(完整版)4.1凸轮机构的应用和分类

合集下载

凸轮机构类型及应用

凸轮机构类型及应用
2)只适用于低速轻载的场合。
2. 等加速-等减速运动规律 s
推程的前h/2为等加速, 后半h/2为等减速运动。 ◆ 推程运动方程
v
4
h2
h2
,t
2h
◆位移线图的绘制
,t a 4h2 2
,t
◆ 等加速等减速运动规律运动特性
1)柔性冲击—从动件在某瞬时加速度发生 有限值的突变所引起的冲击。
2)适用于中速轻载的场合。
0.010.1 0.2 0.30.40.50.60.81.0 2.0 3.0 6.0
10 200 300 5 350 0.01
hrob 正弦加速度运动
0.1 0.2 0.4 0.6 1.0 2.0 5.0
通常用s-δ、υ-δ、a-δ曲线来表示。
常用的从动件运动规律有: 等速运动规律、等 加速-等减速运动规律、余弦加速度运动规律等。
1. 等速运动规律
位移线图
◆ 推程运动方程:
s h
v h
a0
速度线图 加速度线图
◆位移线图的绘制
s
h
,t
v
a
,t
,t
◆ 等速运动规律运动特性 1)刚性冲击—从动件在某瞬时速度突变, 其加速度及惯性力在理论上均趋于无穷大。
15
25 20
30 35 40 50
凸轮转角
60 70 8090 100
25 30 35 40 20
50 607080
15
凸轮转角
90 100
10
5
hro 等速运动
0.010.1 0.2 0.30.40.50.60.81.0 2.0 3.0 6.0
10 200 300 5 350 0.01

第四章 凸轮机构

第四章 凸轮机构
凸轮机构分类 按从动件的运动形式分:
直动从动件凸轮机构
摆动从动件凸轮机构
7
4.1 凸轮机构的应用和类型
凸轮机构分类 按从动件的形式分:
尖顶从动件凸轮机构
平底从动件凸轮机构
滚子从动件凸轮机构
8
4.1 凸轮机构的应用和类型
凸轮机构分类
按凸轮与从动件保持接触的方式分类(锁合方式):
重力锁合
,t
h cos 2 2
2 2
,t
加速度曲线不连续,存在 柔性冲击。余弦加速度运动 规律适用于中低速中载场 合。
a
amax4.93h2Φ 2
,t
4.2 从动件的运动规律
3. 余弦加速度运动规律
v 5 h /20 4 3 6 2
速度线图
7 1
8 0
第四章 凸轮机构
4.1 凸轮机构的应用和类型
4.2 从动件的常用运动规律 4.3 凸轮机构的压力角
4.4 图解法设计凸轮轮廓
1
4.1 凸轮机构的应用和类型
凸轮机构实例
内燃机配气机构
2
4.1 凸轮机构的应用和类型
凸轮机构实例
自动机床进刀机构
3
4.1 凸轮机构的应用和类型
凸轮机构实例
绕线机构
4
4.1 凸轮机构的应用和类型
弹簧力锁合
槽道凸轮机构
等宽凸轮机构
力封闭凸轮机构
等径凸轮机构
共轭凸轮机构
几何结构封闭凸轮机构
4.1 凸轮机构的应用和类型 凸轮机构的特点:
优点:只需设计适当的凸轮轮廓,便可使从动件得到 所需的运动规律,并且结构简单、紧凑,设计方便。
缺点:凸轮廓线与推杆之间为点接触或线接触,易 磨损,所以凸轮机构多用在传力不大的场合。

凸轮机构的应用及分类推杆的运动规律凸轮轮

凸轮机构的应用及分类推杆的运动规律凸轮轮
轮廓曲线的设计了。相对运动原理:对整个机构施加一个 凸轮廓线设计的公方法共:运作动图时法,和各解析构法件间的相对运动保 1.凸轮廓线设计持的不基变本。原理
无论是采用作图法还是解析法设计凸轮廓线,所依据的基本 原理都是反转法原理。
例 偏置直动尖顶推杆盘形凸轮机构 (1)凸轮的轮廓曲线与推杆的相对运动关系
一、凸轮机构的基本名词术语
基圆 基圆半径 r0 推程 推程运动角 δ0 远休 远休止角 δ01 回程 回程运动角 δ0′ 近休 近休止角 δ02 行程 h
尖顶直动推杆的位移曲线
二、推杆常用的运动规律
1、等速运动规律 2. 等加速等减速运动规律 3. 余弦加速度运动规律 4. 正弦加速度运动规律 5. 3-4-5多项式运动规律
(2) 空间凸轮机构
圆柱凸轮机构在 机械加工中的应用
凸轮机构在其它机器中的应用
2、按推杆形状分类
• (1)尖顶推杆: • 尖端能与任意复杂凸轮轮廓保持接触,因而能实现任意预期的运动规
律。 • 尖顶与凸轮呈点接触,易磨损,用于受力不大的场合。 • (2)滚子推杆: • 它改善了从动件与凸轮轮廓间的接触条件,耐磨损,可承受较大载荷,
凸轮机构基本尺寸的确定
为保证凸轮机构能正常运转,应使其最大压力角αmax小于临
界压力角αc, 增大l, 减小b,可以使αc值提高。
生产实际中,为了提高机构的效率,改善其受力情况, 通常 规定:凸轮机构的最大压力角αmax应小于某一许用压力角[α], 即
αmax<[α]
([α]<<αc)
许用压力角[α]的一般取值为
• (2) 空间凸轮机构:两活动构件之间的相对运动 为空间运动的凸轮机构,
(1) 平面凸轮机构

第9章凸轮机构应用和分类(1)

第9章凸轮机构应用和分类(1)
按照凸轮与从动件维持 高副接触的方法分类
力锁合 形锁合
2020/10/17
§4-1 凸轮机构的应用和分类
力锁合
所谓力锁合型,是指 利用重力、弹簧力或 其它外力使从动件与 凸轮轮廓始终保持接 触。
2020/10/17
§4-1 凸轮机构的应用和分类
形锁合
所谓形锁合型,是指 利用高副元素本身的 几何形状使从动件与 凸轮轮廓始终保为半径作的 圆。
基圆半径
即为最小向径r0。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
偏距
凸轮回转中心至从动 件导路的偏置距离e。
偏距圆
以e为半径作的圆。
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
行程
从动件往复运动的最 大位移,用h表示。
第四章 凸轮机构及其设计
§4-1 凸轮机构的应用和分类
Knowledge Points
凸轮机构的组成 凸轮机构的分类 凸轮机构的优点、缺点
2020/10/17
§4-1 凸轮机构的应用和分类
凸轮机构的组成
凸轮是具有曲线轮廓 或凹槽的构件
凸轮机构一般由凸轮、 从动件和机架三个构 件组成。
凸轮轮廓线与从动件之间是点或线接触的 高副,易于磨损,故多用于传力不大的场 合。
2020/10/17
§4-1 凸轮机构的应用和分类
§4-2 从动件的运动规律
Knowledge Points
多项式运动规律 三角函数运动规律 组合运动规律
2020/10/17
§4-1 凸轮机构的应用和分类
基本概念
s c 0 c 1 c 22 c nn
式中c0、cl、c2、…、cn为n+1个 系数。这n+1个系数可以根据对 运动规律所提的n+1个边界条件 来确定。

机械原理 4 凸轮机构及其设计

机械原理 4 凸轮机构及其设计

dS e
dS e
arctg d
arctg d
S S0
S r02 e2
η ——转向系数 δ ——从动件偏置方向系数
由式可知:r0↓α ↑
三、按轮廓曲线全部外凸的条件确定平底从动件盘形凸轮机构 凸轮的基圆半径
r0
0
b'
B1
B2 r0
B3
B0

B8
O
B7
§4-2 常用从动件的运动规律
一、几个概念 尖底偏置直动从动件盘形凸轮机构 1、基圆:凸轮轮廓上最小矢径为半径的圆
2、偏距e:偏距圆
e
A
w
B
r0 O
C
D
h h
二、分析从动件的运动
行程:h(最大位移) 推程运动角:φ=BOB′=∠AOB1 运休止角:φS=∠BOC=∠B1OC1 回程运动角:φ′=∠C1OD 近休止角:φS′=∠AOD


f (x1, y1,) 2(x1
x) dx
d
2( y1
y) dy
d
0
联立求解x1和y1,即得滚子从动件盘形凸轮的实际廓线参数方程:
x1 x rT y1 y rT
dy / d
2
2

dx
d



dy
d


dx / d
b'' B6
B5 B4
四、滚子半径的选择
rT
rT C
rT
B
rT

' O
A '
'
滚子半径rT必须小于理论轮廓曲线外凸部分的
最曲率半径ρ

机械设计基础-第4章-1-凸轮机构

机械设计基础-第4章-1-凸轮机构
s
30
30
120
120
90
δ
360
七、解析法设计凸轮轮廓曲线
1、偏置直动滚子从动件盘形凸轮轮廓的设计
建立凸轮转轴中心的坐标系xOy
根据反转法原理,凸轮以w转过j角;
B点坐标为
x y
(s0 (s0
s) sin j s) cosj
e cosj esinj
上式即为凸轮理论廓线方程
实际廓线与理论廓线在法线上相距
凸轮机构由凸轮、从动件和机架三部分组成。
凸轮机构是高副机构,易于磨损,因此只适用于传 递动力不大的场合。
示例一 内燃机配气机构
示例二 靠模车削机构
示例 绕线机的凸轮绕线机构
示例 缝纫机的凸轮拉线机构
凸轮机构的主要优点: 使从动件实现预定的运动规律,结接触,容易磨损。 用于传递动力不大的控制机构或调节机构。
2、自D0起,沿-ω方向取δ1-4 角,等分各部分,从D1起以 从动件长度为半径作圆,与基 圆交于C点。
3、C1D1起,分别量取β角, 与2的圆交于B点,连接B0、 B1、B2…,即为凸轮曲线。
例题:设计盘形凸轮机构,已知凸轮角速度ω1逆时针转动, 基圆半径r0=30mm,从动件的行程h=40mm。从动件的 位移线图如下:
第四章 凸轮机构及间歇运动机构
§4-1 凸轮机构的应用和分类 §4-2 从动件常用的运动规律 §4-3 盘形凸轮轮廓曲线的设计 §4-4 凸轮机构设计中应注意的问题 §4-5 间歇运动机构
§4-1 凸轮机构的应用和分类
凸轮是一种具有曲线轮廓或凹槽的构件,它通过与从 动件的高副接触,在运动时可以使从动件获得连续或不 连续的任意预期运动。
当凸轮继续以角速度ω1逆时针 转过角度δ2时,从动件尖顶从 C到D,在最远位置停止不动, 对应的δ2是远休止角。

凸轮机构类型及应用

凸轮机构类型及应用

■ 靠模车削机构
工件1回转,凸轮3作为 靠模被固定在床身上, 刀 架2 在弹簧作用下与凸轮 轮廓紧密接触。
当拖板4纵向移动时,刀 架2 在靠模板(凸轮)曲线 轮廓的推动下作横向移动, 从而切削出与靠模板曲线 一致的工件。
■自动送料机构 2
1 3
➢ 凸轮机构是由凸轮、从动件和机架三个 基本构件组成的高副机构。
(2) 移动凸轮: 凸轮相对 机架作直线运动。
(3) 圆柱凸轮: 带槽的圆 柱体所形成的凸轮,是一种空 间凸轮。
2. 按从动件形状分类
(1) 尖底从动件 优点:尖顶从动件能与任意复杂的 凸轮轮廓保持接触,因而能使从动 件实现任意的运动规律。 缺点:结构简单, 但磨损快,多用 于受力不大的低速凸轮机构中。
(2) 滚子从动件
优点:滚动摩擦,摩擦阻力小, 不易磨损,承载能力大。 缺点:但滚子轴有间隙,不宜 高速场合。
(3) 平底从动件
优点:凸轮与从动件间的作用力 始终垂直于从动件的平底 ,因此传 动平稳;接触面间容易形成油膜 , 润滑较好,效率高。
缺点:但运动规律受到一定的限制。 F
常用于高速重载的场合。
➢ 凸轮机构可使从动件实现预期的运动规律。 从动件的运动规律取决于凸轮的轮廓形状。
➢ 凸轮机构是高副机构,易于磨损,因此只适 用于传递动力不大的场合。
因此,凸轮机构广泛用于各动化、半自动化 械中。
二、凸轮机构的分类 1. 按凸轮形状分类 (1) 盘形凸轮: 它是一种有向径变化的绕 固定轴转动的盘形零件。
凸轮机构类型及应用
凸轮机构
凸轮是一种具有曲线轮廓或凹槽的构件,在运 动时可使从动件获得连续或间歇的任意运动规律。
凸轮机构广泛用于传递动力不大的各种机器和 机构中。

第4章 凸轮机构

第4章 凸轮机构

滚子半径(rT)的确定
内凹的凸轮轮廓
a min rT
不论滚子半径大小如何, 凸轮的工作廓线总是可 以平滑地作出。
外凸的凸轮轮廓
a min - rT
1)当ρmin= rT,实际轮 廓上将出现尖点
2)当ρmin<rT时,则 为负值,这时实际的轮 廓出现交叉,从动轮将 不能按照预期的运动规 律运动,这种现象称为
从动件位移曲线
盘形凸轮机构基本概念
凸轮轮廓组成 非圆弧曲线 AB、CD 圆弧曲线 BC、DA
基圆 基圆半径r0 推程 行程h
推程运动角δ0 远休止 远休止角δs 回程 回程运动角δh 近休止 近休止角δs
从动件位移曲线
等速运动规律
从动件速度为定值的运动规律称为等速运动规律。
推程
回程(空回行程) [a ] 70 0 ~ 80 0
压力角的选择和检验
压力角与机构尺寸的关系
由速度合成定理作出 B 点的速 度三角形,可得:
tana PD OP e ds/d e
BD s0 s
r02 e2 s
于是
r0
ds/d
(

e

s) 2

e2
tg[a ]
压力角的选择和检验
检验压力角
注意:若测量结果超过许用值,通常可用加大凸轮
基圆半径的方法使max 减小。
设计凸轮机构应注意的问题
若v、s、 已知,则压力角越大,基圆半径 越小,使得机构尺寸紧凑,但易产生自锁。
压力角越小,无用分力越小,受力性能提 高,传动效率加大,避免自锁。
针对凸轮机构传力性能和尺寸紧凑的矛盾, 设计时通常应考虑许用压力角[a]。 一般只针对推程进行压力角的校核。回程 中从动件是由弹簧、自重等外力驱动,而非由 凸轮驱动,故在回程中通常不产生自锁。

凸轮机构的应用及其分类

凸轮机构的应用及其分类

二)按从动件上高副元素的几何形状分
1、尖顶从动件 2、滚子从动件 3、平底从动件
三)、根据从动件的运动形式分
1、移动从动件凸轮机构




2、摆动从动件凸轮机构
表中给出了从动件的运动方式及其 与凸轮接触形式的分类和特点。
四)按机构封闭性质分
⑴ 力封闭式 利用弹簧力或
从动件重力使从动件与凸轮 保持接触,如右图所示。
⑵ 形封闭式 利用凸轮或从
动件的特殊形状而始终保持 接触。如下图所示。
五)按从动件导路与凸轮的相对位置分
⑴ 对心凸轮机构
一偏置距离。 从动件导路中心线通过凸轮回转中心。
⑵ 偏心凸轮机构 从动件导路中心线不通过凸轮回转中心,而存在
内燃机
本章完

凸轮机构主要是由机架,凸轮和从动件组 成,凸轮和从动件之间形成高副。 凸轮机构的特点是:结构简单、紧凑,设 计 容易且能实现任意复杂的运动规律。 但 因凸轮与从动件之间系点、线接触, 易于 磨损,故只用于受力不大的场合。

二、凸轮机构的分类
一)按凸轮的形状分
1、盘形凸轮 2、移动凸轮 3、圆柱凸轮
§3-1
凸轮机构的应用和类型
一、凸轮机构的组成及应用
凸轮机构是一种结构简单且容易实现各种复杂运
动规律的高副机构,广泛应用于自动化及半自动
化机械中。 如图所示为内燃机配气凸轮机构 。凸轮1以等 角速度回转,驱动从动件2按预期的运动规律启闭 阀门。
动画
一、凸轮机构的组成:
机架3 从动件2
1 O1
但易于一按凸轮的形件2滚子从动件3平底从动件二按从动件上高副元素的几何形状分三根据从动件的运动形式分1移动从动件凸轮机构对心偏心2摆动从动件凸轮机构表中给出了从动件的运动方式及其与凸轮接触形式的分类和特点

机械基础(凸轮机构)

机械基础(凸轮机构)

s h
3.余弦加速度运动规律:
O
从动件加速度在起点和终点存在 v
有限值突变,故有柔性冲击;
0/2 p h /20
若从动件作无停歇的升-降-升
O
连续往复运动,加速度曲线变为 a
连续曲线,可以避免柔性冲击;
O
可适用于高速的场合。
0/2 p22 h /202
0/2 -p22 h /202
0
0 0
凸轮机构
一.任务资讯
(一)凸轮机构的应用及分类
凸轮:具有控制从动件运动规律的某种曲线或凹槽的主动件。 作等速回转运动或往复移动。 凸轮机构:由凸轮、从动件(推杆)和机架组成的高副机构。
机架3
从动件2
1 O1
凸轮1
(一)凸轮机构的应用及分类
1、凸轮机构的应用(Application of Cams)
定的运动规律回到起始位置的过程。
8、回程运动角:
与回程相应的凸轮转角δ0 ' 。 δ0 ' =∠COD
9、近休止:
从动件停留在凸轮最近处。
10、近休止角:
从动件在最近位置停止不动所 对应的凸轮转角δs'。
δs' =∠AOD
O
B'
h
A
δs' D δt
δh δs
w
B
C
11、从动件位移线图: 以纵坐标代表从动件位移s2 ,横坐标代表凸轮转角 δ1或时间t,所画出的图形为位移曲线图。
与推程相应的凸轮转角δ0。 δ0= ∠AOB
O
B'
h
A
δs' D δ0
δ0 ' δs
w
B
C

第一讲 凸轮机构的应用和分类及从动件常用运动规律

第一讲 凸轮机构的应用和分类及从动件常用运动规律
滚子摆动式圆柱凸轮机构
形状锁合
22
第一讲 凸轮机构的类型及其常用运动规律
凸轮机构分类示例
滚子移动式圆柱凸轮机构
23
第一讲 凸轮机构的类型及其常用运动规律
凸轮机构分类示例
凸轮机构
内燃机
力锁合
24
第一讲 凸轮机构的类型及其常用运动规律
三. 凸轮机构的应用和特点
应用:广泛地应用于各种机械,特别是自动机械、自动
第一讲凸轮机构的类型及其常用运动规律19凸轮机构分类示例尖顶从动件移动式摆动式第一讲凸轮机构的类型及其常用运动规律20凸轮机构分类示例滚子从动件移动式摆动式第一讲凸轮机构的类型及其常用运动规律21凸轮机构分类示例平底从动件移动式摆动式第一讲凸轮机构的类型及其常用运动规律22凸轮机构分类示例滚子摆动式圆柱凸轮机构形状锁合第一讲凸轮机构的类型及其常用运动规律23凸轮机构分类示例滚子移动式圆柱凸轮机构第一讲凸轮机构的类型及其常用运动规律24凸轮机构分类示例内燃机力锁合凸轮机构力锁合凸轮机构第一讲凸轮机构的类型及其常用运动规律25三
3
第一讲 凸轮机构的类型及其常用运动规律
§11-1 凸轮机构的应用和分类
4
第一讲 凸轮机构的类型及其常用运动规律
上次课教学内容复习
解答学生问题,提出问题:
1. 平面四杆机构的演化机构基本型式有哪些 ? 2. 为什么说导杆机构有较好的传力性能 ?
5
第一讲 凸轮机构的类型及其常用运动规律
新课导入:
2. 按从动件的形状分类
(3) 平底从动件: 从动件与凸轮轮廓的接触一端为一平面。若不考虑摩 擦,凸轮对从动件的作用力始终垂直于端平面,传动效率 高,且接触面间容易形成油膜,利于润滑,故常用于高速 凸轮机构。它的缺点是不能用于凸轮轮廓有凹曲线的凸轮 机构中。 (4) 曲面从动件:

机械原理凸轮机构

机械原理凸轮机构

O
Ov
1
1
2 3 4 5 6 234 56
速度的变化率(即跃度j)在这些 位置为无穷大——柔性冲击
v
O
2
适应场合:中速轻载
O
2
a a0
O 2
j
3.简谐运动(余弦加速度运动)
当质点在圆周上作匀速运动 时,它在该圆直径上的投影所构 成的运动规律—简谐运动
s
h 2
1
cos
π Φ
φ
特点:有柔性冲击
作平底的内包络线,即为所要设计 的凸轮廓线
4.4 解析法设计平面凸轮轮廓曲线
一、直动滚子从动件盘形凸轮
已知:凸轮以等角速度 逆
y
时针方向转动,凸轮基园半
径ro、滚子半径rr,导路和凸
e
轮轴心间的相对位置及偏距e,
B0 ''
n
从动件的运动规律 s s(。)
1. 理论廓线方程: B(x, y)
s0 O
4.1.2 凸轮机构的分类
1. 按凸轮的形状分类
盘形凸轮 移动凸轮
圆柱凸轮
盘形凸轮:最基本的形式,结构简单,应用最为广泛
移动凸轮:凸轮相对机架做直线运动
圆柱凸轮:空间凸轮机构
2. 按从动件的形状分类
尖端能以任意复杂的凸轮轮廓 保持接触,从而使从动件实现 任意的运动规律。但尖端处极 易磨损,只适用于低速场合。
d
min
s
e
L

rb r' Cu
O
4.6 圆柱凸轮机构
一、直动从动件圆柱凸轮机构
O
rm 1
O a)
v1
η η
1
η 2
v2

凸轮机构的应用及分类-PPT文档资料

凸轮机构的应用及分类-PPT文档资料
6
罐头盒封盖机构
图4-4所示的罐头盒 封盖机构,亦为一凸 轮机构。
原动件1连续等速转动, 通过带有凹槽的固定 凸轮3的高副导引从动 件2上的端点C沿预期 的轨迹——接合缝S运 动,从而完成罐头盒 的封盖任务。
7
而在图4-5所示的巧克力输送凸轮机构中,当带有 凹槽的圆柱凸轮1连续等速转动时,通过嵌于其槽 中的滚子驱动从动件2往复移动,凸轮1每转动一周, 从动件2即从喂料器中推出一块巧克力并将其送至 待包装位置。
精品
凸轮机构的应用及 分类
§4-l 凸轮机构的应用及分类 §4-2 从动件运动规律及其选择 §4-3 按预定运动规律设计盘形凸轮轮廓 §4-4 盘形凸轮机构基本尺寸的确定 §4-5 空间凸轮机构简介
2
凸轮机构是含有凸轮的一种高副机构,在自动 机械和半自动机械中得到了广泛的应用。
凸轮是一具有曲面轮廓的构件,一般多为原动 件(有时为机架);当凸轮为原动件时,通常 作等速连续转动或移动,而从动件则按预期输 出特性要求作连续或间歇的往复摆动、移动或 平面复杂运动。
从以上诸例可以看出:凸轮机构一般是由三 个构件、两个低副和一个高副组成的单自由 度机构。
盘形凸轮机构在 印刷机中的应用
等径凸轮机构在 机械加工中的应用
利用分度凸轮机构 实现转位
圆柱凸轮机构在 机械加工中的应用
二、凸轮机构的分类
在凸轮机构中,凸轮可为原动件也可为机架; 但多数情况下,凸轮为原动件。
二、从动件运动规律
从动件的位移s、速度v和加速度a随凸轮转角φ
(或时间t)的变化规律称为从动件运动规律。
从动件运动规律又可分为基本运动规律和组合运 动规律,
25
1、基本运动规律
(1)等速运动规律 从动件在运动过程中速度为常数,而在运动的

凸轮机构的应用及其分类

凸轮机构的应用及其分类

作图步骤:
1、建立坐标系,并将横 坐标6等分,以从动件 h 3 推成h作为直径作半圆, 2 并将其6等分。分别记 作1、2、3、4、5、6。 2、分别作这些等分点关 于轴和s轴的垂线,分 别俩俩对应相交于1‘、2’ 3‘、4‘、5’、6‘。 4
5
6 4’ 3’
5’ 6’
2’
1’ 1 O 1 2 3 4 5 6
0, s 0 , s h
1 2 sin( ) 2 h 2 v 1 cos( ) 2 h 2 2 a sin( ) 2 s h
二、组合运动规律简介
运动规律组合应遵循的原则:
从动件常用基本运动规律特性
运动规律 等 速
(h / ) (h 2/ 2 )
vmax
a max
冲击特性 刚性 柔性 柔性 无
适用范围 低速轻载 中速轻载 中速中载 高速轻载
等加速等减速
余弦加速度 正弦加速度
1.0 2.0 1.57 2.00
4.00 4.93 6.28
s
h
0 v
x 1 1 2 2 y 1 1 2 2 B 2 2 1 2
当不计凸轮与从动件之 间的摩擦 时,凸轮给予从 动件的力F是沿法线方向, 从动件运动方向与力F之间 的锐角α即压力角。凸轮压 力角是反映机构传力特性 的一个重要参数。如图所示, 力F可分解为沿从动件运动 方向的有用分力F′和使从件 紧压导路的有害分力F″,且 F″=F′tgα
1、n=1的运动规律 s = c0+c1
v= c1 a=0 =0, s=0; =, s=h.
v h
h S
a0
等速运动规律
s

凸轮机构的类型及应用

凸轮机构的类型及应用

最大压力角max
75 70
25
30
35 40
45
50
55
65 60
15 20
最大压力角max
75 70
25
30 35
40
45
50
55
65 60
15
25 20
30 35 40 50
凸轮转角
60 70 8090 100
25 30 35 40 20
50 607080
Байду номын сангаас15
凸轮转角
90 100
10
5
hro 等速运动
有效分力 Ft=F.cosα 有害分力 Fn=F.sinα
压力角α↓:凸轮机构传力性能愈好。 设计凸轮机构时, 应使最大压力角αmax≤[α]。 式中[α]——许用压力角:
推程时,移动从动件 [α]=30°~40°, 摆动从动件 [α]=45°~50°;
回程时,通常取 [α]=70°~80°。
四、基圆半径的确定
(2) 滚子从动件
优点:滚动摩擦,摩擦阻力小, 不易磨损,承载能力大。 缺点:但滚子轴有间隙,不宜 高速场合。
(3) 平底从动件
优点:凸轮与从动件间的作用力 始终垂直于从动件的平底 ,因此传 动平稳;接触面间容易形成油膜 , 润滑较好,效率高。
缺点:但运动规律受到一定的限制。 F
常用于高速重载的场合。
0.010.1 0.2 0.30.40.50.60.81.0 2.0 3.0 6.0
10 200 300 5 350 0.01
hrob 正弦加速度运动
0.1 0.2 0.4 0.6 1.0 2.0 5.0
3、简谐运动规律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械设计基础课程教案
授课时间第3 周第7 节课次
2
授课方式(请打
√)理论课□
其他□
讨论课□实验课□ 习题课□课时安
排2
授课题目:
第四章凸轮机构
主要教学方法教学方法:利用动画演示机构运动,工程应用案例展示其应用场合。

与手段教学手段:
本课次教学目的、要求: 1. 了解凸轮机构的组成、特点、分类及应用
2. 掌握从动件的常用运动规律;了解其冲击特性及应用
教学重点及难点:
重点:凸轮机构的从动件的常用运动规律。

难点:立体凸轮机构运动的实现
教学基本内容及过程
4.1 凸轮机构的应用和分类
4.1.1 凸轮机构的应用
凸轮是一个具有曲线轮廓或凹槽的构件,主要由凸轮、从动件和机架三个构件组成。

凸轮通常作连续等速转动,从动件则按预定运动规律作间歇(或连续)直线往复移动或摆动。

请看下图所示的内燃机配气凸轮机构。

凸轮1 以等角速度回转,杆)它的轮廓驱使从动件(阀
按预期的运动规律启闭阀门。

内燃机配气机构
送料机构
上图所示则是自动送料机构。

当有凹槽的凸轮 1 转动时,通过槽中的滚子
件2 作往复移动。

凸轮每转一周,从动件即从储料器中推出一个毛坯送到加工位置。

4.1.2 凸轮机构的分类
3,驱使从动
接下来学习凸轮机构的分类。

如果
按凸轮的形状分,可以分为:① 盘形凸
轮:如下图(a) 所示。

② 移动凸轮:如
下图
(b) 所示。

③ 圆柱凸轮:如下图(c) 所示。

凸轮的类型
如果按从动件的形状分,可以分为:① 尖顶从动件:如下图(a) 所示。

② 滚子从动件:如下图(b) 所示。

③ 平底从动件:如下图(c) 所示。

从动件的类型
4.2 从动件的常用运动规律
从动件的常用运动规律有下面三种:
1. 等速运动规律
2. 等加速等减速运动规律
3. 简谐运动规律
机械设计基础课程教案
授课时间第3 周第8 节课次
2
授课方式(请打
√)理论课□
其他□
讨论课□实验课□ 习题课□课时安
排2
授课题目:4.3 盘形凸轮轮廓的设计
主要教学方法教学方法:与手段教学手段:本课次教学目的、要求:掌握反转
法,能用图解法绘制凸轮轮廓线,能编程设计凸轮廓线。

教学重点及难点:着重讲清“反转法”原理。

重点:着重讲清“反转法”原理。

难点:着重讲清“反转法”原理。

教学基本内容及过程
3.3 图解法设计盘形凸轮轮廓
凸轮轮廓的设计原理
按从动件的已知运动规律绘制凸轮轮廓的基本原理是反转法。

根据相对运动原理,若将上图所示的整个凸轮机构(凸轮、从动件、机架)加上一个与凸轮角速度大小相等、方向相反的公共角速度(),此时各构件之间的相对运动关系不变。

这样,凸轮静止不动,而从动件一方面随机架和导路一起以等角速度“ ”绕凸轮转动,另一方面又按已知运动规律在导路中作往复移动(或摆动)。

由于从动件的尖顶始终与凸轮轮廓保持接触,所以反转后从动件尖顶的运动轨迹就是凸轮轮廓。

凸轮机构的类型虽然有多种,但绘制凸轮轮廓的基本原理及方法是相同的,凸轮轮廓都按反转法原理绘出。

下面以常见的盘形凸轮为例,说明凸轮轮廓曲线的绘制方法。

3.3.1 图解法原理
4.3.2 尖顶直动从动件盘形凸轮轮廓的设计
我们来看一个例题
试设计此凸轮轮廓曲线。

解: 设计步骤如下:
1.按一定比例尺= 0.002 m/mm 绘制从动件的位移线图(见下图(a))。

2.按同一比例尺= ,以为半径作基圆,基圆与导路的交点即为从动件尖顶的
起始位置。

3.等分位移线图的横坐标和基圆。

根据反转法原理,按位移线图中横坐标的等分数,
从开始,沿的方向将基圆圆周分成相应的等分数,以射线,,,⋯代表机构反转时各个相应位置的导路,各射线与基圆的交点为,,,⋯。

4.从位移线图量取,,,⋯,得,,,⋯。

5.以光滑曲线连接,,,⋯,即得凸轮的轮廓曲线(见下图(b))。

如果采用滚子从动件,由于滚子中心是从动件上的一个固定点,它的运动就是从动件的运动。

因此,首先把滚子中心看成是尖顶从动件的尖点,此时按尖顶从动件设计得到的轮廓线称为理论轮廓曲线。

再以理论轮廓线上各点为圆心画一系列滚子圆,然后绘出此滚子圆的包络线,它就是滚子从动件凸轮机构的实际轮廓线。

但须注意,此时凸轮的基圆半径是指理论轮廓线上的最小半径(见下图(c))。

对心直动尖顶从动件盘形凸轮轮廓的设计
机械设计基础课程教案
本课次教学目的、要求:了解凸轮机构基本尺寸的确定
教学重点及难点:重点:凸轮机构基本尺寸的确定难点:凸轮机构基本尺寸的确定
教学基本内容及过程
4.4 凸轮机构设计中应注意的问题
3.4.1 凸轮机构的压力角和自锁
压力角是决定凸轮机构能否正常工作的重要参数,确定凸轮机构尺寸时必须考虑对压力角的影响。

式中——从动件的线速度;——从动件在处的位移。

当 < 时,如下图(c) 所示,这时, < 0,产生交叉的轮廓曲线,交叉部分在实际加工时将被切削掉,使这一部分运动规律无法实现,因此从动件的运动将会失真。

经过上述分析可以得到结论,为了使凸轮轮廓在任何位置既不变尖也不相交,滚子半径必须小于外凸理论轮廓曲线的最小曲率半径。

另外,滚子半径必须小于基圆半径。

设计时应使满足以下经验公式

滚子半径的选择。

相关文档
最新文档