七年级上学期数学期中考试卷(含答案)
人教版七年级数学上册期中考试卷(附带答案)
人教版七年级数学上册期中考试卷(附带答案)(满分:150分时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(每小题4分,共10题,共40分)1.﹣2023的绝对值是()A.﹣12023B.﹣2023 C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。
如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第2题图)(第5题图)(第7题图)3.在数﹣2,﹣3.14156,﹣13,﹣5%,﹣6.3,2023,200%,0,﹣0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358X105B.35.8X103C.3.58X105D.3.58X1045.如图,小红把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.圆形B.长方形C.三角形D.椭圆6.下面的说法中,正确的是()A.x +3是多项式B.(﹣2)3中底数是2C.3ab35的系数是3 D.单项式﹣ab2的次数是2次7.如图,是一个正方体的表面展开图,则原正方体中与"就"字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.a-b>0C.ab>0D.ab<0(第8题图)(第9题图)9.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1-C 2的值( )A.0B.a -bC.2a -2bD.2b -2a10.已知:m=|a+b |c +2|b+c |a +3|c+a |b ,且abc >0,a+b+c=0.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则x+y=( )A.4B.3C.2D.1第II 卷 (非选择题 共110分)二.填空题(共6小题,每小题4分,满分24分)11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作"+50元",那么亏损30元,记作 元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇如丝飞.译文:喧哗的雨已经过去、逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为 .13.若(m+1)2+|n -2|=0,则m n = .14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm ,则每条侧棱长为 cm.15."整体思想"是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a 2-a -2=0,则﹣6a 2+2a+3值为 ﹣ .16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 .三.解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(本小题满分6分)在数轴上表示下列各数:0,﹣4.5,312,﹣2,+7,113.并用"<"号把各数连接起来.19.(本小题满分12分)计算:(1)5+(﹣6)﹣(﹣3) (2)﹣58×(﹣4)÷(﹣52)(3)(﹣16+34-112)×(﹣24) (4)﹣14+(﹣2)3÷4×[5-(-3)3]20.(本小题满分6分)一个几何体的三种视图如图所示.(1)这个几何体的名称是 .(2)求这个几何体的体积.(结果保留π)21.(本小题满分6分)化简:(1)x2+5y-4x2-y-1 (2)7a+3(a-3b)-(b+3a)22.(本小题满分8分)山东是红富士苹果的主要产地,现有30箱红富士苹果,以每箱25kg 为标准,其中重量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30箱红富士苹果中,最重的一箱比最轻的一箱多kg.(2)与标准重量相比,30箱红富士苹果总计超过或不足的重量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.(本小题满分8分)如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24.(本小题满分10分)学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.(本小题满分12分)阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)×(2×2)=25.材料二:求31+32+33+34+35+36的值.解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②-①得,3S -S=(32+33+34+35+36+37)-(31+32+33+34+35+36)=37-3所以2S=37-3,即S=37-32 所以31+32+33+34+35+36=37-32这种方法我们称为"错位相减法".(1)填空:5×58=5( ),a 2·a 5=a ( ).(2)"棋盘摆米"是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:"我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行"国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S ,求S.26.(本小题满分12分)如图,已知数轴点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=22.(1)写出数轴上点B 表示的数.(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探究:①若|x -8|=3,则x= .②动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t 为多少秒时,A ,P 两点之间的距离为2?(3)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴向右匀速运动,Q 点以P 点速度的两倍,沿数轴向右匀速运动,设运动时间为t(1>0)秒.求当t 为多少秒时,P ,Q 之间的距离为4?答案解析一.单选题。
广西壮族自治区北海市合浦县2024-2025学年七年级上学期11月期中考试数学试题(含答案)
2024-2025学年第一学期期中教学质量检测七年级数学卷(满分:120分 考试时间:120分钟)一、选择题(每小题3分,共36分)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家,若收入550元记作+550元,则支出450元记作( )A .-450元B .-100元C .+100元D .+450元2.如图,数轴上点表示的数是()A .-2B .-1C .0D .13.已知,则的值为( )A .-6或4B .5C .-5D .5或-54.将写成省略正号和括号的形式,正确的是( )A .B .C .D .5.汽车油箱中有汽油30L ,行驶的平均耗油量为,则汽车最多能行驶()A .100kmB .200kmC .300kmD .400km6.某市去年完成了城市绿化面积,数86300000用科学记数法可表示( )A .B .C .D .7.一台微波炉成本价是元,销售价比成本价增加,则销售价应是( )A.元B .元C .元D .元8.按如图所示用小圆图拼图案,图1中有2个小圆圈,图2中有4个小圆圈,图3中有6个小圆圈,…,按此规律,则图7中小圆圈的个数是()A .8B .10C .12D .149.下列说法正确的是()A .单项式的次数是9B .不是单项式C .是三次三项式D .单项式的系数是P ||5a =a 5(6)(7)(8)-+--+-5678--+-5678---5678-+-5678--+0.15L /km 286300000m 586310⨯586.310⨯78.6310⨯686.310⨯a 22%122%a-22%a (122%)a +122%a +2342x y 1ax x ++322223x x y y -+232r π3210.计算的结果是( )A .-1B .C .1D .11.池塘里的荷花面积每天长大一倍,经过12天就长满整个池塘,则这些荷花长满半个池塘需要()A .6天B .8天C .7天D .11天12.若与互为相反数,则等于()A .0B .C .D .二、填空题(每小题2分,共12分)13.已知-3与的值互为相反数,则的值为______.14.气温从上升后的温度为______.15.某商店有三袋面粉,上面分别写着()千克,()千克,千克的字样,从中任意取出两袋面粉,它们质量相差最大的可能是______千克。
山东省济南市历下区2023-2024学年七年级上学期期中数学试题(含答案)
2023~2024学年第一学期七年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的相反数是()A.B.C.5D.2.在中,负数共有()A.2个B.3个C.4个D.5个3.杭州奥体中心体育场又称“大莲花”,为杭州第19届亚运会主会场.座席数为80800个.将数据80800用科学记数法表示为()A.B.C.D.4.下列四个数中,最小的是()A.B.C.D.5.下列图形中,能够折叠成一个正方体的是()A.B.C.D.6.已知有理数在数轴上的位置如图所示,则从大到小的顺序为()第6题图A.B.C.D.7.用一平面去截下列几何体,其截面可能是长方形的有()圆柱圆锥长方体球体第7题图A.1个B.2个C.3个D.4个5-155-15-112, 2.4,,0.72,2,0, 1.834-+---48.0810⨯48.810⨯58.810⨯58.0810⨯3-7-()3--13-,a b,,,a b a b--b a a b>->>-a b b a->->>b a a b->>->b a a b>>->-8.下列运算正确的是()A .B .C .D .9.某商店出售一种商品,有以下几种方案,调价后价格最低的方案是()A .先提价,再降价B .先降价,再提价C .先提价,再降价D .先提价,再降价10.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折次,可以得到折痕的条数是()第一次对折第二次对折 第三次对折第10题图A .B .C .D .第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.朱自清的《春》中有描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种现象可以用数学知识解释为______.12.单项式的次数是______.13.杭州亚运会于2023年10月顺利落幕,中国队获金牌和奖牌榜双第一,如图是一个正方体的表面展开图,与“亚”字相对面上的汉字是______.第13题图14.若,则的值为______.15.若,则代数式的值为______.16.如图,将两张边长分别为5和4的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为______.2222m n mn mn-=-22523y y -=277a a a +=325ab ab ab+=10%10%10%10%15%15%20%20%n n 1n -21n -121n --312ab ()2230a b ++-=ba 2310x y -+=246x y -+AB AD ,m n 1S 2S 4m n -=12S S -5 4 图①图②第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)(1);(2).18.(本小题满分6分)(1);(2).19.(本小题满分6分)先化简,再求值:,其中.20.(本小题满分8分)如图是由一些相同的小正方体组成的几何体. 从正面看 从正面看 从左面看 从上面看(1)请在指定位置画出该几何体从正面、左面和上面看到的形状图;(2)在这个几何体上再添加一些相同的小正方体,如果从左面和从上面看到的形状图不变,那么最多可以再添加______个小正方体.21.(本小题满分8分)气候变暖导致全球大部分地区极端强降水事件增多,由此引发的洪涝等灾害风险已倍受各界广泛关注.为揭示气候变暖背景下极端降水的变化规律,查阅山东省气象信息中心1961——2020年降水量资料发现,夏季出现极端降水次数最多.(1)若设定100次为标准次数,试完成表1:地区济南潍坊青岛日照淄博菏泽次数100961029588()()6109-+---()2118623⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭231134624⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭()2023323137-+⨯---()()22222332x y xyxy x y ---+1,3x y ==-与标准次数的差值0表1 1961——2020年极端降水出现次数(2)极端降水出现次数最多的地区与最少的地区相差______次;(3)以上地区出现极端降水的平均次数是多少?22.(本小题满分8分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为、宽为、厚为,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含的代数式表示)(2)若封面和封底沿虚线各折进去,剪掉阴影部分后,包书纸的面积是多少?第一步 第二步23.(本小题满分10分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在处.规定以向东的方向为正方向,步行记录如下(单位:米):(1)小明离主席台最远是______米;(2)以主席台为原点,用1个单位长度表示,请在数轴上表示点;(3)在主席台东边5米处是仲裁处,小明经过仲裁处______次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(本小题满分10分)随着生活水平的日益提高,人们的健康意识逐渐增强,越来越多的人把健身作为一种时尚的生活方式,某商家2+19+5-12-26cm 18.5cm 1cm cm x x 2cm A 10,8,6,13,7,12,2,2+-+-+-+-1m A抓住机遇推出促销活动,向客户提供了两种优惠方案:方案一:买一件运动外套送一件卫衣;方案二:运动外套和卫衣均在定价的基础上打8折.运动外套每件定价300元,卫衣每件定价100元.在开展促销活动期间,某俱乐部要到该商场购买运动外套100件,卫衣件().(1)方案一需付款:______元,方案二需付款:______元;(2)当时,请计算并比较这两种方案哪种更划算;(3)当时,如果两种方案可以组合使用,你能帮助俱乐部设计一种最省钱的方案吗?请直接写出你的方案.25.(本小题满分12分)【阅读】可理解为数轴上表示所对应的点与所对应的点之间的距离;如可理解为数轴上表示6所对应的点与2所对应的点之间的距离;可以看作,可理解为数轴上表示6所对应的点与所对应的点之间的距离;【探索】回答下列问题:(1)可理解为数轴上表示所对应的点与______所对应的点之间的距离.(2)若,则数______.(3)若,则数______.(4)如图所示,在数轴上,若点表示的数记为两点的距离为8,且点在点的右侧,现有一点以每分钟2个单位长度的速度从点向右出发,点以每分钟1个单位长度的速度从点向右出发,求分钟后点与点的距离.(结果用含的代数式表示,并化到最简)26.(本小题满分12分)【概念学习】定义新运算:求若干个相同的非零有理数的商的运算叫做除方.比如,类比有理数的乘方,我们把写作,读作“2的圈3次方”;写作,读作“的圈4次方”.一般地,把记作;,读作“的圈次方”.特别地,规定:.【初步探究】x 100x ≥150x =300x =a b -a b 62-62+()62--2-1x +x 25x -=x =219x x -++=x =A ,a A B 、B A P A Q B t P Q t 222++2③()()()()3333-+-+-+-()3-④()3-n a a a a a +++⋅⋅⋅+ 个a ⓝa n a a =①(1)直接写出计算结果:______,______;(2)若为任意正整数,下列关于除方的说法中,正确的有______;(填写正确的序号)①任何非零数的圈2次方都等于1;②任何非零数的圈3次方都等于它的倒数;③圈次方等于它本身的数是1或;④负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数的圈次方写成幂的形式:______;(4)计算:.2023~2024学年第一学期七年级期中教学质量检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)题号12345678910答案C C A A B A B D D C二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案点动成线4真416三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤)17.(本小题共2道题,每小题3分,满分共6分)解:(1)(2)18.(本小题满分6分)解:(1)(2)2=②()3-=③n n 1-()0a a ≠()3n n ≥a =ⓝ()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②8-()()61091697-+-+-=-+=-()()()()31118686321820234⎛⎫⎛⎫-⨯-+÷-=⨯-+⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭()23112312416184234624346⎛⎫⎛⎫⎛⎫-+÷-=-+⨯-=-+-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()2023323137831483415-+⨯---=-+⨯---=---=-19.(本小题满分6分)解:当时,原式20.(本小题8分)解:(1)从正面看 从左面看 从上面看(2)421.(本小题8分)解:(1) 119(2)31(3)(次)100答:以上地区出现极端降水的平均次数是100次.22.(本小题8分)解:(1)小海所用包书纸的周长:答:小海所用包书纸的周长为.(2)当时,包书纸长为:包书纸宽为:所以面积为:答:需要的包书纸的面积为.23.(本小题10分)解:(1)10(2)如图所示,点即为所求.()()22222222223326236x y xy xy x y x y xy xy x y xy ---+=-+-=1,3x y ==-()2139=⨯-=4-()()()()()100604219512600⎡⎤⨯++-+++++-+-=⎣⎦()()218.52122262x x ⨯++++()()23822262x x =+++()8128cmx =+()8128cm x +2cm x =()18.5212242cm ⨯++⨯=()262230cm +⨯=()242302242121240cm⨯-⨯⨯-⨯⨯=21240cm A(3)4(4)(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.24.(本小题10分)解:(1);(2)方案一:方案二:25.(本小题满分12分)解:(1)(2)或7(3)或5(4)因为两点的距离为8,点在点的右侧所以点表示的数为:所以分钟后,点对应的数为:,点对应的数为:所以点与点的距离为:所以当时,当时,当时,26.(本小题满分12分)【解答】解:(1),;(2)①②④;(3)或;(4).()10861370.12204.422++-+++-+++-⨯-=+++10020000x +8024000x +1001502000035000⨯+=801502400036000⨯+=1-3-4-A B 、B A B 8a +t P 2a t +Q 8a t ++P Q ()288a t a t t +-++=-80t ->80t -=80t -<2221=÷=②()()()()133333-=-÷-÷-=-③21n a -⎛⎫ ⎪⎝⎭21n a -()()12023422⎛⎫-⨯---÷- ⎪⎝⎭④④②()()()()()()111120232023422222222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎡⎤=-÷⨯-÷-÷-÷---÷-÷-÷-÷- ⎪ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()1144416124=-⨯--÷=-+=。
人教版七年级上册数学《期中考试卷》(带答案)
人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。
2023-2024学年常州市七年级上学期期中考试数学试卷(含解析)
2023-2024学年常州市七年级上学期期中考试数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.在−15,513,−0.23,0,7.6,2,−35,314%.这八个有理数中非负数有( )A. 4个B. 5个C. 6个D. 7个2.下列说法不正确的是( )A. 倒数是它本身的数是±1 B. 相反数是它本身的数是0C. 绝对值是它本身的数是0 D. 平方是它本身的数是0和13.下列各组数中,相等的一组是( )A. −(−1)与−|−1|B. −32与(−3)2C. (−4)3与−43D. 223与(23)24.数轴上有一个点B 表示的数是3,点C 到点B 的距离为2个单位长度,则点C 表示的数为( )A. 1B. 5C. 3或2D. 1或55.甲、乙两地相距S 千米,某人计划a 小时到达(a >2),如果需要提前2小时到达,那么每小时多走的千米数是( )A. (S a−2−Sa)B. (Sa −Sa−2)C. (S a +2−Sa)D. (Sa −Sa +2)6.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为−5,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A. 3B. −1C. −2D. −37.有一个数值转换器,原理如图所示,若开始输入x 的值是8,可发现第1次输出的结果是4,第2次输出的结果是2,依次继续下去,第2023次输出的结果是( )A. 8B. 4C. 2D. 18.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l.若知道l的值,则不需测量就能知道周长的正方形的标号为( )A. ①B. ②C. ③D. ④二、填空题(本大题共10小题,共30.0分)9.−1的相反数是.310.如果规定向东为正,那么向东走8m记作+8m,−6m表示.11.单项式−23ab2c3的次数是.12.中国高铁领跑世界,2023年5月10日人民日报公布中国高铁累计安全行驶9280000000公里,能够环绕地球约23.2万圈,数据9280000000用科学记数法表示为.13.若−x6y2m与x n+2y4是同类项,那么n+m的值为.14.已知x2−2x=1,则2023+6x−3x2的值为.15.|x−1|+|y+3|=0则x+y=.16.已知海拔每升高1000m,气温下降6∘C,某人乘热气球旅行,在地面时测得温度是8∘C,当热气球升空后,测得高空温度是−1∘C,热气球的高度为m.17.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为_ ___.18.已知在纸面上有一数轴,折叠纸面,数轴上−2表示的点与8表示的点重合.若数轴上A 、B 两点之间的距离为2024(A 在B 的左侧),且A 、B 两点经以上方法折叠后重合,则A 点表示的数是 .三、计算题(本大题共1小题,共6.0分)19.计算(1)22+(−4)+(−2)+4 计算(2)48÷[(−2)3−(−4)]计算(3)(54−52+13)×(−125)计算(4)−12×8−8×(12)3+4÷14四、解答题(本大题共7小题,共56.0分。
人教版数学七年级上册《期中考试卷》(含答案)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。
七年级第一学期期中考试数学试题(带有答案)
七年级第一学期期中考试数学试题(带有答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的相反数是()A.-6B.6C.±6D.162.如图是由5个相同的小立方块搭成的几何体,从正面看这个几何体是()A. B. C. D.3.第19届亚运会于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城核心区建筑总面积2720000平方米,将数2720000用科学记数法表示为()A.0.272X107B.2.72X106C.27.2X105D.272x104,0,(﹣1)2,﹣0.6,2,﹣|﹣10| 4.根据《九章算术》的记载,中国人最早使用负数.那么在﹣25中负数的个数有()A.2B.3C.4D.55.下列运算正确的是()A.3y2-2y2=1B.3a+2b=5abC.3x2+2x3=5x5D.3a2b-3ba2=06.下列几何体中,截面不可能是长方形的是()A. B. C. D.7.下列说法正确的是()A.﹣52的底数是﹣5B.正数和负数统称为有理数0C.单项式3πxy的系数是3D.﹣|a|-1一定是负数8.若2a-b=4,则式子4a-2b-5的值为()A.3B.﹣3C.1D.﹣19.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>﹣2B.ab>0C.|a|>|b|D.a+b>0(第9题图) (第10题图)10.如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的 一,图形②面积是图形①面积的2倍的13,图形③而积是图形②面积的2倍的13,……,图形⑥面积是图形⑤面积的2倍的13,图形⑦面积是图形⑥面积的2倍,计算13+29+427+...+2536的值为( )A.665729B.64729C.179243D.64243第II 卷(非选择题共110分) 二.填空题:(本大题共6个小题,每小题4分,共24分)11.如果水位升高2m 记作+2m ,那么水位下降5m 记作 m. 12.比较大小:﹣1 ﹣34(填>或<)。
人教版七年级上学期期中考试数学试卷(含答案)
人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。
人教版七年级上学期期中考试数学试题(含答案)
人教版七年级上学期期中数学试卷及答案一、选择题(每小题3分,共36分)1.﹣2022的绝对值是()A.B.﹣2022C.2022D.﹣2.检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,在其下方标注了检测结果,其中质量最接近标准的是()A.﹣0.3B.+0.4C.﹣0.1D.﹣0.63.如图,表示互为相反数的两个点是()A.点A和点D B.点B和点C C.点A和点C D.点B和点D4.下列等式正确的是()A.|﹣9|=﹣9B.|﹣|=3C.﹣|﹣7|=7D.﹣(+2)=﹣25.在代数式m,﹣2,4ab2,,中,单项式有()A.3个B.4个C.5个D.6个6.低碳奥运,能源先行,2022冬奥会所有场馆在奥运历史上首次100%使用绿色电力,其中数据14000000000用科学记数法表示为()A.1.4×1010B.1.4×1012C.14×109D.0.14×10117.将多项式x3﹣4xy2+7y3+6x2y按字母y升幂排列的是()A.7y3+4xy2+6x2y+x3B.7y3﹣4xy2+6x2y+x3C.x3﹣6x2y+4xy2+7y3D.x3+6x2y﹣4xy2+7y38.一个点从数轴的原点开始,先向左移动2个单位长度,再向右移动7个单位长度()A.﹣9B.+9C.﹣5D.+59.若|a|=4,|b|=2,且|a+b|=﹣(a+b)()A.﹣2B.﹣6C.﹣2或﹣6D.2或610.《九章算术》中记载一问题:今有共买物,人出八,盈三,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱;每人出7钱,又差4钱.问人数、物价各多少?设人数为x人()A.8x﹣3B.8x+3C.7x﹣4D.7(x+4)11.一个含有多个字母的整式,如果把其中任何两个字母互换位置,所得的结果与原式相同,x2+y2+z2是对称整式.x2﹣2y2+3z2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式;②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式:④若某对称整式只含字母z,y,z,且其中有一项为x2y,则该多项式的项数至少为3.以上结论中错误的个数是()A.4B.3C.2D.112.如图是一个运算程序的示意图,若开始输入x的值为125,则第2022次输出的结果为()A.5B.25C.1D.125二、填空题(每小题3分,共18分)13.﹣1 ﹣0.5.(填“>”、“<”或“=”)14.如果零上2℃记作+2℃,那么零下5℃记作℃.15.用代数式表示:x减去y的平方的差.16.如果6x2﹣3x+5=11,那么代数式2x2﹣x+3的值是.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣5和x.18.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,是世界上最早的“幻方”.如图是仅可以看到部分数值的“九宫格”,则其中x﹣y的值为.三、解答题:(共计66分)19.(12分)计算.(1)25+(﹣18)+4+(﹣10);(2)(﹣3)﹣(﹣15)÷(﹣3);(3)(﹣+﹣)×(﹣12);(4)(﹣1)10×2+(﹣2)3÷4.20.(6分)规定一种运算:=ad﹣bc,例如,,请你按照这种运算的规定,计算.21.(6分)有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.22.(6分)若x,y互为相反数,a,b互为倒数,求()2022﹣(﹣ab)2022+c2的值.23.(8分)小明读一本共m页的书,第一天读了该书的,第二天读了剩下的.(1)用含m的代数式表示小明两天共读的页数;(2)当m=120时,求小明两天共读的页数.24.(8分)已知关于x的多项式mx4+(m﹣3)x3﹣(n+2)x2+4x﹣n不含二次项和三次项.(1)求出这个多项式;(2)求当x=2时代数式的值.25.(8分)当今,人们对健康意加重视,跑步成了人们进行体育锻炼的首要选择(即手机应用小程序)应运而生.小明苦爸给自己定了健身目标,每天跑步a千米.以目标路程为基准,不足的部分记为“﹣”,他记下了“十一”长假期间七天跑步的实际路程如下:日期1日2日3日4日5日6日7日略程(千米)+1.72+3.20﹣1.92﹣0.90﹣1.88+3.30+0.08(1)10月5日小明爸爸的跑步路程是千米;(用舍a的代数式表示)(2)小明爸爸给自己定的健身目标是每天跑5千米,若跑步一千米消耗的热量为60千卡,求小明爸爸这七天跑步一共清耗了多少热量?26.(12分)在数轴上点A表示a,点B表示b,且a、b满足|a+5|+|b﹣7|=0.(1)求a,b的值,并计算点A与点B之间的距离.(2)若动点P从A点出发,以每秒2个单位长度的速度沿数轴正方向匀速运动,运动几秒后(3)若动点P从A点出发,以每秒1个单位长度的速度沿数轴向右匀速运动,同时动点Q从B点出发,运动几秒后,P、Q两点间的距离为4个单位长度?参考答案与试题解析1.【解答】解:﹣2022的绝对值是2022.故选:C.2.【解答】解:|﹣0.3|=2.3,|+0.2|=0.4,|﹣2.6|=0.6,∵0.1<2.3<0.3<0.6,∴C选项的排球最接近标准质量.故选:C.3.【解答】解:2和﹣2互为相反数,故选:C.4.【解答】解:A.根据绝对值的定义,那么A错误.B.根据绝对值的定义,,故B不符合题意.C.根据绝对值的定义,那么C错误.D.根据相反数的定义,那么D正确.故选:D.5.【解答】解:代数式m,﹣22,,中,单项式有m,4ab4,共3个.故选:A.6.【解答】解:14000000000=1.4×1010.故选:A.7.【解答】解:将多项式x3﹣4xy6+7y3+7x2y按字母y升幂排列的是7y7﹣4xy2+3x2y+x3,故选:B.8.【解答】解:∵点从原点向左移动2个单位长度,∴该点移动到数轴上的﹣2处,∵再向右移动5个单位长度,∴﹣2+7=3,∴这个点最终所对应的数是5,故选:D.9.【解答】解:∵|a|=4,|b|=2,∴a=±7,b=±2,∵|a+b|=﹣(a+b),∴a+b≤0,∴当a=﹣7时,b=2或﹣2,∴a﹣b=﹣2﹣2=﹣6或a﹣b=﹣2﹣(﹣2)=﹣2,∴a﹣b的值为﹣3或﹣6.故选:C.10.【解答】解:根据题意得,物价为:8x﹣3或8x+4;故选:A.11.【解答】解:①假设两个对称整式分别为M和N(含相同的字母),由题意可知:任何两个字母互换位置,所得的结果与原式相同,则M+N的结果不变,故①不符合题意;②反例:x3+y3+z4+x+y+z为对称整式,x3与y互换后,所得的结果都不会是一个对称的整式;③反例:xyz为单项式,但也是对称整式;④对称整式只含字母x,y,z,且其中有一项为x2y,若x,y互换3y:y2x,则有一项为y2x;若z,x互换2y:z2y,则有一项为z2y;若y,z互换8y:x2z,则有一项为x2z;第三项中x,y,z的次数相同,同理:可以换不相同的字母,至少含有四项:xy2,x2y,x2z,yz5,则该多项式的项数至少为4.故④符合题意.所以以上结论中错误的是②③④,共3个.故选:B.12.【解答】解:第一次:当x=125,,第二次:当x=25,,第三次:当x=4,,第四次:当x=1,x+4=4,第五次:当x=5,,……根据前五次输出结果可知从第二次开始,第奇数次输出结果为1.∴第2022次输出的结果为4.故选:A.13.【解答】解:|﹣1|=1,|﹣3.5|=0.5,∵1>0.7,∴﹣1<﹣0.7,故答案为:<.14.【解答】解:∵零上2℃记作+2℃,∴零下3℃记作﹣5℃.故答案为:﹣5.15.【解答】解:y的平方即y2,则x减去y的平方的差就可以表示为:x﹣y2故答案为:x﹣y616.【解答】解:∵6x2﹣7x+5=11,∴6x7﹣3x=6,∴5(2x2﹣x)=4,即2x2﹣x=3,∴2x2﹣x+2=2+3=8.故答案为:5.17.【解答】解:∵刻度尺上“1cm”对应数轴上的﹣5,∴刻度尺上“3cm”对应数轴上的0,∴刻度尺上“9cm”对应数轴上的3,故答案为:3.18.【解答】解:这九个数的和为1+2+2+...+9=45,∵每一行、每一列的数之和均相对,∴每一行、每一列的数之和为15.∴下中为15﹣9﹣6=1,下右为15﹣8﹣7=6,左中为15﹣4﹣2=3,∴x﹣y=4﹣6=﹣3.故答案为:﹣3.19.【解答】解:(1)25+(﹣18)+4+(﹣10)=25﹣18+4﹣10=2;(2)(﹣3)﹣(﹣15)÷(﹣3)=﹣3﹣5=﹣8;(3)(﹣+﹣)×(﹣12)=×(﹣12)﹣×(﹣12)﹣=﹣9+8﹣4+10=3;(4)(﹣1)10×6+(﹣2)3÷8=1×2+(﹣5)÷4=2﹣7=0.20.【解答】解:∵=ad﹣bc,∴=(﹣1)2018×(﹣2)﹣4×1.25=5×(﹣9)﹣5=﹣5﹣5=﹣14.21.【解答】解:∵在数轴上原点右边的数大于0,左边的数小于0,b<a<8,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.22.【解答】解:∵x,y互为相反数,a,c的绝对值等于2,∴x+y=0,ab=7,c2=4,∴()2022﹣(﹣ab)2022+c2=()2022﹣(﹣1)2022+4=6﹣1+4=7.23.【解答】解:(1)∵第一天读了该书的,∴小明第一天读了m页;∵第二天读了剩下的,∴小明第二天读了(4﹣m(页).∴小明两天共读的页数为:m+m(页).(2)当m=120时,m=×120=56(页).答:当m=120时,小明两天共读的页数为56 页.24.【解答】解:(1)∵关于x的多项式mx4+(m﹣3)x2﹣(n+2)x2+7x﹣n不含二次项和三次项,∴m﹣3=0,﹣(n+2)=0,∴m=3,n=﹣3,∴这个多项式为:3x4+4x+2;(2)当x=2时,7x4+4x+4=3×28+4×2+4=58.25.【解答】解:(1)由题意得:10月5日小明爸爸的跑步路程是(a﹣1.88)千米,故答案为:(a﹣6.88);(2)根据题意得:(5×7+2.72+3.20﹣1.92﹣6.90﹣1.88+3.30+5.08)×60=2316(千卡),答:小明爸爸这七天跑步一共消耗了2316千卡热量.26.【解答】解:(1)∵|a+5|+|b﹣7|=8,∴a=﹣5,b=7,∴A与点B之间的距离为6﹣(﹣5)=12;(2)∵A与点B之间的距离为12,∴12÷2=7(秒),答:运动6秒后,点P到达B点;(3)P、Q相遇前:(12﹣4)÷(3+3)=2(秒),P、Q相遇后:(12+7)÷(1+3)=6(秒),答:运动2秒或4秒后,P、Q两点间的距离为3个单位长度.。
七年级上册数学期中考试卷及答案【含答案】
七年级上册数学期中考试卷及答案【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何偶数乘以偶数都是偶数。
()3. 任何奇数乘以奇数都是奇数。
()4. 1是质数。
()5. 两个质数相乘的积一定是合数。
()三、填空题(每题1分,共5分)1. 1千米=______米。
2. 1米=______分米。
3. 1分米=______厘米。
4. 1厘米=______毫米。
5. 2的3次方等于______。
四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。
2. 请简述偶数和奇数的区别。
3. 请简述分数的约分方法。
4. 请简述三角形的基本性质。
5. 请简述因数分解的方法。
五、应用题(每题2分,共10分)1. 小明有10个苹果,他吃掉了3个,还剩下多少个苹果?2. 一个长方形的长是8厘米,宽是4厘米,求这个长方形的面积。
3. 2的5次方等于多少?4. 一个数既是3的倍数,又是4的倍数,这个数最小是多少?5. 一个等边三角形的边长是10厘米,求这个三角形的周长。
六、分析题(每题5分,共10分)1. 小红有15个糖果,小明有20个糖果,他们一共有多少个糖果?如果小红给小明5个糖果,他们各自有多少个糖果?2. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,求这个长方体的体积。
七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。
七年级数学上学期期中考试卷(含答案)
七年级数学上学期期中考试卷(含答案)(考试时间: 120分钟, 本卷满分: 150分)一、选择题(每题3分, 共24分)1.中国古代数学著作《九章算术》的“方程”一章, 在世界数学史上首次正式引入负数.如果支出100元记作﹣100元, 那么+80元表示()A. 支出80元B. 收入80元C. 支出20元D. 收入20元2.在下列数1, 6.7, ﹣14, 0, ﹣/, 中, 属于整数的有()A. 2个B. 3个C. 4个D. 5个3. 下列各式的计算结果正确的是()A. B.C. D.4. 下列各对数中互为相反数的是( )A.和B.和C.和D.和5.若是方程的解, 则a的值为()A. 1B. ﹣1C. ﹣3D. 36.一个长方形的长是a+b, 宽是a, 其周长是()A. 2a+bB. 4a+bC. 4a+2bD. 2a+2b7.如图所示的程序计算, 若开始输入的值为, 则输出的结果y是()A. 25B. 30C. 45D. 408.有理数a、b、c在数轴上的位置如图所示,化简:|b-c|-|b-a|+|a+c|结果....)A. B. C. D.二、填空题(每题3分, 共30分)9.武汉火神山医院建筑面积339000000平方厘米, 拥有1000张床位, 将339000000平方厘米用科学记数法表示应为平方厘米.10. 比较大小: .11. 已知和是同类项, 则a ﹣b 的值是 . 12.若关于的方程是一元一次方程, 则__________.13. 下数轴上到-3的距离是5个单位长度的点表示的数是 . 14. 已知是关于a 、b 的五次单项式, 则 . 15. 若关于x 、y 的多项式的值与y 无关, 则____________. 16. 已知的值为10, 则代数式的值为 .17.如图, 用若干相同的小棒拼成含正五边形的图形, 拼第1个图形需要5根小棒;拼第2个图形需要9根小棒;拼第3个图形需要13根小棒……按此规律, 拼第个图形需要 根小棒.18. 已知有理数满足, , 且, 则 . 三、解答题(共96分) 19.计算:(1)20(15)(14)18-+----; (2)3428122022⨯-÷+ 20. 化简:(1)25(1)3(1)a a a ++--; (2)22(24)4(31)x xy x xy -+-- 21.解方程:(1)43(20)3x x --= (2)3157146x x ---= 22. 先化简, 再求值: , 其中.23. “⊗”表示一种新运算, 它的意义是(1)求(﹣2)⊗(﹣3); (2)已知(3⊗4)⊗=, 求值.国庆期间, 特技飞行队进行特技表演, 其中一架飞机起飞后的高度变化如右表: (1) 此时这架飞机比起飞点高了多少千米?(2) 如果飞机每上升或下降1千米需消耗2升燃油, 那么这架飞机在这4个动作表演过程中, 一共消耗了多少升燃油?25. 下面是小明同学解方程的过程, 请认真阅读并完成相应任务. 解方程:解: ____, 得 第一步 去括号, 得 第二步 移项, 得 第三步合并同类项, 得 第四步 方程两边同除以-1, 得 第五步 方程两边同除以-1,得13-=x 第五步 任务:①以上求解步骤中, 第一步进行的是______, 这一步的依据是__________; ②以上求解步骤中, 第________步开始出现错误, 具体的错误是_____________﹔ ③请直接写出该方程正确的解为____________________.26. 周末, 小明陪爸爸去陶瓷商城购买一些茶壶和茶杯, 甲、乙两家商店出售他们看中的同样品牌的茶壶和茶杯, 茶壶每把定价都为30元, 茶杯每只定价都为5元. 这两家商店都有优惠, 甲店买一把茶壶赠送茶杯一只;乙店全场九折优惠. 小明爸爸需买茶壶5把, 茶杯若干只(不少于5只).(1)设购买茶杯只, 如果在甲店购买, 需付款多少元? 如果在乙店购买, 需付款多少元? (用含的代数式表示并化简).(2)当购买15只茶杯时, 应在哪家商店购买合算?为什么?27. 定义: 求若干个相同的有理数(均不等于0)的除法运算叫做除方, 如2÷2÷2等. 类比有理数的乘方, 我们把2÷2÷2记作23, 读作“2的下3次方”, 一般地, 把n个a(a≠0)相除记作an, 读作“a的下n次方”.理解:(1)直接写出计算结果: 23=.(2)关于除方, 下列说法正确的有(把正确的序号都填上);①a2=1(a≠0);②对于任何正整数n, 1n=1;③34=43;④负数的下奇数次方结果是负数, 负数的下偶数次方结果是正数.应用:(3)我们知道, 有理数的减法运算可以转化为加法运算, 除法运算可以转化为乘法运算, 有理数的除方运算如何转化为乘方运算呢?例如:/(幂的形式).试一试: 将下列除方运算直接写成幂的形式: =;=;(4)计算:28. 如图, 已知数轴上有A.B.C三点, 点O为原点, 点A.点B在原点的右侧, 点C在原点左侧, 点A 表示的数为a, 点B表示的数为b, 且a与b满足, .(1)直接写出a、b的值, a=, b=;(2)动点P从点C出发, 以每秒4个单位的速度向右运动, 同时动点Q从点B出发, 以每秒2个单位的速度向右运动, 设运动时间为秒, 请用含的式子表示点P , 点Q 以及线段PQ长度;(PQ就是点P与点Q之间的距离)(3)在(2)的条件下, 若点M在A点以每秒6个单位向左与P、Q同时运动, 当M点与P点或者Q点相遇时, 则立即改变运动方向, 以原速度向相反方向运动。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
人教版七年级上册数学《期中考试卷》(附答案)
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,满分30分)1.如果收入15元记作+15元,那么支出20元记作( )元.A. +5B. +20C. ﹣5D. ﹣202.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为() A. 0.47×108 B. 4.7×107 C. 47×107 D. 4.7×106 3.在代数式x 2+5,﹣1,x 2﹣3x+2,π,21x x +,13x +中,整式有( )A. 3个B. 4个C. 5个D. 6个4.-2017的绝对值是( )A. 2017B. -2017C. 12017 D. 12017-5.A 为数轴上一点,一只蚂蚁从A 点出发,爬了4个单位长度到了原点,则点A 表示的数是( )A 4 B. 4- C. 8或 D. 4或4- 6.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( )A. -3B. 0C. 3D. 67.方程x ﹣3=2x ﹣4的解为( )A. 1B. ﹣1C. 7D. ﹣78.对于用四舍五入法得到近似数4.609万,下列说法中正确的是( )A. 它精确到千分位B. 它精确到0.01C. 它精确到万位D. 它精确到十位9.若223a =-⨯,()223b =-⨯,()223c =-⨯,则下列大小关系正确的是( )A. a b c >>B. b c a >>C. b a c >>D. c a b >> 10.已知﹣3x m -1y 3与52xy m +n 是同类项,那么m ,n 值分别是( )A. m =2,n =1B. m =﹣2,n =﹣1C. m =﹣2,n =1D. m =2,n =﹣1二、填空题(每空3分,满分30分)11.﹣2.5的相反数是 .12.已知|a|=4,那么a=_____.13.化简:﹣|﹣(+12)|=_____. 14.比较大小:﹣033_____﹣13(填“<”或“>”) 15.如果a 、b 互为倒数,c 、d 互为相反数,且m 1=-,则()22ab c d m -++=___________. 16.将方程4x+3y=6变形成用y 的代数式表示x ,则x=________.17.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 18.用“☆”、“★”定义新运算:对于任意有理数a 、b ,都有a ☆b=a b 和a ★b=b a ,那么(﹣3☆2)★1=______.19.单项式225x y -的系数是__,次数是__. 三、计算题(共5小题,满分34分)20.计算:(﹣2)4÷(﹣223)2+512×(﹣16)﹣025. 21.已知34m ﹣1=34n ,试用等式的性质比较m 与n 的大小. 22.计算:已知|x|=23,|y|=12,且x <y <0,求6÷(x ﹣y )的值. 23.合并同类项:2a 3b ﹣12a 3b ﹣a 2b+12a 2b ﹣ab 2. 24.先化简,再求值:已知多项式2236A a ab b =-+,22235B a ab b =-+-,当1,1a b ==-时,试求2A B +的值.四、解答题(共3小题,满分26分)25.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方,距离岗亭多远;(2)若摩托车每行驶1千米耗油a 升,这一天共耗油多少升.26.一辆出租车从超市出发,向东走4千米到达小丽家,然后向西走2千米到达小华家,又向西走6千米达到小敏家,最后回到超市.(1)以超市为原点,规定向东为正方向,用1个单位长度表示1千米,你能在数轴上标出小丽家,小华家和小敏家的位置吗?(2)出租车一共行驶了多少千米?27.小张刚搬进一套新房子,如图所示(单位:m),他打算把客厅铺上地砖(1)请你帮他算一下至少需要多少平方米地砖?(2)如果这种大块地板砖每平方米m元,那么小张至少花多少钱?答案与解析一、选择题(共10小题,每小题3分,满分30分)1.如果收入15元记作+15元,那么支出20元记作( )元.A. +5B. +20C. ﹣5D. ﹣20【答案】D【解析】试题解析:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作-20元. 2.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为() A. 0.47×108 B. 4.7×107 C. 47×107 D. 4.7×106【答案】B【解析】解:47 000 000用科学记数法表示为4.7×107,故选B .3.在代数式x 2+5,﹣1,x 2﹣3x+2,π,21x x +,13x +中,整式有( )A. 3个B. 4个C. 5个D. 6个【答案】C【解析】根据整式的概念知:x 2+5,﹣1,x 2﹣3x+2,π,x 13+是整式,故选:C.4.-2017的绝对值是( )A. 2017B. -2017C. 12017 D. 12017-【答案】A【解析】﹣2017的绝对值是|-2017|=-(-2017)=2017.故选A.5.A 为数轴上一点,一只蚂蚁从A 点出发,爬了4个单位长度到了原点,则点A 表示的数是( )A. 4B. 4-C. 8或D. 4或4-【答案】D【解析】分析】根据数轴的定义即可得.【详解】设点A 表示的数为a由数轴的定义,分以下两种情况:(1)点A 在原点的左侧则04a -=,解得4a =-(2)点A 在原点的右侧则04a -=,解得4a =综上,点A 表示的数为4或4-故选:D .【点睛】本题考查了数轴的定义,依据题意,正确分两种情况是解题关键.6.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( )A. -3B. 0C. 3D. 6 【答案】C【解析】直接利用已知将原式变形,将a 2+2a =3代入2a 2+4a ﹣3即可求出答案.解:当a 2+2a =3时原式=2(a 2+2a )﹣3=6﹣3=3故选C .7.方程x ﹣3=2x ﹣4的解为( )A. 1B. ﹣1C. 7D. ﹣7 【答案】A【解析】移项,得x ﹣2x=﹣4+3,合并同类项,得﹣x=﹣1,系数化成1,得x=1.故选:A .8.对于用四舍五入法得到的近似数4.609万,下列说法中正确的是( )A. 它精确到千分位B. 它精确到0.01C. 它精确到万位D. 它精确到十位【答案】D【解析】试题分析:四舍五入定义:在取小数近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉.如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进"1",这种取近似数的方法叫做四舍五入法.4.609万=46090,所以是精确到十位.故选D .考点:本题考查了四舍五入的逆向思维.点评:本题需要考生对四舍五入的正常取法不仅要懂得,而且对其逆向思考方法也要略知一二. 9.若223a =-⨯,()223b =-⨯,()223c =-⨯,则下列大小关系正确的是( )A. a b c >>B. b c a >>C. b a c >>D. c a b >> 【答案】D【解析】【分析】先求出a 、b 、c 的值,然后根据有理数的大小比较法则比较即可.【详解】解:223a =-⨯=-18;()223b =-⨯=-36;()223c =-⨯=3636>-18>-36,∴c a b >>故选D.【点睛】本题主要考查了有理数的运算与有理数的大小比较,熟练掌握运算法则是解题的关键.10.已知﹣3x m -1y 3与52xy m +n 是同类项,那么m ,n 的值分别是( ) A. m =2,n =1B. m =﹣2,n =﹣1C. m =﹣2,n =1D. m =2,n =﹣1 【答案】A【解析】分析】根据同类项是字母相同,且相同字母的指数也相同列方程,可得m 、n 的值.【详解】∵﹣3x m ﹣1y 3与52xy m +n 是同类项,∴m ﹣1=1,m +n =3,∴m =2,n =1. 故选A .【点睛】本题考查了同类项,熟记同类项是字母相同,且相同字母的指数也相同是解题的关键. 二、填空题(每空3分,满分30分)11.﹣2.5的相反数是 .【答案】2.5【解析】试题分析:只有符号不同的两个数,我们称这两个数互为相反数.考点:相反数的定义.12.已知|a|=4,那么a=_____.【答案】±4. 【解析】在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.所以绝对值等于4的数有2个,即+4和﹣4,所以a=±4. 故答案为±4. 13.化简:﹣|﹣(+12)|=_____. 【答案】﹣12. 【解析】根据绝对值的意义:﹣|﹣(+12)|=﹣12. 故答案为﹣12. 14.比较大小:﹣033_____﹣13(填“<”或“>”) 【答案】>.【解析】解:|﹣0.33|=0.33,|﹣13|=13≈0.333, ∵0.33<0.333,∴0.33<13, ∴﹣0.33>﹣13. 故答案为>.15.如果a 、b 互为倒数,c 、d 互为相反数,且m 1=-,则()22ab c d m -++=___________. 【答案】3【解析】∵a 、b 互为倒数,c 、d 互为相反数,∴a+b=0,cd=1,则()22ab c d m -++=2×1+0+(-1)2=3. 故答案是:3.16.将方程4x+3y=6变形成用y 的代数式表示x ,则x=________. 【答案】634y - 【解析】【详解】解:436x y +=4x=6-3y x=634y - 故答案为:634y -. 17.若单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式,则m ﹣n =_____. 【答案】13. 【解析】 ∵单项式﹣x m ﹣2y 3与23x n y 2m ﹣3n 的和仍是单项式, ∴m ﹣2=n,2m ﹣3n=3,解得:m=3,n=1,∴m ﹣n =3﹣1=13; 故答案为13. 18.用“☆”、“★”定义新运算:对于任意有理数a 、b ,都有a ☆b=a b 和a ★b=b a ,那么(﹣3☆2)★1=______.【答案】1【解析】试题解析:,.b a a b a a b b ☆★==23239.∴==☆9911 1.==★故答案为19.单项式225x y -的系数是__,次数是__. 【答案】 (1). -25(2). 3根据单项式定义得:单项式﹣225x y的系数是﹣25, 次数是3.故答案为25,3.点睛:此题主要考查了单项式的有关概念,解题关键是根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.三、计算题(共5小题,满分34分)20.计算:(﹣2)4÷(﹣223)2+512×(﹣16)﹣0.25.【答案】13 12【解析】试题分析:根据有理数混合运算的法则:先乘方,后乘除,有括号的先计算括号进行计算即可.试题解析:(﹣2)4÷(﹣223)2+512×(﹣16)﹣0.25=16×964+112×(﹣16)﹣14=94﹣14﹣1112=2﹣11 12=13 12.21.已知34m﹣1=34n,试用等式的性质比较m与n的大小.【答案】m>n.【解析】试题分析:根据等式的性质进行变形,最后得到m与n的差,根据差的正负即可进行判断. 试题解析:等式两边同时乘以4得:3m-4=3n,整理得:3(m-n)=4,∴m-n>0,则m>n.【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.22.计算:已知|x|=23,|y|=12,且x<y<0,求6÷(x﹣y)的值.【答案】-36.试题分析:直接利用绝对值的性质结合有理数混合运算法则计算得出答案.试题解析:∵|x|=23,|y|=12,且x <y <0, ∴x=﹣23,y=﹣12, ∴6÷(x ﹣y)=6÷(﹣23+12)=﹣36. 23.合并同类项:2a 3b ﹣12a 3b ﹣a 2b+12a 2b ﹣ab 2. 【答案】32a 3b ﹣12a 2b ﹣ab 2. 【解析】试题分析:这个式子运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.试题解析:2a 3b ﹣12a 3b ﹣a 2b+12a 2b ﹣ab 2 =(2﹣12)a 3b+(112-)a 2b ﹣ab 2 =32a 3b ﹣12a 2b ﹣ab 2. 24.先化简,再求值:已知多项式2236A a ab b =-+,22235B a ab b =-+-,当1,1a b ==-时,试求2A B +值.【答案】﹣10【解析】试题分析:将A 与B 代入A+2B 中,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值. 解:A+2B=3a 2﹣6ab+b 2+2(﹣2a 2+3ab ﹣5b 2)=3a 2﹣6ab+b 2﹣4a 2+6ab ﹣10b 2=﹣a 2﹣9b 2,当a=1,b=﹣1 时原式=﹣12﹣9×(﹣1)2=﹣10.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.四、解答题(共3小题,满分26分)25.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方,距离岗亭多远;(2)若摩托车每行驶1千米耗油a 升,这一天共耗油多少升.【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)这一天共耗油68a 升.【解析】【分析】(1)根据所有数据的和即可解答;(2)把所有数据的绝对值相加,求得总路程,根据每行驶1千米耗油a升,即可求得一天共耗油多少升.【详解】解:(1)10-8+7-15+6-16+4-2=-14B处在A处正南方14千米处.(2)|10|+|-8|+|7|+|-15|+|6|+|-16|+|4|+|-2|=68(千米)68×a=68a(升)答:共耗油68a升.26.一辆出租车从超市出发,向东走4千米到达小丽家,然后向西走2千米到达小华家,又向西走6千米达到小敏家,最后回到超市.(1)以超市为原点,规定向东为正方向,用1个单位长度表示1千米,你能在数轴上标出小丽家,小华家和小敏家的位置吗?(2)出租车一共行驶了多少千米?【答案】(1)在数轴上表示见解析;(2)出租车一共行驶了16千米.【解析】试题分析:(1)根据题意可以在数轴上表示出相应的位置;(2)根据题目中的数据可以解答本题.试题解析:(1)如下图所示,;(2)由题意可得,出租车一共行驶了:4+2+6+4=16(千米),答:出租车一共行驶了16千米.点睛:本题考查数轴,解答本题的关键是明确数轴的特点,画出相应的图形.27.小张刚搬进一套新房子,如图所示(单位:m),他打算把客厅铺上地砖(1)请你帮他算一下至少需要多少平方米地砖?(2)如果这种大块地板砖每平方米m元,那么小张至少花多少钱?【答案】(1)至少需(6b2+ab﹣a2)平方米地砖;(2)小张至少花(6mb2+mab﹣ma2)元钱【解析】试题分析:(1)根据题意列出关系式,计算即可得到结果;(2)根据地砖的价格表示出花的钱数即可.试题解析:解:(1)根据题意得:(2b+a)(3b﹣a)=6b2+ab﹣a2,则至少需(6b2+ab﹣a2)平方米地砖;(2)m(6b2+ab﹣a2)=6mb2+mab﹣ma2,答:小张至少花(6mb2+mab﹣ma2)元钱.点睛:此题考查了列代数式和整式的混合运算,熟练掌握运算法则是解本题的关键.。
七年级数学上册期中考试卷(附带答案)
七年级数学上册期中考试卷(附带答案)本试卷满分120分,考试时间为120分钟第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. 4的平方根是( ) A .2B .﹣2C .±2D .162.下列各组数中,能构成三角形的是( )A .1,3,5B .2,2,6C .6,8,14D .4, 3,5 3.下列四个图形中,是轴对称图形的是( )A B C D 4.在-25,﹣,0.1010010001,35,π,√16中,无理数的个数是( ) A .1 B .2 C .3 D .4 5.在△ABC 中,如果∠A =∠B =4∠C ,那么∠C 的度数是( ) A .10° B .20° C .30° D .40° 6.等腰三角形的底边长为24,底边上的高为5,它的腰长为( ) A .10 B .11 C .12 D .13 7.如图所示,在已知的△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD . 若CD =AC ,∠A =50°,则∠ACB 的度数为( ) A .90° B .95° C .100° D .105° 8. 如图所示,①AB =AD ;②∠B =∠D ;③∠BAC =∠DAC ;④BC =DC ,以上4条件中的2个条件不能作为依据来说明△ABC ≌△ADC 的是( ) A .①②B .①③C .①④D .②③第7题图 第8题图9. 如图是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.4 cm B.5 cm C.cm D.cm10.如图,在长为3,宽为2,高为1的长方体中,一只蚂蚁从顶点A出发沿着长方体的表面爬行到顶点B,那么它爬行的最短路程是()A.B.C.D.第9题图第10题图二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.√81的算数平方根是12.如图,△AEB≌△DFC,AE⊥CB,DF⊥BC,∠C=28°,则∠A的度数为.13.一个正数的两个平方根分别是2a﹣1与﹣a+2,则a的值为.14.若一个三角形三边长分别是9cm,40cm,41cm,则这个三角形的面积是cm2.15.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABC的周长为30,BE=5,则△ABD的周长为.16.如图,BD是△ABC的角平分线,DE⊥AB于点E,BD=13,BE=12,BC=14,则△BCD的面积是.17. ﹣64的立方根是a,的平方根是b,则a+b=.18.如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中:①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有.(填序号)第12题图第15题图第16题图第18题图三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题8分,第(1)题4分,第(2)题4分)(1)在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的三条边,c=17,b=15,求a的长.(2)在△ABC中,∠A:∠B:∠C=2:3:4,请分别求出这个三角形三个内角的度数.20.(8分)已知,BD是∠ABC的角平分线.用直尺和圆规作图(不写作法,只保留作图痕迹).(1)在线段BD上找一点P,使点P到△ABC三条边的距离相等.(2)在线段BD上找一点Q,使点Q到点B,C的距离相等.第20题图21. (8分)八年级二班小明和小亮同学学习了“勾股定理”之后,为了测得得如图风筝的高度CE,他们进行了如下操作:(1)测得BD的长度为15米.(注:BD⊥CE)(2)根据手中剩余线的长度计算出风筝线BC的长为25米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.第21题图22. (8分)如图,点E,F在AB上,CE与DF交于点H,AD=BC,∠A=∠B,AE=BF.GE与GF相等吗?请说明理由.第22题图23.(9分)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.24. (9分)在8×8的方格纸中,设小方格的边长为1.(1)请判断△ABC的形状并说明理由.(2)画出△ABC以CO所在直线为对称轴的对称图形△A′B′C′,并在所画图中标明字母.第24题图25.(12分)如图①,点D是等边△ABC的边BC上一点,连接AD,以AD为一边,向右作等边三角形ADE,连接CE,说明:AC=CD+CE.【类比探究】(1)如果点D在BC的延长线上,其它条件不变,请在图②的基础上画出满足条件的图形,写出线段AC,CD,CE之间的数量关系,并说明理由.(2)如果点D在CB的延长线上,请在图③的基础上画出满足条件的图形,并直接写出AC,CD,CE 之间的数量关系,不需要说明理由.数量关系:.第25题图参考答案一、选择题1.C2.D3.D4.C5.B6.D7.D8.A9.C 10.B二、填空题11.3 12.62°13.-1 17 .180 15.20 16.35 17.-6或-2 18.①②③④三、解答题19.(8分)解:(1)在Rt△ABC中,由勾股定理,得a2+b2=c2,即a2+152=172,所以a=8.(2)设三个角的度数分别为2x°,3x°,4x°在△ABC中,∠A+∠B+∠C=180°所以2x+3x+4x=180解得x=20.∴三个内角的度数分别为∠A=40°,∠B=60°,∠C=80°.20. (8分)解:(1)如图(1)所示,点P即为所求.(2)如图(2)所示,点Q即为所求.21. (8分)解:在Rt△CDB中,由勾股定理,得CD2=BC2﹣BD2=252﹣152=400所以CD=20.所以CE=CD+DE=20+1.6=21.6米.所以风筝的高度CE为21.6米.解:GE=GF.理由如下:在△ADF与△BCE中∵AE=BF∴AE+EF=BF+EF∴AF=BE.22. (8分)已知AD=BC,∠A=∠B根据SAS,△ADF≌△BCE.∴∠CEB=∠DFA∴GE=GF.23. (9分)因为x﹣2的平方根是±2,所以x-2=4,所以x=6.因为2x+y+7的立方根是3,所以2x+y+7=27,所以y=8.所以x2+y2=100所以x2+y2的平方根±1024. (9分)解:(1)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25∴AB2+AC2=BC2∴△ABC是直角三角形.(2)如图所示,△A′B′C′就是所求三角形.25. (12分)解:在△ABD和△ACE中∵△ABC和△ADE均为等边三角形∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°所以∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.根据SAS,∴△ABD≌△ACE.∴BD=CE∴AC=BC= CD+BD=CD+CE.类比探究:(1)如图②,AC= CE﹣CD.∵△ABC和△ADE均为等边三角形∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°所以∠BAC+∠DAC=∠DAC+∠DEA∴∠BAD=∠CAE.根据SAS,∴△ABD≌△ACE.∴BD=CE.∴AC=BC=BD-CD=CE﹣CD.(2)如图③,数量关系:AC=CD﹣CE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上学期数学期中考试卷(含答案)
一.选择题(共30分)
1.若气温上升2℃记作+2℃,则气温下降3℃记作()
A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.在有理数﹣1,﹣2,0,2中,最小的是()
A.﹣1B.﹣2C.0D.2
3.如果|x|=2,那么x=()
A.2B.﹣2C.2或﹣2D.2或
4.计算(﹣3)+(﹣2)的结果等于()
A.﹣5B.﹣1C.5D.1
5.圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为﹣6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()
A.﹣8℃B.﹣4℃C.4℃D.8℃
6.若a,b互为相反数,c的倒数是4,则3a+3b﹣4c的值为()A.﹣8B.﹣5C.﹣1D.16
7.与2÷3÷4运算结果相同的是()
A.2÷(3÷4)B.2÷(3×4)
C.2÷(4÷3)D.3÷2÷4
8.2022年3月11日,新华社发文总结2021年中国取得的科技成
就.主要包括:北斗全球卫星导航系统平均精度2~3米;中国高铁运营里程超40000000米;“奋斗者”号载人潜水器最深下潜至10909米;中国嫦娥五号带回月壤重量1731克.其中数据40000000用科学记数法表示为()
A.0.4×108B.4×107C.4.0×108D.4×106 9.下列结论不正确的是()
A.abc的系数是1
B.多项式1﹣3x2﹣x中,二次项是﹣3x2
C.﹣ab3的次数是4
D.-3xy
不是整式
4
10.当x=﹣2时,式子3x2+ax+8的值为16,当x=﹣1时,这个式子的值为()
A.2B.9C.21D.3
11.下列说法正确的是()
A.﹣3xy的系数是3
B.xy2与﹣xy2是同类项
C.﹣x3y2的次数是6
D.﹣x2y+2x﹣3是四次三项式
12.化简3xy2﹣xy2结果正确的是()
A.2xy B.2xy2C.2x2y D.2y2
13.下列添括号正确的是()
A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)
C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)14.一个长方形的长是a+b,宽是a,其周长是()A.2a+b B.4a+b C.4a+2b D.2a+2b
15.如果a和﹣4b互为相反数,那么多项式
2(b﹣2a+10)+7(a﹣2b﹣3)的值是()
A.﹣3B.﹣1C.1D.3
二.填空题(共30分)
16.若x=﹣3,则|x|的值为.
17.数轴上的点A、B分别表示﹣3、2,则点离原点的距离较近(填“A”或“B”).
18.已知|m|=5,|n|=2,且n<0,则m+n的值是.
19.中秋节当天,高州市的最高气温是32℃,而在我国最北端的漠河市的最高气温是﹣3℃,则两城市中最大的温差是℃.20.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则代数式a﹣b+2c=.
21.若代数式2x2+3x+7的值是8,则代数式2x2+3x﹣7的值是.22.若单项式﹣5x2y m与x n y是同类项,则m﹣n=.
23.﹣x2﹣2x+3=﹣()+3.
24.某校购买价格为a元/个的排球100个,价格为b元/个的篮球50个,则该校一共需支付元.
25.“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行加减乘除混合运算(每张牌只能使用一次),使得运算结果是24或者是﹣24,现抽出的牌所对的数字是4,﹣5,3,﹣1,请你写出刚好凑成24的算式.
三.解答题(共40分)
26.(12分)计算:
+(﹣2);
(1)(﹣1)×(﹣4)+(﹣9)÷3×1
3
)﹣|﹣1﹣5|;
(2)﹣12022+(﹣2)3×(﹣1
2
(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3;
(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)].
27.(5分)将下列各数在给出的数轴上表示出来,并用“<”把它们连接起来:
﹣1
,﹣(﹣3.5),﹣|﹣3|,0,|﹣5|.
2
28.(5分)若a、b互为相反数,c、d互为倒数,m的绝对值为2,求a+b+m﹣2022cd的值.
29.(5分)如图,请用两种不同的方法求阴影部分的面积.
30.(8分)代入求值.
(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;
(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.31.(5分)已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,求m,n的值.
参考答案一.选择题
1.C.
2.B.
3.C.
4.A.
5.D.
6.C.
7.B.
8.B.
9.D.
10.B.
11.B.
12.B.
13.C.
14.C.
15.B.
二.填空题
16.3.
17.B.
18.3或﹣7.
19.35.
20.﹣2.
21.﹣6;
22.﹣1.
23.x2+2x.
24.(100a+50b).
25.3×[4﹣(﹣5)﹣1](答案不唯一).
三.解答题
26.解:(1)(﹣1)×(﹣4)+(﹣9)÷3×1
+(﹣2)
3
﹣2
=4﹣3×1
3
=4﹣1﹣2
=1;
)﹣|﹣1﹣5|
(2)﹣12022+(﹣2)3×(﹣1
2
)﹣6
=﹣1﹣8×(﹣1
2
=﹣1+4﹣6
=﹣3;
(3)4a3﹣3a2b+5ab2+a2b﹣5ab2﹣3a3
=(4﹣3)a3+(﹣3+1)a2b+(5﹣5)ab2
=a3﹣2a2b;
(4)5x2﹣7x﹣[3x2﹣2(﹣x2+4x﹣1)]
=5x2﹣7x﹣(3x2+2x2﹣8x+2)
=5x2﹣7x﹣3x2﹣2x2+8x﹣2
=x﹣2.
27.解:如图所示:
,从左到右用“<”连接为:
.
28.解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,
∴当m=2时,
a+b+m﹣2022cd
=0+2﹣2022×1
=2﹣2022
=﹣2020;
当m=﹣2时,
a+b+m﹣2022cd
=0﹣2﹣2022×1
=﹣2﹣2022
=﹣2024.
29.解:方法1:(2a+3b)(2a+b)﹣2a×3b
=4a2+2ab+6ab+3b2﹣6ab
=4a2+2ab+3b2;
方法2:2a×a×2+b(2a+3b)=4a2+2ab+3b2.
30.解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)
=5ab﹣2a2b+4b2+2a2b
=5ab+4b2,
由题意可知:a﹣2=0,b+1=0,
∴a=2,b=﹣1,
原式=5×2×(﹣1)+4×1
=﹣10+4
=﹣6.
(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y
=﹣5x2y+5xy,
当x=1,y=﹣1时,
原式=﹣5×1×(﹣1)+5×1×(﹣1)
=5﹣5
=0.
31.解:∵关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3项和x2项,
∴m+5=0,n﹣1=0,
∴m=﹣5,n=1.。