长方体和正方体单元知识结构图 (2)
长方体和正方体单元复习知识点及练习(最新整理)
(4)至少需要( )厘米长的铁丝,才能做一个底面周长是 18 厘米,高 3 厘米的长方体框架。
(5)用长 92 厘米的铁丝围成一个长方体框架,长 10 厘米,高比宽少 3 厘米,这个长方体的 宽和高分别是多少厘米?
(7)有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要 10 厘米彩带,一共需要多长 的彩带?
(5)一个长方体,高如果增加 2 厘米,就变成一个正方体。这时表面积比原来增加 56 平方厘 米。原来长方体的体积是多少立方厘米?
【知识点 3】容积
箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
常用的容积单位有升和毫升也可以写成 L 和 ml。
1 升=1 立方分米 1 毫升=1 立方厘米 时扩大 n 倍,其棱长和也扩大 n 倍,体积扩大 n3 倍。
(1)大正方体棱长是小正方体棱长的 2 倍,则大正方体表面积是小正方体表面积的( )倍。
(2)一个长方体长扩大 2 倍,高扩大 4 倍,宽不变,体积扩大( )倍。
知识 3:单位换算、体积和容积
【知识点 1】单位换算
长度单位:mm、cm、dm、m
)平方厘米,表面积是( )平方厘米。
(4)一个正方体的底面积是 64 平方厘米,它的表面积是(
)。
(5)一个正方体的底面周长是 8 厘米,它的表面积是(
)。
(6)一个长方体侧面积是 360 平方厘米,高是 9 厘米,长是宽的 1.5 倍,求它的表面积。
【知识点 2】长方体表面求法的变形: ① 贴商标类型:只求四周面积。
(3)一个长方体的底面是一个周长为 16 分米的正方形,它的表面积是 96 平方分米,这个长
第3页共4页
方体的体积是多少?
(4)有一个长方形玻璃鱼缸长为 5 分米,宽为 3 分米,高为 3 分米里面装有 2.5 分米高的水, 现在需要将该该鱼缸内的水倒入一个棱长为 3.5 分米的正方体鱼缸中,请问是否可以装得下这 么多水?如果装得下正方体鱼缸内的水有多高?
人教版五年级数学下册第三单元-长方体和正方体——体积单位间的进率(2课时)
2.一个长方体包装盒,从里面量长 28 厘米, 宽 20 厘米,体积 8.96 立方分米。用它包装一个长 25 厘米,宽 15 厘米、高 18 厘米的玻璃器皿,是 否可以装得下? 方法一
8.96 dm³= 8960 cm³ 25×15×18 = 6750(cm³) 6750 cm3<8960 cm3 所以装得下。
3. 请你圈出每组数据中与其他数据不相等的那个数。 (1)5.08 m3 50800 cm3 5080 dm3 5080000 cm3 (2)6039 dm2 6.039 m2 603900 cm2 60.39 m2 (3)1500 cm 1500 dm 15 m 150 dm
4. 一个长方体和一个正方体的棱长总和相等。已知 长方体的长、宽、高分别是 6 dm、5 dm、4 dm,那 么正方体的棱长是多少分米?它们的体积相等吗?
正方体的棱长:(6+5+4)÷3 = 5(dm), 体积是 5 × 5 × 5 = 125(dm3) 长方体的体积是 6 × 5 × 4 = 120(dm3), 所以长方体和正方体的体积不相等,正方体的体 积大。
六 课堂小结
同学们,通过本 节练习课,你有哪些 新的收获呢?
▶ 备选练习
一、选一选。 (将正确答案的序号填在括号里)
方法三: 8.96 dm³=8960 cm³ 8960÷(28×20)=16(cm) 18>16,所以装不下。
三 综合应用,灵活选择计量单位
一个长方体的无盖水族箱,长是 6 m,宽是 60 cm,高是 1.5 m。这个水族箱占地面积有多大? 需要用多少平方米的玻璃?它的体积是多少?
60 cm 1.5 m
低级单位换成高级单位除以进率。
3.5 dm3=_3_5_0_0_cm3 700 dm3=__0_.7__m3 0.25 m3=_2_5_0_0_0_0_cm3
五年级下册长方体与正方体体积课件人教版(34张PPT)
A.4
B.6
C.8
D.12
4.长方体玻璃缸,长4dm,宽3dm,高5dm,缸中的水深2.5dm,水
的体积是( )dm3
A.30
B.37.5
C.50
D.60
5
填上合适的数.
10m3= ( )dm3
3020cm3= (
230mL= ( )L
3.05L3= (
2.7m3= (
)dm3= (
)L
)dm3 )cm3
长方体与正方体体积
1
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的 长方体的体积是75立方厘米,则原长方体的最长的棱是 ______厘米. 2.一个长方体表面积为40平方厘米,上、下两个面为正方形, 如果正好可以截成两个相等体积的正方体,则这个长方体的 体积是_____立方厘米. 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已 知全部棱长之和是220cm,长方体的体积是______立方厘米
的体ቤተ መጻሕፍቲ ባይዱ是( )dm3
A.30
B.37.5
C.50
D.60
4
你来选择
1.一个棱长是8厘米的正方体的体积与一个长方体体积相等,这个长方
体高16厘米,它的底面积是( )
A.32厘米2 B.9厘米 C.15厘米 D.120厘米
2.至少需要( )个小正方体可以拼成大正方体.
A.4
B.6
C.8
D.12
3.正方体的表面积是底面积的( )倍.
2
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的长方体的体积是75立方厘 米,则原长方体的最长的棱是8厘米. 解:75÷(5×5)=75÷25=3(厘米),3+5=8(厘米), 2.一个长方体表面积为40平方厘米,上、下两个面为正方形,如果正好可以截成两个 相等体积的正方体,则这个长方体的体积是 16立方厘米. 解:40÷10=4(平方厘米),因为2×2=4,所以小正方体的棱长是2厘米,则体积是: 2×2×2×2=16(立方厘米) 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已知全部棱长之和是220cm, 长方体的体积是4500立方厘米 解:根据“长与宽之比为2:1,宽与高之比为3:2”,可得:长:宽:高=6:3:2, 利用棱长总和求出一组长宽高的和是:220÷4=55厘米,由此再利用长宽高的比分别求 出这个长方体的长宽高,再根据长方体3的体积公式V=abh,即可解答.
人教版五年级下册数学单元知识点归纳——第三单元 长方体和正方体
3 长方体和正方体一、认识长方体和正方体的特征及它们的展开图。
1.长方体是由6.个.长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相.......同.,.相对的棱长度相等........。
长方体有8.个顶点...,.12..条棱..。
2.相交于同一个顶点的三条棱的长度分别叫做长方体的长、宽、高.....。
3.长方体12条棱的长度和叫做长方体的棱长总和。
长方体的棱长总和........=.4.条长..+.4.条宽..+.4.条高..=.(.长.+.宽.+.高.).×.4.。
用字母表示:C=..(.a+b+h .....).×.4.。
4.正方体是由6.个完全相同的正方形.........围成的立体图形,正方体有8.个顶点...,.12..条棱..,.12..条棱的长度都相等........。
5.正方体是长、宽、高都相等的长方体,正方体是特殊的.......长方体...。
6.正方体的棱长总和=棱长×12。
用字母表示:C=..12..a .。
7.认识长方体和正方体的展开图。
特别注意:当长方体相对的两个面是正方形时,其他四个面是大小和形状完全相同的长方形。
温馨提示:长方体的长、宽、高的位置不是固定不变的。
长方体的摆法不同,长、宽、高也就不同。
温馨提示:长方体的上面和下面、前面和后面、左面和右面分别是相对的面。
温馨提示:长方体和正方体的展开图并不是唯一的,左图只是其中的一种。
无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。
单元结构化教学的重构——以“长方体和正方体”单元为例
大单元教学单元结构化教学是《义务教育数学课程标准(2022年版)》提出的重要理念和实施建议,重点在于从学生已有的知识体系出发,对数学知识体系进行转化、迁移、梳理、归纳、整合,使单元知识系统化,加强各学段的知识衔接,形成便于学生认知、提高学生核心素养的学习过程和方式方法,从而完善和发展学生的数学认知结构。
为探索发展学生核心素养的路径,以“长方体和正方体”为例进行单元整体教学分析与设计,从而建构新的理念指导课堂教学。
一、教学规划(一)教材分析小学一年级阶段,教材安排了简单立体图形的学习,能够识别长方体、正方体、圆柱和球。
四年级时,结合观察物体教学从三视图的角度进一步丰富学生对长方体和正方体的感性认识。
“长方体和正方体”是小学五年级下册第三单元的内容,本单元的重点是学习长方体和正方体的面、棱、顶点等结构与特征,以及表面积、体积、容积的概念和计算方法。
单元结构化教学的重构更应该注重教学内容的联系,改变过于注重以课时为单位的教学设计,推进单元整体教学设计,体现数学知识之间的内在逻辑关系,以及学习内容与核心素养的关联。
(二)学情分析本课的教学对象是小学五年级的学生,他们虽然已经对简单的立体图形有了基本的认识,但由于课程的阶段性授课缺乏系统性,不利于完成知识的推进,对于本单元长方体和正方体集中化、连续性的学习前期可能会不适应。
因此,在长方体和正方体教学过程中,教师有必要照顾每个学生的知识基础,采用循序渐进的方式,同时设计有趣的互动教学活动,激发学生的学习兴趣。
(三)教学安排第一阶段:教师课前需要准备与本单元学习内容相关的教学资料,如图片、立体图形模型、试题等,以便在课堂上展示和使用。
同时,教师需要提前设计好课堂教学的流程和环节,确保课堂教学顺利进行。
第二阶段:教师带领学生回顾先前传授的相关知识。
第三阶段:引入长方体和正方体的实物模型,帮助学生对立体图形形成更加具体的认识,为长方体和正方体特征的学习做好铺垫。
第四阶段:学习长方体和正方体的表面积和体积的概念和计算方法。
(完整word版)《长方体和正方体》教材分析
第二单元《长方体和正方体》教材分析学生在一年级教材中直观认识了长方体和正方体,在数学学习中多次把长方体、正方体木块作为学具,对它们的形状有了初步的、整体的感受。
知道生活中许多物体的形状是长方体或正方体,能够识别一些常见的物体是什么形状。
本单元系统、深入地教学长方体和正方体的知识,内容很多.下表是全单元的内容与编排。
认识形体长方体、正方体的面、棱、顶点,结构与特征.(例 1、例2)长方体、正方体表面的展开图(例3)表面积表面积的意义和计算方法(例4)表面积的实际应用(例5)体积体积的意义、容积的意义(例6、例7)常用的体积单位和容积单位(例8)长方体、正方体的体积计算公式(例9、例10)体积单位的进率及简单换算(例11)“整理与练习"实践活动本单元教学内容在编排上有以下特点。
第一,有一条合理的编排线索。
先教学长方体、正方体的特征,再教学它们的表面积,然后教学体积,是一条符合知识间的发展关系,有利于学生认知的线索。
把形体的特征安排为第一块内容,能为后面的表面积、体积的教学打下扎实的基础。
如果不理解长方体的6个面都是长方形,且相对的面完全相同,就不可能形成长方体表面积的计算方法.如果不建立长方体的长、宽、高的概念,体积公式就是无本之木、无源之水。
把表面积安排在体积之前教学,是因为学生已经有了面积的概念,掌握了常用的面积单位,会计算长方形、正方形的面积,教学表面积的条件比体积充分。
而且通过表面积的教学,更深一层掌握长方体、正方体的特征,对教学体积是有益的。
在体积这部分知识里,先教学体积的意义和常用单位,这些都是重要的基础知识。
建立了体积概念和体积单位概念,才能探索体积计算公式。
把体积单位的进率安排在体积公式之后教学,就能通过计算获得进率。
这样,体积单位的进率就是意义建构的,而不是机械接受的。
第二,加强了空间观念。
教学长方体和正方体,历来都很重视发展空间观念.本单元不仅在传统的基础知识的教学时加强培养,还充实了长方体、正方体表面展开的内容。
小学奥数 长方体与正方体(二) 精选例题练习习题(含知识点拨)
对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积立体图形示例 体积公式 相关要素长方体V abh = V Sh =三要素:a 、b 、h 二要素:S 、h正方体3V a =V Sh =一要素:a 二要素:S 、h不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 ③先补后去法 ④实际操作法 ⑤画图建模法【例 1】 一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于 立方厘米。
例题精讲长方体与正方体(二)【例2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。
【例3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【例4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。
8个这样的铁环依此连在一起长厘米。
【例5】某工人用薄木板钉成一个长方体的邮件包装箱,并用尼龙编织条(如图所示)在三个方向上的加固.所用尼龙编织条分别为365厘米,405厘米,485厘米.若每个尼龙加固时接头重叠都是5厘米.问这个长方体包装箱的体积是多少立方米?高长【例6】某工人用木板钉成一个长方体邮件包装箱,并用三根长度分别为235厘米、445厘米、515厘米的尼龙带进行加固(如下图),若每根尼龙带加固时截头重叠都是5厘米,那么这个长方体包装箱的体积是立方米。
(完整版)北师大小学数学五年级下册第二单元知识点
页眉内容第二单元:《长方体(一)》一、长方体的认识知识点:1、认识长方体、正方体,了解各部分的名称。
2、长方体、正方体各自的特点长方体有6个面,每个面都是长方形,相对的两个面完全相同;有8个顶点;有12条棱,12条棱分成3组,每组4条棱一样长。
同一个顶点的3条棱分别代表长方体的长、宽、高。
当长方体有一组相对的面是正方形时,它的另外4个面是完全相同的长方形,此时它有8条棱一样长。
是完全一样的正方形;8个顶点;12条棱一样长。
4、能计算长方体、正方体的棱长总和;知道棱长总和,会求长、宽、高。
长方体的棱长总和=(长+宽+高)×4,或者:长方体的棱长总和= 长×4+宽×4+高×4用字母表示: L=(a+b+h) ×4 或者:L=a ×4+b×4+c×4.长方体的长=棱长总和÷4-(宽+高)用字母表示: a=L÷4-(b+h)长方体的宽=棱长总和÷4-(长+高)用字母表示: b=L÷4-(a+h)长方体的高=棱长总和÷4-(长+宽)用字母表示: h=L÷4-(a+b)正方体的棱长总和=棱长×12用字母表示: L=12a正方体的棱长=棱长总和÷12用字母表示: a=L÷12知识巩固:二、展开与折叠知识点:1、认识并了解长方体和正方体的平面展开图。
2、了解正方体平面展开图的几种形式,并以此来判断。
一、正方体表面展开图的三种情况1、正方体展开后有四个面在同一层正方体因为有两个面必须作为底面,所以平面展开图中,最多有四个面展开后处在同一层,作为底的两个面只能处在四个面这一层的两侧,利用排列组合知识可得如下六种情况:2、正方体展开后有三个面在同一层有三个面在同一层,剩下的三个面分别在两侧,有如下三种情形:3、二面三行,像楼梯;三面二行,两台阶知识巩固:三、长方体的表面积1、理解表面积的意义:长方体的表面积是指六个面的面积之和。
2021年小学数学第二单元《长方体》—五年级下册章节复习精编讲义(思维导图+知识讲解+达标训练)北师大版,含解析
期中复习讲义(北师大版)2020-2021学年北师大数学五年级下册期中章节复习精编讲义第二单元《长方体(一)》知识互联网知识导航知识点一:长方体的认识1 长方体和正方体的各部分名称:在长方体或正方体中,围成的长方形或正方形叫作长方体或正方体的面;面和面相交的边叫作棱;棱和棱相交的点叫作顶点。
2 长方体和正方体的特征3 长方体和正方体的异同点4 长方体和正方体的关系:正方体可以看成是长、宽、高都相等的特殊的长方体5 长方体和正方体特征的应用:判断所给图形能否组成长方体,可以根据长方体的特征一组一组地进行寻找,看看能否找到3组相对应的面。
知识点二:展开与折叠1 正方体展开图的特点(1)沿着正方体的棱剪开,可以把正方体展开成一个平面图形,这个平面图形就是正方体的展开图。
在展开图中,正方体的6个面是相连的,相对的面完全隔开。
(2)将展开图沿虚线(折痕)向内折,能重新折叠成正方体。
(3)正方体的展开图是由6个大小、形状完全相同的正方形组成的组合图形。
(4)正方体的展开图,可分四个类型错误!“一四一”型:中间四个正方形相连,两侧各一个错误!“二三一”型:中间三个正方形相连,两侧分别是两个和一个错误!“二二二”型:中间两个正方形相连,两侧各两个错误!“三三”型:两侧各三个2 长方体展开图的特点:长方体相对的面大小、形状完全相同,并且相对的面完全隔开;长方体上、下两个面的面积相等,长和宽分别是长方体的长和宽;前、后两个面的面积相等,长和宽分别是长方体的长和高;左、右两个面的面积相等,长和宽分别是长方体的宽和高。
3长方体和正方体与展开图之间的对应关系(1)长方体和正方体的每一个面都与其他四个面相邻,但只有一个相对的面,所以只要找到一组相对的面,也就同时确定了它们与其他四个面的相邻关系,从而能够通过想象把展开图还原成立体图形。
(2)判断一个图形折叠后相对应的面,可以根据长方体、正方体展开图的特点,先确定一个面为下面,再想象折叠的过程,从而找出相对的面,也可以用实物折一折,直观地找一找。
(苏教版)六年级数学上册《长方体和正方体》单元知识点汇总
长方体和正方体
立体图形的切割:
(切割会使表面积增加,因此存在表面积增加最多或最少的问题)
长方体 沿与原来长方体最大面平行的方向切割,其表面积比原来增加的最多。 沿与原来长方体最小面平行的方向切割,其表面积比原来增加的最少。 而且每切一刀增加两个完全相同的面,切两刀增加四个完全相同的面…… 正方体 无论沿那个面平行的方向切,都将增加两个正方形的面,增加的面积均为 2a2 不存在增加最多最少的问题。
长度单位:mm、cm、dm、m 面积单位:mm2、cm2、dm2、m2 体积单位:mm3、cm3、dm3、m3 容积单位:mL、L 特别的:1mL=cm3 1L=1dm3 相邻两个单位进率为10 相邻两个单位进率为100 相邻两个单位进率为1000 相邻两个单位进率为1000 1方=1m³
高级单位化低级单位乘进率,低级小单位化高级单位除以进率。
长方体的长扩大a倍,宽扩大b倍,高扩大c倍,棱长总和变化无规 律,表面积变化也无规律,体积扩大a×b×c倍。
小正方体拼大长方体的规律
首先观察大长方体各棱长分别是小正方体棱长的几倍,如, 长方体长是小正方体棱长的a倍,宽是小正方体棱长的b倍,高 是小正方体棱长的c倍,则,大长方体就是由a×b×c个小正方 体组成的。
长方体和正方体
小正方体拼大正方体的规律
由于正方体,每条棱的长度相等,所以要用小的正方体拼 出大的正方体每条棱上摆放的小正方的个数应该是相等的,因 此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每 条棱上放2个小正方体),接着再往大了拼正方体,就是每条 棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是 4×4×4=43=64个;5×5×5=53=125个…… 从中我们可以发现要用小的正方体拼出大的正方体所需要 的小正方体的个数应该是一个数的立方。这就要求我们能够熟 记一些数的立方: 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729 103=1000
苏教版六年级上册数学第一单元——长方体和正方体基础知识梳理
长方体和正方体基础知识梳理一、长方体和正方体的特征二、正方体的展开图(1)141型:(2)231型:(3)222型:(4)33型:三、长方体和正方体的棱长总和(1)长方体的棱长总和=长×4+宽×4+高×4=(长+宽+高)×4 转化:高=棱长总和÷4-长-宽(2)正方体的棱长总和=棱长×12转化:棱长=棱长总和÷12四、长方体和正方体的表面积(1)长方体的侧面积=底面周长×高(2)长方体的底面积=长×宽(3)长方体的表面积=长×宽×2+长×高×2+宽×高×2=(长×宽+长×高+宽×高)×2=(长+宽)×2×高+长×宽×2(4)正方体的表面积=棱长×棱长×6=棱长²×6五、长方体和正方体的体积(1)长方体的体积=长×宽×高(2)正方体的体积=棱长×棱长×棱长=棱长³(3)长方体(正方体)的体积=底面积×高(4)体积单位: 1m³=1000dm³ 1dm³=1000cm³ 1m³=1000000cm ³1L=1dm³ 1mL=1cm³六、物体浸没问题(1)完全浸没①物体的体积=容器底面积×水面上升(下降)的高度②水面上升(下降)的高度=物体的体积÷容器底面积③容器底面积=物体的体积÷水面上升(下降)的高度④水面现在的高度=水面原来的高度+水面上升的高度=水面原来的高度-水面下降的高度(2)不完全浸没①水的体积=容器底面积×水面原来的高度②水面现在的高度=水的体积÷(容器底面积-物体底面积)③水面上升的高度=水面现在的高度-水面原来的高度④水的体积=(容器底面积-物体底面积)×水面现在的高度七、表面涂色的正方体一个表面涂色的大正方体,棱长被平均分成n份,变成了若干个小正方体,那么:小正方体的个数:n³3面涂色的个数:82面涂色的个数:12(n-2)1面涂色的个数:6(n-2)²没有涂色的个数:(n-2)³八、表面涂色的长方体一个表面涂色的长方体,长、宽、高分别被平均分成a、b、h份,变成了若干个小正方体,那么:小正方体的个数:a×b×h3面涂色的个数:82面涂色的个数:4(a-2)+4(b-2)+4(h-2)1面涂色的个数:2(a-2)(b-2)+2(a-2)(h-2)+2(b-2)(h-2)没有涂色的个数:(a-2)(b-2)(h-2)。
五年级奥数之长方体和正方体(二)
长方体和正方体(二)1,有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?2,有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。
现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。
问水面高多少?3,有一个长方体水箱,从面量长40厘米、宽30厘米、深35厘米,箱中水面高10厘米。
放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。
这时水面高多少厘米?4,一段钢材长15分米,横截面面积是1.2平方分米。
如果把它煅烧成一横截面面积是0.1平方分米的钢筋,求这根据钢筋的长。
5,将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。
6,有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。
现将三块铁熔成一个大正方体,求这个大正方体的体积。
7,将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。
8,把8块边长是1分米的正方体铁块熔成一个大正方体,这个大正方体的表面积是多少平方分米?9,有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。
如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?10,有一个小金鱼缸,长4分米、宽3分米、水深2分米。
把一块假山石浸入水中后,水面上升0.8分米。
这块假山石的体积是多少立方分米?11,有一个正方体容器,边长是24厘米,里面注满了水。
有一根长50厘米,横截面是12平方厘米的长方形的铁棒,现将铁棒垂直插入水中。
问:会溶出多少立方厘米的水?12,有一块边长是5厘米的正方体铁块,浸没在一个长方体容器里的水中。
2023-2024年小学数学六年级上册期末复习第一单元《第一单元《长方体和正方体》》(苏教版原卷)
期末知识大串讲苏教版数学六年级上册期末章节考点复习讲义第一单元《长方体和正方体》知识点01:长方体和正方体的认识1.长方体的特征长方体是由(也可能有)围成的立体图形,有个面、条棱和顶点,完全相同、相等。
2. 长方体的长、宽、高的含义长方体的长度,分别叫作它的长、宽、高。
知识点02::长方体和正方体的展开图1.沿着将其剪开,可以把正方体(或长方体)展开成一个,这个平面图形就是正方体(或长方体)的展开图。
2.正方体(或长方体)的展开图的特点:在展开图中,正方体的(长方体相对的面完全相同),完全隔开。
3. 一个表面涂色的正方体,把每条棱,然后切成同样大的。
(1)3面涂色的小正方体有8个。
(2)如果用n表示把正方体的棱平均分成的份数(n为大于或等于2的自然数),用a、b分别表示2面涂色和1面涂色的小正方体的个数,那么a=(n-2)×12,b=(n-2)2×6。
知识点03:长方体、正方体的表面积计算1.意义2.计算方法(1)长方体的表面积= ()×2。
(2)正方体的表面积=知识点04:体积与体积单位1.体积的意义:叫作物体的体积。
2.容积的意义:叫作容器的容积。
常用的体积单位有,可以分别写成。
计量液体的体积,通常用升或毫升作单位。
1立方分米 = 升,1立方厘米 = 毫升知识点05:长方体和正方体的体积1.长方体的体积= ,字母公式为V= 。
2.正方体的体积= ,字母公式为V= 。
3.底面积:,叫作它们的底面积。
4.体积计算公式:长方体(或正方体)的体积= ,如果用字母S表示底面积,h表示高,长方体(或正方体)的体积计算公式可以写成V= 。
5. 体积单位常用到,相邻进率是。
立方分米立方米,它们进率是。
立方分米立方厘米,它们进率是考点01:长方体的展开图1.(2021秋•东平县期末)下面的平面图哪个不能折成长方体()A. B.C.2.(2022春•市中区期末)三种形状硬纸板各有若干张,从中选择()两种纸板,正好围成一个长方体。
【北师大版】五年级数学下册--第四单元《长方体(二)》--知识点+思维导图+针对性训练
最新北师大版数学五年级下册第四单元《长方体(二)》【知识点总结】4.1体积与容积1、体积与容积的概念:体积:物体所占空间的大小叫作物体的体积。
(从外部测量)容积:容器所能容纳入体的体积叫做物体的容积。
(从内部测量)注意:①同一个容器,体积大于容积;当容器壁很薄时,容积近等于体积。
如果容器壁忽略不计时,容积等于体积。
②几个物体拼在一起时,它们的体积不发生改变(它们占空间的大小没有发生变化)4.2体积单位1、认识体积、容积单位常用的体积单位:立方米(3米)、立方分米(3厘米)分米)、立方厘米(3常用的容积单位:升、毫升、1升=13分米、1毫升=13厘米计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。
2、感受1立方米、1立方分米、1立方厘米以及1升、1毫升的实际意义:①手指头、苹果、火柴盒体积较小,可用3厘米作单位;②西瓜、粉笔盒体积稍大,可以用3分米作单位;③矿泉水瓶、墨水瓶可以用毫升作单位;④热水瓶等较大盛液体容器、冰箱可用生升作单位;⑤我们饮用的自来水用“立方米”作单位。
4.3长方体的体积1、长方体、正方体体积的计算方法(1)长方体的体积=长×宽×高,如果长用a表示,宽用b表示,高用h表示,体积用V表示,体积可表示为V=abh(2)正方体的体积=棱长×棱长×棱长,如果棱长用a表示,体积可表示为V=3a=a×a×a(3)长方体(正方体)的体积=底面积×高 V=Sh2、能利用长方体(正方体)的体积及其他两个条件求出问题。
如:长方体的高=长方体的体积÷长÷宽长方体的长=长方体的体积÷高÷宽长方体的宽=长方体的体积÷高÷长注意:计算体积时,单位一定要统一;表面积与体积表示的意义不一样,单位不同,无法比较大小4.4体积单位的换算1、棱长为1dm的正方体盒子中,可以放1000个体积为1cm3的小正方体。
(完整版)人教版五年级下册数学第三单元《长方体和正方体的认识》知识点
第三单元《长方体和正方体》1.长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。
2.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
3.长方体的特征(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。
特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。
(3)长方体有12条棱,相对的棱长度相等。
可分为三组,每一组有4条棱。
还可分为四组,每一组有3条棱。
(3)长方体有8个顶点。
每个顶点连接三条棱。
(4) 长方体相邻的两条棱互相(相互)垂直。
长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。
在一个长方体中,相对的面完全相同,相对的棱长度相等。
顶点个数面棱个数大小关系条数长度关系8 6 相对的面相等12 平行的棱长相等4.棱长总和公式:长方体棱长总和=4条长+4条宽+4条高=(长+高+宽)×4宽=棱长之和÷4-长-高长=棱长之和÷4-宽-高高=棱长之和÷4-宽-长二、正方体的认识:1. 正方体的认识:正方体是由6个完全相同的正方形围成的立体图形。
正方体有6个面,12条棱,8个顶点,每个面都是正方形,面积都相等。
每条棱的长度都相等。
正方体的长、宽、高都相等,统称棱长。
2.长方体和正方体的关系:正方体是一种特殊的长方体。
3.正方体棱长之和:棱长×12=棱长之和棱长之和÷12=棱长4.长方体的表面积(1)长方体和正方体6个面的总面积,叫做它的表面积。
(2)表面积计算公式①.因为长方体有“上”、“下”、“前”、“后”、“左”、“右”6个面,相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。
②长方体的表面积=(长×宽+长×高+宽×高)×2用字母表示: S=(ab+ah+bh)×2长方体表面积=(长×宽+长×高+宽×高)×2设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:S = 2ab + 2bc+ 2ca= 2 ( ab + bc + ca)长方体没盖的表面积=长×宽+长×高×2 +宽×高×2③特殊长方体的表面积(有两个面是正方形)正方形的两个面完全相同,其余四个面完全相同。
长方体正方体的认识课件ppt课件
艺术设计
长方体和正方体也是艺术设计中常用的元素之一,通过对 其进行变形、组合、叠加等操作,可以创造出丰富多样的 艺术效果和视觉冲击力。
06
练习题与课堂互动环节
判断题练习
正方体的六个面都是正 方形。
THANK YOU
感谢聆听
建筑结构
在建筑结构中,长方体和正方 体常被用作承重结构的基本单 元,如梁、柱、楼板等,其坚 固耐用的特性保证了建筑物的 安全性。
建筑装饰
长方体和正方体也被广泛应用 于建筑装饰中,如门窗、隔断、 装饰画等,通过不同的材质和 颜色搭配,营造出丰富多彩的 室内环境。
包装设计领域应用实例分析
包装容器
长方体和正方体是包装设计中常 用的容器形状,如纸箱、木箱、 塑料盒等,其规整的形态便于堆 放和运输,同时也方便消费者携
长方体与正方体关系
长方体与正方体都属于六面体 的范畴。
正方体是长方体的一种特殊情 况,当长方体的长、宽、高都 相等时,就变成了正方体。
长方体和正方体在几何性质上 有很多相似之处,如都有6个面、 12条棱、8个顶点等。但在一些 特定的性质上,如面的形状和 大小、棱的长度等,两者又有 所不同。
02
长方体与正方体性质探究
计算长方体水池的容积、长方体木块的体积等。
正方体体积公式推导及应用
1 2
正方体体积公式 V = a^3
公式推导 正方体每个面都是正方形,面积相等,因此体积 等于一个面的面积乘以高(即边长)。
3
应用举例 计算正方体骰子的体积、正方体砖块的体积等。
复杂组合图形体积计算方法
六年级上册数学课件-第一单元 长方体和正方体-长方体和正方体的表面积 苏教版33张
新课引入
这个鱼缸是少了一个面的长方体。 你能求出它的表面积吗?
例题讲解
5 一个无盖的长方体玻璃鱼缸,长5分 米,宽3分米,高3.5分米。制作这个 鱼缸至少需要玻璃多少平方分米?
例题讲解
5 制作这个鱼缸至少需要玻璃多少平方 分米?
方法一:
例题讲解
做一个棱长3分米的正方体纸盒,至少要用硬纸板 多少平方分米?
6个面完全相同
长方体(或正方体)6个面 的总面积,叫作它的表面积。
3×3×6=54(平方分米) 答:至少要用硬纸板54平方分米。
新知应用
计算长方体和正方体的表面积。
(5×4+5×2.5+4×2.5)×2 =42.5×2 =85(平方厘米)
一 长方体和正方体
长 方 体 和 正 方 体 的 表 面 积(1) (新授课)
新课引入
说一说长方体和正方体的相同点和不同点。
长方体和正方体的面、棱和顶点的数目都一样;只是正方 体的棱长都相等。正方体可以说是长、宽、高都相等的长 方体。
你能算出长方体和正方体所有表面的面积之和吗?
例题讲解
4 做一个长6厘米、宽5厘米、高4厘米的长方体纸 盒,至少要用硬纸板多少平方厘米?
4、写出表中的物体是正方体还是长方体,再计 算表面积。
正方体
864
长方体
1152
长方体
1032
巩固练习
5、一个用硬纸板做成的长方体影集封套(如 图),长31厘米,宽27厘米,高2.5厘米,封 套的左面不封口。做这个封套至少需要多少 平方厘米硬纸板?
(31×2.5+27×31+27×2.5)×2-31×2.5 =1964-77.5 =1886.5(平方厘米)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交换律
结合律
分配律
应用
先乘除后加减 有括号先算括号
运算律 运算顺序
简单运算
数学应用
问题解决
分 数 混 合 运 算
应用 必要性
产生和意义
认识
感知
应用
产生和 意义
认识及 应用
负 数 的 初 步 认 识
可能
不可能
一定
事件发生 的可能性
可 能 性
应用
游戏规则的 公平性
运算
分数混和 运算
应用
比和按比 例分配
整
理
复
习
放大
图形的 变换
圆的认识
圆的周长 解决问题 圆的面积
第一章知识结构图
分数与整数相乘
分
分数乘法
几分之几
数
分数乘分数
乘
法
一个数的几分之几
解决问题 乘加、乘减解决问题
分数连乘解决问题
第二章知识结构图
圆
圆的认识
圆的周长 圆的面积
圆的特征 画圆
设计图案 概念 计算 圆周率
面积公式推导和计算
解决实际问题
组合图形的周长 组合图形的面积
第三章知识结构图
分数除法
倒数 分数除以整数
整数除以分数
分数除以分数
分
数
除
解决问题
认清单位”1” 的量
法
探索规律
发散思维 创造性思维
第四章知识结构图
前项
后项
比的意义
比号
比
比的意义 和性质
比值
和
基本性质
按 比
比的性质
例
化简
分
配
解决问题
按比例分配
第五章知识结构图
图形的放大和缩小
图形运动和
认识比例尺
位置确定
比例尺
解决问题
图形位置的确定
确定位置 确定路线