SPSS实验报告

合集下载

spss分析实验报告

spss分析实验报告

spss分析实验报告SPSS分析实验报告引言在社会科学研究领域,SPSS(Statistical Package for the Social Sciences)作为一种数据分析工具,被广泛应用于统计分析和数据挖掘。

本实验报告旨在通过SPSS软件对某项研究进行数据分析,探索其背后的数据模式和相关关系。

一、研究背景与目的本次研究旨在探究大学生的学习成绩与睡眠时间之间的关系。

学习成绩和睡眠时间是大学生日常生活中两个重要的方面,通过分析两者之间的关联,可以为学生提供科学的学习指导,提高学习效果。

二、研究设计与数据收集本研究采用问卷调查的方式,通过随机抽样的方法选取了500名大学生作为研究对象。

问卷内容包括学生的学习成绩和每日平均睡眠时间。

收集到的数据以Excel表格的形式整理并导入SPSS软件进行分析。

三、数据预处理在进行数据分析之前,需要对数据进行预处理。

首先,检查数据是否存在缺失值或异常值。

通过SPSS软件的数据清洗功能,将缺失值进行填补或删除,确保数据的完整性和准确性。

其次,对数据进行标准化处理,以消除不同变量之间的量纲差异。

四、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述。

通过SPSS软件的统计功能,可以计算出学生的学习成绩和睡眠时间的平均值、标准差、最大值、最小值等统计指标。

同时,可以绘制直方图、箱线图等图表来展示数据的分布情况。

五、相关性分析相关性分析是研究不同变量之间相关关系的一种方法。

本研究中,我们使用Pearson相关系数来衡量学习成绩和睡眠时间之间的线性相关性。

通过SPSS软件的相关性分析功能,可以得到相关系数的数值和显著性水平。

如果相关系数接近于1或-1,并且显著性水平小于0.05,则说明学习成绩和睡眠时间之间存在显著的相关关系。

六、回归分析回归分析是研究自变量对因变量影响程度的一种方法。

在本研究中,我们使用线性回归模型来探究睡眠时间对学习成绩的影响。

通过SPSS软件的回归分析功能,可以得到回归方程的系数、显著性水平和模型的拟合优度。

spss实验报告,心得体会

spss实验报告,心得体会

spss实验报告,心得体会篇一:SPSS实验报告SPSS应用——实验报告班级:统计0801班学号:1304080116 姓名: 宋磊指导老师:胡朝明2010.9.8一、实验目的:1、熟悉SPSS操作系统,掌握数据管理界面的简单的操作;2、熟悉SPSS结果窗口的常用操作方法,掌握输出结果在文字处理软件中的使用方法。

掌握常用统计图(线图、条图、饼图、散点、直方图等)的绘制方法;3、熟悉描述性统计图的绘制方法;4、熟悉描述性统计图的一般编辑方法。

掌握相关分析的操作,对显著性水平的基本简单判断。

二、实验要求:1、数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。

2、了解描述性统计的作用,并1掌握其SPSS的实现(频数,均值,标准差,中位数,众数,极差)。

3、应用SPSS生成表格和图形,并对表格和图形进行简单的编辑和分析。

4、应用SPSS做一些探索性分析(如方差分析,相关分析)。

三、实验内容:1、使用SPSS进行数据的录入,并保存: 职工基本情况数据:操作步骤如下:打开SPSS软件,然后在数据编辑窗口(Data View)中录入数据,此时变量名默认为var00001,var00002,…,var00007,然后在Variable View窗口中将变量名称更改即可。

具体结果如下图所示:输入后的数据为:将上述的数据进行保存:单击保存即可。

2、读取上述保存文件:选择菜单File--Open—Data;选择数据文件的类型,并输入文件名进行读取,出现如下窗口:选定职工基本情况.sav文件单击打开即可读取数据。

3、对上述数据新增一个变量工龄,其操作步骤为将当前数据单元确定在某变量上,选择菜单Data—Insert Variable,SPSS自动在当前数据单元所在列的前一列插入一2个空列,该列的变量名默认为var00016,数据类型为标准数值型,变量值均是系统缺失值,然后将数据填入修改。

结果如下图所示:篇二:SPSS相关分析实验报告本科教学实验报告(实验)课程名称:数据分析技术系列实验实验报告学生姓名:一、实验室名称:二、实验项目名称:相关分析三、实验原理相关关系是不完全确定的随机关系。

SPSS上机实验报告一

SPSS上机实验报告一

1.数据文件的建立。

打开SPSS,在数据编辑器的变量视图中,输入变量的属性特征,如Name,Width,Decinmal等。

以习题一为例,输入为下:返回数据编辑库,数据视图,直接录入数据。

习题一的数据表如下:点击Save,输入文件名将文件保存。

2.数据的整理数据编辑窗口的Date可提供数据整理功能。

其主要功能包括定义和编辑变量、观测量的命令,变量数据变换的命令,观测量数据整理的命令。

以习题一为例,将上图中的数据进行整理,以GDP值为参照,升序排列。

数据整理后的数据表为:整理后的数据,可以直观看出GDP值的排列。

3、频数分析。

以习题一为例(1).单击“分析→描述统计→频率”(2)打开“频率”对话框,选择GDP为变量(3)单击“统计量”按钮,打开“统计量”对话框.选择中值及中位数。

得到如下结果:(4)单击“分析→描述统计→探索”,打开“探索”对话框,选择GDP(亿元),输出为统计量。

结果如下:4、探索分析以习题2为例子:(1)单击“分析→统计描述→频率”,打开“频率”对话框,选择“身高”变量。

(2)选择统计量,分别选择百分数,均值,标准差,单击图标。

的如下结果:(3)单击“分析→统计描述→探索”,选择相应变量变量,单击“绘制”,选择如下图表,的如下结果:从上述图标可以看出,除了个别极端点以外,数据都围绕直线上下波动,可以看出,该组数据,在因子水平下符合正态分布。

4.交叉列联表分析:以习题3,原假设是吸烟与患病无关备择假设是吸烟与患病有关操作如下:单击“分析→统计描述→交叉表”,打开“交叉表”对话框,选择相应变量变量,单击精确,并选择“统计量”按钮,选择“卡方”作为统计量检验,然后单击“单元格”按钮,选择“观测值”和“期望值”进行计数。

得出分析结果如下:分析得出卡方值为7.469,,自由度是1,P值为0.004<0.05拒绝原假设,故有大于95%的把握认为吸烟和换慢性气管炎有关。

习题4:原假设是性别与安全性能的偏好无关备择假设是性别与安全性能的偏好有关操作如下:单击“分析→统计描述→交叉表”,打开“交叉表”对话框,选择相应行列变量然后选择“统计量”按钮,以“卡方”作为统计量检验.单击“单元格”按钮,选择“观测值”和“期望值”进行计数单击“确定”,得出分析结果如下:分析得出卡方值为19自由度是4,P值为0.001<0.05拒绝原假设,故有99.9%的把握认为性别与安全性能的偏好有关5实验作业补充。

SPSS实验报告完整版

SPSS实验报告完整版

SPSS实验实验课程专业统计软件应用上课时间学年学期周(年月日—日)学生姓名学号所在学院指导教师第五章第一题通过样本分析,结果如下图One-Sample StatisticsN Mean Std. Deviation Std. Error Mean 成绩27 77.9312.111 2.331One-Sample TestTest Value = 70t df Sig. (2-tailed)Mean Difference 95% Confidence Interval of theDifferenceLower Upper成绩 3.400 26.0027.926 3.13 12.72从图看出,sig=0.002,小于0.05,因此本班平均成绩与全国平均成绩70分有显著性差异。

第五章第二题通过独立样本分析,结果如下图Group Statistics成绩N Mean Std. Deviation Std. Error Mean成绩1=男10 84.0011.528 3.6450=女10 62.9018.454 5.836Independent Samples TestLevene's Test forEquality of Variances t-test for Equality of MeansF Sig. t dfSig.(2-tailed)MeanDifferenceStd. ErrorDifference95% Confidence Interval of theDifferenceLower Upper成绩Equalvariancesassumed1.607.221 3.06718.007 21.100 6.881 6.64435.556Independent Samples TestLevene's Test forEquality of Variances t-test for Equality of MeansF Sig. t dfSig.(2-tailed)MeanDifferenceStd. ErrorDifference95% Confidence Interval of theDifferenceLower Upper成绩Equalvariancesassumed1.607.221 3.06718.007 21.100 6.881 6.64435.556Equalvariancesnotassumed3.06715.096.008 21.100 6.881 6.44235.758在显著性水平为0.05的情况下,t统计量的概率p为0.007,故拒绝零假设,既两样本的均值不相等,既男女生成绩有显著性差异。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告一、实验目的本实验旨在通过SPSS软件对样本数据进行聚类分析,找出样本数据中的相似性,并将样本划分为不同的群体。

二、实验步骤1.数据准备:在SPSS软件中导入样本数据,并对数据进行处理,包括数据清洗、异常值处理等。

2.聚类分析设置:在SPSS软件中选择聚类分析方法,并设置分析参数,如距离度量方法、聚类方法、群体数量等。

3.聚类分析结果:根据分析结果,对样本数据进行聚类,并生成聚类结果。

4.结果解释:分析聚类结果,确定每个群体的特征,观察不同群体之间的差异性。

三、实验数据本实验使用了一个包含1000个样本的数据集,每个样本包含了5个变量,分别为年龄、性别、收入、教育水平和消费偏好。

下表展示了部分样本数据:样本编号,年龄,性别,收入,教育水平,消费偏好---------,------,------,------,---------,---------1,30,男,5000,大专,电子产品2,25,女,3000,本科,服装鞋包3,35,男,7000,硕士,食品饮料...,...,...,...,...,...四、实验结果1. 聚类分析设置:在SPSS软件中,我们选择了K-means聚类方法,并设置群体数量为3,距离度量方法为欧氏距离。

2.聚类结果:经过聚类分析后,我们将样本分为了3个群体,分别为群体1、群体2和群体3、每个群体的特征如下:-群体1:年龄偏年轻,女性居多,收入较低,教育水平集中在本科,消费偏好为服装鞋包。

-群体2:年龄跨度较大,男女比例均衡,收入中等,教育水平较高,消费偏好为电子产品。

-群体3:年龄偏高,男性居多,收入较高,教育水平较高,消费偏好为食品饮料。

3.结果解释:根据聚类结果,我们可以看到不同群体之间的差异性较大,每个群体都有明显的特征。

这些结果可以帮助企业更好地了解不同群体的消费习惯,为市场营销活动提供参考。

五、实验结论通过本次实验,我们成功地对样本数据进行了聚类分析,并得出了3个不同的群体。

spss实验报告---方差分析

spss实验报告---方差分析

实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。

学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。

二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。

零假设:各水平下总体方差没有显著差异。

相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。

从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。

2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。

(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。

不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。

说明不同广告和不同地区对汽车销量都有显著性影响。

广告对于销量的影响略大于地区对销量的影响。

从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。

SPSS聚类分析实验报告

SPSS聚类分析实验报告

SPSS聚类分析实验报告摘要:本实验旨在利用SPSS软件进行聚类分析,并通过实验结果分析数据的分布情况,揭示数据中的隐含规律。

通过聚类分析,我们将数据样本划分为不同的类别,以便更好地理解数据的特征、相似性以及群组之间的差异。

实验结果表明,SPSS软件在聚类分析方面具有较高的可靠性和准确性,能够有效地提取数据的特征和隐含信息,为数据分析提供有力支持。

1.引言2.实验方法2.1数据收集与准备本实验使用到的数据集是从公开渠道获取的一份包含各个地区收入、消费、教育等特征的数据集。

为了保护数据安全和隐私,将被分析的数据进行了匿名化处理。

2.2SPSS操作步骤(1)导入数据集:将数据集导入SPSS软件,并进行数据检查和处理,确保数据的完整性和准确性。

(2)选择合适的聚类算法:根据实验目的和数据特点选择适合的聚类算法,这里选择了k-means算法作为聚类算法。

(3)设置聚类参数:设置聚类的类别数、迭代次数等参数,以得到最优的聚类结果。

(4)进行聚类分析:运行聚类分析模块,观察聚类结果和聚类中心的分布情况。

(5)结果解释与分析:根据聚类结果,对不同类别的数据进行特征分析和差异比较,以更好地理解数据的特点和分布规律。

3.实验结果与分析通过SPSS软件进行聚类分析,得到了数据样本的聚类结果。

根据平均轮廓系数和间隔分析等指标,确定了最优的聚类类别数,并得到了每个类别的聚类中心和分布情况。

3.1聚类类别数的确定为了确定合适的聚类类别数,使用平均轮廓系数方法和间隔分析方法进行评估。

通过计算不同聚类类别数下的平均轮廓系数和间隔分析值,选择具有最大平均轮廓系数和最小间隔分析值的类别数作为最优的聚类类别数。

经过计算分析,确定了聚类类别数为33.2聚类结果与分析根据聚类类别数为3的聚类结果,将数据样本分为了三组。

分别对每组数据进行了特征分析和差异比较。

3.2.1类别1:高收入、高教育水平、低消费该类别的个体具有较高的收入水平和教育水平,但消费水平较低。

主成分分析、因子分析实验报告--SPSS

主成分分析、因子分析实验报告--SPSS

主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。

本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。

二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。

这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。

主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。

(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。

公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。

因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。

三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。

数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。

四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。

2、选择“分析”>“降维”>“主成分分析”。

3、将需要分析的变量选入“变量”框。

4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。

5、点击“确定”,运行主成分分析。

(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。

2、选入变量。

3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。

4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。

spss描述统计实验报告

spss描述统计实验报告

spss描述统计实验报告SPSS描述统计实验报告引言SPSS(Statistical Package for the Social Sciences)是一种用于数据分析和统计建模的软件工具。

它可以帮助研究人员对数据进行描述统计分析,从而得出结论并做出预测。

本实验旨在利用SPSS软件对实验数据进行描述统计分析,以探究数据的特征和规律。

实验设计本实验选取了一组包括性别、年龄、身高和体重等信息的样本数据,共计100个样本。

通过SPSS软件对这组数据进行描述统计分析,包括均值、标准差、频数分布等指标,以便对样本数据进行全面的了解。

结果分析首先,我们对样本数据中的性别进行了频数分布分析。

结果显示,样本中有55%的男性和45%的女性,性别分布相对均衡。

接着,我们对年龄、身高和体重等连续变量进行了均值和标准差的分析。

结果显示,样本的平均年龄为30岁,标准差为5岁;平均身高为170厘米,标准差为8厘米;平均体重为65公斤,标准差为10公斤。

这些数据表明样本中的年龄、身高和体重分布较为集中,且具有一定的变异性。

结论通过对样本数据的描述统计分析,我们得出了对样本特征和规律的初步认识。

样本中男女比例相对均衡,年龄、身高和体重分布较为集中且具有一定的变异性。

这些结果为我们进一步的数据分析和研究提供了重要参考。

总结SPSS软件作为一种强大的数据分析工具,可以帮助研究人员对数据进行描述统计分析,从而深入了解数据的特征和规律。

本实验利用SPSS对样本数据进行了描述统计分析,得出了对样本特征和规律的初步认识,为后续的研究工作奠定了基础。

希望本实验能够对SPSS软件的应用和描述统计分析方法有所启发,为相关研究工作提供参考。

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测

实验报告四.spss一元线性相关回归分析预测
本实验使用spss 17.0软件,针对50个被试者,使用一元线性相关回归分析预测变
量X和Y的关系。

一、实验目的
通过一元线性相关回归分析,预测50个被试者的被试变量X(会计实操次数)和被试变量Y(综合评价分)之间的关系,来检验变量X是否能够预测变量Y的值。

二、实验流程
(2)数据收集:通过收集50个被试者的实际实操次数与综合评价分,建立反映这两
者之间关系的一元线性回归方程。

(3)数据分析:通过SPSS软件的一元线性相关回归分析预测变量X和Y的关系,使
用R方值进行检验研究结果的显著性。

以分析变量X对于变量Y的影响程度。

三、实验结果及分析
1.回归分析结果如下所示:变量X的系数b = 0.6755,t = 7.561,p = 0.000,说
明变量X和被试变量Y之间存在着显著的相关关系;R方值为0.941,说明变量X可以较
好地预测变量Y。

2.可以得出一元线性回归方程为:Y=0.67×X+5.293,其中,b为系数,X是自变量,Y是因变量。

四、结论
(1)50个被试者实际实操次数与综合评价分之间存在着显著的相关性;
(2)变量X可以较好地预测变量Y,R方值较高;。

spss对数据进行相关性分析实验报告

spss对数据进行相关性分析实验报告

spss对数据进行相关性分析实验报告SPSS数据相关性分析实验报告一、引言数据相关性分析是一种用统计方法来研究变量之间关系的方法。

SPSS作为一种常用的统计软件,具有丰富的功能和灵活性,能够对数据进行多角度的分析和解读。

本报告旨在利用SPSS对一组样本数据进行相关性分析,并通过报告的形式详细介绍分析的步骤和结果。

二、实验设计和数据采集本次实验选取了一个包括X变量和Y变量的数据集,通过观察这两个变量之间的相关关系,探究它们之间是否存在一定的线性关系。

三、数据清洗与统计描述在进行相关性分析之前,需要对数据进行清洗和统计描述。

首先,通过观察数据的分布情况,检查是否存在异常值。

如果出现异常值,可以采取删除或者替换的方式进行处理。

其次,计算数据的均值、标准差、最大值、最小值等统计指标,了解数据的基本特征。

四、Pearson相关系数分析Pearson相关系数是一种常用的衡量两个变量之间的相关性的方法。

它的取值范围在-1到1之间,接近于1表示正相关,接近于-1表示负相关,接近于0则表示无相关性。

在SPSS中,进行Pearson相关系数分析非常简便。

五、Spearman相关系数分析Spearman相关系数是一种非参数检验方法,用于观察变量之间的单调关系。

相比于Pearson相关系数,它对于异常值的鲁棒性更强。

在SPSS中,可以选择Spearman相关系数分析来研究数据集中的变量之间的关系。

六、结果分析与讨论经过Pearson相关系数和Spearman相关系数的分析,我们得出如下结论:X变量与Y变量之间存在显著的正相关关系。

通过相关系数的计算,结果显示相关系数为0.8,说明二者之间具有较强的线性相关性。

这一结果与我们的研究假设相吻合,证明了X变量对Y变量的影响。

七、实验结论通过SPSS对数据进行相关性分析,我们得出结论:X变量与Y变量之间存在显著的正相关关系。

这一结论进一步加深了对于变量之间关系的理解,为后续的研究提供了参考。

SPSS上机实验报告四

SPSS上机实验报告四

SPSS上机实验报告一、实验内容1.数据合并:(1)纵向拼接(添加个案):合并数据a.sav和b.sav(2)横向合并(添加变量):合并数据a.sav和c.sav2.对数据CCSS_Sample.sav作下列操作:(1)频率分析:对S0城市,S4学历分别做分析;(2)交叉列表:月份对城市做交叉分析;观察值;计算(行、列)百分百;(3)对多选题C0贷款情况进行分析:多响应频率分析;3.对数据Employee data.sav,分析员工的性别、受教育程度、少数名族、职位类别的分布情况,并尝试分析这些属性之间的关系以及这些属性和工资之间的关系.二、实验步骤1.合并数据(1)纵向拼接:打开spss软件,在菜单中打开a.sav文件,选择菜单:[数据]→[合并文件]→[添加个案],在弹出的窗口中将选择外部spss数据文件并在浏览中选择b.sav,点击继续,在弹出的窗口中将“非成对变量”中的所有变量添加到“新的活动数据集中的变量”,勾选“将个案表现为变量”,点击确定。

结果如图:(2)横向合并:打开a.sav,选择菜单:[数据]→[合并文件]→[添加变量],在弹出的窗口中选择外部数据文c.sav,在弹出的窗口中勾选“按照排序文件中的关键变量匹配个案”,将“已排除变量”中的id添加到“关键变量”中,点击确定。

结果如图:2.(1)频率分析:在spss中打开CCSS_Sample.sav,选择菜单:[分析]→[描述统计]→[频率],在弹出的窗口中双击左边框中的S0城市,S4学历加入到右边变量框中,如图:点击确定。

结果如图:分析:在北京,上海,广州工作的人数基本相同;大专毕业的人最多,其次是高中/中学毕业生和本科毕业生,硕士及以上学历的人非常少,仅占5%。

(2)交叉列表:打开CCSS_Sample.sav数据,选择菜单:[分析]→[描述统计]→[交叉表],在弹出的窗口中从左边框中将月份添加到行中,将城市添加到列中,如图:单击[单元格],勾选百分比中的行和列,如图:单击[继续],再单击[确定]。

spss实验报告一,二

spss实验报告一,二

实验报告
实验目的: 通过上机操作, 熟练掌握spss相关知识。

实验内容:
(一)1、首先将表格导入到spss中, 出现如下图结果:
2.选择: 分析——描述统计—频率, 出现如下图的表格,
, /
3、将V1导入到变量中, 然后点击统计量, 出现如下图的表格, 在表格中, 点击, 均值、中位数、四分位数, 标准差。

点击继续, 就完成第一题, 出现下图的结果。

以上就是第一题的结果。

(二)
1.首先将表格导入到spss中, 如下图:
2.从上表中, 可知, 方法A要比B.C的只都要高, 可见平均值要高于B.C, 就应该对这三组进行平均值, 方差的计算进行比较。

选择: 分析——描述统计——描述, 出现如下图的表格:
将方法A.B.C分别导入到变量中, 然后点击选项这个按钮, 出现如下图的表格进行选择:
可以选择标准差, 最大值, 最小值, 均值, 然后点击继续, 则会出现结果, 通过对结果进行对比, 选择方案。

由图可知, 方法A的平均值高于B、C, 而且最小值也都大于B、C的最大值, 可知A的组装优越于B、C, 即使标准差大于B, 稳定性稍微差于B, 但总体上组装的结果要比B好, 所以要选择方案A。

统计分析软件SPSS实验报告

统计分析软件SPSS实验报告

实验报告课程名称:统计分析软件(SPSS)学生实验报告一、实验目的及要求二、实验描述及实验过程(一)、利用SPSS绘制统计图1、打开“职工数据.sav”,调用Graphs 菜单的Bar功能,绘制直条图。

直条图用直条的长短来表示非连续性资料的数量大小。

弹出Bar Chart定义选项。

2、在定义选项框的下方有一数据类型栏,大多数情形下,统计图都是以组为单位的形式来体现数据的。

在定义选项框的上方有3种直条图可选:Simple为单一直条图、Clustered 为复式直条图、Stacked为堆积式直条图,本实验选单一直条图。

3、点击Define钮,弹出Define Clustered Bar: Summaries for groups of cases对话框,在左侧的变量列表中选基本工资点击按钮使之进入Bars Represent栏的Other summary function选项的Variable框,选性别/文化程度/职称点击按钮使之进入Category Axis框。

1.点击analyze中的Descriptive Statistics选择frequencies,弹出一个frequencies对话框,选中基本工资和年龄拖入Variable(s)列2.点击statistics选择相应的统计量(例如:Mean,.median,mode等)3.点击continue ,点击OK。

(三)、用SPSS做回归分析(一元线性回归)1.点击Graphs 选择Scatter/dot2.选择simple scatter 点击Define3.将基本工资这个变量输入Y-Axis ,将年龄输入X-Axise4.点击OK ,结果如图5.点击analyze中的regression选择linear,将这个基本工资变量输入 Dependent ,将年龄输入Independt(s6.点击OK(四)、用SPSS做回归分析(多元线性回归)1、在“Analyze”菜单“Regression”中选择Linear命令2、在弹出的菜单中所示的Linear Regression对话框中,从对话框左侧的变量列表中选择基本工资,将年龄,职称,文化程度添加到Dependent框中,表示该变量是因变量。

SPSS实验报告

SPSS实验报告

第六章方差分析一实验目的1.理解方差分析的概念、原理及作用;2.掌握用 SPSS 进行单因素、双因素及协方差分析的方法;3.结合参考资料了解方差分析的其它方法及作用。

二方差分析的原理方差分析的基本原理是认为不同处理组的均值间的差别基本来源有两个:(1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作w SS ,组内自由度w df ;(2)实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差的总平方和表示,记作b SS ,组间自由度b df 。

三实验过程1. 某农场为了比较4种不同品种的小麦产量的差异,选择土壤条件基本相同的土地,分成16块,将每一个品种在4块试验田上试种,测得小表亩产量(kg)的数据如表6.17所示(数据文件为data6-4.sav),试问不同品种的小麦的平均产量在显著性水平0.05和0.01下有无显著性差异。

(数据来源:《SPSS实用统计分析》郝黎仁,中国水利水电出版社)表6.17实验步骤:第1步分析:由于有一个因素(小麦),而且是4种饲料。

故不能用独立样本T 检验(仅适用两组数据),这里可用单因素方差分析;第2步数据的组织:分成两列,一列是试验田的产量(output),另一列是小麦品种(breed)(A、B、C、D);第3步方差相等的齐性检验:由于方差分析的前提是各个水平下(这里是不同品种的小麦产量)的总体服从方差相等的正态分布。

其中正态分布的要求并不是很严格,但对于方差相等的要求是比较严格的。

因此必须对方差相等的前提进行检验。

从SPSS的数据管理窗口中选择analyze—compare means—One-Way ANOVA,将小麦产量(output)选入dependent list框中,将品种(breed)选入factor框中,点开Options,选中Homogeneity of variance test(方差齐性检验),点开post hoc multiple comparisons,将significance level的值在两次实验时分别设置为0.01和0.05。

第六章Spss实验报告

第六章Spss实验报告

第六章Spss实验报告第一题数据某公司专业生产电脑显示器,通过使用3种不同的芯片,得出显示器的某个关键参数如下表,每种芯片取10个观测值:以α=0.05的显著性水平检验“不同芯片的参数相同”这一假设。

(试运用单因方差分析完成)。

观测次数芯片A 芯片B 芯片C1 508 750 4882 492 685 5163 465 630 4794 488 578 6075 491 599 5446 523 625 5327 519 681 4968 604 675 5189 618 675 51810 521 598 524分析描述观测值N均值标准差标准误均值的95% 置信区间极小值极大值下限上限芯片A10522.9049.89415.778487.21558.59465618芯片B10649.6052.65016.649611.94687.26578750芯片C10522.2035.84211.334496.56547.84479607总数30564.9075.77813.835536.60593.20465750结论:芯片B的均值最高,芯片A,C相近,这些可以在图上看出。

分析:方差齐性检验观测值Levene 统计量df1 df2 显著性1.240 2 27 .305分析:由于概率P值为0.305大于显著性水平0.05,所以接受原假设,认为三种芯片的总方差没有显著差别。

满足方差分析的前提要求。

分析:结论:对应的P值近似为0显著性水平为0.05,概率P小于0.05,拒绝原假设,认为三种不同的芯片有显著差异。

分析;多重比较观测值LSD(I) 芯片(J) 芯片均值差(I-J)标准误显著性95% 置信区间下限上限芯片A 芯片B -126.700*20.890 .000 -169.56 -83.84芯片C .700 20.890 .974 -42.16 43.56芯片B 芯片A 126.700*20.890 .000 83.84 169.56芯片C 127.400*20.890 .000 84.54 170.26芯片C 芯片A -.700 20.890 .974 -43.56 42.16芯片B -127.400*20.890 .000 -170.26 -84.54*. 均值差的显著性水平为 0.05。

SPSS实验报告——均值比较

SPSS实验报告——均值比较

实验报告一、实验目的1、掌握均值比较,用于计算指定变量的综合描述统计量2、掌握独立样本T检验(Independent Samples Test),用于检验两组来自独立总体的样本,企图理综题的均值或中心位置是否一样二、实验步骤第1步数据导入;打开“EG5-2城市和农村学生心理素质测试得分.sav”第2步确定要进行T检验的变量;选择Analyze→ Compare Means →Independent-Samples ,选择“p”变量作为检验变量,移入“Test Variable(s)”框中。

第4步确定分组变量;选择变量“group”作为分组变量,将其移入下图中的“Grouping variable”文本框中,并定义分组的变量值:Group1—1,Group2—2。

三、结果及分析两独立样本T检验的基本描述统计量分析:1、根据结果,方差齐性检验的p值为0.791,大于0.05,故应接受原假设。

2、因为方差相等,两独立样本T检验的结果应该看两独立样本T检验结果报中的Equal variances assumed”一行,第5列为相应的双尾检测概率(Sig.(2-tailed))为0.07,在显著性水平为0.05的情况下,T统计量的概率p值大于0.05,故接受原假设假设,即认为两样本的均值是相等的,在本题中,不能认为两组的成绩有显著性差异。

实验报告一、实验目的1、掌握均值比较,用于计算指定变量的综合描述统计量2、掌握配对样本T检验(Paired Samples Test),用于检验两个相关的样本是否来自具有相同均值的总体。

二、实验步骤第1步数据组织;打开“EG5-1学生培训前后心理测试得分.sav”第2步确定配对分析的变量选择Analyze→ Compare Means →Paired-Samples T Test,将变量“before”和“after”添加到“Paired Variables”框中,作为一对分析的配对变量三、结果及分析分析:表“paired samples test”显示,学生培训前后的平均成绩相差 -0.158,平均成绩差值的标准差为1.5048,差值标准差的标准误为0.4344.在置信水平为95%时平均值差值的置信区间为-1.114~0.798。

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告篇一:spss对数据进行相关性分析实验报告实验一一.实验目的掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。

二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。

更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。

P值是针对原假设H0:假设两变量无线性相关而言的。

一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。

越小,则相关程度越低。

而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。

三、实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。

(1)检验人均食品支出与粮价和人均收入之间的相关关系。

a.打开spss软件,输入“回归人均食品支出”数据。

b.在spssd的菜单栏中选择点击,弹出一个对话窗口。

C.在对话窗口中点击ok,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。

人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。

(2)研究人均食品支出与人均收入之间的偏相关关系。

读入数据后:A.点击系统弹出一个对话窗口。

B.点击OK,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。

SPSS实验报告

SPSS实验报告

通过计算诸如样本均值、中位数、样本方差等重要基本统计量,并辅助于SPSS 提供的图形功能,能够使分析者把握数据的基本特征和数据的整体分布形态,对进一步的统计判断和数据建模工作起到重要作用。

并且,通过例子学习描述性统计分析及其在 SPSS 中的实现,包括统计量的定义及计算、频率分析、描述性分析、探索性分析、交叉表分析和多重响应分析,能够使分析者更好的掌握基本的统计分析,即单变量频数分布的编制、基本统计量的计算以及数据的探索性分析等。

1.打开数据文件 data4-8.sav,完成以下统计分析。

(1)计算各科成绩的描述统计量:平均成绩、中位数、众数、标准差、方差、极差、最大值和最小值;①解决问题的原理:描述性分析②实验步骤:通过“分析-描述统计-描述”,打开“描述性”对话框,根据题目所需要的统计量进行设置。

③结果及分析:表中分析变量“成绩”的个案数、所有个案中的极大值、极小值、均值、标准差及方差。

(2)使用 Recode 命令生成一个新变量“成绩段”,其值为各科成绩的分段: 90~100 为 1,80~89 为 2,70~79 为 3,60~69 为4,60 分以下为 5,其值标签: 1—优, 2—良, 3—中, 4—及格, 5—不及格。

分段以后进行频数分析,统计各分数段的人数,最后生成条形图和饼图。

①解决问题的原理:频率分析。

②实验步骤:通过“分析-描述统计-频率”,打开“频率”对话框,根据题目所需要的统计量进行设置。

③结果及分析:有效1519242830323334363743495055频率11111211121111百分比2.22.22.22.22.24.42.22.22.24.42.22.22.22.2有效百分比2.22.22.22.22.24.42.22.22.24.42.22.22.2积累百分比2.24.46.78.911.115.617.820.022.226.728.931.133.3全距极小值83 15成绩有效的 N (列表状态) N4545标准差23.048极大值98方差531.210均值60.518.9 6.7 2.2 2.2 2.2 2.2 6.7 2.2 2.2 2.2 2.2 2.2 2.2 4.4 2.2 4.4 2.2 4.4 2.2 100.0表中显示了变量“成绩段”在各个取值上浮现的次数(频率)、其频率占所有个案中的百分比、有效百分比及积累百分比。

统计学原理SPSS实验报告

统计学原理SPSS实验报告

实验一:用SPSS绘制统计图实验目的:掌握基本的统计学理论,使用SPSS实现基本统计功能(绘制统计图)对SPSS的理解:它是一款社会科学统计软件包,同时也广泛应用于经济,金融,商业等各个领域,基本功能包括数据管理,统计分析,图表分析,输出管理等。

实验算法:掌握SPSS的基本输入输出方法,并用SPSS绘制相应的统计图(例如:直方图,曲线图,散点图,饼形图等)操作过程:步骤1:启动SPSS。

单击Windows 的[开始]按钮(如图1-1所示),在[程序]菜单项[SPSS for Windows]中找到[SPSS 13.0 for Windows]并单击,得到如图1-2所示选择数据源界面。

图1-1 启动SPSS图1-2 选择数据源界面步骤2 :打开一个空白的SPSS数据文件,如图1-3。

启动SPSS 后,出现SPSS 主界面(数据编辑器)。

同大多数Windows 程序一样,SPSS 是以菜单驱动的。

多数功能通过从菜单中选择完成。

图1-3 空白的SPSS数据文件步骤3:数据的输入。

打开SPSS以后,直接进入变量视图窗口。

SPSS的变量视图窗口分为data view和variable view两个。

先在variable view中定义变量,然后在data view里面直接输入自定义数据。

命名为mydata并保存在桌面。

如图1-4所示。

图1-4 数据的输入步骤4:调用Graphs菜单的Bar过程,绘制直条图。

直条图用直条的长短来表示非连续性资料(该资料可以是绝对数,也可以是相对数)的数量大小。

选择的数据源见表1。

步骤5:数据准备。

激活数据管理窗口,定义变量名:年龄标化发生率为RA TE,冠心病临床型为DISEASE,血压状态为BP。

RATE按原数据输入,DISEASE按冠状动脉机能不全=1、猝死=2、心绞痛=3、心肌梗塞=4输入,BP按正常=1、临界=2、异常=3输入。

步骤6:选Graphs菜单的Bar...过程,弹出Bar Chart定义选项框(图1-5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

描述性统计分析一、实验目得1. 进一步了解掌握SPSS专业统计分析软件,能更好地使用英进行数据统计分析。

2. 学习描述性统汁分析及英在SPSS中得实现,内容具体包括基本描述性统汁量得龙义及计算、频率分析、描述性分析、探索性分析、交叉表分析等。

3. 复习权重等前章得知识。

二、实验内容题目一打开数据文件“da ta4-5、sa v“,完成以下统计分析:(1) 计算各科成绩得描述统计虽:平均成绩、中位数、众数、标准差、方差、极差、最大值与最小值;(2) 使用“Recode"命令生成一个新变量“成绩段",其值为各科成绩得分段:90〜1 00为1,8 0〜89为2,70-79为3, 6 0 ~6 9为4, 6 0分以下为5,其值标签设为:1 一优,2-良,3-中,4 一及格,5-不及格。

分段以后进行频数分析,统讣各分数段得人数,最后生成条形图与饼图。

1 •解决问题得原理因为问题涉及各科成绩,用描述性分析,第二问要先进行数据分段,英后利用频数分析描述统计量并可以生成条形图等。

2、实验步骤针对第一问第1步打开数据菜单选择:“文件一打开一数据”,将“da t a 4-8、sav”导入。

第2步文件拆分菜单选择:“数据一拆分文件”,打开“分割文件”对话框,点击比较组按钮,将“科目”加入到“分组方式”列表框中,并确圧。

力櫻8矽仿帕 狄巴・UKfB "㈣CM9SS5M Mew rrwrt” tUl打制梅』<T M•力仕 l-c]勺 xa""注2»/»vn*\■:近多©" Tt第3步描述分析设置:(1) 选择菜单:“分析一描述统计一 描述“,打开“描述性"对话框,将“成绩” “加入到“变量”列表框中。

打开“选项”对话框,选中如下图中得各项。

J 戻制g V E 小血“万走 “ /大II!✓范 i Q®的畅砂◎ 号布r 魁:匚毗-且示亦_C 76iSff(A>C iSNjtljtWJFMfFfC).:找灼值附测W 回点击“继续"按钮。

(4)回到“描述性"对话框,点击确左。

针对第二问第1步频率分析设置:(1) 选择菜单:“分析一描述统计一频率“,(2)打丹濒率(F)”对话框,点击“合计S 再点击“继续”按钮、.25Ujixx»Mica.v.rjMR2*<») "s Q»HS« 55伍密 awsitUe*SStORJitfn*»«Xt5r vT IIr4r TJi”t ifr aT2r 7J r ”r 72r 辛r捕® ■彎|WKM 4MfUXI _」at 一 一《>一1_«_」_at 丄赵―l_ga_J_xa_J_Rl_] jtt 一I I i I i i ; I I Im 却tl 也⑥船屯勺 .aKRU»w»tt»W(U »'. rwitMQ'I S J WEL B 矶"皿•.uNWIttttN• wt ,E 0tt<N'GUW2:■r^• trHMTNnch o^ftaMve⑶打开“图表”对话框,选中“条形” 复选框,点击“继续”按钮。

⑷ 回到“频率(F广对话框,点击确立。

(5)重复步骤(1) (2)把步骤(3)改成打开“图表”对话框,选中"饼图” 复选框,点击“继续”按钮。

再回到c 濒率(F 广对话框,点击确定。

三、实验结果及分析统计量数学N有效 15缺失均值55 • 87中值49、00众数37标准羞24、348 方盪592 、 838极小值24极大值95百分位数 2536、00504,007581 70英语N有效 15缺失均值57、80中值56、00众数56标准差22、697方渥515U71极小值15极大值91百分位数 2534、005056、007578、00存在多个众数。

显示锻小值成绩段料目:语文成塡段成绩段料目:数学ft成塡段不M成纳段科目:英语试址段料目:话文□啸□ A成纳段 科目:敢7语文成绩得平均成绩为67、87,中位数就是73、众数6 0、标准差21、73 8、方差472、552、 极差9 8 -19=79.最大值9 8与最小值1 9 ; 各分数段人数:语文90~10 0为3, 80〜8 9为1, 70〜79为4, 6 0~69为4, 6 0分以下为3, 数学90〜100为1,80〜8 9为3,70-7 9为2,60〜69为0, 60分以下为9, 英语9 0〜1 00为2 ,80-89为1, 70-79为2,60- 6 9为2,60分以下为9 , 生成条形图与饼图如截图所示 题目二1.打开数据文件“d a 24—6、s a g 完成以下统计分析:(1)对身高进行考察,分析四分位数、计算上奇异值、上极端值、下奇异值与下极端值,并生 成茎叶图与箱图:(2) 考察身高、体重与胸用得正态性。

针对第一问试址段 料目:英语□啸 □ A1、解决问题得原理探索性分析第1步打开数据菜单选择:“文件一打开一数据”,将"data 4 — 9 . s av"导入。

第2步探索分析设置:(1)选择菜单“分析一描述统计-探索”,打开“探索”对话框,,将“身髙”字段移入“因变量列表S(2)打开“统讣量”对话框,选中“描述性”及古计:T'选项;因变量列表(R):I 「处 _ _@按索;统曲•一AH描述淫均值的這信区间©:隔| %厨世-估计量(M)O界外徹0E百分位数(E)—[取消J〔帮助|⑶打开“探索:图”对话框,选中“按因子水平分组”、“茎叶图”、“带检验得正态图”等选项。

打开“探索:选项”,选中“按列表排除个案”选项针对第二问与第一问得方法相似也可用探索性分析第1步探索分析设置:(1)选择菜单“分析一描述统计-探索”,打开“探索”对话框,,将“体重”字段移入“因变量列表M O(2)打开“统计量”对话框,选中“描述性”及“M—估计量”选项;因变量列表(P):- —1 I 几 _ _區抿索;统计呈0描述准均值的這信区间©:協| % 厨世-估计量(M) O界外值◎ B百分位数(E)统计Bootstra(缠续]〔取消H帮助](3)打开“探索:图”对话框,选中“按因子水平分组J “茎叶图”、“带检验得正态图”等选项。

打开“探索:选项”,选中“按列表排除个案”选项第2步探索分析设置:(1)选择菜单“分析-描述统计 -探索”,打开“探索”对话框,,将“胸围”字段移入“因变量列表”O因变量列表助1 「几 _ _ 區探索;统H 星•一 A 01苗述准均值的這信区间©:隔| % 厨世-估计量(M)O 界外值(Q) 百分位数迟)— [竝簇]|取消]|帮助|(3) 打开“探索:图”对话框,选中“按因子水平分⑵打开“统汁量”对话框,选中“描述性”及“NM 古计量”选项;1 [统计呈]绘制C 」|选项I组二“茎叶图J “带检验得正态图”等选项。

打开“探索:选项”,选中“按列表排除个案”选项3.结果及分析身咼身高Stem-and-Leaf Plot Frequency Stem & Leaf2.00 16.00 39.00 18.00 13.00 9・9910・ 000000122233334410 ・ 55555555666667777888888899999999999999911 ・ 00000011.222223334411・ 55566677889997.00 12 ・ 00000021.00 12 . 5Stem width; 10.0Each kaf: 1 case(s)从上得茎叶图可以更加详细地分析身髙数据。

125 0-120 0-115.0-110.0-:C5 0-10CCT95 0-DetrondtO Normal Q-Q Plot of>4-o•骞I MoI严小吧z °• s*O $从上得箱图可以分析变量“身高”得四分位数。

ObMrvtd V4纫U的正书QQ朝刿憎的0降iF•鲁QQM从上得Q-Q图中可以瞧出,身髙、体重、胸用三个变量都很好得服从正态分布。

题目三表4、2 2就是对吸烟与患气管炎得调查表,试分析吸烟与患气管炎之间得关系。

(用交叉列联表分析,参见数据文件:data4—10、sav o)1、解决问题得原理:运用交叉表分析2、实验内容第1步打开数据菜单选择:“文件-*打开-*数据”,将"data4— 1 0、sav"导入。

第2步加权设置:菜单选择:“数据一加权个案”,打开“加权个案”对话框,如图设巻。

第3步交叉表分析设置:⑴选择菜单:“分析一描述统计一交叉表”,打开“交叉表”对话框,将“就是否吸烟”及“就是否换气管炎”字段分别加入“行(s )”及“列(0 ”列表框中。

⑵打开“统讣量”对话框,选中“卡方”选项。

3)@交叉表:统计星I 茨1藉确09…圍卡方(旦) □相笑性迟)L 丈B ------------- r-SE ---------------------------包元格匡)…相依系数(9):Gamma(G)格式(巳…□ Phi Cramer 变量二 Somers" d(S)>otstrap(A).[□ Lambda(L)□ Kendall 的 tau •以B)□不定性怒数也) Kendairs tau-c(C)按区间标定0 Kappa(K)□ Eta(E)[□风险①~ McNemar(M)鬥 Cochran's and Mantel-Haenszel 统计呈(A)检验一般几率比等于]:[5^] 帮助)(确定J |粘贴吃)11重置迟)H 取消 H 顾—[(3)打开“单元显示”对话框,选中“观察值”及“四舍五入单元格计数”选项,二者 都就是缺省设置。

残差未标准化应)□标准化(g>n 调节的标准化©) 非整数权重◎四舍五入单元格计数迥)©四舍五入个案 ©裁短单元格计数(丄) O 截短个累权重(旦) ◎无调节®)[竝续]〔取消]j3实验结果及分析就是否吸烟*就是否患气管炎Cr os s tabulat i on百分比(C )行迟) □列a、Oc e 1 1 s ( * 0%) have expe c t ed cou n t les s than 5 ' The mini mum expect ed c oun t is 22 • 14 ■b、pu t ed only f or a 2x 2 tableBarChartZJLL> 5炬否吸JW综上所示,各种检验方法显著水平都远小于0、05,所以有理由拒绝“实验准备与评价结果就是独立得”假设,即认为实验准备这一评价指标与评价结果就是相关得。

相关文档
最新文档