初中数学概率解答题专项练习30题(有答案)

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

初中数学概率统计练习题及参考答案

初中数学概率统计练习题及参考答案

初中数学概率统计练习题及参考答案初中数学概率统计练习题及参考答案:一、选择题1、某班级三年级有男生35人,女生40人。

从这些人中任选一个人,下列说法中,正确的是()A.女生的概率是 35/75B.女生的概率是 40/75C.男生的概率是 35/75D.男生的概率是 40/752、从 1、2、3、4、5 中任取一个数字,问所得数的个位数为 3 的概率是多少?A.2/5B.1/5C.1/10D.2/103、小明每次买两个鸡蛋,有80%的概率一个鸡蛋没碎,20%的概率两个鸡蛋都碎了。

问题一:小明买8个鸡蛋,不会是全部碎了吧?问题二:小明买8个鸡蛋,不需要赔偿多少个鸡蛋?A.不会全部碎,赔偿两个B.不会全部碎,赔偿四个C.不会全部碎,赔偿六个D.会全部碎二、填空题1、小明从 1、2、3、4、5 中任取一个数,他猜测所得数小于 4 的概率是 ______。

2、小港每小时按外卖订单分别有30%、25%、20%、15%、10%的概率接到0、1、2、3、4个外卖订单。

求小港接到的订单数的期望值是 ______。

3、有 15 条石子 5 个人轮流取,每次只能取 1-3 条,最后取光石子的人失败。

第一个取石子的人应该取几颗才能保证享有取胜的策略?三、解答题1、小明做课外辅导班的概率是 3/4,小华做课外辅导班的概率是1/2。

两人都不做辅导课的概率是多少?解:小明不做辅导班的概率为 1-3/4=1/4,小华不做辅导班的概率为1-1/2=1/2。

根据“都不”的概率公式:P(A且B)=P(A)×P(B),两人都不做辅导班的概率为 1/4×1/2=1/8。

2、有 10 个球,其中有 4 个黑球。

每次抽出 1 个球,观察它的颜色后再放回去。

问需要抽多少次,才可使得抽到 1 个白球的概率大于 0.5?解:这是个典型的随机事件重复试验问题,符合二项分布的模型。

假定抽到白球的次数为 X,则 P(X=i)=(6/10)^i*(4/10)^(10-i)*C(10,i)。

初中数学概率专项训练及答案

初中数学概率专项训练及答案

初中数学概率专项训练及答案一、选择题1.下列事件是必然事件的是()A.打开电视机正在播放动画片B.投掷一枚质地均匀的硬币100次,正面向上的次数为50C.车辆在下个路口将会遇到红灯D.在平面上任意画一个三角形,其内角和是180【答案】D【解析】【分析】直接利用随机事件以及必然事件的定义分别判断得出答案.【详解】A、打开电视机正在插放动画片为随机事件,故此选项错误;B、投掷一枚质地均匀的硬币100次,正面向上的次数为50为随机事件,故此选项错误;C、“车辆在下个路口将会遇到红灯”为随机事件,故此选项错误;D、在平面上任意画一个三角形,其内角和是180°为必然事件,故此选项正确.故选:D.【点睛】此题考查随机事件以及必然事件,正确把握相关定义是解题关键.2.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.59【答案】C【解析】【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【详解】∵总面积为3×3=9,其中阴影部分面积为4×12×1×2=4,∴飞镖落在阴影部分的概率是4 9 .故答案选:C.【点睛】本题考查了几何概率的求法,解题的关键是根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.45【答案】B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是( )A.23B.29C.13D.19【答案】B【解析】【分析】可以采用列表法或树状图求解.可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为29;故选:B.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解6.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A.23B.12C.13D.14【答案】C【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193,故选C.考点:简单事件的概率.7.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.16B.15C.14D.13【答案】A【解析】【分析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率21. 126 ==故选A.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.8.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.9.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.【详解】停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.10.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。

初二数学概率与统计练习题及答案20题

初二数学概率与统计练习题及答案20题

初二数学概率与统计练习题及答案20题一、选择题1. 设随机试验为掷硬币4次,若表示出现正面的事件,那么P(A)的值是多少?A. 1/2B. 1/4C. 3/4D. 5/16答案:C. 3/42. 某班学生的身高分布如下表所示,那么身高在150cm以上的学生占总数的百分比是多少?身高(cm)人数140-145 4145-150 6150-155 10155-160 8A. 30%B. 40%C. 50%D. 60%答案:D. 60%3. 一副标准扑克牌中共有52张牌,从中随机抽取一张,抽到的是红心的概率是多少?A. 1/2B. 1/4C. 1/3D. 1/5答案:C. 1/34. 有一组数据:6,7,8,9,10,11。

若从中随机抽取一个数,抽到的是奇数的概率是多少?A. 1/6B. 1/2C. 1/3D. 2/3答案:C. 1/35. 某班学生参加数学竞赛情况如下表所示,那么至少会解出一题的概率是多少?解题数人数0 21 62 83 4A. 1/10B. 3/10C. 4/10D. 6/10答案:C. 4/10二、填空题6. 从1至20这20个数中,随机抽取一个数,抽到的是质数的概率是()。

答案:1/27. 甲、乙、丙三个人参加一场抽奖活动,共有5个奖项,每人只能获得一个奖项。

那么甲至少获得一项奖的概率是()。

答案:7/108. 从字母A、B、C、D、E、F中随机抽取两个字母组成字母对,那么其中至少包含一个元音字母的概率是()。

答案:4/159. 在一箱子中,装有5个黑球和7个白球。

从中依次拿出3球,若拿出的球是黑球、白球、黑球的概率是()。

答案:5/3310. 在一组排列中,有5个人按顺序排队,那么至少有两个人不相邻的排列情况数为()。

答案:72三、计算题11. 一副标准扑克牌中共有52张牌,从中随机抽取一张,抽到的是红心或方块的概率是多少?答案:26/52 = 1/212. 全校有800名学生,其中400名是男生,400名是女生。

初中数学统计与概率专题训练50题(含参考答案)

初中数学统计与概率专题训练50题(含参考答案)

初中数学统计与概率专题训练50题含答案一、单选题1.已知五个数a b c d e 、、、、满足a b c d e <<<<,则下列四组数据中方差最大的一组是( ) A .a b c 、、B .b c d 、、C .c d e 、、D .a e 、c 、2.下列事件中是必然事件的是( ) A .某射击运动员射击一次,命中靶心 B .抛掷一枚硬币,落地后正面朝上 C .三角形内角和是360°D .当x 是实数时,x 2≥03.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.01”.下列说法正确的是( )A .抽101次也可能没有抽到一等奖B .抽100次奖必有一次抽到一等奖C .抽一次也可能抽到一等奖D .抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖4.一个不透明的袋子中只装有4个黄球,它们除颜色外完全相同,从中随机摸出一个球.下列说法正确的是( )A .摸到红球的概率是14B .摸到红球是不可能事件C .摸到红球是随机事件D .摸到红球是必然事件5.小明同学在某学期德智体美劳的各项评价得分依次为10分、9分、8分、9分、9分,则小明同学五项评价的平均得分为( ) A .7分B .8分C .9分D .10分6.下列说法中,正确的是( ) A .雨后见彩虹是随机事件B .为了检查飞机飞行前的各项设备,应选择抽样调查C .将一枚硬币抛掷20次,一定有10次正面朝上D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是乙城市 7.下列事件为必然事件的是( ) A .打开电视,正在播放广告 B .抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8中,随意抽取一张纸片,上面写着最简二次根式的概率是()A.16B.13C.23D.129.某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是()A.19,20,14B.19,20,20C.18.4,20,20D.18.4,25,20 10.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则0a<是不可能事件;16④的平方根是4±4=±;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A.1个B.2个C.3个D.4个11.经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰有一人直行,另一人左拐的概率为()A.19B.29C.13D.2312.下列调查中,调查方式选择正确的是()A.为了了解一批灯泡的使用寿命,选择抽样调查B.为了了解某公园全年的游客流量,选择全面调查C.为了了解某1000枚炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查13.下列事件是必然事件的是()A.若a是实数,则|a|≥0B.抛一枚硬币,正面朝上C.明天会下雨D.打开电视,正在播放新闻14.下列事件中,是随机事件的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正方形都相似15.在某市2021年青少年航空航天模型锦标赛中,各年龄组的参赛人数情况如下表所示:若小明所在年龄组的参赛人数占全体参赛人数的38%,则小明所在的年龄组是()A.13岁B.14岁C.15岁D.16岁16.在某市举办的垂钓比赛上,6名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,6,10,8,10.则这组数据的中位数是()A.8B.7C.6D.1017.在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()A.20元B.30元C.35元D.100元18.如果一组数据a1,a2,a3…,a n方差是9,那么一组新数据a1+1,a2+1,a3+1…,a n+1的方差是()A.3B.9C.10D.8119.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4B.极差是2C.平均数是9D.众数是920.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁二、填空题21.某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,所得成绩如下:70,82,98,60,91,54,78,85,这个问题中的总体是______,个体是______,样本容量是______.22.专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视,这个结论是通过___________(填“抽样调查”或“普查”)得到的.23.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,样本容量是______.24.夏季已到,气温渐高.要反映我市某一周每天的最高气温的变化趋势,根据你所学知识宜采用______________统计图.25.如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为____.26.某十字路口有一个交通信号灯,红灯亮60秒,绿灯亮35秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为____________.27.一组数据2,4,x,﹣1的平均数为3,则x的值是___.28.在某项考核中,最终考核成绩(百分制)由研究性学习成绩与卷面成绩组成,其中研究性学习成绩占60%,卷面成绩占40%,小明的这两项成绩依次是90分和85分,则小明的最终考核成绩是___________分.29.一组数据a,b,c,d,e的方差是7,则a+2、b+2、c+2、d+2、e+2的方差是___.30.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是__.31.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,卷面成绩占60%,小明的这两项成绩(百分制)依次是90分,85分,则小明这学期的数学成绩是_________.32.有两个盒子,第一个盒子中装有3 个红球和4 个白球,第二个盒子中装有4 个红球和3 个白球,这些球除颜色外都相同,分别从中摸出1 个球,从第______个盒子中摸到白球的可能性大.33.为了了解某市初中生的视力情况,有关部门进行了抽样调查,数据如下表:若该市共有初中生15万人,则全市视力不良的初中生约有__________万人.34.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x(单位:千克)及方差s2(单位:千克2)如表所示:明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是__.35.右图是各年龄段人群收视某电视剧情况的条形统计图(统计时年龄只取整数).若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有__________人.36.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组~第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.37.一组数据:2,1,2,5,3,2的众数是___.38.某地区有一条长100千米,宽0.5千米的防护林.有关部门为统计该防护林的树林量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木数量如下(单位:棵):65 100,63 200,64 600,64 700,67 400.那么根据以上的数据估算这一防护林总共约有_____棵树.39.下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_____.40.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.计算这10天日最高气温的平均值为_____℃.三、解答题41.为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为65g的鸡蛋,现有两个厂家提供货源,它们的价格相同,鸡蛋的品质相近,质检员分别从两厂的产品中抽样调查了20只鸡蛋,并将它们按质量(单位:克)分成四组(:6770A x ≤<,B :6457x ≤<,C :6164x ≤<,D :58661≤<,它们的质量(单位:g )如下:整理数据:甲厂:66,64,64,66,63,66,66,67,68,64,66,60,66,66,63,60,67,69,68,61;乙厂:65,66,67,67,68,67,66,61,64,65,69,61,62,64,63,64,60,69,65,67.甲厂鸡蛋质量频数统计表分析上述数据,得到下表:请你根据图表中的信息完成下列问题: (1)a =______;b =______;c =______;(2)如果只考虑出口鸡蛋规格,请结合表中的某个统计量,为外贸公司选购鸡蛋提供参考建议;(3)某外贸公司从甲厂采购了18000只鸡蛋,并将质量(单位:g)在6167≤<的鸡蛋x加工成优等品进行盒装售卖,已知一盒有18颗鸡蛋,每颗鸡蛋进价为0.6元,若将优等品鸡蛋全部售出,试求一盒优等品鸡蛋定价多少才能使该外贸公司这一批优等品鸡蛋的利润达到6630元?42.阅读材料,回答问题.材料:题1:假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部孵化成功后,求3只雏鸟中恰有2只雄鸟的概率,我们可以用“袋中摸球”的试验来模拟题1:在口袋中放两种不同颜色的小球,红球表示雌鸟,黄球表示雄鸟,3只雏鸟孵化小鸟.相当于从三个这样的口装中各随机换出一球.恰好有2个黄球.题2:一天晚上,小伟帮助妈妈清洗两套只有颜色不同的有盖茶杯.突然停电了.小伟只好把杯盖和茶杯随机地搭配在一起:求颜色搭配正确的概率.(1)设计一个“袋中模球”的试验模拟题2,请筒要说明你的方案;(2)请直接写出题2的概率的结果.43.为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所示:(1)请你填写下表:(2)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.44.为贯彻落实省教育厅提出的“三生教育”.在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布表和扇形统计图:根据上述信息回答下列问题:(1)a= ,b= .(2)在扇形统计图中,B组所占圆心角的度数为.(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人.45.图℃、图℃反映是东方百货商场今年15~月份的商品销售额统计情况.来自商场财~月份的销售总额一共是370万元,观察图℃和图℃,解答下务部的报告表明,商场15面问题:(1)将图℃补充完整;(2)商场服装部5月份的销售额是多少万元?(3)李强观察图℃后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?46.某公司为了了解员工每人所创年利润情况,公司从各部门抽取部分员工对每年所创年利润情况进行统计,并绘制如图所示的统计图.(1)求抽取员工总人数,并将图补充完整;(2)每人所创年利润的众数是________,每人所创年利润的中位数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上为优秀员工,在公司1200员工中有多少可以评为优秀员工?47.重庆演艺集团决定今年3月中旬在八中开展“高雅艺术进学校”的宣传活动,活动有A、唱歌,B、舞蹈,C、绘画,D、演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在某年级学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表:请结合统计图表,回答下列问题:a______,并将条形统计图补充完整;(1)本次抽查的学生共______人,(2)如果该年级学生有1000人,请估计该年级喜欢“唱歌”宣传方式的学生约有多少人?A B C D四项宣传方式中随机抽取两项进行展示,(3)学校采用抽签方式让每班在,,,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.48.某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图.(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下;A 级成绩为优秀,B 级成绩为良好,C 级成绩为合格,D 级成绩为不合格)其中B 级成绩(单位:分)为:75,75,76,77,78,78,79,79,79,80,80,81,81,82,82,83,83,84,86,87,87,88,89 请你结合图中所给信息解答下列问题: (1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是______; (3)扇形统计图中A 级所在的扇形的圆心角度数是______; (4)九年级(1)班学生的体育测试成绩的中位数是______;(5)若该校九年级有500名学生,请你用此样本估计体育测试中达到良好及良好以上的学生人数约为多少人?49. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:15m<3030m<4545m<6060m<7575m<9090m<105根据图表中提供的信息解答下列问题:(1)统计表中的a= ,b= ,c= ;(2)在扇形统计图中,A类所对应的圆心角是度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?参考答案:1.D【分析】根据方差的性质判断即可.【详解】解:五个数a b c d e 、、、、满足a b c d e <<<<,由方差是反映一组数据的波动大小的一个量,方差越大、数据越不稳定可知,a c e ,,方差最大, 故选:D .【点睛】本题考查方差的性质.掌握方差越大、数据越不稳定是解答本题的关键. 2.D【分析】根据必然事件的概念的定义,即可求解.【详解】解:A 、某射击运动员射击一次,命中靶心,是随机事件,故本选项不符合题意;B 、抛掷一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;C 、三角形内角和是360°,是不可能事件,故本选项不符合题意;D 、当x 是实数时,x 2≥0,是必然事件,故本选项符合题意; 故选:D.【点睛】本题考查的是对必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键. 3.C【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖, 故选:C .【点睛】本题考查了概率的意义,理解概率的实际意义是本题的关键 4.B【分析】根据概率公式和必然事件、随机事件及不可能事件逐一判断即可得. 【详解】解:A .摸到红球的概率是0,此选项错误; B .摸到红球是不可能事件,此选项正确,C 、D 选项错误;【点睛】此题考查了概率的定义:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.C【分析】根据平均数的计算方法,五项总分除以5可得结果. 【详解】解:小明同学五项评价的平均得分为: 10989995++++=(分)故选:C .【点睛】本土题考查了求平均数;理解平均数的意义正确计算是解题的关键. 6.A【分析】根据必然事件、不可能事件、随机事件的概念,以及全面调查和抽样调查的区别,方差稳定性,判断即可.【详解】A .雨后见彩虹是随机事件,故本选项正确,符合题意B .为了检查飞机飞行前的各项设备,应选择全面调查,故本选项错误,不符合题意C .将一枚硬币抛掷20次,不一定有10次正面朝上,故本选项错误,不符合题意D .气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s 2甲=3.4,s 2乙=4.3,则这两个城市年降水量最稳定的是甲城市,故本选项错误,不符合题意 故选A【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查的区别,方差稳定性.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小越稳定. 7.D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可. 【详解】解:A 、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B 、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C 、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8.B【分析】根据最简二次根式的定义先找出图片中的最简二次根式的个数,再根据概率公式进行计算,即可得出结论.【详解】解:==符合最简二次根式的定义,所以,随意抽取一张纸片,上面写着最简二次根式的概率是21 63 =,故选:B.【点睛】此题考查了概率的计算,掌握最简二次根式的定义是准确求出概率的关键.9.C【详解】解:由扇形统计图给出的数据可得销售20台的人数是:20×40%=8人,销售30台的人数是:20×15%=3人,销售12台的人数是:20×20%=4人,销售14台的人数是:20×25%=5人,所以这20位销售人员本月销售量的平均数是208+303+124+14520⨯⨯⨯⨯=18.4台;把这些数从小到大排列,最中间的数是第10、11个数的平均数,所以中位数是20;销售20台的人数最多,所以这组数据的众数是20.故选:C.【点睛】本题考查平均数;中位数;众数.10.B【详解】分析:根据无理数,平方根,众数,中位数,平均数的概念一一判断即可.详解:①“明天降雨的概率是50%”表示明天有50%的可能会下雨,故错误.②无理数无限不循环小数,故错误.③若a为实数,则0a<是不可能事件;正确.16④的平方根是4±,用式子表示是4=±;故错误.⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.正确.正确的有2个.故选B.点睛:考查无理数,平方根,众数,中位数,平均数的概念,熟记概念是解题的关键. 11.B【分析】画树状图展示所有9种等可能的结果数,找出恰有一人直行,另一人左拐的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中恰有一人直行,另一人左拐的结果数为2,所以恰有一人直行,另一人左拐的概率=29.故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法表示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.12.A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.【详解】A.℃调查一批灯泡的使用寿命具有破坏性,℃选择抽样调查,正确;B.℃调查某公园全年的游客流量工作量大,℃选择抽样调查,故不正确;C.℃调查某1000枚炮弹的杀伤半径具有破坏性,℃选择抽样调查,故不正确;D.℃调查一批袋装食品是否有防腐剂具有破坏性,℃选择抽样调查,故不正确;故选A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.A【详解】试题分析:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.A、地球绕着太阳转是必然事件,故A符合题意;B、抛一枚硬币,正面朝上是随机事件,故B不符合题意;C、明天会下雨是随机事件,故C不符合题意;D、打开电视,正在播放新闻是随机事件,故D不符合题意.考点:随机事件14.C【分析】根据随机事件,必然事件的定义一一判断即可.【详解】等边三角形,等腰直角三角形,正方形都相似,是必然事件,矩形相似是随机事件,故选:C.【点睛】本题考查相似多边形的性质,随机事件,必然事件等知识,解题的关键是掌握随机事件的定义,属于中考常考题型.15.B【分析】根据各年龄组的参赛人数情况表,算出总人数,再算出14岁年龄组人数所占的百分比,即可得到答案.【详解】解:根据各年龄组的参赛人数情况表可知:总参赛人数为:5+19+12+14=50,19÷50=38%,则小明所在的年龄组是14岁.故选:B.【点睛】本题考查了频数与频率,解决本题的关键是掌握频数与频率的关系,理清频数分布表的数据.16.B【分析】根据中位数的定义先把这组数据从小到大重新排列,找出最中间的数即可.【详解】把这数从小到大排列为:4,5,6,8,10,10,最中间的数是6,8则这组数据的中位数是6+8=72;故选B.【点睛】此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.17.A【分析】直接根据众数的概念求解可得.【详解】在这次活动中,该班同学捐款金额的众数是20元,故选:A.【点睛】本题主要考查众数,解题的关键是掌握一组数据中出现次数最多的数据叫做众数.18.B【详解】解:设一组数据a1,a2,a3…,an平均数为a,℃一组新数据a1+1,a2+1,a3+1…,an+1的平均数为a+1,℃一组数据a1,a2,a3…,an方差是9,℃1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9,℃1n[(a1+1-a-1)2+(a2+1-a-1)2+(a3+1-a-1)2+…(an+1-a-1)2)]=1n[(a1-a)2+(a2-a)2+(a3-a)2+…(an-a)2)]=9故选B.19.A【详解】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],分别进行计算可得答案.详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9,众数为9,方差:S2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4,故选A.点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.20.D【详解】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】℃==x x x x >乙丁甲丙,℃从乙和丁中选择一人参加比赛,℃22S S >乙丁,℃选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 21. 该班全体同学的数学成绩 该班每个学生的数学成绩; 8【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:某校要了解某班的数学教学质量,对该班的8名学生进行抽样测验,在这个问题中,总体是该班全体同学的数学成绩;个体是该班每个学生的数学成绩;样本是该班的8名学生的数学成绩,样本容量是8.故答案为:该班全体同学的数学成绩,该班每个学生的数学成绩,8.【点睛】本题考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位. 22.抽样调查【详解】由于普查得到的调查结果比较准确,但所费人力物力和时间较多,而抽样调查得到的调查结果比较近似,在这个调查中,个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查. 23.1000【分析】根据样本容量的定义(样本中个体的数目称为样本容量)即可得. 【详解】解:这个问题中,样本容量是1000, 故答案为:1000.【点睛】本题考查了样本容量,熟记样本容量的定义是解题关键,样本容量只是一个数字,不带单位.。

初中数学概率解答题专项练习30题ok

初中数学概率解答题专项练习30题ok

概率解答题专项练习30题(有答案)1.李华的妈妈在她上学的时候总是叮嘱她:“注意交通安全,别被来往的车辆碰着!”但李华心里很不服气,心想:城里有一百多万人口,每天交通事故只有几起,事故发生的可能性太小了,概率几乎是零,你认为李华的想法对吗为什么2.一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球3.一个桶里有60个弹珠,一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少4.从1,2,3这三个数字中任意取出一个、两个或三个可以构成不同的一位数、两位数或三位数,所有这些数中均无重复数字(如22,311等为有重复数字的数).(1)列举所有可能出现的结果;(2)出现奇数的概率是多少5.一个盒子中有4张完全相同的卡片,分别写有2cm,3cm,4cm和5cm,盒子外有2张卡片,分别写有3cm和5cm.现随机从盒内取出一张卡片,与盒子外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,求这三条线段能构成等腰三角形的概率6.有5张卡片,正面分别写有数字是2,3,5,6,7,将卡片洗匀后背面朝上放置在桌面上,随机抽取一张.求下列事件发生的可能性:(1)数字是偶数;(2)数字大于2.7.一样大小的正方体木块堆放在房间的一角(如图所示),一共垒了5层,其中只有一块颜色为红色的,其余均为白色.问红色木块垒在第几层的概率最大分别计算红色木块在每一层内的概率.8.如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于_________事件.(2)小猫踩在白色或黑色的正方形地板上,这属于_________事件.(3)小猫踩在红色的正方形地板上,这属于_________事件.(4)小猫踩在_________颜色的正方形地板上可能性较大.9.现有各色彩球若干,其中有白色球3只,红色球2只.请你设计一个转盘,使得自由转动这个转盘,指针停在白色和红色区域上的概率分别为.10.现有边长为10cm的正方形木板,正中间画有一边长为5cm的正方形,并将小正方形涂成红色,小正方形的外围部分涂成绿色,如果把该木板挂在墙上做投镖游戏,假设镖一定能投中木板,求投中红色区域的概率是多少11.5个乒乓球都是新球,每次比赛取出2个用完后放回去,那么第二次比赛时取出2个球都是新球的概率是多少12.在街头巷尾会遇到一类“摸球游戏”,摊主的游戏道具是把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球(球除颜色外,其他均相同)放在口袋里,让你摸球.规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品.(1)用列表法列举出摸出的两球可能出现的结果;(2)求出获奖的概率;(3)如果有50个人每人各玩一局,摊主会从这些人身上骗走多少钱请就这一结果写一句劝诫人们不要参与摸球游戏的忠告语.13.足球比赛规则如下:胜一场,得二分;平一场,得一分;负一场,得.分.校足球队参加了三场比赛,(1)比赛结果有几种可能情况,用树形图来表示出来.(2)哪种情况的机会大,最后得了多少分(3)得几分的机会最小最小是多少14.“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方每次做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负需继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次比赛时两人分出胜负的概率是多少甲胜的概率是多少请用树状图的方法解决.15.小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都想去观看,可门票只有一张,读九年级哥哥想了一个办法,拿出8张扑克牌,将数字2、3、5、9的四张给了小敏,将数字4、6、7、8的四张扑克牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出两张牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)小敏知道哥哥设计的游戏规则不公平,于是她提议两人交换一张牌,使游戏规则公平后再进行比赛,你知道小敏是如何提议的吗说说你的理由.16.小明和小丽用两个转盘做“配紫色”游戏,(红色+蓝色=紫色)配成紫色小明得1分,否则小丽得1分,请你解决下列问题:(1)利用画树状图的方法表示游戏所有可能会出现的结果;并求小明、小丽获胜的概率;(2)游戏对双方公平吗若不公平请修改游戏规则,使得游戏对双方都公平.17.小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.小明、小华约定:若小明抽出的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不分胜负,你认为这个游戏是否公平说明你的理由.(列表或树形图)18.某校举办艺术节,其中A班和B班的节目总成绩并列第一,学校决定从A、B两班中选派一个班代表学校参加全省比赛,B班班长想法是:用一个装有质地、大小形状完全相同的8m个红球和6m个白球(m为正整数)的袋子.由A班班长从中随机摸出一个小球,若摸到的是白球,则选A班去;若摸到的是红球则选B班去.(1)这个办法公平吗请用概率的知识解释原因.(2)若从袋子中拿出2个红球,再用上述方法确定那个班去,请问对A班还是B班有利说明理由.19.一个口袋中有8个黑球和若干个白球,(不许将球倒出来数)从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,如果共摸了200次,其中有60次摸到黑球,那么请你估计口袋中大约有多少个白球20.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是、.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在附近波动,请据此估计小明放入的红球的个数.21.柳市乐华电器厂对一批电容器质量抽检情况如下表:抽检个数20040060080010001200正品个数1803905767689601176(1)从这批电容器中任选一个,是正品的概率是多少(2)若这批电容器共生产了14000个,其中次品大约有多少个22.通常,选择题有4个选择支,其中只有1个选择支是正确的.现有20道选择题,小明认为只要在每道题中任选1个选择支,其中必有5题的选择结果是正确的.你认为小明的推断正确吗说说你的理由.23.篮球运动员甲的三分球命中率是70%,乙的三分球命中率是50%.本场比赛中甲投三分球4次,命中1次;乙投三分球4次,全部命中.全场比赛结束前,甲、乙两人所在球队还落后对方球队2分,但还有一次进攻的机会.如果你是教练,那么最后一个三分球由谁来投说说你的理由.24.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的(4)你可以用哪些方法来模拟实验25.请设计一个摸球游戏,使得P(摸到红球)=,P(摸到白球)=,说明设计方案.26.小明的叔叔承包了一个鱼塘,他问叔叔一共养了多少鱼叔叔说:“请你运用所学过的知识帮我估计一下吧.”请你帮小明设计一个实验方案,求出鱼塘中鱼的总数.27.白头叶猴属于国家一级保护动物,主要分布在广西,数量稀少,请你设计一个实验方案,考察现有白头叶猴的数量是多少28.盒子里装有6张扑克牌,其中有3张红桃,2张梅花,1张方块,从中任意摸一张,猜想摸到方块的概率是多少请你与同学用实验的方法加以验证.29.请你设计一个实验方案(用扑克牌):考察6个人中有2人生肖相同的概率.30.摸球试验:一个袋子里有8个黑球和若干个白球,从袋中随机摸出1球,记下其颜色,再把它放回袋中,不断重复上述的过程.(1)若共摸球200次,其中有57次摸到黑球,你能估计摸出黑球的概率是多少吗你能估计袋中大约有多少个白球吗(2)若从袋中一次摸球20个,其中黑球数占,你能估计袋中大约有多少个白球吗(3)打开口袋,数数袋中白球的个数,你们的估计值和实际情况一致吗为什么(4)将各组的数据汇总,并根据这个数据估计袋中的白球数,看看估计结果又如何(5)为了使估计结果较为准确,应该注意些什么概率解答题专项练习30题参考答案:1.解:李华的想法不对.因为“发生交通事故”是随机事件,随机事件就有可能发生,概率尽管很小,但绝不是零2.解:(1)设白球的个数为x个,根据题意得:,解得:x=6(2分)小明可估计口袋中的白球的个数是6个.(3分)(2)1200×=720.(5分)答:需准备720个红球3.解:根据题意可得:一个桶里有60个弹珠,拿出红色弹珠的概率是35%,则有红色弹珠60×35%=21个,拿出蓝色弹珠的概率是25%,则蓝色弹珠有60×25%=15个,白色弹珠60﹣21﹣15=24个.答:红色弹珠有21个,蓝色弹珠有15个,白色弹珠有24个4.解:(1)所有可能出现的结果:一位数3个:1、2、3;两位数6个:12、13、21、23、31、32;三位数6个:123、132、213、231、312、321;(2)共有15个数,奇数有10个,所以出现奇数的概率为=5.解:取出的情况为:2、3、5;3、3、5;4、3、5;5、3、5;共四种(4分).因为2、3、5;4、3、5;两组不构成等腰三角形(6分),所以能构成等腰三角形的概率是6.解:(1)∵有5张卡片,正面分别写有数字是2,3,5,6,7,∴随机地抽取一张,所有可能出现的结果有5种,且每种结果发生的可能性都相等,其中卡片上的数字为偶数的结果有:2,6,一共2种,∴P(数字是偶数)=;(2))∵有5张卡片,正面分别写有数字是2,3,5,6,7,∴随机地抽取一张,所有可能出现的结果有5种,且每种结果发生的可能性都相等,其中卡片上的数字大于2的结果有:3,5,6,7,一共4种,∴P(数字大于2)=7.解:小正方形的个数从下到上分别为:15,10,6,3,1个,∴红色木块垒在第5层的概率为:=红色木块垒在第4层的概率为:,红色木块垒在第3层的概率为:,红色木块垒在第2层的概率为:=,红色木块垒在第1层的概率为:=,∴红色木块垒在第,1层的概率最大8.解:(1)小猫踩在白色的正方形地板上,这属于可能(或不确定)事件;故答案为:可能(或不确定);(2)小猫一定会踩在白色或黑色的正方形地板上,这属于必然(或确定)事件.故答案为:必然(或确定);(3)小猫不可能踩在红色的正方形地板上,这属于不可能事件.故答案为:不可能;(4)根据黑色正方形多与白色正方形,得出小猫踩在黑颜色的正方形地板上可能性较大9.解:根据几何概率的求法:指针停在有色区域的概率就是该色区域的面积与总面积的比值;即红色区域的面积与总面积的比值为,白色区域的面积与总面积的比值为.故设计如下:六等分圆,白色占3份(次序不论),红占2份(次序不论),其它色占1份即可.10.解:投中红色区域的概率是=11.解:列表得:旧新旧新旧新旧旧旧旧新旧新旧新旧旧旧新新新新新旧新旧新新新新新新旧新旧新新新新新新旧新旧新新新新旧旧∵共有20种等可能的结果,第二次比赛时取出2个球都是新球的有6种情况,∴第二次比赛时取出2个球都是新球的概率是:=12.解:(1)列表如下:白白白黑黑黑白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)所有等可能的情况有36种;(2)摸出两次都为白球的情况有9种,则P(两次都为白球)==;(3)平均玩一局损失的钱数为3﹣10×=(元),则如果有50个人每人各玩一局,摊主会从这些人身上骗走50×=25(元),该游戏对设局者有利,请勿上当13.解:树形图如图(1)(2)一胜、一平、一负的机会最大,共有6种情况,得2+1=3分.(3)得0分,6分的机会最少,只有1种情况14.解:画树形图如图.由树形图可知,分出胜负的概率是=,甲胜的概率是15.解:(1)法1,列表2359小敏哥哥467913689111579101216810111317法2,画树状图从上表可以看出共有16种可能的值,而其中偶数有6种,所以P(小敏去看比赛)=;(2)用小敏的任一张奇数牌交换哥哥的任一张偶数牌.小敏手中有3张奇数牌,一张偶数牌,而哥哥手中有3张偶数牌,一张奇数牌.用小敏的任一张奇数牌交换哥哥的任一张偶数牌后,两人各有两张奇数牌和和两张偶数牌.P(小敏去看比赛)=P(小敏和哥哥都抽到奇数牌)+P(小敏和哥哥都抽到偶数牌)=;P(哥哥去看比赛)=P(小敏抽到奇数牌而哥哥抽到偶数牌)+P(小敏抽到偶数牌而哥哥抽到奇数牌)=.所以:用小敏的任一张奇数牌交换哥哥的任一张偶数牌后游戏是公平的16.解:(1)﹣﹣(4分)∴P(小明获胜)=,P(小丽获胜)=.∵P(小明获胜)<P(小丽获胜),∴游戏对双方不公平.(2)游戏对双方不公平.修改规则:若配成紫色小明得12分,否则小丽得4分.17.解:游戏是公平的,如图所示:∴P小明=,P小华=,∴游戏是公平的.18.解:(1)不公平,∵P(A班去)=,P(B班去)=,∴P(A班去)<P(B班去);故这个办法不公平;(2)∵为m正整数,∴当m=1时,8m﹣2=6m,此时对A班,B班是公平的,当m>1时,8m﹣2>6m,此时对B班有利19.解:∵共摸了200次,其中有60次摸到黑球,即可得出摸到黑球的概率为:=,∴球的总个数为:8÷=≈27个,∴估计口袋中大约有27﹣8=19个白球20.解:(1)由已知得纸箱中蓝色球的个数为:100×(1﹣﹣)=50(个)(2)设小明放入红球x个根据题意得:,解得:x=60(个).经检验:x=60是所列方程的根答:小明放入的红球的个数为6021.解:(1)六次抽查正品频率分别为:180÷200=,390÷400=,576÷600=,768÷800=,960÷1000=,1176÷1200=,∴正品概率估计为;或(180+390+576+768+960+1176)÷(200+400+600+800+1000+1200)=;(2)其中次品大约有14000×=500个22.解:小明的推断是不正确的,因为20题的题量较小,只有当题量很大时,在每道选择题中任选1个选择支,其选择结果正确的频率才能在常数附近摆动,由此才可以估计其选择的结果正确的概率为23.解:(1)由于甲的命中率高,所以由甲投;(2)由于乙本场发挥稳定,命中率为100%,故可由乙投.所以从本场来说应选乙投24.解:(1)全班共有50名学生,共有12名学生获奖,所以恰好能得到荣誉的机会为=;(2)恰好能当选三好生的机会为,能当选模范生的机会为=;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均为黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会25.解:一个袋子中装有12个球,其中四个红球,三个白球,五个黄球.从中任取一球,总共有十二种可能,摸到红球有四种可能,摸白球有三种可能,故P(摸到红球)==,P(摸到白球)==26.解:假设鱼塘中共有x条鱼,先捞出b条做上记号后放回鱼塘中,待与鱼群充分混合后,再捕捞一网鱼x1条,其中有记号的鱼b1条,计算出的值;又放回鱼塘中,待与鱼群充分混合后,再捕捞一网鱼x2条,其中有记号的鱼b2条,计算出的值;…以此反复捕捞n网,分别计算出每网中有记号的鱼条数与每网鱼的总数的比值,然后计算出这些比值的平均数,则,由此求出鱼塘中鱼的总数x27.解:假设保护区内有x只白头叶猴,首先在保护区内设法捉a只白头叶猴,做上记号放回去,过几日,待与其他猴子混合后,再任意捕捉n只,若其中有b只有记号,则由,解得x=的值,从而可知保护区内白头叶猴的大致数量.(由于环境的特殊性,不可能类似估计鱼塘中鱼的总量那样做多次实验,因此误差可能比较大28.解:∵盒子里装有6张扑克牌,其中有3张红桃,2张梅花,1张方块,∴从中任意摸一张,摸到方块的概率是:29.解:拿12张不同数字或花色的扑克牌代表12属相,然后从中随意抽取1张,记下花色数字在放回,洗匀后再抽一张,又记下花色数字,…,以此类推抽够6张牌算一组实验,看这组中是否抽中花色数字完全相同的牌,作好记录;为保证实验的准确性,重复做n组这样的实验,最后统计若有x组出现相同花色数字的情况,则可确定6人中生肖相同的概率约为30.解:(1)摸出黑球的概率是:,则球的总个数是8÷≈28,则估计袋中大约有白球28﹣8=20(个);(2)袋子中球的总个数是:8÷=32(个),则白球的个数是:32﹣8=24(个);(3)估计值和实际情况不一定一致,因为抽查具有随机性;(4)摸球20个,其中黑球数占,则有5个黑球.则球的总个数是:8÷≈28,则白球的个数是:28﹣8=20(个);(5)抽取的次数要尽量多,且抽取时是随机抽样。

新初中数学概率专项训练解析含答案

新初中数学概率专项训练解析含答案

新初中数学概率专项训练解析含答案一、选择题1.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.2.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.3.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112【答案】C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.4.疫情防控,我们一直在坚守.某居委会组织两个检查组,分别对“居民体温”和“居民安全出行”的情况进行抽查.若这两个检查组在辖区内的某三个校区中各自随机抽取一个小区进行检查,则他们恰好抽到同一个小区的概率是()A.13B.49C.19D.23【答案】A 【解析】【分析】将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.【详解】将三个小区分别记为A、B、C,根据题意列表如下:由表可知,共有9种等可能结果,其中他们恰好抽到同一个小区的有3种情况,所以他们恰好抽到同一个小区的概率为31 = 93.故选:A.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖B.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.6.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数2的差不大于1的概率是()A.12B.13C.23D.56【答案】A【解析】【分析】根据正方体骰子共有6个面,通过观察向上一面的点数,即可得到与点数2的差不大于1的概率.【详解】∵正方体骰子共6个面,每个面上的点数分别为1、2、3、4、5、6,∴与点数2的差不大于1的有1、2、3.∴与点数2的差不大于1的概率是31 62 .故选:A.【点睛】此题考查求概率的方法,解题的关键是理解题意.7.随机掷一枚质地均匀的硬币两次,落地后至少有一次正面向上的概率是 ()A.34B.23C.12D.14【答案】A【解析】【分析】根据:随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反;可求落地后至多有一次正面朝下的概率.【详解】∵随机掷一枚质地均匀的硬币两次,可能出现的情况为:正正,正反,反正,反反.∴落地后至多有一次正面朝下的概率为34.故选:A【点睛】本题考核知识点:求概率.解题关键点:用列举法求出所有情况.8.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A .22π- B .24π- C .28π- D .216π-【答案】A 【解析】 【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【详解】解:如图,连接PA 、PB 、OP , 则S 半圆O =2122ππ⨯=,S △ABP =12×2×1=1, 由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP ) =4(2π﹣1)=2π﹣4, ∴米粒落在阴影部分的概率为24242ππ--=, 故选A .【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.9.如图,在4×3长方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )A.16B.112C.13D.14【答案】D【解析】【分析】【详解】解:∵在4×3正方形网格中,任选取一个白色的小正方形并涂黑,共有8种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有2种情况,如图所示:∴使图中黑色部分的图形构成一个轴对称图形的概率是:21 84故选D.10.如图,管中放置着三根同样的绳子AA1、BB1、CC1小明和小张两人分别站在管的左右两边,各随机选该边的一根绳子,若每边每根绳子被选中的机会相等,则两人选到同根绳子的概率为()A.12B.13C.16D.19【答案】B【解析】【分析】画出树状图,得出所有结果和两人选到同根绳子的结果,即可得出答案.【详解】如图所示:共有9种等可能的结果数,两人选到同根绳子的结果有3个,∴两人选到同根绳子的概率为19=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.11.下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤C.在只装有5个红球的袋中摸出1球,是红球D.农历十五的晚上一定能看到圆月【答案】C【解析】试题分析:必然事件就是一定发生的事件,即发生的概率是1的事件.A.打开电视机,正在转播足球比赛是随机事件;B.小麦的亩产量一定为1000公斤是随机事件;C.在只装有5个红球的袋中摸出1球,是红球是必然事件;D.农历十五的晚上一定能看到圆月是随机事件.故选C.考点: 随机事件.12.下列事件中是确定事件的为( )A.两条线段可以组成一个三角形 B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯 D.掷一枚均匀的骰子,掷出的点数是奇数【答案】A【解析】A. 两条线段可以组成一个三角形是不可能事件,也是确定事件,故本选项正确;B. 打开电视机正在播放动画片是随机事件,故本选项错误;C. 车辆随机经过一个路口,遇到绿灯是随机事件,故本选项错误;D. 掷一枚均匀的骰子,掷出的点数是奇数是随机事件,故本选项错误。

初中概率练习题及答案

初中概率练习题及答案

初中概率练习题及答案一、选择题(每题2分,共10分)1. 一个袋子里有10个红球和5个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 2/3C. 3/5D. 5/152. 掷一枚均匀的硬币,连续掷两次,出现两次正面朝上的概率是多少?A. 1/4B. 1/2C. 1/8D. 1/163. 有5个学生参加数学竞赛,其中3个是男生,2个是女生。

随机选2名学生,选到至少1名女生的概率是多少?A. 1/5B. 2/5C. 3/5D. 4/5二、填空题(每题2分,共10分)4. 一个班级有30名学生,其中15名男生和15名女生。

如果随机选一名学生作为班长,那么选到男生的概率是________。

5. 一个骰子有6个面,每个面出现的概率相同。

掷一次骰子,得到偶数点数的概率是________。

6. 一个盒子里有3个白球和2个黑球,随机抽取2个球,抽到一个白球和一个黑球的概率是________。

三、计算题(每题5分,共15分)7. 一个袋子里有3个红球和2个绿球,如果随机抽取2个球,求抽到一个红球和一个绿球的概率。

8. 一个班级有40名学生,其中有20名男生和20名女生。

如果随机选3名学生参加学校的活动,求至少有1名男生的概率。

四、解答题(每题10分,共20分)9. 一个袋子里有7个白球和3个黑球。

如果随机抽取3个球,求抽到至少2个白球的概率。

10. 一个班级有50名学生,其中25名男生和25名女生。

如果随机选5名学生组成一个小组,求这个小组中恰好有3名男生的概率。

答案:1. C2. C3. C4. 15/30 = 1/25. 3/6 = 1/26. (3C1 * 2C1) / 5C2 = 6/10 = 3/57. (3C1 * 2C1) / 5C2 = 6/10 = 3/58. 1 - (20C3 / 40C3) = 1 - (1190 / 3838) ≈ 0.6979. (7C2 * 3C1 + 7C3) / 10C3 = (21 + 35) / 120 = 56/120 = 7/1510. (25C3 * 25C2) / 50C5 = 2300 / 2118760 ≈ 0.108。

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)

中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。

初三数学概率试题大全(含答案)【精选】-精心整理

初三数学概率试题大全(含答案)【精选】-精心整理

初三数学概率试题大全(含答案)【精选】-精心整理初三数学概率试题大全(含答案)【精选】-精心整理一、选择题1.如果一枚硬币被抛掷一次,出现正面向上的概率是多少?A. 1/2B. 1/4C. 3/4D. 1/32.一个袋子中有4个红球和6个绿球,从中任取一个球,取出的是红球的概率是多少?A. 1/4B. 1/2C. 2/5D. 2/33.班上有18名男生和12名女生,从中任取一名学生,取出的是女生的概率是多少?A. 2/3B. 1/2C. 3/5D. 5/6二、填空题1.将一个标准扑克牌52张洗乱后,从中随机抽出一张牌,出现红桃的概率是 ______。

2.一个骰子被投掷一次,出现一个小于3的数的概率是 ______。

三、计算题1.将一枚均匀的硬币抛掷三次,出现正面向上的次数为X,求X=2的概率。

2.从1至20的整数中随机选择一个数,求其为偶数且小于10的概率。

答案:一、选择题1. A2. A3. C二、填空题1. 1/22. 1/2三、计算题1. 投掷硬币三次,每次出现正面的概率为1/2,因为硬币投掷的结果是独立事件,所以出现正面向上的次数为2的概率为(1/2)^2 * (1/2) = 1/8。

2. 从1至20的整数中,偶数且小于10的数有2、4、6、8共4个,所以该事件的概率为4/20 = 1/5。

以上是初三数学概率试题大全的一部分,通过选择题、填空题和计算题的形式,旨在帮助同学们加深对概率知识的理解和应用。

希望同学们能通过多练习这些题目,掌握概率的基本概念和计算方法,提高解题能力。

祝愿大家在数学学习中取得好成绩!。

初三数学概率试题大全(含答案)

初三数学概率试题大全(含答案)

试题一一、选择题(每题3分,共30分)1. (08新疆建设兵团)下列事件属于必然事件的是( ) A .打开电视,正在播放新闻 B .我们班的同学将会有人成为航天员 C .实数a <0,则2a <0 D .新疆的冬天不下雪2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3. (08甘肃庆阳)在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对 7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( )A.28个B.30个C.36个D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( )A.6B.16C.18D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题(每题3分,共24分)11.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 . 13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______.14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________.15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个.18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题(共46分) 19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么?20.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求P (偶数). (2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?四、能力提升(每题10分,共20分)25.田忌赛马是一个为人熟知的故事.传说战国时期,齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强.有一天,齐王要与田忌赛马,双方约定:比赛三局,每局各出一匹马,每匹马赛一次,赢得两局者为胜,看样子田忌似乎没有什么获胜的希望,但是田忌的谋士了解到主人的上、中等马分别比齐王的中、下等马强… (1)如果齐王将马按上、中、下的顺序出阵比赛,那么田忌的马如何出阵,田忌才能取胜?(2)如果齐王将马按上、中、下的顺序出阵,而田忌的马随机出阵比赛,田忌获胜的概率是多少?(要求写出双方对阵的所有情况)26. (08江苏宿迁)不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中红球有2个,蓝球有1个,现从中任意摸出一个是红球的概率为21.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸一个小球,请用画树状图或列表法求两次摸到都是红球的概率;(3)若规定摸到红球得5分,摸到黄球得3分,摸到蓝球得1分,小明共摸6次小球(每次摸1个球,摸后放回)得20分,问小明有哪几种摸法?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B. 二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1100. 23.(1)P (偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16. 24.根据题意,以(m ,n )为坐标的点A 共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y =2x 图像上,所求概率是336=112,即点A 在函数y =2x 图像上的概率是112. 四、25,(1)由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的马按上、中、下顺序出阵时,田忌的马按下、上、中的顺序出阵,田忌才能取胜.(2)当田双方马的对阵中,只有一种对抗情况田忌能赢,所以田忌获胜的概率P =16. 26,【参考答案】(1)设袋中有黄球个,由题意得,解得,故袋中有黄球个; (2) ∵ ∴.(3)设小明摸到红球有次,摸到黄球有次,则摸到蓝球有次,由题意得,即∴∵、、均为自然数∴当时,;当时,;当时,.综上:小明共有三种摸法:摸到红、黄、蓝三种球分别为次、次、次或次、次、次或次、次、次.m 21122=++m 1=m 161122)(==两次都摸到红球P x y )6(y x --20)6(35=--++y x y x 72=+y x x y 27-=x y y x --61=x 06,5=--=y x y 2=x 16,3=--=y x y 3=x 26,1=--=y x y 150231312第二次摸球第一次摸球黄红2蓝红2蓝黄红1红1红1红2黄蓝蓝黄红2红1备用题:1.在一个不透明的口袋中,装有若干个除颜色不同外其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为,那么口袋中球的总数为() A A.12个B.9个C.6个D.3个2.一名保险推销员对人们说:“人有可能得病,也有可能不得病,因此,•得病与不得病的概率各占50%”,他的说法() CA.正确B.有时正确,有时不正确C.不正确D.应根据气候等条件确定3.袋中有16个球,7个白球,3个红球,6个黄球,从中任取一个,得到红球的概率是()BA.37B.316C.12D.3134.冰柜时装有四种饮料,5瓶特种可乐,12瓶普通可乐,9瓶橘子水,6瓶啤酒,•其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是() DA.532B.38C.1532D.17325.某同学期中考试全班第一,则期末考试 .(填“不可能”,“可能”或“必然”)全班第一. 可能6.在标有1,3,4,6,8的五张卡片中,随机抽取两张,和为奇数的概率为 .0.67.在中考体育达标跳绳项目测试中,1分钟跳绳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次测试中达标的概率是 .528.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来约有粒. 4509.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再同,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有张.910.在中考体育达标跳绳项目测试中,1min跳160次为达标.•小敏记录了他预测时1min 跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是______.2511.在一次考试中,有一部分学生对两道选择题(答对一个得3分)无法确定其正确选项,于是他们就从每道题的四个选项中随意选择了某项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率解答题专项练习30题(有答案)1.李华的妈妈在她上学的时候总是叮嘱她:“注意交通安全,别被来往的车辆碰着!”但李华心里很不服气,心想:城里有一百多万人口,每天交通事故只有几起,事故发生的可能性太小了,概率几乎是零,你认为李华的想法对吗?为什么?2.一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?3.一个桶里有60个弹珠,一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?4.从1,2,3这三个数字中任意取出一个、两个或三个可以构成不同的一位数、两位数或三位数,所有这些数中均无重复数字(如22,311等为有重复数字的数).(1)列举所有可能出现的结果;(2)出现奇数的概率是多少?5.一个盒子中有4张完全相同的卡片,分别写有2cm,3cm,4cm和5cm,盒子外有2张卡片,分别写有3cm和5cm.现随机从盒内取出一张卡片,与盒子外两张卡片放在一起,以卡片上的数量分别作为三条线段的长度,求这三条线段能构成等腰三角形的概率?6.有5张卡片,正面分别写有数字是2,3,5,6,7,将卡片洗匀后背面朝上放置在桌面上,随机抽取一张.求下列事件发生的可能性:(1)数字是偶数;7.一样大小的正方体木块堆放在房间的一角(如图所示),一共垒了5层,其中只有一块颜色为红色的,其余均为白色.问红色木块垒在第几层的概率最大?分别计算红色木块在每一层内的概率.8.如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:(1)小猫踩在白色的正方形地板上,这属于_________事件.(2)小猫踩在白色或黑色的正方形地板上,这属于_________事件.(3)小猫踩在红色的正方形地板上,这属于_________事件.(4)小猫踩在_________颜色的正方形地板上可能性较大.9.现有各色彩球若干,其中有白色球3只,红色球2只.请你设计一个转盘,使得自由转动这个转盘,指针停在白色和红色区域上的概率分别为.10.现有边长为10cm的正方形木板,正中间画有一边长为5cm的正方形,并将小正方形涂成红色,小正方形的外围部分涂成绿色,如果把该木板挂在墙上做投镖游戏,假设镖一定能投中木板,求投中红色区域的概率是多少?11.5个乒乓球都是新球,每次比赛取出2个用完后放回去,那么第二次比赛时取出2个球都是新球的概率是多少?12.在街头巷尾会遇到一类“摸球游戏”,摊主的游戏道具是把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球(球除颜色外,其他均相同)放在口袋里,让你摸球.规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元(2)求出获奖的概率;(3)如果有50个人每人各玩一局,摊主会从这些人身上骗走多少钱?请就这一结果写一句劝诫人们不要参与摸球游戏的忠告语.13.足球比赛规则如下:胜一场,得二分;平一场,得一分;负一场,得.分.校足球队参加了三场比赛,(1)比赛结果有几种可能情况,用树形图来表示出来.(2)哪种情况的机会大,最后得了多少分?(3)得几分的机会最小?最小是多少?14.“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方每次做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负需继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次比赛时两人分出胜负的概率是多少?甲胜的概率是多少?请用树状图的方法解决.15.小敏的爸爸买了某项体育比赛的一张门票,她和哥哥两人都想去观看,可门票只有一张,读九年级哥哥想了一个办法,拿出8张扑克牌,将数字2、3、5、9的四张给了小敏,将数字4、6、7、8的四张扑克牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽出一张,然后将抽出两张牌数字相加,如果和为偶数,则小敏去;如果和为奇数,则哥哥去.(1)请用画树形图或列表的方法求小敏去看比赛的概率;(2)小敏知道哥哥设计的游戏规则不公平,于是她提议两人交换一张牌,使游戏规则公平后再进行比赛,你知道小敏是如何提议的吗?说说你的理由.16.小明和小丽用两个转盘做“配紫色”游戏,(红色+蓝色=紫色)配成紫色小明得1分,否则小丽得1分,请你解(2)游戏对双方公平吗?若不公平请修改游戏规则,使得游戏对双方都公平.17.小明、小华用四张扑克牌玩游戏(方块2、黑桃4、红桃5、梅花5),他俩将扑克牌洗匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回.小明、小华约定:若小明抽出的牌的牌面数字比小华的大,则小明胜,反之则小明负;若牌面数字一样,则不分胜负,你认为这个游戏是否公平?说明你的理由.(列表或树形图)18.某校举办艺术节,其中A班和B班的节目总成绩并列第一,学校决定从A、B两班中选派一个班代表学校参加全省比赛,B班班长想法是:用一个装有质地、大小形状完全相同的8m个红球和6m个白球(m为正整数)的袋子.由A班班长从中随机摸出一个小球,若摸到的是白球,则选A班去;若摸到的是红球则选B班去.(1)这个办法公平吗?请用概率的知识解释原因.(2)若从袋子中拿出2个红球,再用上述方法确定那个班去,请问对A班还是B班有利?说明理由.19.一个口袋中有8个黑球和若干个白球,(不许将球倒出来数)从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,如果共摸了200次,其中有60次摸到黑球,那么请你估计口袋中大约有多少个白球?20.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.21.柳市乐华电器厂对一批电容器质量抽检情况如下表:抽检个数200 400 600 800 1000 1200正品个数180 390 576 768 960 1176(1)从这批电容器中任选一个,是正品的概率是多少?(2)若这批电容器共生产了14000个,其中次品大约有多少个?22.通常,选择题有4个选择支,其中只有1个选择支是正确的.现有20道选择题,小明认为只要在每道题中任选1个选择支,其中必有5题的选择结果是正确的.你认为小明的推断正确吗?说说你的理由.23.篮球运动员甲的三分球命中率是70%,乙的三分球命中率是50%.本场比赛中甲投三分球4次,命中1次;乙投三分球4次,全部命中.全场比赛结束前,甲、乙两人所在球队还落后对方球队2分,但还有一次进攻的机会.如果你是教练,那么最后一个三分球由谁来投?说说你的理由.24.某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校.若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得、现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?25.请设计一个摸球游戏,使得P(摸到红球)=,P(摸到白球)=,说明设计方案.26.小明的叔叔承包了一个鱼塘,他问叔叔一共养了多少鱼?叔叔说:“请你运用所学过的知识帮我估计一下吧.”请你帮小明设计一个实验方案,求出鱼塘中鱼的总数.27.白头叶猴属于国家一级保护动物,主要分布在广西,数量稀少,请你设计一个实验方案,考察现有白头叶猴的数量是多少?28.盒子里装有6张扑克牌,其中有3张红桃,2张梅花,1张方块,从中任意摸一张,猜想摸到方块的概率是多少?请你与同学用实验的方法加以验证.29.请你设计一个实验方案(用扑克牌):考察6个人中有2人生肖相同的概率.30.摸球试验:一个袋子里有8个黑球和若干个白球,从袋中随机摸出1球,记下其颜色,再把它放回袋中,不断重复上述的过程.(1)若共摸球200次,其中有57次摸到黑球,你能估计摸出黑球的概率是多少吗?你能估计袋中大约有多少个白球吗?(2)若从袋中一次摸球20个,其中黑球数占,你能估计袋中大约有多少个白球吗?(3)打开口袋,数数袋中白球的个数,你们的估计值和实际情况一致吗?为什么?(4)将各组的数据汇总,并根据这个数据估计袋中的白球数,看看估计结果又如何?(5)为了使估计结果较为准确,应该注意些什么?概率解答题专项练习30题参考答案:1.解:李华的想法不对.因为“发生交通事故”是随机事件,随机事件就有可能发生,概率尽管很小,但绝不是零2.解:(1)设白球的个数为x个,根据题意得:,解得:x=6(2分)小明可估计口袋中的白球的个数是6个.(3分)(2)1200×=720.(5分)答:需准备720个红球3.解:根据题意可得:一个桶里有60个弹珠,拿出红色弹珠的概率是35%,则有红色弹珠60×35%=21个,拿出蓝色弹珠的概率是25%,则蓝色弹珠有60×25%=15个,白色弹珠60﹣21﹣15=24个.答:红色弹珠有21个,蓝色弹珠有15个,白色弹珠有24个4.解:(1)所有可能出现的结果:一位数3个:1、2、3;两位数6个:12、13、21、23、31、32;三位数6个:123、132、213、231、312、321;(2)共有15个数,奇数有10个,所以出现奇数的概率为=5.解:取出的情况为:2、3、5;3、3、5;4、3、5;5、3、5;共四种(4分).因为2、3、5;4、3、5;两组不构成等腰三角形(6分),所以能构成等腰三角形的概率是6.解:(1)∵有5张卡片,正面分别写有数字是2,3,5,6,7,∴随机地抽取一张,所有可能出现的结果有5种,且每种结果发生的可能性都相等,其中卡片上的数字为偶数的结果有:2,6,一共2种,∴P(数字是偶数)=;(2))∵有5张卡片,正面分别写有数字是2,3,5,6,7,∴随机地抽取一张,所有可能出现的结果有5种,且每种结果发生的可能性都相等,其中卡片上的数字大于2的结果有:3,5,6,7,一共4种,∴P(数字大于2)=7.解:小正方形的个数从下到上分别为:15,10,6,3,1个,∴红色木块垒在第5层的概率为:=红色木块垒在第4层的概率为:,红色木块垒在第3层的概率为:,红色木块垒在第2层的概率为:=,红色木块垒在第1层的概率为:=,∴红色木块垒在第,1层的概率最大(2)小猫一定会踩在白色或黑色的正方形地板上,这属于必然(或确定)事件.故答案为:必然(或确定);(3)小猫不可能踩在红色的正方形地板上,这属于不可能事件.故答案为:不可能;(4)根据黑色正方形多与白色正方形,得出小猫踩在黑颜色的正方形地板上可能性较大9.解:根据几何概率的求法:指针停在有色区域的概率就是该色区域的面积与总面积的比值;即红色区域的面积与总面积的比值为,白色区域的面积与总面积的比值为.故设计如下:六等分圆,白色占3份(次序不论),红占2份(次序不论),其它色占1份即可.10.解:投中红色区域的概率是=11.解:列表得:旧新旧新旧新旧旧旧旧新旧新旧新旧旧旧新新新新新旧新旧新新新新新新旧新旧新新新新新新旧新旧新新新新旧旧∵共有20种等可能的结果,第二次比赛时取出2个球都是新球的有6种情况,∴第二次比赛时取出2个球都是新球的概率是:=12.解:(1)列表如下:白白白黑黑黑白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)白(白,白)(白,白)(白,白)(黑,白)(黑,白)(黑,白)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)(白,黑)(白,黑)(黑,黑)(黑,黑)(黑,黑)黑(白,黑)所有等可能的情况有36种;(2)摸出两次都为白球的情况有9种,则P(两次都为白球)==;(3)平均玩一局损失的钱数为3﹣10×=0.5(元),则如果有50个人每人各玩一局,摊主会从这些人身上骗走50×0.5=25(元),该游戏对设局者有利,请勿上当13.解:树形图如图(1)(2)一胜、一平、一负的机会最大,共有6种情况,得2+1=3分.(3)得0分,6分的机会最少,只有1种情况14.解:画树形图如图.由树形图可知,分出胜负的概率是=,甲胜的概率是15.解:(1)法1,列表小敏2 3 5 9哥哥4 6 7 9 136 8 9 11 157 9 10 12 168 10 11 13 17法2,画树状图从上表可以看出共有16种可能的值,而其中偶数有6种,所以P(小敏去看比赛)=;(2)用小敏的任一张奇数牌交换哥哥的任一张偶数牌.小敏手中有3张奇数牌,一张偶数牌,而哥哥手中有3张偶数牌,一张奇数牌.用小敏的任一张奇数牌交换哥哥的任一张偶数牌后,两人各有两张奇数牌和和两张偶数牌.P(小敏去看比赛)=P(小敏和哥哥都抽到奇数牌)+P(小敏和哥哥都抽到偶数牌)=0.5;P(哥哥去看比赛)=P(小敏抽到奇数牌而哥哥抽到偶数牌)+P(小敏抽到偶数牌而哥哥抽到奇数牌)=0.5.﹣﹣(4分)∴P(小明获胜)=,P(小丽获胜)=.∵P(小明获胜)<P(小丽获胜),∴游戏对双方不公平.(2)游戏对双方不公平.修改规则:若配成紫色小明得12分,否则小丽得4分.17.解:游戏是公平的,如图所示:∴P小明=,P小华=,∴游戏是公平的.18.解:(1)不公平,∵P(A班去)=,P(B班去)=,∴P(A班去)<P(B班去);故这个办法不公平;(2)∵为m正整数,∴当m=1时,8m﹣2=6m,此时对A班,B班是公平的,当m>1时,8m﹣2>6m,此时对B班有利19.解:∵共摸了200次,其中有60次摸到黑球,即可得出摸到黑球的概率为:=0.3,∴球的总个数为:8÷0.3=≈27个,∴估计口袋中大约有27﹣8=19个白球20.解:(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.3)=50(个)(2)设小明放入红球x个经检验:x=60是所列方程的根答:小明放入的红球的个数为6021.解:(1)六次抽查正品频率分别为:180÷200=0.9,390÷400=0.975,576÷600=0.96,768÷800=0.96,960÷1000=0.96,1176÷1200=0.98,∴正品概率估计为0.96;或(180+390+576+768+960+1176)÷(200+400+600+800+1000+1200)=;(2)其中次品大约有14000×=500个22.解:小明的推断是不正确的,因为20题的题量较小,只有当题量很大时,在每道选择题中任选1个选择支,其选择结果正确的频率才能在常数0.25附近摆动,由此才可以估计其选择的结果正确的概率为0.2523.解:(1)由于甲的命中率高,所以由甲投;(2)由于乙本场发挥稳定,命中率为100%,故可由乙投.所以从本场来说应选乙投24.解:(1)全班共有50名学生,共有12名学生获奖,所以恰好能得到荣誉的机会为=;(2)恰好能当选三好生的机会为,能当选模范生的机会为=;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均为黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会25.解:一个袋子中装有12个球,其中四个红球,三个白球,五个黄球.从中任取一球,总共有十二种可能,摸到红球有四种可能,摸白球有三种可能,故P(摸到红球)==,P(摸到白球)==26.解:假设鱼塘中共有x条鱼,先捞出b条做上记号后放回鱼塘中,待与鱼群充分混合后,再捕捞一网鱼x1条,其中有记号的鱼b1条,计算出的值;又放回鱼塘中,待与鱼群充分混合后,再捕捞一网鱼x2条,其中有记号的鱼b2条,计算出的值;…以此反复捕捞n网,分别计算出每网中有记号的鱼条数与每网鱼的总数的比值,然后计算出这些比值的平均数,则,由此求出鱼塘中鱼的总数x27.解:假设保护区内有x只白头叶猴,首先在保护区内设法捉a只白头叶猴,做上记号放回去,过几日,待与其他猴子混合后,再任意捕捉n只,若其中有b只有记号,则由,解得x=的值,从而可知保护区内白头叶猴的大致数量.(由于环境的特殊性,不可能类似估计鱼塘中鱼的总量那样做多次实验,因此误差可能比较大28.解:∵盒子里装有6张扑克牌,其中有3张红桃,2张梅花,1张方块,∴从中任意摸一张,摸到方块的概率是:29.解:拿12张不同数字或花色的扑克牌代表12属相,然后从中随意抽取1张,记下花色数字在放回,洗匀后再抽一张,又记下花色数字,…,以此类推抽够6张牌算一组实验,看这组中是否抽中花色数字完全相同的牌,作好记录;为保证实验的准确性,重复做n组这样的实验,最后统计若有x组出现相同花色数字的情况,则可确定6人中生肖相同的概率约为30.解:(1)摸出黑球的概率是:,则球的总个数是8÷≈28,则估计袋中大约有白球28﹣8=20(个);(2)袋子中球的总个数是:8÷=32(个),则白球的个数是:32﹣8=24(个);(3)估计值和实际情况不一定一致,因为抽查具有随机性;(4)摸球20个,其中黑球数占,则有5个黑球.则球的总个数是:8÷≈28,则白球的个数是:28﹣8=20(个);(5)抽取的次数要尽量多,且抽取时是随机抽样。

相关文档
最新文档