高等代数(北大版)第7章习题参考答案
高等代数北大版第章习题参考答案精修订
高等代数北大版第章习题参考答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数【北大版】7.9
LLLLL
0 ≠ 0. ( J aE )k 1 = M O O 0 1 0 L 0
k ∴ J 的最小多项式为 ( x a ) .
§7.9 最小多项式
6.(定理13) A ∈ P n×n与对角矩阵相似 (定理13)
A 的最小多项式是 上互素的一次因式的积. 的最小多项式是P上互素的一次因式的积 上互素的一次因式的积
第七章 线性变换
§1 线性变换的定义 §2 线性变换的运算 §3 线性变换的矩阵 §4 特征值与特征向量 §5 对角矩阵 §6线性变换的值域与核 §7不变子空间 §8 若当标准形简介 §9 最小多项式 小结与习题
§7.9 最小多项式
一,最小多项式的定义 二,最小多项式的基本性质
§7.9 最小多项式
二,最小多项式的基本性质
1.(引理1)矩阵 的最小多项式是唯一的 (引理1 矩阵A的最小多项式是唯一的 的最小多项式是唯一的. 都是A的最小多项式 的最小多项式. 证:设 g1 ( x ), g2 ( x ) 都是 的最小多项式 由带余除法,g1 ( x ) 可表成 由带余除法,
g1 ( x ) = q( x ) g2 ( x ) + r ( x )
∴ g1 ( x ) h( x ), g2 ( x ) h( x ).
从而
g ( x ) h( x ).
的最小多项式. 故 g( x ) 为A的最小多项式 的最小多项式
§7.9 最小多项式
推广: 若A是一个准对角矩阵 是一个准对角矩阵
A1 A2 O As
且 Ai 的最小多项式为 gi ( x ), i = 1,2,..., s 则A的最小多项式是为 [ g1 ( x ), g2 ( x ),..., g s ( x )]. 的最小多项式是为 两两互素, 特别地,若 g1 ( x ), g2 ( x ),..., g s ( x ) 两两互素,即
高等代数与解析几何第七章习题7答案
习题7.4习题7.4.1设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i =,则A 必可对角化;(2)如果A 的对角线元素nn a a a === 2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλ ,又因jj ii a a ≠),,2,1,(n j i =,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n B λλλ 21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21 。
又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλ ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛= ,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题7.4.2设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21 ,i V 是i λ的特征子空间),,2,1(s i =。
证明:(1)s V V V +++ 21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕= 21。
证明:(1)取s V V V +++ 21的零向量0,写成分解式有021=+++s ααα ,其中i i V ∈α,s i ,,2,1 =。
现用12,,,-s σσσ 分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s s s s αλαλαλαλαλαλααα 。
(完整版)高等代数(北大版)第7章习题参考答案
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数;是一固定的数;7) 把复数域上看作复数域上的线性空间,把复数域上看作复数域上的线性空间,A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
不是。
2)当0=α时,是;当0≠α时,不是。
不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk ,A ≠)(αkk A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-==k A )(α, 故A 是P 3上的线性变换。
上的线性变换。
5) 是因任取][)(],[)(x P x g x P x f ∈∈,并令并令 )()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数与解析几何第七章习题7答案
习题习题设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλO21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。
又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=O,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。
证明:(1)s V V V +++Λ21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。
证明:(1)取s V V V +++Λ21的零向量0,写成分解式有021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。
现用12,,,-s σσσΛ分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。
高代第七章练习题答案
1、已知22P ⨯的线性变换:221011(),(,,)1111X M XN X PM N σ⨯-⎛⎫⎛⎫=∀∈==⎪ ⎪-⎝⎭⎝⎭求σ的特征值与特征向量。
解:取22P ⨯的基11122122,,,E E E E ,则111111122122121211122122212121222221101011()110011100111()110011100011()111011100()11E M E N E E E E E M E N E E E E E M E N E E E M E N σσσσ-⎛⎫⎛⎫⎛⎫===-+-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫===-+-+⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫===-⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫==⎪⎝⎭21220110111E E -⎛⎫⎛⎫=-+ ⎪ ⎪-⎝⎭⎝⎭所以σ关于基11122122,,,E E E E 的矩阵为1100110011111111A -⎛⎫ ⎪-⎪= ⎪-- ⎪--⎝⎭。
所以2211001100()(2)11111111A x x f x xI A x x x x --=-==-----,所以A 的特征根为120λλ==和342λλ==, 当120λλ==时,则12341100011001111011110x x x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪⎪ ⎪= ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭,其基础解系为(1,1,0,0),(0,0,1,1), 其对应的特征向量为1122,k X k X +其中111122212212,,,X E E X E E k k =+=+不全为零。
当122λλ==时,则123411000110001111011110x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,其基础解系为(0,0,1,1)-, 其对应的特征向量为33k X ,其中321223,0X E E k =-+≠。
高等代数与解析几何第七章知识题7答案解析
习题7.4习题7.4.1设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλO21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。
又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=O,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题7.4.2设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。
证明:(1)s V V V +++Λ21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。
证明:(1)取s V V V +++Λ21的零向量0,写成分解式有021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。
现用12,,,-s σσσΛ分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。
高等代数(北大版)第7章习题参考答案
第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量;2)在线性空间V中,A其中V是一固定的向量;3)在P 322 中,A(,,)(,,)x1xxxxxx;2312334)在P 3中,A(,,)(2,,)x1xxxxxxx2312231;5)在P[x]中,A f(x)f(x1);6)在P[x]中,A()(),fxfx其中0 x P是一固定的数;07)把复数域上看作复数域上的线性空间,A。
nn中,A X=BXC其中B,CP 8)在P解1)当0时,是;当0时,不是。
nn是两个固定的矩阵.2)当0时,是;当0时,不是。
3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。
4)是.因取(x1,x2,x3),(y1,y2,y3),有A()=A(x1y1,x2y2,x3y3)=(2x12y1x2y2,x2y2x3y3,x1y1)=(2x1x2,x2x3,x1)(2y1y2,y2y3,y1)=A+A,A(k)A(kx1,kx2,kx3)(2kx1 k x2,k x2k x,3k x)1(2kx1 k x2,k x2k x,3k x)1=k A(),3故A是P上的线性变换。
5)是.因任取f(x)P[x],g(x)P[x],并令u(x)f(x)g(x)则A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)),再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。
6)是.因任取f(x)P[x],g(x)P[x]则.A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)),A(kf(x))kf(x0)k A(f(x))。
7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。
高等代数与解析几何第七章习题7答案
习题7.4习题7.4.1设A是一个n阶下三角矩阵。
证明:(1)如果A的对角线元素aii a(i,j1,2,,n),则A必可对角化;jj(2)如果A的对角线元素a1122,且A不是对角阵,则aannA不可对角化。
证明:(1)因为A是一个n阶下三角矩阵,所以A的特征多项式为|E|()()(),又因a ii a jj(i,j1,2,,n),所以A有Aa11aa nn22n个不同的特征值,即A有n个线性无关的特征向量,以这n个线性无1为对角阵,故A必关的特征向量为列构成一个可逆阵P,则有PAP可对角化。
1(2)假设A可对角化,即存在对角阵2,使得ABn与B相似,进而A与B有相同的特征值1,2,,。
又因为矩阵A的特n征多项式为n|EA|(a11),所以12na11,从而a 11Ba22 aE11,于是对于任意非退化矩阵X,都有ann1,而A不是对角阵,必有X1BXBA,与1XBXXa11EXa11EB假设矛盾,所以A不可对角化。
习题7.4.2设n维线性空间V的线性变换有s个不同的特征值1,V i是i的特征子空间(i1,2,,s)。
证明:s,2,,(1)V1VV是直和;2s(2)可对角化的充要条件是 V 12。
VVVs证明:(1)取VV1V 的零向量0,写成分解式有2s1s0,其中iV i ,i1,2,,s 。
现用2, 2,,s1分别作用分解式两边,可得012s 01122ss。
s 1 1 1s 2 1 2s s 1 s 0写成矩阵形式为 11 s 1 1( , 1 , 2,s11 22s )。
(0,0,,0)1ss s11 1s 11 由于1,2,,是互不相同的,所以矩阵ss1122B 的行列式不1 ss s1 为零,即矩阵B 是可逆的,进而有 (11 1s BBB ,(1,2,,s )(0,0,,0)。
,,,)(0,0,,0)(0,0,,0) 2这说明V 1V 2V s 的零向量0的分解式是唯一的,故由定义可得 V 12是直和。
高等代数习题参考答案
第七章线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V 中,A ,其中 V 是一固定的向量;4) 在 P 3 中,A (X I ,X 2,X 3) (2X 15) 在 P[ X ]中,A f (x) f (x 1)6) 在P[ X ]中,A f (X) f(X o ),其中X o P 是一固定的数;7) 把复数域上看作复数域上的线性空间, A8)在P nn 中,A X=BXC 其中B,C P n n 是两个固定的矩阵.解1)当 0时,是;当 0时,不是。
2)当o 时,是;当 o 时,不是。
3)不是•例如当(1,0,0), k 2 时,k A ( ) (2,0,0) , A (k ) (4,0,0),A (k )k A()。
4)是•因取(X 1,X 2,X 3),(y 1, y 2, y 3),有A()= A(X 1y 「X 2 y 2 ,X 3 y 3)= (2X 1 2y 1 X 2 y 2,X 2 y= (2X 1X 2, X 2 X 3,X 1) (2y 1=A+ A ,A (k ) A (kX 1, kX 2, kX 3)(2kx 1kx 2, kx 2=k A (), 3故A 是P 上的线性变换。
5)是.因任取 f(x) P[x], g(x) P[ X],并令u(x) f(x) g(x)则A ( f (x)g(x)) = A u(x)=u(x 1) = f(x 1) g(x 1)=A f(x) + A (g(x)),再令 v( x) kf (x)则 A (kf (x)) A (v( x)) v(x 1) kf (x 1) k A ( f (x)),故A 为P[x]上的线性变换。
6)是.因任取 f (x)P[x], g(x) P[ x]则.A (f(x) g(x))=f(x 0) g(X 0 ) A ( f (x)) A (g(x)),2) 3) 在线性空间V 中,A 在 P 3 中,A(X l ,X 2,X 3)其中(X I 2,X 2V 是一固定的向量;2、X 3,X 3 ); X 2, X 2 X 3,X I ).X 3 y 3,X 1 yj y 2,y 2 y 3,y 1)(2kx 1kx 2, kx 2kx 3,kxjkx 3,kxjA(kf (x)) kf (x0) k A( f (x))。
(完整版)高等代数(北大版)第7章习题参考答案
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
高等代数(北大版第三版)习题答案
高等代数(北大*第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第一部分,其他请搜索,谢谢!第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
高等代数课件(北大三版)--第七章-线性变换
尤其,向量空间V 在σ之下旳象是W 旳一种
子空间,叫做σ旳象, 记为 Im( ),
即 Im( ) (V ).
另外,W 旳零子空间 { 0 } 在σ之下旳原象是 V 旳一种子空间,叫做σ旳核,
记为 Ker( ),
即 Ker( ) { V | ( ) 0}.
定理7.1.2 设V和W是数域F向量空间,而是一种线 性映射,那么 :V W (i) σ是满射 Im( ) W (ii) σ是单射 Ker( ) {0} 证明 论断(i)是显然旳,我们只证论断(ii) 假如σ是单射,那么ker(σ)只能是具有唯一旳零向量. 反过来设ker(σ) = {0}.
轻易证明上面旳两个条件等价于下面一种条件:
③对于任意 a,b F 和任意 , V ,
(a b) a ( ) b ()
在②中取 a 0,对③进行数学归纳,能够得到:
(1) (0) 0
(2) (a11 ann ) a1 (1) an (n )
例1 对于 R 2 旳每历来量 x1, x2 定义 x1, x1 x2 , x1 x2 R3
x1
(1
,
2
,,
n
)
x2
.
xn
因为σ是线性变换,所以
( ) x1 (1) x2 (2 ) xn (n )
(2)
x1
(
(1),
(
2
),,
(
n
))
x2
.
xn
将(1)代入(2)得
x1
(
)
(1,
2
,,
n
)
A
x2
.
xn
最终,等式表白, ( )关于(1,2 ,n ) 旳坐标所构成 旳列是
高等代数与解析几何第七章习题7答案
习题习题设A 是一个n 阶下三角矩阵。
证明:(1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则A 不可对角化。
证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。
(2)假设A 可对角化,即存在对角阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n B λλλO21,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。
又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而E a a a a B nn 112211=⎪⎪⎪⎪⎪⎭⎫⎝⎛=O,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与假设矛盾,所以A 不可对角化。
习题设n 维线性空间V 的线性变换σ有s 个不同的特征值s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。
证明:(1)s V V V +++Λ21是直和;(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。
证明:(1)取s V V V +++Λ21的零向量0,写成分解式有021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。
现用12,,,-s σσσΛ分别作用分解式两边,可得⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++---0001212111221121s s s s s ss s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。
高等代数第7章习题解
第七章习题解答习题7.11、 在4R 中,设11022213(,,,),(,,,)αβ=-=--,计算:(1)α与β的内积;(2)α与β的长度;(3)α与β的距离;(4)α与β的夹角; 解:(1)22064αβ⋅=++-=-; (2)||||αβ====(3)||αβ-==(4)9cos ||||αβθαβ⋅===-=-所以9,arccosαβπ<>=-2、求齐次线性方程组20x y +=的所有解,说明其任一解与向量(1,2)的关系。
解这个方程组的通解为21x k y ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭,记2112(,),(,)αβ=-=,则0αβ⋅=,所以这两个向量正交。
3、证明:在2R 中,以坐标原点为起点,单位圆周上的点为终点的向量是单位向量。
证明:以坐标原点为起点,单位圆周上的点为终点的向量的长度为1,所以以坐标原点为起点,单位圆周上的点为终点的向量是单位向量。
4、证明定理7.1.2定理内容:(1)()()k k αβαβ⋅=⋅;(2)()αβγαβαγ⋅+=⋅+⋅; (3)00α⋅=;(4)1111()s tsti ij j i j i j i j i j x y x y αβαβ====⎛⎫⎛⎫⋅=⋅ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑证明:设121212(,,,),(,,,),(,,,)n n n a a a b b b c c c αβγ=== ,那么 (1)1122()()()()n n k a kb a kb a kb αβ⋅=+++1122()()n n k a b a b a b k αβ=+++=⋅ (2)111222()()()()n n n a b c a b c a b c αβγ⋅+=++++++11112222()()()n n n n a b a c a b a c a b a c =++++++11221122()()n n n n a b a b a b a c a c a c =+++++++αβαγ=⋅+⋅(3)1200000n a a a α⋅=+++= (4)略5、证明度量矩阵是可逆矩阵。
高等代数(北大版)第7章习题
阵;
6) 在 P 3 中,A 定义如下:
A (5,0,3)
1
A2
(0,1,6)
,
A3 (5,1,9)
其中
(1,0,2)
1
2
(0,1,1)
,
3 (3,1,0)
求 A 在基1=(1,0,0), 2 =(0,1,0),3 =(0,0,1)下的矩阵;
9.设三维线性空间 V 上的线性变换 A 在基1, 2 ,3 下的矩阵为
a11 a12 a13
A= a21 a22 a23 ,
a31 a32 a33
1) 求 A 在基 3 , 2 ,1 下的矩阵;
2) 求 A 在基 1, k 2 , 3 下的矩阵,其中 k P 且 k≠0;
An =0.求证:A 在某组下的矩阵是
0 1
0 0
0 0
0 0
0
1
0
0 。
0
0
1Leabharlann 0 12. 设 V 是数域 P 上 n 维线性空间,证明:V 的与全体线性变换可
以交换的线性变换是数乘变换。
13. A 是数域 P 上 n 维线性空间 V 的一个线性变换,证明:如果 A 在
16.证明
1
i1
2
与
n
i2
in
相似,其中 i1,i2 ,,in 是 1,2,, n 的一个排列。
高代第七章作业题
17. 如果 A 可逆,证明:AB 与 BA 相似。
高教线性代数第七章 线性变换课后习题答案
第七章 线性变换1. 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P 3中,A),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5) 在P[x ]中,A )1()(+=x f x f ;6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ=。
8) 在P nn ⨯中,A X=BXC 其中B,C ∈P nn ⨯是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 线性变换1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3)在P 3中,A),,(),,(233221321x x x x x x x +=; 4)在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;5)在P[x ]中,A )1()(+=x f x f ;6)在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)把复数域上看作复数域上的线性空间, A ξξ=。
8)在Pnn ⨯中,A X=BXC 其中B,C ∈Pnn ⨯是两个固定的矩阵.解 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk ,A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β, A =)(αk A ),,(321kx kx kx),,2(),,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-== k A )(α,故A 是P 3上的线性变换。
5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令)()()(x g x f x u +=则A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f ,故A 为][x P 上的线性变换。
6)是.因任取][)(],[)(x P x g x P x f ∈∈则.A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。
7)不是,例如取a=1,k=I ,则A (ka)=-i , k(A a)=i, A (ka )≠k A (a)。
8)是,因任取二矩阵Y X ,n n P ⨯∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,A (k X )=k BXC k kXB ==)()(A X ,故A 是n n P ⨯上的线性变换。
2.在几何空间中,取直角坐标系oxy,以A 表示将空间绕ox 轴由oy 向oz 方向旋转90度的变换,以B 表示绕oy 轴向ox 方向旋转90度的变换,以C 表示绕oz 轴由ox 向oy 方向旋转90度的变换,证明:A 4=B 4=C 4=E,AB ≠BA,A 2B 2=B 2A 2,并检验(AB )2=A 2B 2是否成立。
解 任取一向量a=(x,y,z),则有 1) 因为A a=(x,-z,y), A 2a=(x,-y,-z),A 3a=(x,z,-y), A 4a=(x,y,z),B a=(z,y,-x), B 2a=(-x,y,-z),B 3a=(-z,y,x), B 4a=(x,y,z),C a=(-y,x,z), C 2a=(-x,-y,z),C 3a=(y,-x,z), C 4a=(x,y,z),所以A 4=B 4=C 4=E 。
2) 因为AB (a)=A (z,y,-x)=(z,x,y),BA (a)=B (x,-z,y)=(y,-z,-x), 所以AB ≠BA 。
3)因为A 2B 2(a)=A 2(-x,y,-z)=(-x,-y,z),B 2A 2(a)=B 2(x,-y,-z)=(-x,-y,z), 所以A 2B 2=B 2A 2。
3) 因为(AB )2(a)=(AB )(AB (a))_=AB (z,x,y)=(y,z,x),A 2B 2(a)=(-x,-y,z),所以(AB )2≠A 2B 2。
3.在P[x] 中,A ')(f x f =),(x B )()(x xf x f =,证明:AB-BA=E 。
证 任取∈)(x f P[x],则有(AB-BA ))(x f =AB )(x f -BA )(x f =A ())(x xf -B ('f ))(x =;)(xf x f +)(x -'xf )(x =)(x f所以 AB-BA=E 。
4.设A,B 是线性变换,如果AB-BA=E ,证明:A k B-BA k =k A 1-k (k>1)。
证 采用数学归纳法。
当k=2时A 2B-BA 2=(A 2B-ABA)+(ABA-BA 2)=A(AB-BA)+(AB-BA)A=AE+EA=2ª,结论成立。
归纳假设m k =时结论成立,即A m B-BA m =m A 1-m 。
则当1+=m k 时,有A 1+m B-BA 1+m =(A 1+m B-A m BA)+(A m BA-BA 1+m )=A m (AB-BA)+(A m B-BA m )A=A m E+m A 1-m A=)1(+m A m 。
即1+=m k 时结论成立.故对一切1>k 结论成立。
5.证明:可逆变换是双射。
证 设A 是可逆变换,它的逆变换为A1-。
若a ≠b ,则必有A a ≠A b ,不然设Aa=A b ,两边左乘A 1-,有a=b ,这与条件矛盾。
其次,对任一向量b ,必有a 使A a=b ,事实上,令A1-b=a 即可。
因此,A 是一个双射。
6.设1ε,2ε, ,n ε是线性空间V 的一组基,A 是V 上的线性变换。
证明:A 是可逆变换当且仅当A 1ε,A 2ε, ,A n ε线性无关。
证 因A (1ε,2ε, ,n ε)=(A 1ε,A 2ε, ,A n ε)=(1ε,2ε, ,n ε)A ,故A 可逆的充要条件是矩阵A 可逆,而矩阵A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关,故A 可逆的充要条件是A 1ε,A 2ε, ,A n ε线性无关.。
7.求下列线性变换在所指定基下的矩阵:1) 第1题4)中变换A 在基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)下的矩阵;2) [o; 1ε,2ε]是平面上一直角坐标系,A 是平面上的向量对第一和第三象限角的平分线的垂直投影,B 是平面上的向量对2ε的垂直投影,求A,B,AB 在基1ε,2ε下的矩阵; 3) 在空间P [x]n 中,设变换A 为)()1()(x f x f x f -+→, 试求A 在基i ε=!1)1()1(i i x x x +-- (I=1,2, ,n-1)下的矩阵A ; 4) 六个函数 1ε=e ax cos bx ,2ε=e ax sin bx ,3ε=x e ax cos bx ,4ε=x e ax sin bx ,1ε=221x e ax cos bx ,1ε=21e ax 2x sin bx ,的所有实数线性组合构成实数域上一个六维线性空间,求微分变换D 在基i ε(i=1,2, ,6)下的矩阵;5) 已知P 3中线性变换A 在基1η=(-1,1,1),2η=(1,0,-1),3η=(0,1,1)下的矩阵是⎪⎪⎪⎭⎫ ⎝⎛-121011101,求A 在基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)下的矩阵; 6) 在P 3中,A 定义如下:⎪⎩⎪⎨⎧--=-=-=)9,1,5()6,1,0()3,0,5(321ηηηA A A , 其中⎪⎩⎪⎨⎧-==-=)0,1,3()1,1,0()2,0,1(321ηηη, 求在基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)下的矩阵; 7) 同上,求A 在1η,2η,3η下的矩阵。
解 1) A 1ε=(2,0,1)=21ε+3ε,A 2ε=(-1,1,0)=-1ε+2ε,A 3ε=(0,1,0)= 2ε,故在基1ε,2ε,3ε下的矩阵为⎪⎪⎪⎭⎫ ⎝⎛-001110012。
2)取1ε=(1,0),2ε=(0,1),则A 1ε=211ε+212ε,A 2ε=211ε+212ε,故A 在基1ε,2ε下的矩阵为A=⎪⎪⎪⎪⎭⎫⎝⎛21212121。
又因为B 1ε=0,B 2ε=2ε,所以B 在基1ε,2ε下的矩阵为B =⎪⎪⎭⎫⎝⎛1000,另外,(AB )2ε=A (B 2ε)=A 2ε=211ε+212ε,所以AB 在基1ε,2ε下的矩阵为AB =⎪⎪⎪⎪⎭⎫⎝⎛210210。
3)因为 )!1()]2([)1(,,!2)1(,,11210----=-===-n n x x x x x x n εεεε, 所以A 0110=-=ε,A 01)1(εε=-+=x x ,A )!1()]2([)1()!1()]3([)1(1---------=-n n x x x n n x x x n ε=)!1()]3([)1(----n n x x x {)]2([)1(---+n x x }=2-n ε,所以A 在基0ε,1ε, ,1-n ε下的矩阵为A =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛011010 。
4)因为 D 1ε=a 1ε-b 2ε,D 2ε=b 1ε-a 2ε,6ε, D 3ε=1ε+a 3ε-b 4ε, D 4ε=2ε+b 3ε+a 4ε, D 5ε=3ε+a 5ε-b 6ε,D 6ε=4ε+b 5ε+a 6ε,所以D 在给定基下的矩阵为D =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000100001000010001a b b a a b b a ab b a 。
5)因为(1η,2η,3η)=(1ε,2ε,3ε)⎪⎪⎪⎭⎫⎝⎛--111101011,所以 (1ε,2ε,3ε)=(1η,2η,3η)⎪⎪⎪⎭⎫⎝⎛---101110111=(1η,2η,3η)X ,故A 在基1ε,2ε,3ε下的矩阵为B =X 1-AX=⎪⎪⎪⎭⎫ ⎝⎛--111101011⎪⎪⎪⎭⎫ ⎝⎛-121011101⎪⎪⎪⎭⎫ ⎝⎛---101110111=⎪⎪⎪⎭⎫⎝⎛--203022211。