随x 的增大而减小,故A,B 不正确;C. 如图,设一次函数(0)y kx b k =+≠与x 轴交于点(,0)C c ()0c >则当x c >时,0y <,故C 不正确D. 将点(1,2)B 坐标代入解析式,得2k b +=∴关于x 的方程2kx b +=的解是1x =故D 选项正确故选D【点睛】本题考查了一次函数的图象与性质,一次函数与二元一次方程组的解的关系,掌握一次函数的图象与性质是解题的关键.9、B【解析】【分析】根据函数图象可知,小豪出发10分钟后,爸爸追上了小豪,根据此时爸爸的5分钟的行程等于小豪前5分钟的行程与后5分钟的行程和,得到出爸爸的速度与小豪骑自行车的速度的关系,设小豪的速度为x米/分,根据点(563,0)列方程可得小豪与爸爸的速度,进而得出爸爸到达公司时,小豪距离书店路程.【详解】解:设小豪骑自行车的速度为xm/min,则爸爸的速度为:(5x+5×12x)÷5=32x(m/min),∵公司位于家正西方500米,∴(563−10−2)×32x=500+(5+2.5)x,解得x=200,∴小豪骑自行车的速度为200m/min,爸爸的速度为:200×32=300m/min,爸爸到达公司时,丁丁距离商店路程为:3500-(563−12)×(300+200)=5003m.综上,正确的选项为B.故选:B.【点睛】本题考查了一次函数的应用,学会正确利用图象信息,把问题转化为方程解决是本题的关键,属于中考常考题型.10、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A 正确;王明跑步的速度为24÷3=8(km/h ),故选项B 正确;陈启浩的速度为:24÷1-8=16(km/h ),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h ),故陈启浩到达目的地时两人相距8×1.5=12(km ),故选项C 错误;陈启浩比王提前3-1.5=1.5h 到目的地,故选项D 正确;故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题1、x <1【解析】略2、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k +1,即可得出k 值.【详解】解:∵正比例函数(1)y k x =+的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.3、x<-2【解析】【分析】根据图象,找出在x轴下方的函数图象所对应的自变量的取值即可得答案.【详解】∵点A坐标为(-2,0),∴关于x的不等式kx+b<0的解集是x<-2,故答案为:x<-2【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合;熟练掌握函数图象法是解题关键.4、原点【解析】略5、4【解析】【分析】由一次函数的定义可知x 的次数为1,即|3−m |=1,x 的系数不为0,即()20m -≠,然后对()3120m m -=-≠,计算求解即可.【详解】 解:由题意知()3120m m -=-≠,解得2m =(舍去),4m =故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.三、解答题1、 (1)钢笔的单价为20元,笔记本的单价为15元.(2)①3180612w a a ;②6支或10支【解析】【分析】(1)设钢笔的单价为x 元,笔记本的单价为y 元,再根据买10支钢笔和2本笔记本,需230元;买8支钢笔和4本笔记本,需220元,列方程组,再解方程组即可;(2)①当6a >时,由总费用等于购买钢笔与笔记本的费用之和可列函数关系式,②分两种情况列方程,当6a ≤或6,a 再解方程可得答案.(1)解:设钢笔的单价为x 元,笔记本的单价为y 元,则102230,84220x y x y解得:20,15x y答:钢笔的单价为20元,笔记本的单价为15元.(2)解:①当6a >时,w 与a 之间的函数关系式为:0.9201512w a a3180,a所以w 与a 之间的函数关系式为3180612.w a a②当6a ≤时,则201512210,a a解得:6,a =当6a >时,3180210,a解得:10,a =所以李老师购买纪念品一共花了210元钱,他可能购买了6支或10支钢笔.【点睛】本题考查的是二元一次方程组的应用,一次函数的应用,掌握“确定相等关系列二元一次方程组与一次函数的关系式”是解本题的关键.2、 (1)0.5(2)见解析(3)(187,97),它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km 【解析】【分析】(1)由甲骑车6min行驶了3km,可得甲骑车的速度是0.5km/min;(2)设乙的速度为x km/min,求出乙的速度,可得乙出发后9min到达B地,即可作出图象;(3)由y甲=0.5x,y乙=1.8-0.2x,可得两个函数图象的交点坐标为(187,97),它的意义是当出发18 7min后,乙离B的距离和甲离A地的距离都是97km.(1)解:甲骑车6min行驶了3km,∴甲骑车的速度是3÷6=0.5(km/min),故答案为:0.5;(2)解:设乙的速度为x km/min,由题意得0.5×4-4x=1.2,∴x=0.2,又A、B两地相距3km,A、C两地相距1.2km,∴B、C两地相距1.8km,∴乙出发后1.8÷0.2=9(min)到达B地,在同一平面直角坐标系中画出乙离B地的距离y乙(km)与所用时间x(min)的关系的大致图象如下:(3)解:由(1)(2)可知,y 甲=0.5x ,y 乙=1.8-0.2x ,由0.5x =1.8-0.2x 得x =187, 当x =187时,y 甲=y 乙=97, ∴两个函数图象的交点坐标为(187,97), 它的意义是当出发187min 后,乙离B 的距离和甲离A 地的距离都是97km . 【点睛】 本题考查一次函数的应用,一元一次方程的应用,解题的关键是读懂题意,求出甲、乙速度从而列出函数关系式.3、 (1)y =12x ﹣3 (2)256 【解析】【分析】(1)设直线l 2的解析式为()0y kx b k =+≠,将点B 、点D 两个点代入求解即可确定函数解析式;(2)当y =0时,代入直线1l 解析式确定点A 的坐标,即可得出ABC 的底边长,然后联立两个函数解析式得出交点坐标,点C 的纵坐标即为三角形的高,利用三角形面积公式求解即可得.(1)解:设直线l 2的解析式为()0y kx b k =+≠,由直线l 2经过点()6,0B ,()4,1D -可得:6041k b k b +=⎧⎨+=-⎩, 解得:123k b ⎧=⎪⎨⎪=-⎩, ∴直线l 2的解析式为132y x =-; (2) 当y =0时,代入直线1l 解析式可得:10x -+=,解得1x =,∴()1,0A ,∴615AB =-=, 联立1321y x y x ⎧=-⎪⎨⎪=-+⎩, 解得:8353x y ⎧=⎪⎪⎨⎪=-⎪⎩,∴85,33C⎛⎫-⎪⎝⎭,∴15255236 ABCS=⨯⨯=.【点睛】题目主要考查利用待定系数法确定一次函数解析式,一次函数交点问题,理解题意,熟练掌握运用一次函数的性质是解题关键.4、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P的坐标为(1285,-445);当点P在AM左侧时,S△PAM=S△PMB-S△ABM=12MB•yP-10=12×5(-12x+4)-10=32,解得:x =-1285, ∴点P 的坐标为(-1285,845). 综上所述,点P 的坐标为(1285,-445)或(-1285,845). 【点睛】 本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A 、B 点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM 的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m 的一元一次方程;(方法二)利用分割图形求面积法找出关于x 的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P 有两个.5、 (1)一次函数的表达式为21y x =+;(2)点()3,5C --在直线AB 上,见解析【解析】【分析】(1)把(-1,-1)、(1,3)分别代入y =kx +b 得到关于k 、b 的方程组,然后解方程求出k 与b 的值,从而得到一次函数解析式;(2)先计算出自变量为−3时的函数值,然后根据一次函数图象上点的坐标特征进行判断.(1)解:将()1,1A --和()1,3B 代入y kx b =+,得31k b k b +=⎧⎨-+=-⎩, 解得2k =,1b =,∴一次函数的表达式为21y x =+(2)解:点C 在直线AB 上,理由:当3x =-时,()212315y x =+=⨯-+=-,∴点()3,5C --在直线AB 上.【点睛】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y =kx +b ,将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.也考查了一次函数图象上点的坐标特征.。

八年级数学一次函数专项训练(含参考答案)

八年级数学一次函数专项训练(含参考答案)
一次函数专项训练
练习一 一次函数与正比例函数 1. 已知正比例函数的图像过点(2,-4),求这个正比例函数的关系式。
2. 已知一次函数的关系式为 y kx 2 ,当 x 2 时 y 的值为 4,求 k 的值及一次 函数的关系式。
3. 已知关于 x 的一次函数 y kx 4k 2(k 0) 。若其图像经过原点,求这个一次 函数的关系式。
4. 已知一次函数 y kx b ,在 x 0 时的 y 值为 4;在 x 1 时的值为-2,求这 个一次函数的关系式。
5. 已知一次函数 y kx b 的图像经过点 A(0,4),点 B(2,0) (1)求这个一次函数的关系式; (2)当 x 1 时,求 y 的值。
第1页共8页
练习二 确定一次函数的关系式 1. 已知直线 l 过 A,B 两点,A(0,-1),B(1,0)。求直线 l 的函数关系式。
4 5. y xBiblioteka 16. (1) y 9x 7
1. y 3 x 6 2
2. k 1 ,b 6 2
3. y 3x 1
(2) x 5 9
练习三 确定一次函数的关系式
4. (1) y x 2
(2)(0,-2)或(2,0)
5. (1) y 2x 7
(2)12.25
1. k 1,b 2
2. 在平面直角坐标系中,一次函数 y kx b 的图像经过点 A(2,1),B(0,2),C (-1,n),试求 n 的值。
3. 一次函数的图像与 y 轴的交点为(0,-3),且与坐标轴围成的三角形的面积为 6,求这个一次函数的关系式。
4. 如图,已知一次函数 y kx b 的图像经过 A(-2,-1),B(1,3)两点,并且 交 x 轴于点 C,交 y 轴于点 D。 (1)求该一次函数的关系式; (2)求△AOB 的面积。

人教版数学八年级下册:第十九章 一次函数 专题练习(附答案)

人教版数学八年级下册:第十九章  一次函数   专题练习(附答案)

第十九章一次函数专题练习小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是( )A B C D 4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( )A B C D 类型3动点问题中判断函数图象5.如图,在矩形ABCD 中,AB =3,BC =4,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,△ADP 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A B C D 6.如图,点P 是菱形ABCD 边上的动点,它从点A 出发沿A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A B C D类型4 从函数图象中获取信息7.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是( )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为 .小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( )A B C D5.如图,一次函数y =kx +b 的图象与正比例函数y =2x 的图象平行且经过点A(1,-2),则k = ,b = .6.将直线y =x +b 沿y 轴向下平移3个单位长度,点A(-1,2)关于y 轴的对称点落在平移后的直线上,则b 的值为 .7.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 .8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y 随x 的增大而增大. 请你根据他们的叙述构造满足上述性质的一个函数: .9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为.11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.12.已知一次函数y=2x+4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)y的值随x值的增大而;(3)求图象与x轴的交点A,与y轴的交点B的坐标;(4)在(3)的条件下,求出△AOB的面积.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b ――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ; ④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1 k 2,且b 1 b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为 ; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为 ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是 .2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为 ; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k = .思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.小专题(四)一次函数与坐标轴围成的三角形【教材母题】点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S.(1)用含x的式子表示S,写出x的取值范围,画出函数S的图象;(2)当点P的横坐标为5时,△OPA的面积为多少?(3)△OPA的面积能大于24吗?为什么?在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(-3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.小专题(五)一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg时需付行李费2元,行李质量为50 kg时需付行李费8元.(1)当行李的质量x超过规定时,求y与x之间的函数关系式;(2)求旅客最多可免费携带行李的质量.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?参考答案:小专题(一)函数图象信息题类型1根据实际问题判断函数图象1.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的( B )A B C D2.新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用s1,s2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( C )A B C D类型2根据函数图象描述实际问题3.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60 min后回家,图中的折线段OA-AB-BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是(B)A B CD4.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为( C )A B CD类型3动点问题中判断函数图象5.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( D )A B CD6.如图,点P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( A )A B C D类型4从函数图象中获取信息7.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是( D )图1 图2A .12B .24C .36D .48 8.如图1,在矩形ABCD 中,AB =2,动点P 从点B 出发,沿路线B →C →D 作匀速运动,图2是此运动过程中,△PAB 的面积S 与点P 运动的路程x 之间的函数图象的一部分,当BP =14BC 时,四边形APCD 的面积为7.小专题(二) 一次函数图象与性质的综合1.关于函数y =-2x +1,下列结论正确的是( D ) A .图象必经过点(-2,1) B .y 随x 的增大而增大 C .图象经过第一、二、三象限 D .当x >12时,y <02.若点P 在一次函数y =-x +4的图象上,则点P 一定不在( C )A .第一象限B .第二象限C .第三象限D .第四象限3.当k <0时,一次函数y =kx -k 的图象不经过( C )A .第一象限B .第二象限C .第三象限D .第四象限4.正比例函数y =kx(k ≠0)的函数值y 随x 的增大而减小,则一次函数y =x +k 的图象大致是( A )A B C D5.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,-2),则k=2,b=-4.6.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为4.7.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x 的增大而减小,则k所有可能取得的整数值为-1.8.老师给出一个函数,甲、乙、丙各正确指出了这个函数的一个性质:甲:函数的图象是一条直线;乙:函数的图象经过点(1,1);丙:y随x的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数:y=2x-1(答案不唯一).9.若一次函数y=kx+b(k≠0)的图象不过第四象限,且点M(-4,m),N(-5,n)都在其图象上,则m和n的大小关系是m>n.10.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置,点A1,A2,A3…和点C1,C2,C3…分别在直线y=x+1和x轴上,则点B n的坐标为(2n-1,2n-1).11.已知正比例函数y=kx经过点(5,-10),求:(1)这个函数的解析式;(2)判断点A(4,-2)是否在这个函数图象上?(3)图象上两点B(x1,y1),C(x2,y2),如果x1>x2,比较y1,y2的大小.解:(1)∵正比例函数y =kx 经过点(5,-10), ∴-10=5k ,解得k =-2. ∴这个函数的解析式为y =-2x.(2)将x =4代入y =-2x ,得y =-8≠-2, ∴点A(4,-2)不在这个函数图象上. (3)∵k =-2<0, ∴y 随x 的增大而减小. ∵x 1>x 2,∴y 1<y 2.12.已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象; (2)y 的值随x 值的增大而增大;(3)求图象与x 轴的交点A ,与y 轴的交点B 的坐标; (4)在(3)的条件下,求出△AOB 的面积.解:(1)函数图象如图所示. (3)A(-2,0),B(0,4). (4)由(3)可知,OA =2,OB =4, ∴S △AOB =12OA·OB=12×2×4=4.小专题(三) 由两直线的位置关系求一次函数的解析式思考1 直线的平移(1)将直线y =kx +b 向不同方向平移m 个单位长度: ①直线y =kx +b ――→向上平移m (m >0)个单位长度直线y =kx +b +m ; ②直线y =kx +b ――→向下平移m (m >0)个单位长度直线y =kx +b -m ; ③直线y =kx +b――→向左平移m (m >0)个单位长度直线y =k(x +m)+b ;④直线y =kx +b――→向右平移m (m >0)个单位长度直线y =k(x -m)+b .(2)简记为“上加下减,左加右减”,上下平移给整体加减,左右平移只给x 加减. (3)直线y =k 1x +b 1和直线y =k 2x +b 2平行⇔k 1=k 2,且b 1≠b 2.1.(1)将直线y =2x -1沿y 轴向上平移3个单位长度,则平移后的直线解析式为y =2x +2; (2)将直线y =-x -1沿x 轴向右平移1个单位长度,则平移后的直线解析式为y =-x ; (3)将直线y =3x +2向左平移2个单位长度,再向下平移4个单位长度后,得到直线y =kx +b ,则直线y =kx +b 与y 轴的交点坐标是(0,4).2.(1)若直线y =2x +3向下平移后经过点(5,1),则平移后的直线解析式为y =2x -9; (2)若直线y =kx +3(k ≠0)向左平移4个单位长度后经过原点,则k =-34.思考2 直线关于x 轴或y 轴对称3.(1)求直线y =-2x +4关于x 轴对称的直线解析式,关于y 轴对称的直线解析式. (2)试猜想直线y =kx +b 关于x 轴对称和关于y 轴对称的直线的解析式.解:(1)直线y =-2x +4与x 轴的交点坐标为(2,0),与y 轴的交点坐标为(0,4). 设关于x 轴对称的直线解析式为y =mx +n ,则该直线经过点(2,0),(0,-4), ∴直线解析式为y =2x -4.设关于y 轴对称的直线解析式为y =sx +t ,则该直线经过点(-2,0),(0,4), ∴直线解析式为y =2x +4.(2)直线y =kx +b 关于x 轴对称的直线解析式为y =-kx -b ,关于y 轴对称的直线解析式为y =-kx +b.小专题(四) 一次函数与坐标轴围成的三角形【教材母题】 点P(x ,y)在第一象限,且x +y =8,点A 的坐标为(6,0).设△OPA 的面积为S.(1)用含x 的式子表示S ,写出x 的取值范围,画出函数S 的图象; (2)当点P 的横坐标为5时,△OPA 的面积为多少? (3)△OPA 的面积能大于24吗?为什么?解:(1)∵点A 和点P 的坐标分别是(6,0),(x ,y), ∴S =12×6×y =3y.∵x +y =8,∴y =8-x. ∴S =3(8-x)=24-3x. ∴S =-3x +24. ∵点P 在第一象限,∴x >0,y >0,即x >0,8-x >0.∴0<x <8. 图象如图所示.(2)当x =5时,S =-3×5+24=9. (3)不能.理由:令S >24,则-3x +24>24.解得x <0. ∵由(1),得0<x <8, ∴△OPA 的面积不能大于24.在求一次函数与坐标轴所围成的三角形面积时,通常选择坐标轴上的线段作为底边,而坐标系内点的横坐标或纵坐标的绝对值作为高,然后利用面积公式求解.1.如图,直线l 1在平面直角坐标系中,直线l 1与y 轴交于点A ,点B(-3,3)也在直线l 1上,将点B 先向右平移1个单位长度,再向下平移2个单位长度得到点C ,点C 恰好也在直线l 1上.(1)求点C 的坐标和直线l 1的解析式;(2)已知直线l 2:y =x +b 经过点B ,与y 轴交于点E ,求△ABE 的面积.解:(1)由题意,得点C 的坐标为(-2,1). 设直线l 1的解析式为y =kx +c , ∵点B(-3,3),C(-2,1)在直线l 1上,∴⎩⎪⎨⎪⎧-3k +c =3,-2k +c =1.解得⎩⎪⎨⎪⎧k =-2,c =-3. ∴直线l 1的解析式为y =-2x -3.(2)把点B 的坐标代入y =x +b ,得3=-3+b , 解得b =6.∴y =x +6.∴点E 的坐标为(0,6). ∵直线y =-2x -3与y 轴交于点A , ∴A 的坐标为(0,-3).∴AE =6+3=9. ∵B(-3,3),∴S △ABE =12×9×|-3|=13.5.2.如图,已知直线y =-13x +1与x 轴、y 轴分别交于点A ,B ,以线段AB 为直角边在第一象限内作等腰Rt △ABC ,∠BAC =90°,点P(x ,y)为线段BC 上一个动点(点P 不与B ,C 重合),设△OPA 的面积为S. (1)求点C 的坐标;(2)求S 关于x 的函数解析式,并写出x 的取值范围;(3)△OPA 的面积能等于92吗?如果能,求出此时点P 坐标;如果不能,说明理由.解:(1)当x =0时,y =-13x +1=1.∴点B 的坐标为(0,1). 当y =0时,-13x +1=0,解得x =3.∴点A 的坐标为(3,0). 过点C 作CE ⊥x 轴,垂足为E ,∵△ABC 为等腰直角三角形,∠BAC =90°, ∴∠BAO +∠CAE =90°,AB =CA. 又∵∠BAO +∠ABO =90°, ∴∠ABO =∠CAE.在△ABO 和△CAE 中,⎩⎨⎧∠AOB =∠CEA ,∠ABO =∠CAE ,AB =CA ,∴△ABO ≌△CAE(AAS). ∴AE =BO =1,CE =AO =3. ∴OE =AO +AE =4. ∴点C 的坐标为(4,3).(2)过点P 作PF ⊥x 轴,垂足为F , 设直线BC 的解析式为y =kx +b(k ≠0). 将B(0,1),C(4,3)代入y =kx +b ,得 ⎩⎨⎧b =1,4k +b =3,解得⎩⎪⎨⎪⎧k =12,b =1. ∴直线BC 的解析式为y =12x +1.∴S =12OA·PF =12×3×(12x +1)=34x +32(0<x <4).(3)不能.理由如下: 当S =92时,34x +32=92,解得x =4. ∵0<x <4,∴△OPA 的面积不能等于92.小专题(五) 一次函数与方程、不等式的应用1.某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为20 kg 时需付行李费2元,行李质量为50 kg 时需付行李费8元.(1)当行李的质量x 超过规定时,求y 与x 之间的函数关系式;(2)求旅客最多可免费携带行李的质量.解:(1)设y 与x 的函数关系式为y =kx +b.将(20,2),(50,8)代入y =kx +b ,得⎩⎨⎧20k +b =2,50k +b =8,解得⎩⎪⎨⎪⎧k =15,b =-2.∴当行李的质量x 超过规定时,y 与x 之间的函数关系式为y =15x -2. (2)当y =0时,15x -2=0, 解得x =10.答:旅客最多可免费携带行李10 kg.2.某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.解:(1)设销售甲种特产x 吨,则销售乙种特产(100-x)吨,根据题意,得10x +(100-x)×1=235,解得x =15.∴100-x =85.答:这个月该公司销售甲、乙两种特产分别为15吨、85吨.(2)设利润为w 元,销售甲种特产a 吨,根据题意,得w =(10.5-10)a +(1.2-1)×(100-a)=0.3a +20.∵0≤a ≤20,∴当a =20时,w 取得最大值,w 最大=26.答:该公司一个月销售这两种特产所能获得的最大总利润是26万元.3.某蔬菜加工公司先后两批次收购蒜薹共100吨.第一批蒜薹价格为4 000元/吨;因蒜薹大量上市,第二批价格跌至1 000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1 000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?解:(1)设第一批购进蒜薹x 吨,第二批购进蒜薹y 吨.由题意,得⎩⎨⎧x +y =100,4 000x +1 000y =160 000,解得⎩⎪⎨⎪⎧x =20,y =80. 答:第一批购进蒜薹20吨,第二批购进蒜薹80吨.(2)设精加工m 吨,总利润为w 元,则粗加工(100-m)吨.由m ≤3(100-m),解得m ≤75,利润w =1 000m +400(100-m)=600m +40 000,∵600>0,∴w 随m 的增大而增大.∴m =75时,w 有最大值为85 000元.4.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24 000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2 000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲、乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元.根据题意,得⎩⎨⎧20x +15y +7 000=24 000,10x -5y +1 000=2 000,解得⎩⎪⎨⎪⎧x =400,y =600.答:甲种办公桌每张400元,乙种办公桌每张600元.(2)设甲种办公桌购买a 张,则乙种办公桌购买(40-a)张,购买的总费用为M 元, 则M =400a +600(40-a)+2×40×100=-200a +32 000,∵a ≤3(40-a),∴a ≤30.∵-200<0,∴M 随a 的增大而减小.∴当a =30时,M 取得最小值,最小值为26 000元.答:购买甲、乙两种办公桌分别为30张、10张时,费用最少,为26 000元.5.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3 600元购买排球的个数要比用3 600元购买篮球的个数多10个.(1)问每一个篮球、排球的进价各是多少元?(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?解:(1)设每一个篮球的进价是x 元,则每一个排球的进价是90%x 元,依题意,得 3 600x +10=3 60090%x, 解得x =40.经检验,x =40是原方程的解.90%x =90%×40=36.答:每一个篮球的进价是40元,每一个排球的进价是36元.(2)设文体商店计划购进篮球m 个,总利润y 元,则y =(100-40)m +(90-36)(100-m)=6m +5 400.依题意,得⎩⎪⎨⎪⎧0<m <100,100-m ≥3m. 解得0<m ≤25且m 为整数.∵k =6>0,∴y 随m 的增大而增大.∴m =25时,y 最大,这时y =6×25+5 400=5 550.100-25=75(个).答:该文体商店应购进篮球25个、排球75个才能获得最大利润,最大利润是5 550元.6.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?解:(1)y 甲=0.8x.y 乙=⎩⎪⎨⎪⎧x (0<x<2 000),0.7x +600(x ≥2 000). (2)当0<x<2 000时,0.8x<x ,到甲商店购买更省钱;当x ≥2 000时,若到甲商店购买更省钱,则0.8x<0.7x +600,解得x<6 000;若到乙商店购买更省钱,则0.8x>0.7x +600,解得x>6 000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6 000.故当购买金额按原价小于6 000元时,到甲商店购买更省钱;当购买金额按原价大于6 000元时,到乙商店购买更省钱;当购买金额按原价等于6 000元时,到甲、乙两商店购买一样.7.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A 驶向终点B ,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A 与终点B 之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y 与x 的函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?解:(1)由图可得,起点A 与终点B 之间相距3 000米.(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点.(3)设甲龙舟队的y 与x 的函数关系式为y =kx.把(25,3 000)代入,可得3 000=25k ,解得k =120.∴甲龙舟队的y 与x 的函数关系式为y =120x(0≤x ≤25).设乙龙舟队的y 与x 函数关系式为y =ax +b.把(5,0),(20,3 000)代入,可得⎩⎨⎧0=5a +b ,3 000=20a +b ,解得⎩⎪⎨⎪⎧a =200,b =-1 000. ∴乙龙舟队的y 与x 的函数关系式为y =200x -1 000(5≤x ≤20).(4)令120x =200x -1 000,可得x =12.5.即当x =12.5时,两龙舟队相遇.当x <5时,令120x =200,则x =53(符合题意); 当5≤x <12.5时,令120x -(200x -1 000)=200,则x =10(符合题意);当12.5<x ≤20时,令200x -1 000-120x =200,则x =15(符合题意);当20<x ≤25时,令3 000-120x =200,则x =703(符合题意). 综上所述,甲龙舟队出发53分钟或10分钟或15分钟或703分钟时,两支龙舟队相距200米.。

八年级数学下册《一次函数》练习题(附含答案)

八年级数学下册《一次函数》练习题(附含答案)

八年级数学下册《一次函数》练习题(附含答案)一、选择题1.下列函数(1)y x π= (2)31y x =- (3)1y x= (4)153=-y x (5)231y x =-中,是一次函数的有( )A .4个B .3个C .2个D .1个2.点()1,A a y 和()22,B a y +都在一次函数3y x =-+图象上,则1y 、2y 的大小关系是( ) A .12y y > B .12y y = C .12y y < D .不确定3.将直线3y x =-+向下平移2个单位长度,得到的直线解析式为( )A .=5y x --B .2y x =--C .1y x =-+D .5y x =-+4.无论m 取任何非零实数,一次函数()32y mx m =-+的图象过定点( )A .()32,B .()32-,C .()32-,D .()32--,6.如图,在矩形ABCO 中,()3,0A ,()0,2C -,若正比例函数y kx =的图象经过点B ,则k 的取值为()A .32-B .23- C .23 D .327.点P (a ,b )在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-8.直线1:y b l kx =-和2:2l y kx b =-+在同一直角坐标系中的图象可能是( )A .B .C .D9.关于一次函数24y x =-的图像,下列叙述中正确的个数是( )①必经过点()1,2①与x 轴的交点坐标是()0,4-①过一、二、四象限①可由2y x =平移得到A .4B .3C .2D .110.如图,在矩形ABCD 中,AB=8cm ,AD=6cm .点P 从点A 出发,以2cm/s 的速度在矩形的边上沿A B C D →→→运动,当点P 与点D 重合时停止运动.设运动的时间为t (单位 s ),APD △的面积为S (单位 2cm ),则S 随t 变化的函数图象大致为( )A .B .C .D .二、填空题11.若()2269m y m x-=++是一次函数,则m 的值是_____. 12.已知 点A (-1,a )、B (1,b )在函数y x m =-+的图像上,则a______b (在横线上填写“>”或“=”或“<”). 13.如图,在平面直角坐标系中,直线3y x =-+与x 轴,y 轴交于A ,B 两点,分别以点A ,B 为圆心,大于12AB 长为半径作圆弧,两弧在第一象限交于点C ,若点C 的坐标为()1,5m m --,则m 的值是______.14.函数36y x =-+的图象与x 轴.y 轴围成的三角形面积为______.15.如图,一次函数334y x =+的图像与x 轴、y 轴分别交于A 、B 两点,C 是OA 上的一点,若ABC 将沿BC 折叠,点A 恰好落在y 轴上的点A '处,则点C 的坐标是______.三、解答题17.如图,一次函数3y kx =-的图象经过点M .(1)求这个一次函数的表达式.(2)判断点(2,7)是否在该函数的图象上.18.在平面直角坐标系中,四边形ABCD 的顶点坐标分别是A (0,0)、B (2,4)、C (6,2)、D (8,0).(1)求ABC 的面积(2)点E 是x 轴上一点,当BE CE +的值最小时,求E 的坐标.19.如图,一次函数y =x +3的图象1l 与x 轴交于点B ,与过点A (3,0)的一次函数的图象2l 交于点C (1,m ).(1)求m 的值(2)求一次函数图象2l 相应的函数表达式(3)求ABC 的面积.20.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .下图是甲、乙两个探测气球所在位置的海拔y (单位 m )与气球上升时间x (单位 min )的函数图象.(1)求这两个气球在上升过程中y 关于x 的函数解析式(2)当这两个气球的海拔高度相差15m 时,求上升的时间.21.在平面直角坐标系上,点A为直线OA第一象限上一点,AB垂直x轴于B,OB=4,AB=2(1)求直线OA的解析式(2)直线y=2x上有一点C(x轴上方),若AOC为直角三角形,求点C坐标.x+5的图象l1分别与x,y轴交于A,B两点,正比例函数22.如图,直角坐标系xOy中,一次函数y=﹣12的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式(2)求S△AOC﹣S△BOC的值(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B 2.A 3.C 4.B 5.A 6.B 7.C 8.D 9.D 10.D 11.312.> 13.3 14.6 15.3,02⎛⎫- ⎪⎝⎭16.20192020(2,21)- 17.(1)一次函数3y kx =-的图象经过点(2,1)M - 231k ∴--=解得 2k =-,∴这个一次函数表达式为23y x =--(2)当2x =时,2237y =-⨯-=-∴点(2,7)-在该函数的图象上.18(1)解 根据题意得 ABC 的面积为1116424262410222⨯-⨯⨯-⨯⨯-⨯⨯= (2)解 如图,作点C 关于x 轴的对称点F ,连接BF 交x 轴于点E ,则此时BE CE +的值最小①()6,2C①点()6,2F -设直线BF 的解析式为()0y kx b k =+≠把点()2,4B ,()6,2F -代入得2462k b k b +=⎧⎨+=-⎩,解得 327k b ⎧=-⎪⎨⎪=⎩ ①直线BF 的解析式为372y x =-+ 当0y =时,3072x =-+ 解得 143x = ①点E 的坐标为14,03⎛⎫ ⎪⎝⎭. 19.解 (1)①点C (1,m )在一次函数y =x +3的图象上①m =1+3=4(2)设一次函数图象2l 相应的函数表达式为y =kx +b把点A (3,0),C (1,4)代入得304k b k b +=⎧⎨+=⎩解得26k b =-⎧⎨=⎩①一次函数图象2l 相应的函数表达式y =﹣2x +6 (3)①一次函数y =x +3的图象1l 与x 轴交于点B ①B (﹣3,0)①A (3,0),C (1,4)①AB =6 ①164122ABC S ⨯⨯==. 20.解 (1)设甲气球上升过程中 y kx b =+由题意得 甲的图像经过 ()()0,5,20,25两点5,2025b k b =⎧∴⎨+=⎩解得 1,5k b =⎧⎨=⎩所以甲上升过程中 5,y x =+设乙气球上升过程中 ,y mx n =+由题意得 乙的图像经过 ()()0,15,20,25两点15,2025n m n =⎧∴⎨+=⎩解得 1,215m n ⎧=⎪⎨⎪=⎩ 所以乙上升过程中 115,2y x =+(2)由两个气球的海拔高度相差15m 即15,y y -=甲乙()151515,2x x ⎛⎫∴+-+= ⎪⎝⎭11015,2x ∴-= 110152x ∴-=或11015,2x -=- 解得 50x =或10x =-(不合题意,舍去)所以当这两个气球的海拔高度相差15m 时,上升的时间为50min. 21.(1)解 ①AB 垂直x 轴于B ,OB =4,AB =2①A (4,2)设直线OA 的解析式为y =kx则2=4k ,解得k =12①直线OA 的解析式为y =12x (2)解 设点C 坐标为(x ,2x )①A (4,2)①OA 2=42+22=20,OC 2=x 2+(2x )2=5x 2,AC 2=(4-x )2+(2x -2)2=5x 2-16x +20 当OA 2+OC 2=AC 2时20+5x 2=5x 2-16x +20解得x =0(舍去)当OA 2+AC 2=OC 2时20+5x 2-16x +20=5x 2解得x =52①点C 坐标为(52,5) 当OC 2+AC 2=OA 2时5x 2+5x 2-16x +20=20解得x =85或x =0(舍去) ①点C 坐标为(85,165) 综上,点C 坐标为(52,5)或(85,165).22.解(1)把C(m,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5解得m=2①C(2,4)设l2的解析式为y=ax,则4=2a解得a=2①l2的解析式为y=2x(2)如图,过C作CD①AO于D,CE①BO于E,则CD=4,CE=2y=﹣12x+5,令x=0,则y=5 令y=0,则x=10①A(10,0),B(0,5)①AO=10,BO=5①S△AOC﹣S△BOC=12×10×4﹣12×5×2=20﹣5=15(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形①当l3经过点C(2,4)时,k=3 2当l2,l3平行时,k=2 当11,l3平行时,k=﹣12故k的值为32或2或﹣12.。

《常考题》初中八年级数学下册第十九章《一次函数》经典练习题(含答案解析)

《常考题》初中八年级数学下册第十九章《一次函数》经典练习题(含答案解析)

一、选择题1.已知函数(0)y kx k =≠中y 随x 的增大而减小,则一次函数23y kx k =+的图象大致是( )A .B .C .D .2.如图①,在长方形MNPQ 中,动点R 从点N 出发,沿着N P Q M →→→方向运动至点M 处停止.设点R 运动的路程为,x MNR ∆的面积为y ,如果y 关于x 的函数图象如图②所示,那么下列说法错误的是( )A .5MN =B .长方形MNPQ 的周长是18C .当6x =时,10y =D .当8y =时,10x =3.如图1,四边形ABCD 是轴对称图形,对角线AC ,BD 所在直线都是其对称轴,且AC ,BD 相交于点E .动点P 从四边形ABCD 的某个顶点出发,沿图1中的线段匀速运动.设点P 运动的时间为x ,线段EP 的长为y ,图2是y 与x 的函数关系的大致图象,则点P 的运动路径可能是( )A .CB A E →→→B .CDE A →→→ C .A E C B →→→ D .A E D C →→→4.如图,在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .-1B .1C .2D .3 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.已知直线()1:0l y kx b k =+≠与直线()2:30l y mx m =-<在第三象限交于点M ,若直线1l 与x 轴的交点为()10B ,,则k 的取值范围是( ) A .33k -<< B .03k <<C .04k <<D .30k -<< 7.如图,已知△ABC 为等边三角形,AB=2,点D 为边AB 上一点,过点D 作DE ∥AC ,交BC 于E 点;过E 点作EF ⊥DE ,交AB 的延长线于F 点.设AD=x ,△DEF 的面积为y ,则能大致反映y 与x 函数关系的图象是( )A .B .C .D . 8.下列关于一次函数25y x =-+的说法,错误的是( )A .函数图象与y 轴的交点()0,5B .当x 值增大时,y 随着x 的增大而减小C .当 5y >时,0x < D .图象经过第一、二、三象限 9.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④ 10.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 11.下列图象中,不可能是关于x 的一次函数y =px ﹣(p ﹣3)的图象的是( ) A . B . C . D . 12.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小 13.关于函数(3)y k x k =-+,给出下列结论:①当3k ≠时,此函数是一次函数;②无论k 取什么值,函数图象必经过点(1,3)-;③若图象经过二、三、四象限,则k 的取值范围是0k <;④若函数图象与x 轴的交点始终在正半轴,则k 的取值范围是03k <<.其中正确结论的序号是( )A .①②③B .①③④C .②③④D .①②③④ 14.A ,B 两地相距30km ,甲乙两人沿同一条路线从A 地到B 地.如图,反映的是两人行进路程()y km 与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上.以上说法正确的个数有( )A .1个B .2个C .3个D .4个 15.直线1y x 42=-与x 轴、y 轴分别相交于A ,B 两点,若点()1,2M m m +-在AOB 内部,则m 的取值范围为( )A .1433m <<B .17m -<<C .703m <<D .1123m << 二、填空题16.函数21x y x =-中自变量x 的取值范围是________. 17.如图在平面直角坐标系中,平行四边形ABCD 的对角线交于点E ,//CD x 轴,若AC BD =,6CD =,AED 的面积为6,点A 为(2,)n ,BD 所在直线的解析式为1(0)y kx k k =++≠,则AC 所在直线的解析式为________.18.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.19.已知y =kx+b ,当﹣1≤x≤4时,3≤y≤6,则k ,b 的值分别是_____.20.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.21.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.22.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.23.如图,在平面直角坐标系中,直线l :y =x +2交x 轴于点A ,交y 轴于点A 1,点A 2,A 3...在直线l 上,点B 1,B 2,B 3..在x 轴的正半轴上,若△A 1OB 1,△A 2B 1B 2,△A 3B 2B 3...,依次均为等腰直角三角形,直角顶点都在x 轴上,则第2021个等腰直角三角形A 2021B 2020B 2021顶点B 2021的横坐标为__________.24.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为()6,8,点D 是OA 的中点,点E 在线段AB 上,当CDE ∆的周长最小时,点E 的坐标是_______.25.如图,经过点B (﹣4,0)的直线y =kx +b 与直线y =mx 相交于点A (﹣2,﹣4),则关于x 不等式mx <kx +b <0的解集为______.26.在学校,每一位同学都对应着一个学籍号,在数学中也有一些对应.现定义一种对应关系f ,使得数对(),x y 和数z 是对应的,此时把这种关系记作:(),f x y z =.对于任意的数m ,n (m n >),对应关系f 由如表给出: (),x y(),n n (),m n (),n m (),f x y n m n - m n + 如:1,2213f =+=,2,1211f =-=,1,11f --=-,则使等式()12,32f x x +=成立的x 的值是___________. 三、解答题27.某校服生产厂家计划在年底推出两款新校服A 和B 共80套,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如表:A B 成本价(元/套)250 280 售价(元/套) 300 340(1)该厂家有几种生产新校服的方案可供选择?(2)该厂家要想获得最大的利润,最大利润为多少?(3)经市场调查,年底前每套B 款校服售价不会改变,而每套A 款校服的售价将会提高m 元()0m >,且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?28.如图,直线6y kx =+与x 轴、y 轴分别相交于点E 、F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-,点(),P x y 是第二象限内的直线上的一个动点.(1)求k 的值.(2)在点P 的运动过程中,写出OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围.(3)已知()0,2Q -,当点P 运动到什么位置时,直线PQ 将四边形EPOQ 分成两部分,面积比为1:2,请直接写出P 点坐标.29.如图,正比例函数3y x =-与一次函数y kx b =+相交于点(),3A a -,并且一次函数y kx b =+经过x 轴上的点0()6,B -.(1)求一次函数y kx b =+的表达式;(2结合函数图像,求关于x ,y 的二元一次方程组30x y kx y b +=⎧⎨-=-⎩的解; (3)结合函数图像,求关于x 的不等式(3)0k x b ++≥的解集.30.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.。

八年级数学下册第四单元《一次函数》测试(含答案解析)

八年级数学下册第四单元《一次函数》测试(含答案解析)

一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .42.如图,点O 为平面直角坐标系的原点,点A 在x 轴正半轴上,四边形OABC 是菱形.已知点B 坐标为(3,3),则直线AC 的函数解析式为( )A .y =3x+3 B .y =3x+23C .y =﹣3x+3 D .y =﹣3x+23 3.如图,一次函数y =2x 和y =ax +4的图象相交于点A (m ,3),则不等式0<ax +4<2x 的解集是( )A .0<x <32B .32<x <6 C .32<x <4 D .0<x <34.若直线y =kx+b 经过第一、二、四象限,则函数y =bx -k 的大致图像是( )A .B .C .D .5.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( ) A .12m <B .12m >C .m 1≥D .1m <6.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( )A .2B .3C .4D .57.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定 8.下列一次函数中,y 的值随着x 值的增大而增大的是( )A .–1y x =-B .0.3y x =C . 1y x =-+D .y x =-9.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x < 10.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米; ④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④11.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩12.弹簧挂上物体后伸长,已知一弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系如下表:所挂物体的质量m/kg 0 1 2 3 4 5 弹簧的长度y/cm 1012.51517.52022.5A .在没挂物体时,弹簧的长度为10cmB .弹簧的长度随所挂物体的质量的变化而变化,弹簧的长度是自变量,所挂物体的质量是因变量C .弹簧的长度y (cm )与所挂物体的质量m (kg )之间的关系可用关系式y =2.5m +10来表示D .在弹簧能承受的范围内,当所挂物体的质量为4kg 时,弹簧的长度为20cm参考答案二、填空题13.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_. 14.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简244m m -++296m m -+=__________.15.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.16.对于函数21y x =-,有下列性质:①它的图像过点()1,0,②y 随x 的增大而减小,③与y 轴交点为()0,1-,④它的图像不经过第二象限,其中正确的序号是______(请填序号).17.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.18.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______. 19.已知直线()0y kx b k =+≠过()1,0和()0,2-,则关于x 的不等式0kx b +<的解集是______.20.已知一个一次函数的图象过点(1,2)-,且y 随x 的增大而减小,则这个一次函数的解析式为__________.(只要写出一个)三、解答题21.我市全民健身中心面向学生推出假期游泳优惠活动,活动方案如下. 方案一:购买一张学生卡,每次游泳费用按六折优惠; 方案二:不购买学生卡,每次游泳费用按八折优惠.设某学生假期游泳x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求y 1关于x 的函数关系式,并直接写出单独购买一张学生卡的费用和购买学生卡后每次游泳的费用;(2)求打折前的每次游泳费用和k 2的值;(3)八年级学生小明计划假期前往全民健身中心游泳8次,应选择哪种方案所需费用更少?说明理由.22.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式; (2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.23.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A .(1)求直线AC 和OA 的函数解析式;(2)动点M 在直线AO 上运动,是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.24.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:(1)求营销员的个人收入y (元)与营销员每月销售量x (千克)(0x ≥)之间的函数关系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.一次函数23y x =-+的图像经过点P (1,n ). (1)求n 的值;(2)若一次函数1y mx =-的图像经过点P (2n -1,n ),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】观察图象可判断A 、B ,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断C ,分四种情况讨论,求得t ,可判断④,继而解题. 【详解】①由图象可知,A 、B 两城市之间的距离为480km ,故①正确;②甲行驶的时间为8小时,而乙是在甲出发1小时后出发的,且用时6小时,即比甲早到1小时,故②正确;③设甲车离开A 城的距离y 与t 的关系式为=y kt 甲,把(8,480)代入可求得=60k ,=60y t ∴甲设乙车离开A 城的距离y 与t 的关系式为=m y t n +乙,把(10)(7480),、,代入可得 07480m n m n +=⎧⎨+=⎩解得8080m n =⎧⎨=-⎩ =8080y t -乙,令=y 甲y 乙可得:60=t 8080t -,解得=4t , 即甲、乙两直线的交点横坐标为=4t ,此时乙出发时间为3小时,即乙车出发3小时后追上甲车,故③不正确; ④当=50y 甲时,此时5=6t ,乙还没出发, 又当乙已经到达B 城,甲距离B 城50km 时,43=6t , 当=50y y -甲乙,可得60808050t t -+=,即802050t -=,当802050t -=时,可解得3=2t ,当802050t -=-时,可解得13=2t , 综上可知当t 的值为56或436或32或132,故④不正确, 综上所述,正确的有①②,共2个,故选:B . 【点睛】本题考查了一次函数的应用,掌握一次函数的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,是中考常见考点,难度较易.2.D解析:D 【分析】过B 点作BH ⊥x 轴于H 点,菱形的对角线的交点为P ,如图,设菱形的边长为t ,则OA =AB =t ,在Rt △ABH 中利用勾股定理得到(3﹣t )2+2=t 2,解方程求出t ,得到A(2,0),再利用P为OB的中点得到P(3 2,32),然后利用待定系数法求直线AC的解析式即可.【详解】解:过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P(323设直线AC的解析式为y=kx+b,把A(2,0),P(32320332k bk b+=⎧⎪⎨+=⎪⎩,解得:323kb⎧=-⎪⎨=⎪⎩,∴直线AC的解析式为y33故选:D.【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.3.B解析:B【分析】先求解A的坐标,再求解一次函数的解析式及B的坐标,结合函数图像解0<ax+4<2x即可得到答案.【详解】解:一次函数y=2x和y=ax+4的图象相交于点A(m,3),23,m ∴=3,2m ∴=3,3,2A ⎛⎫∴ ⎪⎝⎭3+4=32a ∴, 2,3a ∴=-24,3y x ∴=-+令0,y = 则240,3x -+= 6,x ∴=()6,0,B ∴不等式0<ax +4,4y ax ∴=+的图像上的点在x 轴的上方,所以结合图像可得:x <6, ax +4<2x ,2y x ∴=的图像在4y ax =+的图像的上方,3,3,2A ⎛⎫ ⎪⎝⎭ x >32, 所以:不等式0<ax +4<2x 的解集是32<x <6. 故选:.B 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.4.B解析:B 【分析】根据一次函数y=kx+b 的图象经过第一、二、四象限,可以得到k 和b 的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k 中b ,-k 的正负,从而得到图象经过哪几个象限,从而可以解答本题. 【详解】解:∵一次函数y=kx+b 的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,-k>0,∴一次函数y=bx-k图象第一、二、三象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.5.A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.【详解】解:∵点P(-1,y1)、点Q(3,y2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m-1<0,解得m<12,故选:A.【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.6.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a的取值范围,再根据一次函数的性质,即可得到答案.【详解】解:42313312x y ax y a+=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x ay a⎧=+⎪⎪⎨⎪=-+⎪⎩,∵方程的解是非负数,∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.7.B解析:B【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y 甲在y 乙上面,即y 甲>y 乙,∴当游泳次数为30次时,选择乙种方式省钱.故选:B .【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.8.B解析:B【分析】一次函数y kx b =+中,当0k >时y 的值随着x 值的增大而增大;当0k <时y 的值随着x 值的增大而减小,据此对各选项进行解答即可.【详解】解:A .∵y=-x-1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误; B .∵y=0.3x 中k=0.3>0,∴y 的值随着x 值的增大而增大,故本选项正确;C .∵y=-x+1中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误;D .∵y=-x 中k=-1<0,∴y 的值随着x 值的增大而减小,故本选项错误.故选:B .【点睛】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.9.D解析:D【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可.【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确; B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确;D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误,故选:D .【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.10.A解析:A【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC 的解析式为y =kx +b (k ≠0),然后利用待定系数法求出直线AC 线段的解析式,③把x =40代入②的结论进行计算即可得解;④把x =50代入②的结论进行计算即可得解.【详解】解:∵CD ∥x 轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC 的解析式为y =kx +b (k ≠0),∵经过点A (0,6),B (30,12),∴30126k b b +=⎧⎨=⎩, 解得156k b ⎧=⎪⎨⎪=⎩,所以,直线AC 的解析式为165y x =+(0≤x ≤50),故②的结论正确;当x=40时,14065y=⨯+=14,即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,15065y=⨯+=16,即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.11.C解析:C【分析】先根据223y x=+可得B、C的坐标,进而确定OB、OC的长,然后根据3S△ABO=S△BOC结合点A在第二象限确定A点的纵坐标,然后再根据点A在y=23x+2上,可确定点A的横坐标即可解答.【详解】解:由223y x=+可得B(﹣3,0),C(0,2),∴BO=3,OC=2,∵3S△ABO=S△BOC,∴3×12×3×|yA|=12×3×2,解得y A=±23,又∵点A在第二象限,∴y A=23,当y=23时,23=23x+2,解得x=﹣2,∴方程组236kx yx y-=⎧⎨-=-⎩的解为223xy=-⎧⎪⎨=⎪⎩.故答案为C .【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.12.B解析:B【分析】因为表中的数据主要涉及到弹簧的长度和所挂物体的重量,所以反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量;由已知表格得到弹簧的长度是y=10+2.5m ,质量为mkg ,y 为弹簧长度;弹簧的长度有一定范围,不能超过.【详解】解:A .在没挂物体时,弹簧的长度为10cm ,根据图表,当质量m =0时,y =10,故此选项正确,不符合题意;B 、反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量;弹簧的长度是因变量,故此选项错误,符合题意;C 、当物体的质量为mkg 时,弹簧的长度是y =10+2.5m ,故此选项正确,不符合题意;D 、由C 中y =10+2.5m ,m =4,解得y =20,在弹簧的弹性范围内,故此选项正确,不符合题意;故选:B .【点睛】此题考查了函数的表示方法,列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.二、填空题13.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩. 故答案为:27x y =⎧⎨=⎩. 【点睛】 此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.14.5-2m 【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限可得m-2<0进而得到m <2再根据二次根式的性质进行计算即可【详解】方法一:一次函数的图象经过第一二四象限∴∴故答案为:方解析:5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩,∴=23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,∴2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ∴2m <,=|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.【分析】根据图象上点的坐标性质得出点各点纵坐标进而利用三角形的面积得出继而得到规律据此解题即可【详解】解:是轴上的点且分别过点作轴的垂直交直线于点的横坐标为:纵坐标为:同理可得:的横坐标为:纵坐标为 解析:3820194040【分析】 根据图象上点的坐标性质得出点12321,,,,n n T T T T T --各点纵坐标,进而利用三角形的面积得出1231n S S S S -、、,继而得到规律1111n n S n n --⎛⎫=- ⎪⎝⎭,据此解题即可. 【详解】解:1231,,,,n P P P P +,是x 轴上的点且11223211n n OP PP P P P P n --=====, 分别过点12321,,,,,n n P P P P P --作x 轴的垂直交直线22y x =-+于点12321,,,,n n T T T T T --,1T ∴的横坐标为:1n ,纵坐标为:22n-, 111211212S n n n n ⎛⎫⎛⎫∴=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 同理可得:2T 的横坐标为:2n ,纵坐标为:42n-, 2121S n n ⎛⎫∴=- ⎪⎝⎭, 3T 的横坐标为:3n ,纵坐标为:62n-, 3131S n n ⎛⎫∴=- ⎪⎝⎭, 4T 的横坐标为:4n ,纵坐标为:82n-, 以此规律可得:1111n n S n n --⎛⎫=- ⎪⎝⎭,12311111(1)22n n S S S S n n n n --⎡⎤∴++++=---=⎢⎥⎣⎦, ∴当4n =时,1234413248S S S S -+++==⨯, 当2020n =时,1232019202012019220204040S S S S -++++==⨯. 故答案为:38;20194040. 【点睛】本题考查一次函数图象上点的坐标特征,是重要考点,难度一般,掌握相关知识是解题关键.16.③④【分析】根据一次函数的性质进行计算即可【详解】解:把x =1代入解析式得到y =1即函数图象经过(11)不经过点(10)故①错误;函数y =2x−1中k =2>0则该函数图象y 值随着x 值增大而增大故②错解析:③④【分析】根据一次函数的性质进行计算即可.【详解】解:把x =1代入解析式得到y =1,即函数图象经过(1,1),不经过点(1,0),故①错误;函数y =2x−1中,k =2>0,则该函数图象y 值随着x 值增大而增大,故②错误; 把x =0代入解析式得到y =-1,即函数图象经过(0,-1),故③正确;函数y =2x−1中,k =2>0,b =−1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故④正确;故答案为:③④.【点睛】本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.17.3【分析】过点M 作MH ⊥AB 于H 利用AAS 可证△AHM ≌△AOM 则由全等三角形的性质可得AH =AOHM =OM 根据一次函数的解析式可分别求出直线y =﹣x+8与两坐标轴的交点坐标并得OAOB 的长由勾股定解析:3【分析】过点M 作MH ⊥AB 于H ,利用AAS 可证△AHM ≌△AOM ,则由全等三角形的性质可得AH =AO ,HM =OM .根据一次函数的解析式可分别求出直线y =﹣43x +8与两坐标轴的交点坐标,并得OA 、OB 的长,由勾股定理可求AB .最后在Rt △BMH 中利用勾股定理即可求解OM 的长.【详解】解:如图,过点M 作MH ⊥AB 于H ,∴∠BHM =∠AHM =90°=∠AOM .∵AM 平分∠BOA ,∴∠HAM =∠OAM .在△AHM 和△AOM 中,AHM AOM HAM OAM AM AM ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AHM ≌△AOM (AAS ).∴AH =AO ,HM =OM .将x =0代入y =﹣43x +8中,解得y =8, 将y =0代入y =﹣43x +8中,解得x =6, ∴A (6,0),B (0,8).即OA =6,OB =8.∴AB 2268+=10.∵AH =AO =6,∴BH =AB -AH =4.设HM =OM =x ,则MB =8-x ,在Rt △BMH 中,BH 2+HM 2=MB 2,即42+x 2=(8-x )2,解得x =3.∴OM =3.故答案为:3.【点睛】此题考查了一次函数的图象与性质、全等三角形的判定与性质等知识,熟练掌握一次函数的性质并能利用辅助线构造全等三角形与直角三角形模型是解本题的关键.18.或【分析】分当时和当时两种情况讨论根据函数的增减性以及y >4即可求得a 的取值范围【详解】解:当时一次函数y =ax +6y 随x 增大而减小在x=3时取得最小值此时解得此时;当时一次函数y =ax +6y 随x 增解析:01a <<或203a <<-【分析】分当0a <时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当0a <时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值, 此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值, 此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键. 19.【分析】由题意可以求得k 和b 的值代入不等式即可得到正确答案【详解】解:由题意可得:∴k=2b=-2∴原不等式即为2x-2<0解之可得:x<1故答案为x<1【点睛】本题考查一次函数与一元一次不等式的综解析:1x <【分析】由题意可以求得k 和b 的值,代入不等式即可得到正确答案 .【详解】解:由题意可得:02k b b =+⎧⎨-=⎩, ∴ k=2,b=-2,∴原不等式即为2x-2<0,解之可得:x<1,故答案为x<1 .【点睛】本题考查一次函数与一元一次不等式的综合应用,利用直线与坐标轴的交点求出不等式的系数是解题关键.20.y=-x+1(答案不唯一)【分析】设一次函数的解析式为y=kx+b 根据一次函数的性质得k <0取k=-1然后把(-12)代入y=-x+b 可求出b 【详解】解:设一次函数的解析式为y=kx+b ∵y 随x 的增解析:y=-x+1.(答案不唯一)【分析】设一次函数的解析式为y=kx+b ,根据一次函数的性质得k <0,取k=-1,然后把(-1,2)代入y=-x+b 可求出b .【详解】解:设一次函数的解析式为y=kx+b ,∵y 随x 的增大而减小,∴k 可取-1,把(-1,2)代入y=-x+b 得1+b=2,解得b=1,∴满足条件的解析式可为y=-x+1.故答案为y=-x+1.(答案不唯一)【点睛】本题考查了一次函数y=kx+b 的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.三、解答题21.(1)1530y x =+,单独购买一张学生卡的费用为30元,购买学生卡后每次游泳的费用为15元;(2)打折前的每次健身费用为25元,k 2=20;(3)选择方案一所需费用更少,理由见解析【分析】(1)把点(0,30),(10,180)代入11y k x b =+,得到关于1k 和b 的二元一次方程组,求解即可,再利用1k 的含义可得答案;(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出2k 的值;(3)将x=8分别代入12,y y 关于x 的函数解析式,比较即可.【详解】解:(1)∵11y k x b =+过点(0,30),(10,180),∴13010180b k b =⎧⎨+=⎩, 解得:11530k b =⎧⎨=⎩, 11530,y x ∴=+由115k =可得:购买一张学生卡后每次健身费用为15元,b =30可得:购买一张学生卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则2250.820k =⨯=;220y x ∴=.(3)选择方案一所需费用更少.理由如下:由题意可知,11530y x =+,220y x =.当健身8次时,选择方案一所需费用:115830150y =⨯+=(元),选择方案二所需费用:2208160y =⨯=(元),∵150<160,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出12,y y 关于x 的函数解析式.22.(1)1364y x =-+,21y 12x =+;(2)15;(3)存在,理由见解析. 【分析】(1)直接把点A (0,6)代入l 1解析式中,求出m 的值;把点B (-2,0)代入直线l 2,求出k 的值即可;(2)首先求出点C 的坐标,然后求出点D 坐标,进而根据S △ABD =S △ACB +S △ACB 求出答案; (3)分点P 在点B 的左边和右边两种情况进行讨论,利用三角形面积公式求出点P 的坐标.【详解】解:(1)∵直线113:4l y x m =-+与y 轴交于A (0,6), ∴m =6, ∴1364y x =-+, ∵22:1l y kx =+分别与x 轴交于点B (−2,0),∴−2k +1=0,∴k =12, ∴21y 12x =+; (2)令21y 12x =+中x =0,求出y =1, ∴点C 坐标为(0,1),联立364112y x y x ⎧=-+⎪⎪⎨⎪=+⎪⎩ , 解得x =4,y =3∴点D 的坐标为(4,3), ∴11(61)2522ACB S AC BO =⨯=⨯-⨯=△ 154102ACD S =⨯⨯=△ ∴51015ABD ACD ACD S S S =+=+=△△△;(3)设点P 坐标为(m ,0),当点P 在B 点的右侧时,BP =m +2,114(2)615223ABP S BP AO m =⨯=⨯+⨯=⨯△, 解得m =143, 则点P 坐标为(143,0), 当点P 在B 点的左侧时,BP =−2−m , 114(2)615223ABP S BP AO m =⨯=⨯--⨯=⨯△, 解得m =−263, 则点P 坐标为(−263,0), 综上点P 的坐标为(143,0)或(−263,0). 【点睛】本题考查了一次函数综合题的知识,本题涉及到求一次函数解析式、两直线交点问题,三角形面积等知识,解本题(2)的关键是求出D 点的坐标,解答(3)的关键是进行分类讨论.23.(1)16,2y x y x =-+=;(2)存在,11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭ 【分析】(1)利用待定系数法即可求出直线AC 和OA 的函数解析式;(2)根据(1)求出OAC 的面积,然后将OMC 的面积用含有M 坐标的式子表示出来,即可求出M 坐标.【详解】(1)设直线AB 的解析式是y kx b =+,根据题意得:426k b b +=⎧⎨=⎩解得:16k b =-⎧⎨=⎩则直线的解析式是:6y x =-+,设OA 的解析式是y mx =,则42m =, 解得:12m =, 则直线的解析式是:12y x =; (2)∵当OMC ∆的面积是OAC ∆的面积的14时, ∴14OMC S OAC ∆=∆, 即111242M C OC x OC x ⨯⨯=⨯⨯⨯, ∴1414M x =⨯=, 当1M x =时,12M y =, 当1M x =-时,12M y =-时, ∴M 的坐标为11,2⎛⎫ ⎪⎝⎭或11,2⎛⎫-- ⎪⎝⎭. 【点睛】本题重点在于利用待定系数法求函数解析式,以及利用未知数表示三角形面积,依次求出点坐标.24.(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.25.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.26.(1)1;(2)m =2【分析】(1)把点P (1, n )代入一次函数 y=−2x+3 即可求出n 的值;(2)由(1)可得P (1,1),由一次函数 y=mx−1 的图像经过点P (1,1),可得m 的值.【详解】(1)一次函数23y x =-+的图像经过点P (1,n ),n =-2+3=1;(2)由n =1,P (2n -1,n ),可得P (1,1),一次函数1y mx =-的图像经过点P (1,1),11m =-,解得m=2.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1题 第2题
A.①③B.①④C.②③D.②④
2.鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是( )
二、填空题
3.如图,在平面直角坐标系中,正方形 的边长为5,边 分别在x轴,y轴的正半轴上.把正方形 的内部及边上,横、纵坐标均为整数的点称为整点.直线 : ,直线 : 经过直线 上动点P.
(1)当 时,请写出直线 上的整点__________.
(2)在点P的移动过程中, 与正方形 围成的图形中有一个图形(包括边界)恰好有9个整点时,b的取值范围是_________.
①求 关于 的函数关系式:
②该商店购进 型、 型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对 型电脑出厂价下调 元,且限定商店最多购进 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
参考答案
1.D【来源】【区级联考】浙江省湖州市南浔区2019届九年级4月一模数学试题
18.商店销售10台 型和20台 型电脑的利润为40000元,销售20台 型和10台 型电脑的利润为3500元.
(1)求每台 型电脑和 型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中 型电脑的进货量不超过 型电脑的2倍,设购进 型电脑 台,这100台电脑的销售总利润为 元.
①已知直线 ,点 到该直线的距离为______;
②已知直线 ,若线段 与该直线“ 关联”,求 的取值范围;
(3)已知直线 ,若线段 与该直线“ 关联”.求 的取值范围.
9.如图1,平面直角坐标系中,直线y=﹣ x+m交x轴于点A(4,0),交y轴正半轴于点B.
(1)①求m的值;
②点Q为直线AB上一点,且S△OBQ=3,求点Q的坐标;
7.定义:在平面直角坐标系中,对于任意两点 ,若点 满足 ,那么称点T是点A,B的“相似点”.
例如: ,当 满足 时,则点 是点A,B的“相似点”.
(1)已知点 ,请说明其中一个点是另外两个点的“相似点”.
(2)如图,点 在x轴上,点 是直线l上任意一点,点 是点D,E的“相似点”.
①试确定y与x的关系式.
4.如图,已知点 , , , 的坐标分别为 , , , .线段 、 、 组成的图形为图形 ,点 沿 移动,设点 移动的距离为 ,直线 : 过点 ,且在点 移动过程中,直线 随 运动而运动,当 过点 时, 的值为__________;若直线 与图形 有一个交点,直接写出 的取值范围是__________.
(2)该校先印制了x千册纪念册,后发现统计失误,补印了y( )千册纪念册,且补印时无需再次缴纳制版费,学校发现补印的单册造价便宜了,但两次缴纳费用恰好相同.
①用含x的代数式表示y.
②若该校没有统计错误,一次性打印全部纪念册,最少需要多少钱?
17.某超市基于对市场行情的调查,了解到端午节甲乙两种品牌的粽子销路比较好,通过两次订货购进情况分析发现,买40箱甲品牌粽子和15箱乙品牌粽子花去2000元,买20箱甲品牌粽子和30箱乙品牌粽子花去1900元.
A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)
B.第一班车从入口处到达花鸟馆所需的时间为10分钟
C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车
D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)
【详解】解:①(300−20×3)÷4=60(km/h),300÷60=5(小时),
设甲最终追上乙时乙行驶了a小时,由题意得:60(a+1)−300=20a,
解得:a=6,故①错误;
②300−60×1=240(km),所以P的纵坐标为240,②正确;
③20+60=80(km),所以M坐标为(5,80),又因为Q的坐标为(4,0),
16.某中学为筹备校庆,准备印制一批纪念册.该纪念册每册需要10张纸,其中4张彩色页,6张黑白页.印刷该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为2200元,印刷费与印数的关系见表.
印数a(千册)
彩色(元/张)
2.1
2
黑白(元/张)
0.8
0.5
(1)若印制2千册,则共需多少元?
(2)如图2,直线AC与y轴负半轴交于C,且AB=BC,若直线y=kx+b与直线AB、直线AC不能围成三角形,k=;
(3)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB(不含A,B两点)上一点,过点P作y轴的平行线交线段AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式.
②若直线 交x轴于点H,当 为直角三角形时,请直接写出点E的坐标.
8.平面直角坐标系 中,定义:已知图形 和直线 .如果图形 上存在一点 ,使得点 到直线 的距离小于或等于 ,则称图形 与直线 “ 关联”,设图形 ,线段 ,其中点A(t,0)、点B(t+2,0).
(1)线段 的长是:______;
(2)当 时,
(1)求A,B,C三点的坐标;
(2)若动点M在线段OA和射线AC上运动,当三角形OMC的面积是三角形OAC的面积的 时,求点M的坐标;
(3)若点P(m,1)在三角形AOB的内部(不包括边界),则m的取值范围是.
12.如图,把长方形纸片OABC放入平面直角坐标系中,使OA,OC分别落在x轴,y轴的正半轴上,连接AC,OA=4, = .
【解析】【分析】①根据题意,两人距离y为时间x的函数,由图象可知两人起始距离为300km,甲走4小时时两车相遇,由此即可求得甲的速度为每小时60km;进一步求出甲到B地的时间为5小时,甲原路返回直到追上乙时,比乙多走300km,列方程解答即可;②当甲行驶1小时时,两人的距离等于300km减去甲1小时走的路程,即可得到P的纵坐标;③从两人相遇到甲到达B时用1小时,M的横坐标为5,此时两人距离等于两人一小时走的路程和,即可求出M的纵坐标,由Q,M的坐标即可求出线段QM所在直线的解析式;④分别计算当x= , , 时,甲、乙两人之间距离即可.
设线段QM所在直线的解析式y=kx+b,
解得: ,所以y=80x−320③错误;
④x= 时,300−60× −20×( −1)=60(km);x= 时,(20+60)×( −4)=60(km);
x= 时,20×( −1)−(60× −300)=60(km),④正确;综上所述:②④正确.故答案为D.
【点睛】本题考查了同学们从图像中获取信息解决问题的能力及数形结合的思想,关键是从图像中获取到正确的信息,并能应用信息解决问题.
(1)如图1,若点B的坐标为(0,1),则C点的坐标是.
(2)如图2,若点B在y轴正半轴上,OD平分∠AOB交AC于D,求证:AD=CD;
(3)如图3,若点B为y轴上的一个动点,连接OC,当AC+OC值最小时,求B点坐标.
15.A,B,C,D四个地区爆发病毒疫情,它们之间的道路连通情况和距离(单位:km)如图所示,经调查发现,某地区受感染率与相邻地区自发病率和距离有关,具体公式为:
6.如图,在平面直角坐标系中,直线y=kx+4经过点A(3,0),与y轴交于点B.
(1)k的值为__________________;
(2)y轴上有点M(0, ),线段AB上存在两点P,Q,使得以O,P,Q为顶点的三角形与 OMP全等,则符合条件的点P的坐标为__________________.
三、解答题
10.如图,在平面直角坐标系中,点E,F,G在矩形ABCO的边上,将△EFO沿EF折叠,点O与点G恰好重合,GH⊥x轴于点H,点M是GH与EF的交点,若CG=2,B(6,4).
(1)求点F的坐标;
(2)求直线EF的解析式.
11.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y= x的图象交于点A,点A的横坐标为4.
(1)请求出购进这两种品牌粽子每箱的价格分别是多少元?
(2)该超市在端午节期间共购进了这两种品牌粽子200箱,甲品牌粽子每箱以40元价格出售,乙品牌粽子每箱以50元的价格出售,获得的利润为 元.设购进的甲品牌粽子箱数为 箱,求 关于 的函数关系式;
(3)在条件(2)的销售情况下,要求每种品牌粽子进货箱数不少于30箱,且乙品牌粽子的箱数不少于甲品牌粽子箱数的5倍,当 为何值时,该超市获得最大利润?最大利润是多少?
(1)根据题意,写出点A的坐标,点C的坐标;
(2)求AC所在直线的表达式;
(3)将纸片OABC折叠,使点A与点C重合(折痕为EF),折叠后纸片重叠部分(即△CEF)的面积为;
(4)请直接写出EF所在直线的函数表达式.
13.直线AB:y=x+b分别与x,y轴交于A,B两点,点A的坐标为(-3,0),过点B的直线交x轴正半轴于点C,且OB∶OC=3∶1.
2.C【来源】内蒙古鄂尔多斯市2020年中考数学试题【分析】设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.
相关文档
最新文档