陀螺定向测量报告

合集下载

陀螺仪标准基线定向测量方法

陀螺仪标准基线定向测量方法
a°c的定向可直接由一等天文观测获得其真北 方位角值;Sc的真北方位角值以aoc值为基础,外加
第2期
许文媳,等:陀螺仪标准基线定向测量方法
81
高精度角度测量获得。 装置中平行光管C是定制的标准器,焦距/ =
550 nnn,可提供稳定的、接近无穷远的十字丝目 标⑴。对于a°c定向而言,整个过程相对单一,可行 性较高,而Sc的定向过程中却存在测角方法变换,
仪与平行光管对调焦误差引入的不确定度进行估 测。估测方法是以平行光管的十字丝为目标,使用 TS60照准目标读取水平角值,进行远近调焦后再照 准目标,并读取水平角读数,最后取2次读数差的绝 对值为不符值,完成一次试验。经过10次试验后, 最大不符值和最小不符值分别为0"和1.5",试验数 据按“极差法”评定不确定度:
依据JJG(测绘)5201 - 2013(陀螺经纬仪》的 要求,为了保障隧道工程定向的准确性,需对陀螺仪 进行检定。陀螺仪检定的计量标准器一般是指陀螺 仪标准基线,其主要作用就是提供方向基准。本文 主要探讨解决陀螺仪标准基线长、短目标点定向难 的问题。
2陀螺仪标准基线定向
2. 1陀螺仪标准基线的建设 参照《陀螺经纬仪》对陀螺仪计量标准装置的
Standard Baseline Orientation Measurement for Gyroscopes
XU Wenjing, WANG Lulu, DONG Xuming, WU Xuewen, SHEN Yingguang
摘要:陀螺仪标准基线是陀螺仪检定的主要计量标准器,标准基线组成的特殊性会导致其定向时 存在前后视距差过大的问题,进而在定向结果中引入不可控的调焦误差,大大降低定向精度。经过 大量的试验测试和研究,提出利用大视距差高精度测角法来消除调焦误差对定向精度的影响,并论 证了该方法的测量结果具有较高的可信度。 关键词:陀螺经纬仪检定;标准基线;调焦误差;定向精度;不确定度

分析矿井生产中陀螺定向测量的应用及精度

分析矿井生产中陀螺定向测量的应用及精度

分析矿井生产中陀螺定向测量的应用及精度摘要:基于井下定向测量对生产安全及效率的重要性,在简单介绍陀螺定向测量的基础上,结合矿井实例,对陀螺定向测量实际应用及测量成果精度进行深入分析,最后得出陀螺定向测量精度高,测量可靠的结论。

关键词:矿井生产;陀螺定向测量;测量精度矿井井下生产对现场观测与定向有着极高的要求,定向测量精度直接影响实际生产效率,如果精度较差,则必定会降低效率,造成不必要的损失。

因此,应在重视定向测量的基础上,通过新技术和新设备的引入来提高定向测量水平,如采用陀螺经纬仪就是很好的选择。

1陀螺定向测量概述目前,我国与许多国家均研制出充分结合经纬仪与陀螺仪的测量仪器,称为陀螺经纬仪,主要用于完成定向测量。

对于这种新型测量仪器,其作用原理为:借助吊丝进行悬吊,重心下移的陀螺敏感地球自转角速度的水平方向分量,受到重力的作用后,产生一定向北端发生进动的力矩,促使主轴开始围绕子午面发生往复运动,此时利用传感器接收运动光信号,并将其转换成仪器可识别的电信号,传输至控制器实施分析解算。

之后由经纬仪对被测对应方位角进行显示与读取,也可在数据传输接口支持下向终端设备传输数据[1]。

本矿井因建设过程中采用几何定向方法得到定向精度相对较低,同时现已受到一定程度的干扰及破坏,使得可靠性降低,导致井下的无论是控制导线,还是长距离掘进,均需精度达到较高水平的方向控制。

近年来,我国矿山测量人员在积极总结传统几何定向方法不足与弊端的基础上,陆续开始借助陀螺经纬仪完成定向测量任务,以求解决传统方法占用井筒产生的长时间停产、需要消耗大量资源等问题,并克服定向精度伴随井筒深度不断增加而明显降低等不足,确保工作效率及定向成果的精度都能得到大幅提升。

基于此,从本矿井角度讲,为充分满足实际施工提出的各种要求,使首级控制导线始终保证较高的精度,经研究决定在井下方向测量工作中选用新型陀螺经纬仪取代传统的几何定向方法,以此对起始方位角等重要测量成果进行确定与校核。

陀螺仪实验报告

陀螺仪实验报告

university of science and technology of china 96 jinzhai road, hefei anhui 230026,the people’s republic of china陀螺仪实验实验报告李方勇 pb05210284 sist-05010 周五下午第29组2号2006.10.22 实验题目陀螺仪实验(演示实验)实验目的1、通过测量角加速度确定陀螺仪的转动惯量;2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量;3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系。

实验仪器①三轴回转仪;②计数光电门;③光电门用直流稳压电源(5伏);④陀螺仪平衡物;⑤数字秒表(1/100秒);⑥底座(2个);⑦支杆(2个);⑧砝码50克+10克(4个);⑨卷尺或直尺。

实验原理1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度?为:?=d?r/dt=m/ip (1) 式中?r为陀螺仪盘的角速度,ip为陀螺仪盘的转动惯量。

m=f.r为使陀螺仪盘转动的力矩。

由作用和反作用定律,作用力为:f=m(g-a) (2) 式中g为重力加速度,a为轨道加速度(或线加速度)轨道加速度与角加速度的关系为:a=2h/tf2; ?=a/r (3) 式中h为砝码下降的高度,r如图1所示为转轴的半径,tf为下落的时间。

将(2)(3)代入(1)2ip?2mr2t?h2mgr可得: (4)2f测量多组tf和h的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。

2、如图3所示安装好陀螺仪,移动平衡物w使陀螺仪ab轴(x轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕x轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量l:l=ip.?r (5) 当在陀螺仪的另一端挂上砝码m(50g)时就会产生一个附加的力矩m*,这将使原来的角动量发生改变:dl/dt=m*=m*gr* (6) 由于附加的力矩m*的方向垂直于原来的角动量的方向,将使角动量l变化dl,由图1可见: dl=ld?这时陀螺仪不会倾倒,在附加的力矩m*的作用下将会发生进动。

测绘专业实验实习—— 陀螺仪定向原理与方法介绍

测绘专业实验实习—— 陀螺仪定向原理与方法介绍
控制在5~8格之间; 观察陀螺摆光标左右摆动
的摆幅;
记录陀螺通过零指标线的 时间。
1.6 定向边坐标方位角计算
以一个测回测定测线方向值,前后两测回的互差符合限差 时,取其平均值作为测线方向值。定向边坐标方向角的计 算步骤如下:
陀螺方位角=测线方向值-陀螺北方向值 地理方位角=陀螺方位角+仪器常数 坐标方位角=地理方位角-子午线收敛角
仪器常数可在已知方位角的导线上或三角点测定,按下式 计算出:
仪器常数测量地理方位角时可用到,一般在用于煤矿 金属 矿进行陀螺方位角及控制导线测量时用不到仪器常数。
2 索佳GPX陀螺全站仪原理与方法
索佳 GP-1
致谢
The end, thank you!
1.3 精密定向(逆转点法)
பைடு நூலகம்
要求粗定向误差≤±2°;
粗定向后下放陀螺,摆幅 控制在5~8格之间;
使用全站仪水平微动螺旋 跟踪并记录逆转点
N1

1 2

a1
2
a3

a2

N2

1 2

a2
2
a4

a3

……
N
N n2
1.4 精密定向(中天法)
要求粗定向误差≤±20′; 粗定向后下放陀螺,摆幅
1、陀螺全站仪的操作
L 1 2 a1 a3 2 a2
1.1 陀螺仪悬挂带零位观测
原理
悬挂零位是指陀螺马达不转时,陀螺灵敏部受悬带和导 流丝扭力作用而引起扭摆的平衡位置,即扭力矩为零的 位置。
在陀螺观测开始之前和结束之后,要作悬带零位观测, 观测3次。相应简称为测前零位和测后零位观测。

陀螺定向测量及提高贯通精度的措施

陀螺定向测量及提高贯通精度的措施

科学技术创新2020.26以柠条塔S1210超长隧道贯通测量为例,加入陀螺定向测量,进行贯通误差预计。

以下主要对导线网中加测陀螺定向边后的平差计算、加测最佳位置确定及实际加测情况等进行分析,提出了提高贯通精度的具体方案。

1加测陀螺边后附合导线平差及加测陀螺边最佳位置确定1.1加测陀螺边导线终点误差估计如图1,A 为起始点,AA 1为起始定向边,其坐标方位角为α0,导线测量点K 为终点,α1,αII ,…,αN 为N 条陀螺定向边,导线段数为N ,由B 点至K 点的一段为支导线。

图1导线示意图(1)由导线量边误差引起的终点K 的贯通误差(1)其中:m l :测边中误差;α':导线边与水贯通方向夹角。

(2)测角误差对贯通点误差累积影响(2)式中:η:所有导线点到重心连接线y'轴投影长;R y':支导线B 至K 各点和K 点连线y'轴投影长。

(3)陀螺定向对贯通点误差累积影响假设各条陀螺定向边精度相同为m α0时有:(3)1.2两井贯通贯通点水平方向贯通误差预计如图2,地面点P 向两竖井分布布设导线P-I-II-III 和P-IV-V-VI ,假设m β上为测角中误差,m l 上为量边中误差,陀螺定向边为α1,α2,…,α5,测定其陀螺定向方位角,陀螺定向中误差设为m α1,m α2,…,m α5,其中地下导线独立施测2次。

导线段为A-E ,E-M ,M-K ,B-C ,C-N ,N-K ,其中M-K ,B-C ,N-K 为支导线边,A-E ,E-M ,C-N 是方向附合导线边,井下测角中误差m β下,井下量边中误差m l 下。

图2导线布设示意图贯通点在x'上误差预计如下:(1)地面导线边引起贯通测量x'上的误差(4)式中:R y':地面导线各点与井下导线的起始点A 和B 的连线在y'轴上的投影长;α':地面导线各边与x'轴夹角。

陀螺仪实验——精选推荐

陀螺仪实验——精选推荐

陀螺仪实验陀螺仪是一种具有比较复杂的运动学和动力学现象的装置,它有一个高速旋转的定点运动转子,该转子的轴线具有定向性,这是陀螺的最大特点。

陀螺的定向性在工程中有重要用途,如舰船和导弹的导航、稳定船舶和车辆的姿态,实际上行驶的自行车能够不翻倒也是由于陀螺的定向性,这时自行车的两个轮子就是陀螺。

因此,陀螺仪实验对于学生巩固和提高所学运动学、动力学知识,对复杂运动规律的认知和分析计算都有重要作用。

一、陀螺仪的理论基础1.欧拉角如图4-9,设Oxyz 为一个正交坐标惯性系,另一个正交坐标系321x x Ox 或O ξηζ绕坐标原点O 定点转动,坐标系321x x Ox (动系)相对于Oxyz 的角位置关系可以用多种方法来描述,其中用三个欧拉(Euler )角φ,θ,ψ来描述是刚体动力学中常见的方法。

参见图4-9,坐标系321x x Ox 的当前位置,可以将坐标系Oxyz 转动三次到达,先将Oxyz 绕z 轴转φ角,记为坐标系1,其中x 轴到达节线的位置;再将坐标系1绕节线转θ角,记为坐标系2,这时z 轴变为3x 轴;最后将坐标系2绕3x 轴转ψ角就得到321x x Ox ,其中原来的x 轴变为1x 轴、y 轴变为2x 、z 轴变为3x 轴。

这三个角是相互独立的,分别称为动系的进动角(φ)、章动角(θ)和自转角(ψ)(节线绕z 轴的转动为进动,动系绕节线的转动为章动,动系绕自转轴3x 的转动为自转)。

一般情况下,它们唯一地确定动系(刚体)的瞬时角位置。

再来确定动系321x x Ox 的角速度矢量Ω。

在~t t t +∆的t ∆时间内,设动系角位置的无穷小增量为φ∆、θ∆和ψ∆,动系的这种无穷小角位置改变可以将动系分别绕z 轴转φ∆、绕节线转θ∆和绕3x 轴转ψ∆后叠加得到,且结果与转动次序无关(我们对此不作证明,但必须注意,刚体多次有限转动的结果却与转动次序有关,因此不能叠加;学生可以将一本书沿任意两条边以一种次序各转90︒,再重新按不同的次序各转90︒,结果是不同的)。

陀螺实验报告

陀螺实验报告

陀螺实验报告陀螺实验报告引言:陀螺是一种旋转的物体,它的运动规律一直以来都吸引着科学家们的注意。

为了更好地理解陀螺的运动特性,我们进行了一系列的陀螺实验。

本报告将详细介绍实验的目的、实验装置、实验步骤、实验结果以及实验结论。

实验目的:本次实验的目的是研究陀螺的稳定性和运动规律,通过实验探究陀螺的物理特性和运动机制。

实验装置:我们使用了一架陀螺装置,该装置由一个陀螺仪和一个支架组成。

陀螺仪由一个圆盘和一个轴组成,圆盘上有一个固定的重物。

支架上有一个可调节的支点,用于保持陀螺仪的平衡。

实验步骤:1. 调整支架:首先,我们需要调整支架,使得支点与陀螺仪的轴线垂直,并保持支点的稳定性。

2. 给陀螺仪加力:接下来,我们用手指轻轻地给陀螺仪加力,使其开始旋转。

注意力的大小和方向要一致,以确保陀螺仪的旋转方向和速度。

3. 观察陀螺仪的运动:我们仔细观察陀螺仪的运动,包括旋转的速度、旋转的方向以及陀螺仪的稳定性。

4. 记录实验数据:我们记录下陀螺仪的旋转时间、旋转速度以及稳定性等实验数据。

5. 重复实验:为了提高实验的准确性,我们进行了多次实验,并记录每次实验的数据。

实验结果:通过实验观察和数据记录,我们得到了以下实验结果:1. 陀螺仪的旋转速度与加力的大小和方向有关,加力越大,陀螺仪的旋转速度越快。

2. 陀螺仪的旋转方向与加力的方向一致。

3. 陀螺仪在旋转过程中具有一定的稳定性,能够保持一定的旋转时间和旋转速度。

实验结论:通过本次实验,我们得出以下结论:1. 陀螺的运动规律与加力的大小和方向有关,加力越大,陀螺的旋转速度越快。

2. 陀螺的旋转方向与加力的方向一致。

3. 陀螺具有一定的稳定性,能够保持一定的旋转时间和旋转速度。

进一步研究:虽然本次实验对陀螺的运动特性进行了初步研究,但还有许多问题值得进一步探索。

例如,我们可以研究不同形状和重量的陀螺对运动规律的影响,以及陀螺的旋转速度与稳定性之间的关系等。

结语:通过本次实验,我们对陀螺的运动特性有了更深入的了解。

陀螺经纬仪定向精度的分析

陀螺经纬仪定向精度的分析

陀螺经纬仪定向精度的分析张 明,陈亚楠(平顶山煤业(集团)公司,河南平顶山 467000)摘要:文中介绍了陀螺经纬仪的定向误差来源,及一次定向总中误差的预计。

关键词:陀螺定向误差;仪器常数;摆动逆转点;悬带零位;测线方向值中图分类号:P213 文献标识码:B 文章编号:1001-358X(2006)02-0043-02 摆式陀螺经纬仪的定向精度,通常是用一次定向中误差来衡量。

一般来说,陀螺经纬仪的一次定向中误差都在出厂时的精度指标之内,如瑞士wild厂的G AK-1在20″-30″之内。

但是,每一台仪器的实际质量情况有很大差别的。

因为仪器制造时的工艺水平,出厂后震动和外界条件的影响,都会影响定向的精度。

下面就分析一下陀螺经纬仪的定向误差来源和计算一次定向中误差的方法。

1 陀螺定向误差来源误差来源与陀螺经纬仪定向产生的误差和观测方法有关。

若采用跟踪逆转点法,一条测线一次测定的程序为:a1在己知方位角的基线上测定仪器常数;b1在定向边上二测回测定测线方向值;c1以5个摆动逆转点测定子午线方向值(陀螺北方向读数);测前和测后对悬带零位的测定。

由观测过程可知,对测前测后两测回的测线方向取平均值得:L0=1/2(L前+L后)(1)由5个逆转点读数,求算子午线方向值N0=1/12(u1+3u2+4u3+3u4+u5)(2)而测线的地理方位角为:A=L-L±Δ(3)式中L为测线的陀螺方向值。

分析(3)式可知,影响定向精度的误差可分三大类:测定测线方向值的误差mL0;测定陀螺北方向的误差mL;仪器常数误差mΔ。

引起上述三类误差的因素有许多,若将整个作业过程中各种误差因素考虑进去,则可以归纳出陀螺经纬仪的定向误差来源有:用经纬仪测定测线方向值引起的定向误差mL0;由5个逆转点确定陀螺北方向值引起的定向误差m N;上架式陀螺仪与经纬仪联接引起的定向误差m b;悬挂带零位变动引起的定向误差m0;陀螺摆动平衡位置不稳定性引起的定向误差mc;仪器常数不准引起的定向误差mΔ;仪器对中与整平引起的定向误差me;风力、震动等其它外界因素引起的定向误差。

陀螺全站仪在矿井定向测量中的应用

陀螺全站仪在矿井定向测量中的应用

陀螺全站仪在矿井定向测量中的应用摘要:本文介绍陀螺全站仪在矿井定向测量中的应用,简述陀螺全站仪定向过程及计算方法,结合工程实例分析陀螺定向的实际精度,为今后的测量工作提供一些经验和建议。

关键词:陀螺全站仪;矿井定向;应用一、前言鞍钢某大型露天矿山开采到-175米水平后改为井下开采。

露天转井下开采工程共有9条竖井,三条斜坡道,9个水平。

井筒最深820米,最浅420米。

除两条主井外各条竖井及东、西斜坡道在-123米水平、-213米水平、-303米水平、-321米水平相向贯通;主斜坡道从地表+120水平向下与-123米水平及东、西斜坡道贯通;两条主井与副井在-567米水平、-633米水平、-695米水平单向贯通。

相向贯通巷道最长距离为3600米,最短距离为600米。

贯通面达60余个,超过2000米的贯通面有4条,超过1000米的贯通面有6条。

该工程前期已完成九条竖井的掘凿与混凝土衬砌工作,后续工程由三个工程队承担巷道施工任务。

我单位承担全部工程的控制测量任务。

为满足竖井定向的精度,我单位购买了一台索佳GP2X全站式陀螺仪。

该仪器由日本索佳公司生产,它结合GP2悬挂式陀螺仪、SET2X全站仪和全站仪内置的处理软件,陀螺仪工作时其摆会绕地球子午线摆动,通过GP2目镜对摆动的观察,并利用全站仪以水平角方式测定出摆幅或测定摆动的时间周期,然后依此计算出摆动中心的陀螺方位角。

相对于传统的陀螺仪,索佳全站式陀螺仪GP2X是由GP2陀螺仪和SET2X全站仪组合而成的用于测定真北方向的测量系统,并在全站仪中内置了逆转点法和中天法两种测量程序,结合GP2陀螺仪、SET2X全站仪和专用处理软件,SET2X全站仪可在观测完成后计算出真北方向,且计算出的真北方向可以很方便地设置到SET2X全站仪水平度盘上。

陀螺全站仪定向精度为±20″;测角精度为±2″。

竖井联系测量采用陀螺全站仪进行定向测量,采用钢丝投点法进行坐标传递测量。

物理实验报告

物理实验报告

定向陀螺演示仪实验报告实验目的本实验演示系统所受合外力为零时,角动量保持不变。

加深理解角动量守恒定律,了解陀螺定向的物理原理及其应用。

实验步骤1. 将定向陀螺仪平放在加速电机轮的支架上,脚踏通电给陀螺仪转子加速1至2秒钟左右,断电,双手平托将陀螺仪拿起。

2. 握住陀螺的手柄,任意翻转,观察到三个圆环各自绕自身轴转动,但是高速转动的转子转轴方向没有改变。

3. 将陀螺定向仪插放在底座上,经一段时间后会停下来。

注意事项1. 将定向陀螺放置在支架上时,务必放平,使其转子的外缘轻轻接触加速电机轮的轮缘。

2. 务必在转子转动平稳,并且断电后再取下陀螺。

3. 转子加速和演示过程中转子转速较高,注意不要触摸或碰到其他事物以免发生危险。

原理演示1.陀螺效应:进动如果您玩过陀螺玩具,就知道它能表演各种各样有趣的绝技。

陀螺能在细线或手指上保持平衡;能以非常奇妙的方式抵制自转轴运动;但最有趣的陀螺效应还数进动。

这是陀螺仪抵抗重力的表现。

根据这一原理,回转的自行车轮能够像下图所示的那样悬在空中:陀螺仪“抵抗重力”的能力令人莫名惊诧!它是怎么做到的?这种神秘的效应就是“进动”。

一般情况下,进动的发生过程是:如果有一个陀螺仪正在旋转,而您施力转动它的自转轴,则陀螺仪反而会围绕与力轴成直角的轴转动,如下列图形所示:图1中,陀螺仪正围绕自己的轴旋转。

图2中,施力转动陀螺仪的自转轴。

图3中,陀螺仪沿着与输入力方向垂直的轴对输入力做出反应。

那么,为何会发生进动呢?2.进动的产生陀螺仪为何会发生这种运动?自行车车轮的轮轴居然能像前面图形所示的那样悬在空中,看上去简直不可思议。

不过,只要想想陀螺仪在旋转时不同部位实际上都发生了什么,就会明白这种运动完全正常!让我们研究一下陀螺仪旋转时的两个小部位——顶端和底端,如图所示:向轮轴施力时,标示的两点会倾向于朝图中指示的方向运动。

如图所示,在向轮轴施力时,陀螺仪的顶端部位将试图向左运动,而底端部位则试图向右运动。

陀螺定向测量技术规程

陀螺定向测量技术规程

陀螺定向测量技术规程你们有没有玩过那种转起来就不会轻易倒下的小陀螺呀?其实呀,在大人们的工作里,也有一种像陀螺一样神奇的东西,不过这个陀螺可不像我们玩的那么简单。

在一些特别的工作里,比如要知道一个地方准确的方向,大人们就会用到陀螺定向测量技术。

这就像是我们在森林里迷路了,需要一个超级准确的指南针一样。

想象一下,有一群探险家要去一个很大很大的山洞里探险。

山洞里弯弯绕绕的,就像一个超级大迷宫。

要是他们不知道准确的方向,那可就惨啦,可能一直在里面打转出不来呢。

这时候呀,陀螺定向测量技术就像一个聪明的小助手。

那这个技术有什么特别的规程呢?就像我们玩游戏得有规则一样。

比如说,在使用这个像大陀螺一样的仪器之前,要把它放在一个特别平稳的地方。

就像我们搭积木的时候,得把最下面的积木放得稳稳当当的,不然整个积木塔就会倒啦。

如果这个陀螺仪器放得不平,那它转起来就不准啦,就像我们歪着身子跑步,肯定跑不快也跑不稳。

再比如说,在测量的时候,周围不能有太多干扰它的东西。

这就好比我们在专心画画的时候,旁边要是有人一直在吵闹,我们就很难画好。

要是有大的机器在旁边轰隆隆地响,或者有很强的磁场干扰,那这个陀螺就会晕头转向,给出来的方向就不对了。

还有哦,操作这个仪器的大人得特别细心。

他们要像照顾小婴儿一样照顾这个仪器。

每次使用之前都要仔细检查,看看有没有哪里坏了或者脏了。

就像我们每天上学之前要检查自己的书包有没有带齐东西一样。

有一次,有个叔叔在使用这个仪器的时候,没有好好检查,结果测量出来的方向就差了好多。

本来要找到宝藏的路,结果因为方向错了,就走到了一个全是泥巴的地方,可狼狈啦。

现代导航实验报告光纤陀螺静态测试Allan方差分析

现代导航实验报告光纤陀螺静态测试Allan方差分析

现代导航测试实验报告光纤陀螺静态性能测试Allan方差分析姓名学号学校南京航空航天大学学院自动化学院专业自动化专业班级2014年11月一、 实验目的:1. 了解光学陀螺静态测试的过程。

2. 通过实验测试得到的数据,利用Allan 方差法分析其随机误差特性其随机噪声特性。

二、 实验原理:1. 光纤陀螺仪静态测试1) 静态测试方法:测试转台工作于静止状态,启动陀螺仪稳定工作状态后,以一定的频率采集陀螺仪的输出。

伺服控制测试设备原理图如下图:环境温度图表 1 伺服控制测试设备原理图2) 考虑地球自转带来的静态角速率被陀螺仪敏感的情况,需在输出角速率中去除地球自转角速率在实验所在地(南京:北纬32°03′)的分量:s L n iez /0032.0sin =Ω=ω其中地球自转角速率s rad /10292.75-⨯=Ω。

2. Allan 方差定义与计算Allan 方差法是在时域上对频域特性进行分析的一种方法,为评价光纤陀螺仪的各类误差(包括角度随机游走、零偏不稳定性、角速率随机游走、量化噪声和速率斜坡)特性提供了一种简便的手段.采用该方法,通过对陀螺输出数据构成的一个样本空间进行处理,就可以辨识出陀螺各项误差的系数。

计算Allan 方差的步骤如下所示:1)获取数据。

以固定的采样周期Ts ,采集光纤陀螺的输出角速率,共采样N 个点,得到长度为N 的样本空间。

2)动态分组,分成的每组数据个数是动态变化的。

将样本空间中每m(m=1,2,…,M ,M<N /2)个数据分成一组,得到k 个独立的数组, 令k=[N /m]且K=[N /M]。

3)平均数据。

针对每组数据个数为m 的情况,对每组数据取平均值,即求群平均。

得到元素为群平均的随机变量集合,每一组的平均值为k j mm miim j j ,,2,1其中,1)(1)1( ==∑=+-ωωNm N m N m m m m +-+-++1ωωωωωωωωω,,,,,,,212212)(1ω))m图表 2 Allan 方差计算中的数组平均过程示意图4)计算特定相关时间的Allan 方差。

陀螺经纬仪定向实习报告

陀螺经纬仪定向实习报告

一、实习目的本次实习旨在使学生了解陀螺经纬仪定向的基本原理、操作方法及注意事项,提高学生实际操作能力,掌握陀螺经纬仪定向技术在工程测量中的应用。

二、实习时间与地点实习时间:2023年11月15日实习地点:XX工程测量实验室三、实习内容1. 陀螺经纬仪基本原理陀螺经纬仪是一种利用陀螺罗盘和经纬仪相结合的测量仪器,它能在地球自转的作用下,使陀螺轴精确地指示出真北方向,并在经纬仪水平度盘上读出该方向读数。

陀螺经纬仪定向技术具有精度高、速度快、不受地形、气候及外界磁场影响等优点。

2. 陀螺经纬仪操作方法(1)仪器组装:将陀螺仪、经纬仪、三脚架等部件组装成完整的陀螺经纬仪。

(2)仪器安置:将陀螺经纬仪安置在测站上,确保仪器稳定。

(3)对中:调整三脚架,使仪器中心与测站点重合。

(4)整平:调整仪器,使仪器水平。

(5)瞄准:瞄准目标点,调整瞄准器,确保瞄准准确。

(6)读数:读取经纬仪水平度盘上的读数。

(7)记录:将观测数据记录在实习报告上。

3. 陀螺经纬仪定向实验(1)实验目的:通过实验,掌握陀螺经纬仪定向操作方法,验证定向精度。

(2)实验步骤:1)在测站上安置陀螺经纬仪,进行对中和整平。

2)瞄准目标点,读取经纬仪水平度盘上的读数。

3)重复步骤2,进行多组观测。

4)计算定向方位角,并与理论值进行比较。

(3)实验结果与分析:通过实验,我们得到了以下结果:1)定向方位角平均值为X°Y′Z″,与理论值X°Y′Z″基本一致。

2)定向精度满足工程要求。

四、实习体会1. 陀螺经纬仪定向技术具有精度高、速度快、不受地形、气候及外界磁场影响等优点,在工程测量中具有广泛的应用前景。

2. 通过本次实习,我们掌握了陀螺经纬仪定向操作方法,提高了实际操作能力。

3. 在实习过程中,我们应注重以下几点:(1)仪器组装要规范,确保仪器性能。

(2)对中和整平要精确,提高定向精度。

(3)瞄准要准确,避免误差。

(4)记录要完整,便于后续数据处理。

陀螺经纬仪定向实习报告

陀螺经纬仪定向实习报告

实习报告:陀螺经纬仪定向实习一、实习目的与要求本次实习旨在了解陀螺经纬仪的定向原理,熟悉陀螺经纬仪的结构及使用方法,掌握陀螺经纬仪定向的基本操作和数据处理方法。

实习要求如下:1. 了解陀螺经纬仪的定向原理和结构特点;2. 学会使用陀螺经纬仪进行定向测量;3. 掌握陀螺经纬仪定向数据的精确处理方法;4. 能够对陀螺经纬仪的稳定性进行初步评价。

二、实习时间与地点实习时间:2021年xx月xx日实习地点:xx学院实验实习基地三、实习内容与过程1. 实习准备在实习开始前,指导老师为我们讲解了陀螺经纬仪的基本原理、结构和使用方法,并强调了实习过程中的安全注意事项。

我们认真听讲,并记录了关键知识点。

2. 实习操作根据实习指导书,我们分组进行了陀螺经纬仪的定向操作。

实习过程中,我们严格遵循操作规程,确保了数据的准确性。

(1)陀螺仪悬挂与零位观测首先,我们将陀螺仪悬挂在三脚架上,调整至水平状态。

然后,进行零位观测,确保陀螺仪的零位误差在允许范围内。

(2)陀螺仪定向测量利用逆转点法和中天法进行陀螺仪的定向测量。

我们首先确定起始方向,然后按照测回法观测水平角。

在观测过程中,我们严格控制对中误差和整平误差,确保了测量数据的可靠性。

(3)数据处理根据测回法观测到的水平角数据,我们计算了各测回角的平均值,并进行了误差分析。

同时,我们还计算了测站坐标方位角,为后续测量工作提供了依据。

3. 实习成果与分析通过实习,我们掌握了陀螺经纬仪的定向操作方法,了解了陀螺经纬仪在实际测量中的应用。

同时,我们学会了如何处理陀螺经纬仪测量数据,并对测量结果进行了分析。

四、实习心得与体会通过本次实习,我们对陀螺经纬仪的定向原理和操作方法有了更深入的了解。

实习过程中,我们学会了如何应对各种实际问题,提高了自己的动手能力。

同时,我们也认识到了陀螺经纬仪在测量工作中的重要性,为今后从事相关领域的工作奠定了基础。

总之,本次实习使我们受益匪浅。

在今后的学习和工作中,我们将继续努力提高自己的专业技能,为我国测量事业贡献自己的力量。

实验九 陀螺经纬仪的认识与定向测量

实验九 陀螺经纬仪的认识与定向测量

实验九、陀螺经纬仪的认识与定向测量
1、实验目的
陀螺仪是一种将陀螺仪和经纬仪结合在一起的仪器。

通过实验了解和掌握陀螺仪的构造、测量原理和应用。

2、性质:实践性教学环节。

3、要求:掌握陀螺经纬仪的观测步骤、方法;变形测量等级;每小组成员合作完成沉降监测、每人独立计算成果;监测网稳定性分析利用其他时间完成(见附题)。

4、时间:课堂2个学时,室外实习2个学时。

其中老师辅导性讲解、学生实际操作2个学时。

5、实习小组与地点:学生4~5人一个小组,对花园学校某高层建筑物如综合实验楼、图书馆、教学楼等上布置的沉降点进行沉降观测。

6、实习内容:根据下沉广场某点作为测站,周围附近某一知为待定方向点,进行两期沉降观测。

周期间隔可为两周或根据本课程进度安排。

两期观测完毕进行沉降值推算并填入监测点沉降表格,进行沉降分析。

7、每组工具:精密陀螺仪1台;电脑1台(GIS机房)。

8、实习步骤
(1)外业观测-对某建筑物的沉降观测;
(2)高差、高程以及沉降值的推算;
(3)图表表示与变形分析。

陀螺全站仪实习报告

陀螺全站仪实习报告

陀螺全站仪实习报告一、前言在全站仪的发展历程中,陀螺全站仪作为一种高精度、高稳定性的测量仪器,已经在工程测量、地形测绘、建筑施工等领域发挥着重要作用。

此次实习,我有幸接触到陀螺全站仪,并通过实际操作,对其工作原理和应用有了更深入的了解。

二、实习内容1. 陀螺全站仪的基本结构及工作原理陀螺全站仪由陀螺仪、测角仪、测距仪和数据处理系统组成。

其中,陀螺仪是核心部分,用于测量地球自转产生的恒速运动,测角仪用于测量角度,测距仪用于测量距离,数据处理系统用于处理数据。

2. 陀螺全站仪的操作及使用方法在实习过程中,我学习了陀螺全站仪的操作及使用方法,包括仪器的开机、关机、角度测量、距离测量、数据传输等基本操作。

同时,我还掌握了如何进行仪器的日常维护和故障排除。

3. 陀螺全站仪的实际应用实习期间,我参与了陀螺全站仪的实际应用,包括地形测绘、建筑施工测量等。

通过实际操作,我深刻体会到了陀螺全站仪在测量工作中的优越性,如高精度、高稳定性、快速测量等。

三、实习心得1. 陀螺全站仪的精度高、稳定性好陀螺全站仪采用陀螺仪作为核心测量部件,其测量精度受到地球自转的影响,具有较高的稳定性。

在实际测量过程中,我感受到了陀螺全站仪在角度和距离测量方面的精确度,以及其在长时间测量中的稳定性。

2. 陀螺全站仪操作简便,易于学习和掌握陀螺全站仪的操作界面清晰,功能分区明确,便于学习和掌握。

在实习过程中,我较快地熟悉了仪器的操作方法,并在实际应用中逐渐提高了操作速度和准确性。

3. 陀螺全站仪在实际应用中具有广泛的前景通过实习,我了解到陀螺全站仪在工程测量、地形测绘、建筑施工等领域具有广泛的应用前景。

随着我国基础设施建设的不断发展,陀螺全站仪在这些领域的作用将更加重要。

四、总结通过此次实习,我对陀螺全站仪有了更深入的了解,掌握了其基本操作和使用方法,并在实际应用中提高了自己的测量技能。

同时,我也认识到了陀螺全站仪在工程测量领域的重要地位和广泛应用。

陀螺定向测量在轨道交通土建施工阶段的应用

陀螺定向测量在轨道交通土建施工阶段的应用

陀螺定向测量在轨道交通土建施工阶段的应用摘要:近年随着来城市轨道交通的迅猛发展,目前已有超过38个城市开展了城市轨道交通的建设。

在地铁施工阶段,为保证地铁周边道路畅通,大部分站间隧道均采用暗挖或盾构法的施工工艺,传统的测量控制均以联系测量+支导线的形式进行隧道内的方位传递,随着线路长度的增加将导致误差的积累,影响着隧道贯通精度,更严重的可能造成线路偏位。

因此,对于长、大隧道采用其他测量手段进行复核已十分必要。

关键词:道路畅通;陀螺;交通一、陀螺定向测量陀螺定向测量(gyrostatic orientation survey)是用陀螺经纬仪(全站仪)测定某控制网边的陀螺方位角,并经换算获得此边真方位角,最终推算待定边坐标方位角的过程。

陀螺仪具有两个基本特性:1、定轴性,2、进动性。

在轨道交通土建阶段主要应用其两个基本特性进行方位的精确定向。

主要测量原理如下:设C、D待测点,在C点安置仪器测得真北方向在水平度盘的读数N,D方向在水平度盘上的读数N1,则可求得CD边的真北方位角ACD=N1-N。

因CD边坐标方位角TCD =ACD-RΦ,且RΦ=(RΦ:C处的子午线收敛角,:C点横坐标,为C点纬度)。

在轨道交通外业生产过程中按地面已知边→地下定向边→地面已知边的顺序进行。

即:(1)在地面控制边进行多测回定向测量,标定仪器常数;(2)在地下待测边各进行多测回定向测量;(3)以地面控制边进行多测回定向测量,检验仪器的稳定性和精度并最终确定仪器常数。

外业测量需满足如下指标要求:(1)测回间陀螺方位角较差应小于20″。

(2)两次地面控制边测量结果均值之差不得大于12″。

(3)测前、测后各三测回测定的陀螺全站仪常数平均值较差不应大于15″。

二、数据处理外业测量结束后数据处理按如下方法进行:(1)地面标定仪器常数计算公式式中:为仪器常数;为地面已知边坐标方位角;上为地面已知边陀螺测量定向方位角。

根据地面控制点已知坐标计算得到地面已知边坐标方位角,再由地面两次陀螺定向结果求平均,得到仪器常数。

陀螺经纬仪精密定向及误差分析论文

陀螺经纬仪精密定向及误差分析论文

8摘要陀螺经纬仪是一种将陀螺仪和经纬仪结合成为一体的、全天候,并且不依赖于其他条件就能测定真北方向的精密定向仪器,有着广泛的应用。

随着科学和技术、工程建设与经济建设的快速发展,对陀螺经纬仪定向精度要求越来越高,而国内外在高精度陀螺经纬仪定向精度方面的研究较少,尤其是在陀螺经纬仪定向精度评定规范以及外界因素对陀螺经纬仪定向精度的影响方面的研究成果欠缺。

因此,本文探讨了陀螺经纬仪定向精度的有关问题。

本论文主要研究情况如下:首先,对于陀螺经纬仪的具体构造和陀螺经纬仪的具体工作原理做出了相应的理论分析。

详细阐述了陀螺仪的结构和功能以及陀螺经纬仪的定向原理。

其次,在相应的理论指导之下,详细的介绍了几种具体的测量方法。

分别根据陀螺仪经纬仪的跟踪和不跟踪两种情况来具体来进行数据的获取和处理。

在不跟踪状态下对中天法、时差法以及三点法等进行具体的理论分析和实际操作。

最后,在对中天法和逆转点法两种工作方式做理论上的分析。

在定向精度和误差等具体环节上分析,得出比较适合应用的数据获取方法,也就所谓的观测方法。

关键字:陀螺经纬仪,结构和功能,定向原理,观测方法,误差分析AbstractThe theodolite is a gyro and theodolite combined into one , all-weather , and does not depend on other conditions can be measured precision orientation apparatus to true north , has a wide range of applications .With the rapid development of science and technology, engineering, construction and economic construction , the directional accuracy of the theodolite have become increasingly demanding , and less at home and abroad in high-precision gyro theodolite directional accuracy , especially in the directional gyro theodolite accuracy assessment lack of research results of the specification and the impact of external factors on the directional gyro theodolite accuracy . Therefore, this article discusses the issues related to directional accuracy of the theodolite . This thesis is as follows : First, for the specific structure of the gyro theodolite and gyro theodolite works to make the theoretical analysis . Elaborated on the structure and function of the gyroscopes and orientation principle .Second, under the theoretical guidance , described in detail several specific methods of measurement . Gyro theodolite tracking and not tracking the two situations specific to the data acquisition and processing , respectively . For example, in the state does not track the transit method, difference method , and three-point method of theoretical analysis and practical .Finally, the theoretical analysis of the two methods of work of the transit law and reverse the point method . Directional accuracy and error analysis of the specific areas of analysis, to draw more suitable for data acquisition applications , there is theso-called methods of observation .Keywords: Theodolite , the structure and function , directional principle , observation method , error analysis目录目录摘要 (I)Abstract (II)目录 (II)第一章绪论................................................................................................................................ - 1 -1.1本课题研究的背景及意义........................................................................................... - 1 -1.2陀螺经纬仪精密定向的研究现状及发展趋势........................................................... - 2 - 第二章陀螺经纬仪的构成........................................................................................................ - 4 -2.1陀螺经纬仪的分类....................................................................................................... - 4 -2.2 陀螺经纬仪结构组成.................................................................................................. - 4 -2.2.1 灵敏部.............................................................................................................. - 5 -2.2.2 光学观测系统.................................................................................................. - 5 -2.2.3 紧锁限幅结构.................................................................................................. - 7 -2.2.4 机体外壳.......................................................................................................... - 7 - 第三章陀螺经纬仪精密定向原理............................................................................................ - 8 -3.1 陀螺仪简介.................................................................................................................. - 8 -3.1.1 陀螺仪的基本特征(陀螺仪的进动性和定轴性)...................................... - 8 -3.1.2 陀螺仪转动的微分方程................................................................................ - 10 -3.1.3 摆式陀螺仪的运动方程................................................................................ - 10 -3.2 陀螺经纬仪定向观测方程........................................................................................ - 13 -3.2.1 陀螺轴的自由摆动方程................................................................................ - 14 -3.2.2 跟踪状态下陀螺轴的摆动方程.................................................................... - 15 -3.2.3 经纬仪照准部固定状态下陀螺轴的摆动方程............................................ - 16 - 第四章陀螺经纬仪定向实验.................................................................................................. - 19 -4.1逆转点法数据获取及数据处理方法......................................................................... - 19 -4.1.1逆转点法数据获取(陀螺经纬仪的操作步骤)......................................... - 19 -4.1.2 逆转点法数据处理方法................................................................................ - 20 -4.2 中天法的数据获取以及数据处理方法.................................................................... - 21 -4.2.1 中天法的数据获取(陀螺经纬仪的操作步骤)........................................ - 21 -4.2.2 中天法数据处理方法.................................................................................... - 22 -4.3 具体数据获取处理.................................................................................................... - 25 -4.4 总结不跟踪式观测的几种简易方案........................................................................ - 30 -4.4.1 中天法............................................................................................................ - 33 -4.4.2 时差法............................................................................................................ - 35 -4.4.3 改化振幅法.................................................................................................... - 36 -4.4.4 三点快速法.................................................................................................... - 37 - 第五章陀螺经纬仪定向方法的精度分析.............................................................................. - 39 -5.1 影响陀螺经纬仪定向精度的各种因素.................................................................... - 39 -5.2 陀螺经纬仪精密定向中误差来源分析................................................................ - 40 - 第六章陀螺经纬仪定向方法对比分析结论.......................................................................... - 41 - 参考文献.................................................................................................................................... - 43 - 致谢及声明................................................................................................................................ - 44 -第一章绪论1.1本课题研究的背景及意义陀螺经纬仪是一种将陀螺仪和经纬仪结合成一体的、并且不依赖其他条件能够测定真北方位的精密物理定向仪器,广泛应用于测绘工作中,特别是矿山、隧道、海洋、森林和军事等隐秘地区的定向测量和快速测量,解决了传统定向方法精度低、工作量大及定向时间长等缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国人民解放军第一〇〇一工厂
陀螺仪定向报告
XXX矿业1# 与3# 斜坡道实测
2015年10月26日
潼金矿业1#、3#斜坡道陀螺定向测量成果报告
1 定向设备
本次陀螺定向采用中国人民解放军第一〇〇一工厂自主研发、生产的HGG05型陀螺全站仪(1σ≤5″),编号15001,上置中翰测绘公司生产的TS-802N型全站仪。

2 数据来源
点位信息由XXX矿业地勘部提供。

表1 控制点信息
其中地面控制点为:G3007、G3006;G3024、G3022。

α=246°52′09″,根据计算得知控制边方位角分别为:3006
G3007→
G
α=334° 40′ 28″。

G3024→
3022
G
3 定向过程
1) 在控制边进行2测回定向测量,标定仪器常数; 2) 在待定边进行3测回定向测量;
3) 在原控制边进行2测回定向测量, 以两次控制边测量结果检验仪器的稳定性和精度,确保陀螺定向成果准确可靠。

4 陀螺定向的限差要求
1) 同一条边各测回测量结果最大互差不得超过10″; 2) 两次地面控制边测量结果均值之差不得大于15″。

5 数据处理结果
5.1 方法1数据处理方法及结果 5.1.1 仪器常数的计算
1T 1T1--A A A C γα+==控制控制
式中:∆-仪器常数;
控制α-控制边坐标方位角,即3006G G3007→α、3022G G3024→α;
1γ-控制边仪器架设点子午线收敛角;
1T A -控制边测得(含复测)的陀螺方位角均值;
子午线收敛角1γ用下式计算。

ϕλλγsin )-(1中控制=
式中:控制λ-控制边仪器架设点经度,精确到秒;
中λ-仪器架设点所处3°带中央子午线;
ϕ-仪器架设点纬度,精确到分。

标定仪器常数实测陀螺方位角结果见表2。

表2 仪器常数陀螺测定
5.1.2 待测边测量陀螺方位
待测边测定陀螺方位角结果见表3。

表3 待测边陀螺测定
5.1.3 复测仪器常数
仪器常数复测陀螺方位角结果见表4。

表4 复测仪器常数
经复测,两次控制边测量结果均值之差为分别为13″、6.5″,满足陀螺定向限差要求。

5.1.4 仪器常数的确定
仪器常数见表5。

表5 仪器常数
5.1.5 数据处理
1) 待测边坐标方位角计算
2γα-+=C A 待测待测
式中:待测α-待测边坐标方位角;
待测A -待测边实测陀螺方位角;
2γ-待测边仪器架设点子午线收敛角。

子午线收敛角2γ用下式计算。

ϕλλγsin )-(2中待测=
式中:待测λ-待测边仪器架设点经度,精确到秒;
中λ-仪器架设点所处3°带中央子午线;
ϕ-仪器架设点纬度,精确到分。

2)子午线收敛角计算的说明
利用高斯坐标反算,选取与控制边相同的地球半径与扁率分母及参考椭球,由X ,Y 计算出仪器架设点(控制边、待测边)的经纬度,进而计算出相应的子午线收敛角。

5.1.5 测量结果
1)待测边(1053→1055)的坐标方位角为322°18′39.95″; 2)待测边(E106→E107)的坐标方位角为109°40′44.96″; 3)待测边(3083→3082)的坐标方位角为001°51′7.66″。

5.2 方法2数据处理方法及结果 5.2.1 仪器常数的确定
1T A -=∆控制α
其中:控制α-控制边坐标方位角;
1T A -控制点测得(含复测)陀螺方位角均值。

方法2仪器常数见表6。

表6 方法2仪器常数
5.2.2 数据处理
待测边坐标方位角用下式计算。

γ
α∆++∆=2T A 待
其中: ∆-仪器常数;
2T A -待测边测得陀螺方位角均值;
γ∆-控制边仪器架设点与待测边仪器架设点子午线收敛角之差。

子午线收敛角之差的计算公式用下式计算。

ϕλλγsin )-(待测控制=∆
其中:待λ-待测边仪器架设点经度,精确到秒;
控制λ-控制边仪器架设点经度,精确到秒;
ϕ-陀螺仪架设点纬度,精确到分。

5.2.3 测量结果
1)待测边(1053→1055)的坐标方位角为322°18′41.39″; 2)待测边(E106→E107)的坐标方位角为109°40′46.36″; 3)待测边(3083→3082)的坐标方位角为001°51′07.60″。

6 精度分析
1)同一条边各测回测量结果最大互差均未超过10″,详见表2、表3互差,表明仪器内符合精度符合要求;
2) 两次地面控制边测量结果均值之差均未超过15″,详见表4两次标定常数陀螺方位角均值互差,表明仪器外符合精度符合要求;
3)方法1仪器常数C 互差14.55″,表明仪器在经过运输和纬度发生变化时仪器常数稳定性符合要求。

附件测量原始数据
8
9
10
11
12。

相关文档
最新文档