2.7电磁场的边界条件
电磁场的边界条件
![电磁场的边界条件](https://img.taocdn.com/s3/m/02d1c81b227916888486d70e.png)
将⑧代入⑨,得: sin 2 cos 1 sin 1 cos 2 sin(1 2 ) rs sin 2 cos 1 sin 1 cos 2 sin(1 2 )
2n1 cos 1 ts n1 cos 1 n2 cos 2
对绝大多数物质, 1 2
所以得到方程:
E1 y z E1' y z E2 y z
z 0
⑥
代入边界条件,可得:
k1 cos 1 A1s k1' cos 1' A1' s k2 cos 2 A2 s
k1 k1' 整理得: cos 1 A1s cos 1' A1' s cos 2 A2 s k2 k2' k1 sin 2 将 代入上式,得: k2 sin 1
AB BC CD DA
针对麦克斯韦 方程组积分形 式的第三个与 第四个方程, 建立如左图模 型,积分可得
E2t CD ( E2 n DF E1n FA) 0
E1t E2t 同理可得 H1t =H 2t
电磁场边界条件
(1)电场强度E 在分界面上的平行分量连续。
从右图可以看出, 对于s光:
Ex 0 E y ES Ez 0
根据几何关系,可知:
k x k sin 1 , k y 0, k z k cos 1
对于单色平面光波: E0 e E
i[t ( k x x k y y k z z )]
将上面的结论带 i[1t ( k sin 1 x k cos1 z )] E E0 e 入方程可得: 对于s光,可以分解为:
i ( k2 sin 2 x )
【精品】第八讲:麦克斯韦方程组、电磁场的边界条件
![【精品】第八讲:麦克斯韦方程组、电磁场的边界条件](https://img.taocdn.com/s3/m/5acbbff0453610661fd9f4cd.png)
第八讲:麦克斯韦方程组、电磁场的边界条件2.6麦克斯韦方程组2.7电磁场的边值关系1、了解麦克斯韦方程组的建立过程,掌握它的基本性质;2、了解边界上场不连续的原因,能导出电磁场的边值关系;3、掌握电磁场方程微分形式和边界形式的联系与区别。
重点:1)麦克斯韦方程组的基本性质;2)电磁场的边值关系 难点:电磁场切向边值关系的推导 讲授法、讨论 2学时2.6麦克斯韦方程组(Maxwell ’sEquations )一、麦克斯韦方程1865年发表了关于电磁场的第三篇论文:《电磁场的动力学理论》,在这篇论文中,麦克斯韦提出了电磁场的普遍方程组,共20个方程,包括20个变量。
直到1890 年,赫兹才给出简化的对称形式:00001(1)(2)0(3)(4)BE E tE B B J tρεμμε⎧∂∇⋅=∇⨯=-⎪∂⎪⎨∂⎪∇⋅=∇⨯=+⎪∂⎩实验定律3、法拉第电磁感应定律4、电荷守恒定律12314dq dq dF RR πε=S D dS q ⋅=⎰0l E dl ⋅=⎰34JdV R dB R μπ⨯=0SB dS ⋅=⎰()0=⋅∇B CH dl I ⋅=⎰()JH =⨯∇tB E ∂∂-=⨯∇ 0=∂∂+⋅∇tJ ρ 0J ∇⋅≡对矛盾的解决麦克斯韦理论稳恒况缓变情况2、毕奥-沙伐尔定律1、库仑定律()/ερ=⋅∇E()=⨯∇E t S d B dt d S ∂⎰⋅∂-=Φ-= ε0S QJ dS t ∂⋅+=∂⎰→上式即为真空中的麦克斯韦方程组,其中(2)(4)含有对时间的偏导数,对应 运动方程,(1)(3)为约束方程。
二、麦克斯韦方程组的基本性质 1、线性性麦克斯韦方程组是一组线性方程,表明场服从迭加原理。
2、自洽性方程组各个方程彼此协调,且与电荷守恒定律协调。
如(2)式和(3)式一致:由(2)式有:()0=∂⋅∂∇-=⨯∇⋅∇tBE⇒C B =⋅∇ ,考虑到静磁时0=⋅∇B,所以取0=C 。
电磁场问题边界条件及求解
![电磁场问题边界条件及求解](https://img.taocdn.com/s3/m/e567da0a02020740be1e9b54.png)
d
x
π k x E0 ez sin( z ) cos(t k x x) (A/m) 0 d
(2) z = 0 处导体表面的电流密度为 πE0 J S ez H ey sin(t k x x) z 0 0 d
(A/m)
z = d 处导体表面的电流密度为
媒质1 媒质2 分界面上的电流面密度
电磁场与电磁波
第2章
电磁场的基本规律
5
1.2 两种常见的情况
1. 两种理想介质分界 面上的边界条件 在两种理想介质 分界面上,通常没有 电荷和电流分布,即 JS=0、ρS=0,故
媒质1 媒质2
en
媒质1 媒质2
en
、 D B的法向分量连续
E、 的切向分量连续 H
en (D1 D2 ) S
或
D1n D2n S
en (B1 B2 ) 0 或 B1n B2n
同理 ,由
S
B dS 0
电磁场与电磁波
第2章
电磁场的基本规律
3
(2)电磁场量的切向边界条件 在介质分界面两侧,选取如图所示的小环路,令Δh →0,则
或
S e n (J1 J 2 ) t
J J en 1 2 0 1 2
1
J1t
2
J 2t
或
电磁场与电磁波
第2章
电磁场的基本规律
8
例 场强度
在两导体平板(z = 0 和 z = d)之间的空气中,已知电
π E ey E0 sin( z ) cos(t k x x) V/m d 试求:(1)磁场强度 H;(2)导体表面的电流密度 J S 。 H , 有 解 (1)由 E 0 z t H 1 E y t 0 d 1 E y E y O ( e x ez ) 0 z x
2.7电磁场的边界条件解析
![2.7电磁场的边界条件解析](https://img.taocdn.com/s3/m/0d4f0411f12d2af90242e6d4.png)
第2章
电磁场的基本规律
1
2.7 电磁场的边界条件
en
媒质1 媒质2
• 什么是电磁场的边界条件?
et
实际电磁场问题都是在一定的物理空
间内发生的,该空间中可能是由多种不同
媒质组成的。边界条件就是不同媒质的分 界面两侧的电磁场物理量满足的关系。
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
en ( H1 H 2 ) J S en ( E1 E2 ) 0 en (B1 B2 ) 0 en (D1 D2 ) S
中国矿业大学
en
媒质1 媒质2
et
en en en en
H1 J S E1 0 B1 0 D1 S
H1t J s E 0 1t 或 B1n 0 D1n S
电磁场与电磁波
第2章
电磁场的基本规律
11
H1t J s E 0 1t B1n 0 D1n S
理想导体表面上的电流密度等于H 的切向分量 理想导体表面上 E 的切向分量为0 理想导体表面上 B 的法向分量为0 理想导体表面上的电荷密度等于 D的法向分量
D 右边 = J dS dS S S t
0 s 0
J S dl J S e p l
l
故得: [en (H1 H 2 )] ep l J S e p l
中国矿业大学
en (H1 H 2 ) J S 或H1t H 2t J S
电磁场与电磁波
第2章
电磁场的基本规律
媒质1 Δl
(完整版)电磁场的边界条件
![(完整版)电磁场的边界条件](https://img.taocdn.com/s3/m/cae7e8c8ed630b1c59eeb5f7.png)
电磁场的边界条件姓名:学号:专业:班级:提交日期:桑薇薇0990*******通信工程电工 1401 2016.5.28成绩:电磁场的边界条件1.引言2.边界条件分类3.边界条件的作用4.结束语5.参考文献1. 引言在两种不同媒质的分界面上,场矢量E,D,B,H 各自满足的关系,称为电磁场的边界条件。
在实际的电磁场问题中, 总会遇到两种不同媒质的分界面 (例如: 空气与玻璃的分界面、导体与空气的分界面等) ,边界条件在处理电磁场问题中占据十分重要的地位。
2. 边界条件分类1、电场法向分量的边界条件如图 3.9 所示的两种媒质的分界面, 第一种媒质的介电常数、磁导率和电导率分别为1,1和1,第二种媒质的介电常数、磁导率和电导率分别为2,2和 2 。
在这两种媒质分界面上取一个小的柱形闭合面,图 3.9 电场法向分量的边界条件如图 3.9 所示,其高h 为无限小量,上下底面与分界面平行,并分别在分界面两侧, 且底面积 S 非常小,可以认为在 S 上的电位vv v移矢量 D和面电荷密度S是均匀的。
n 1 n 2分别为上下底面的外法线单位矢量, , 在柱形闭合面上应用电场的高斯定律? v vv v S v vSSD gdS n 1 gD 1 n 2 gD 2 SS故v v v vn 1gD 1 n 2 gD 2S(3.48a)vv vvv若规定 n 为从媒质Ⅱ指向媒质Ⅰ为正方向,则 n 1 n ,n2n,式 (3.48a) 可写为v vvng(D 1D 2 )S(3.48b)或D1nD2nS(3.48c)式 (3.48 ) 称为电场法向分量的边界条件。
vvv 因为 DE ,所以式 (3.48) 可以用 E 的法向分量表示v v v v1n 1gE 12 n 2 gE 2S(3.49a)或1E 1n2 E 2nS(3.49b)若两种媒质均为理想介质时, 除非特意放置, 一般在分界面上不存在自由面电荷,即S,所以电场法向分量的边界条件变为D1nD2n(3.50a)或1E1n 2E2 n(3.50b)若媒质Ⅰ为理想介质,媒质Ⅱ为理想导体时, 导体内部电场为零,即E2,D2,在导体表面存在自由面电荷密度,则式(3.48) 变为v vn 1 gD 1 D 1nS(3.51a)或1E1ns(3.51b)2 、电场切向分量的边界条件在两种媒质分界面上取一小的矩形闭合回路 abcd ,如图 3.10 所示,该回路短边 h 为无限小量,其两个长边为l ,且平行于分界面,并分别在分界面两侧。
电磁场的边界条件
![电磁场的边界条件](https://img.taocdn.com/s3/m/728612836137ee06eff918cb.png)
磁感应强度B的边界条件
ÑS BgdS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢量D的边界条件
n•(D1-D2)=ρS
小结
在不同媒质的分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式 磁场强度H的边界条件 1 2
ÑC H gdl H1gl H2 gl JS gNl
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
电磁场的源与边界条件
![电磁场的源与边界条件](https://img.taocdn.com/s3/m/801c68d7ad51f01dc281f18c.png)
q 所趋近的极限值就定义为点 P 的电 V
(r ) lim
式中 r 是源点的位失。
V 0
q dq V dV
2、 电荷面密度 在实际问题中,常会遇到电荷分布在薄层内的情况,如果薄层的厚度趋近于零,可近似 认为电荷分布在曲面上, 可以用电荷面密度 S (r ) 来描述其分布。 设曲面 S 上任一面元 S 内所包围的电荷量为 q ,则 S (r ) 定义为
3、磁感应强度 B 的散度、旋度和边界条件 (1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故
B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度 根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
二、
电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流 电荷在某一体积内定向流动形成的电流成为体电流。体电 流在导体内某一截面的分布用电流密度矢量 J 来描述,其定义 为:空间任一点 J 的方向是该点正电荷运动的方向, J 的大小 等于通过该点与 J 垂直的单位面积的电流,即
Nqd dS P dS P endS
因此,穿出闭合面 S 的正电荷为 P dS 。与之对应,留在闭合面 S 内的极化电荷量为
S
q p P dS PdV
S V
又由于
qP P dV
V
故有
P P
(2)极化强度 P 的旋度 对于各向同性和线性介质,有 P e 0 E ,其中合成电场强度 E 为自由电荷产生的外 电场 E 0 和极化电荷产生的附加电场 E 的叠加,由于两种电场强度的旋度都为零,故
27-28静电场边界条件(10学时).
![27-28静电场边界条件(10学时).](https://img.taocdn.com/s3/m/243e3017581b6bd97f19eaf6.png)
§2.8 导体系统的电容
电磁场与电磁波
1
§2.7 静电场的边界条件
问题的提出
一般情况下求电位或场强 两个“方程”:
无源——Laplace’s Equation 有源——Poission’s Equation
边值问题:在给定边界条件下求解偏微分方程。
边界条件就是不同介质(或导体)分界面两侧的场量之间 的关系。
边界条件的作用:
确定方程的解中的待定因素; 使方程通解成为适用于具体问题的特解。
电磁场与电磁波
2
边界的分类
边界的分类:
第1类: 已知整个边界上的电位
Dirichlet Problems 狄理赫利问题
第2类: 已知整个边界上电位的法导
Neumann Problems 纽曼问题
第3类: 已知部分边界电位+另一部分边界电位法 导
电磁场与电磁波
8
介质分界面上电位的连续性
a1n
b
E1
a E2
a2 n
1 2
b a lim E dl lim Em h 0
ba b h0
a
b a
电磁场与电磁波
9
电介质的边界条件-小结
1. 法向:
D1n D2n s
2. 切向:
a 3 2 (r ) 3 0 r
0ra ar
电场强度(球坐标梯度公式):
E1 (r ) 1
1 r er er r 3 0
0ra
2 a 2 E2 (r ) 2 er e 2 r r 3 0 r
ar
对于一维场(场量仅仅是一个坐标变量的函数),只要对二阶常系数微分方程 积分两次,得到通解;然后利用边界条件求得积分常数,得到电位的解;再由 得到电场强度 E E的分布。 电磁场与电磁波 12
电磁场的源与边界条件
![电磁场的源与边界条件](https://img.taocdn.com/s3/m/1fa5a3b150e2524de4187e23.png)
根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
当有磁介质存在时,上式变为
B 0J B 0 (J JM )
式中 J 为传导电流密度, J M 为磁化电流密度。
(3)磁感应强度 B 的边界条件 将积分形式的麦克斯韦第三方程应用于如图 4 所示的圆
柱,易得
en (B1 B2 ) 0 上式表明磁感强度的法向分量是连续的。
球的极限当带电体的尺寸相对于观察点至带电体的距离可以忽略时,就可以认为电荷分布于
带电体中心上,即将带电体抽象为一个几何点。点电荷的电荷密度分布可以用数学上的 (r )
来描述。
二、 电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流
移矢量的切向分量是不连续的(两种介质的 通常不等)。
3、磁感应强度 B 的散度、旋度和边界条件
(1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故 B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度
即
故有
(P1 P2 ) enS SPS
en (P1 P2 ) SP 上式表明极化强度的法向分量是不连续的。一般情况下,其切向分量也不连续。
7、磁化强度 M 的散度、旋度和边界条件
7/9
电磁场与电磁波
第二章 电磁场的基本规律
学习报告
(1)磁化强度 M 的散度
对于各向同性和线性磁介质, M m H ,由于 H 的散度为零,故
自然界中存在两种电荷:正电荷和负电荷。带电体上所带的电荷是以离散的方式分布的, 任何带电体的电荷量都是基元电荷的整数倍,但在研究宏观电磁现象时,人们关注的是大量 微观带电粒子的整体效应,因此可以认为电荷是以一定形式连续分布的,并用电荷密度来描 述电荷的分布。 1、 电荷体密度
理论整理-电磁场的源与边界条件
![理论整理-电磁场的源与边界条件](https://img.taocdn.com/s3/m/5da3e804c281e53a5902ff09.png)
D E
(3) 电位移矢量 D 的边界条件 利用积分形式的麦克斯韦第四方程可得
B t
en ( D1 D2 ) S
上式表明分界面上存在自由电荷面分布时,电位移矢量的法向分量是不连续的。 对于各向同性的介质,由于 D E ,且由于电场强度 E 的切向分量是连续的,故电位 移矢量的切向分量是不连续的(两种介质的 通常不等) 。
当存在时变的位移电流时,上式变为
H J
上式即为麦克斯韦第一方程的微分形式,表明磁 场的旋度源是传导电流和时变的位移电流。 (3)磁场强度 H 的边界条件 将麦克斯韦第一方程的积分形式应用到如图 5 所示的环路,可得磁场强度的边界条件为
D t
en ( H1 H 2 ) J S
dq d dV dt dt V 此方程即为电流连续性方程的积分形式。假定闭合面 S 所限定的体积 V 不随时间变化,上
S
J dS
式变为
S V
S
J dS
dq dV V t dt
应用散度定理, J dS JdV ,上式变为
5/9
学习资料
J S en lim
l 0
i di en l dl
面电流可以看作是体电流在某一方向线度趋近于 0 的 结果。 3、 线电流 分布与横截面积可以忽略的细线上的电荷沿细线定向流动所形成的电流称为线电流, 线 电流没有线电流密度矢量。长度元 dl 中流过电流 I ,则将 Idl 成为电流元。
6/9
学习资料
2017-9-25 周报 (姬应科)
电磁场与电磁波学习报告
为 p qd , d 由负电荷指向正电荷。以 dS 为底, d 为斜高构成一个体积元 V dS d ,如 图 6 所示。只有电偶极子中心在 V 内的正电荷才穿出面元 dS 。设电介质中单位体积的分 子数为 N ,则穿出面元 dS 的正电荷为
电磁场的边界条件
![电磁场的边界条件](https://img.taocdn.com/s3/m/bbdaf95beff9aef8951e064f.png)
2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式
磁场强度H的边界条件 1 2
H C
dl H1
l H2
l JS
N l
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
磁感应强度B的边界条件
S B dS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
电磁场的边界条件
![电磁场的边界条件](https://img.taocdn.com/s3/m/52708f8a71fe910ef12df824.png)
也可以表示为标量形式:
可见, 的切向分量在不同的媒质分界面上不连续, H 与分界面上的传导电流面密度有关。
②、E 的边界条件
en
(E1 E2 ) 0 E E 1t 2t
结论: E 切向连续。
③ D 的边界条件
1
dv
n
D2
D1 h 0
D dS
s
2
电磁场的边界条件
1 什么是边界条件?
2 为什么要研究边界条件? 3 如何讨论边界条件?
在两种不同媒质的分界面上,场矢量E, D, B, H
各自满足的关系,称为电磁场的边界条件。
在实际的电磁场问题中,总会遇到两种不
同媒质的分界面(例如:空气与玻璃的分界面、 导体与空气的分界面等),边界条件在处理电 磁场问题中占据着十分重要的地位。
或
B 1n B 2n D 1n D 2n
2.理想导体与介质的分界面,电导率 , 假设I为介质,II为理想导体。 此时
E 2 0 , B 2 0, D 2 0, H 2 0
en en en en
H1 Js E1 0 B1 0 D 1 ρ s
dS )
由于
D t
有限,故 lim S
h 0
D t
dS 0
而 lim
h 0
J dS
s
h 0
lim
(J S )
h 0
lim
( J e p l h ) J s e p l
en ( H 1
H2) Js
H 1t H 2t J s
数
, ,
2-7 电磁场的边界条件
![2-7 电磁场的边界条件](https://img.taocdn.com/s3/m/bb7f2b49c850ad02de8041e4.png)
ห้องสมุดไป่ตู้
解: ⑴ 电介质分界面,分界面上 E 的切向分量连续,z 0 处
E1 (0, t ) ex [60cos(15108 t ) 20cos(15108 t )]V / m ex 80cos(15108 t )V / m
E2 (0, t ) ex Acos(15108 t ) V / m
2.7
电磁场的边界条件
求解由不同媒质所构成的各区域中的电磁场问题。
电磁场矢量 E、 D、 H、 B 在不同媒质分界面上各自满足的关系,称为
电磁场的边界条件。
1. 磁场强度 H 的边界条件
在媒质分界面上,包围P点作一矩形回路l 。 令 l2 0,根据麦氏第一方程 D 1 1 1 2 2 2 l H dl SJ dS S t dS H dl ( H1 H 2 ) e dl H dl 0 ep l l2 l1 en D lim dS 0 lim J dS J e p dl e S h 0 t S l1 h 0
顶面
D1 en dS
D2 en dS S dS
S
可得 en ( D1 D2 ) S
D1n D2n S
D 的法向分量不连续。
当 S 0 时,
en ( D1 D2 ) 0
D1n D2n 0
磁场矢量穿过不存在面电流的分界面时,方向发生变化与磁介质
参数的关系。
总结:电磁场的边界条件 ①在两种媒质分界面上,如果存在面电流,使 H 的切向分量不连续, 其不连续量由 en ( H1 H 2 )确定。若分界面上不存在面电流,则 JS 的切向分量是连续的。 H
电磁场边界条件
![电磁场边界条件](https://img.taocdn.com/s3/m/476d26231a37f111f1855b9e.png)
解:(1)磁场强度
r
Q
r E
0
H t
ex
E y z
ez
Ey x
0
H t
可求得
r
H t
E0
0
r [ex
d
cos(
d
z)
cos(t
kx)
r ez
k
sin(
d
z)sin(t kx)]
r H
r ex
0d
E0
cos(
d
z) sin(t
r kx) ez
k
0
E0
sin(
d
z) cos(t
kx)
2)两导体表面的面电流密度
D2 )
0
s
相应的标量形式为
H1t H2t B1n B2n
E1t E2t D1n D2n
2.7.2 两种特殊情况的边界条件
1、理想导体表面上的边界条件
理想导体是指σ→∞,所以在理想导体内部不存在电场
。此外,理想导体内部也不存在磁场。理想导体内部不存 在电磁场,即所有场量为零。设 e是n 理想导体的外法向矢
θ1=1.09°,B1 / B2=0.052。由此可见,铁磁材料内部的磁感应强 度远大于外部的磁感应强度,同时外部的磁感应线几乎与铁磁 材料表面垂直。
例1、在两导体平板(z=0和z=d)之间的空气中传播的
电磁波,已知其电场强度为
r E
ery E0
sin(
d
z) cos(t
kx)
式中k为常数,求:(1)磁场强度;(2)两导体表面的面电流 密度和面电荷密度。
s
en
D |zd
ez
D |zd
电磁场的边界条件
![电磁场的边界条件](https://img.taocdn.com/s3/m/b68d5f4a336c1eb91b375d02.png)
1)麦克斯韦方程组可以应用于任何连续的介质内部。
2)在两种介质界面上,介质性质有突变,电磁场也会突变。
3)分界面两边按照某种规律突变,称这种突变关系为电磁场的边值关系或边界条件。
4)推导边界条件的依据是麦克斯韦方程组的积分形式。
一、边界条件的一般形式 1、B 的边界条件:2、D 的边界条件结论:电位移矢量 在不同媒质分界面两侧的法向分量不连续,其差值等于分界面上自由电荷面密度。
3. H 的边界条件h∆→n-2B11220B dS B dS ⇒⋅+⋅=120B n B n ⇒⋅-⋅=210lim S h D H l H l J sl t→∂⇒⋅-⋅=⋅-⋅∂2t t SH H J⇒-=12()S n H H J⇒⨯-=21,S H l H l J s l n s⇒⋅-⋅=⋅=⨯()C sD H dl J dSt∂=+∂⎰⎰μ1μ2Hn1Hh →ls12()S n H H J⨯-=12()D D n σ-⋅=⇒2εε2D 1D n S∆n-n12n n D D σ⇔-=0S B dS ⋅=⎰12()0n B B ⋅-=21n nB B⇒=SD dS q =⋅⎰⇒⇒式中: S J 为介质分界面上的自由电流面密度。
结论:磁场强度 D 在不同媒质分界面两侧的切向分量不连续,其差值等于分界面上的电流面密度S J4.E 的边界条件结论:电场强度E 在不同每只分界面两侧的切向分量连续。
二、理想介质是指电导率为零的媒质,0=γ2)在理想介质内部和表面上,不存在自由电荷和自由电流。
结论:在理想介质分界面上,E 、H 矢量切向连续; 在理想介质分界面上,B 、D 矢量法向连续。
三、理想导体表面上的边界条件1)理想介质是指电导率为无穷大的导体,12t t E E⇒=12()0n E E ⇒⨯-= 2ε1ε2En1E2θl sl S BE dl d St∂⋅=-⋅∂⎰⎰12()0n E E ⨯-=⇒12t t EE=0s J =0ρ=12t t H H =⇒12n n D D=12()0n D D ⋅-=⇒12()0n B B ⋅-=12n n B B=⇒12()0n H H ⨯-=2)电场强度和磁感应强度均为零。
电磁场三类边界条件
![电磁场三类边界条件](https://img.taocdn.com/s3/m/0d9130e6250c844769eae009581b6bd97e19bc7b.png)
电磁场三类边界条件电磁场三类边界条件电磁场的边界条件是指在介质边界处,电场和磁场的变化情况。
根据边界条件的不同,可以将其分为三类:第一类边界条件、第二类边界条件和第三类边界条件。
下面将详细介绍这三类边界条件。
一、第一类边界条件第一类边界条件也称为零法向电场和零切向磁场边界条件。
它是指在介质表面上,法向于表面的电场强度和切向于表面的磁感应强度均为零。
1. 零法向电场在介质表面上,由于介质内部和外部存在不同的电荷分布情况,因此会产生一个法向于表面方向的电场。
而当这个电场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——法向于表面方向上的电通量密度。
根据高斯定理可知,在任意一个闭合曲面内部,通过该曲面的总电通量等于该曲面所包围空间内部所有自由电荷之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合曲面。
则在该曲面上的电通量密度可以表示为:$$\vec{D_1}\cdot\vec{n}=\rho_s$$其中,$\vec{D_1}$表示介质1内部的电位移矢量,$\vec{n}$表示介质表面法向矢量,$\rho_s$表示表面自由电荷密度。
当我们将这个式子应用于介质表面时,可以得到:$$D_{1n}=\rho_s$$其中,$D_{1n}$表示介质1内部法向于表面方向上的电场强度。
由于介质表面上不存在自由电荷,因此$\rho_s=0$。
因此,在第一类边界条件下,法向于介质表面方向上的电场强度为零。
2. 零切向磁场在介质表面上,由于介质内部和外部存在不同的磁场分布情况,因此会产生一个切向于表面方向的磁感应强度。
而当这个磁场穿过介质表面时,就会发生反射和折射现象。
为了描述这种现象,我们需要引入一个重要的物理量——切向于表面方向上的磁通量密度。
根据安培环路定理可知,在任意一个闭合回路上,通过该回路的总磁通量等于该回路所包围空间内部所有电流之代数和。
因此,在介质表面附近,我们可以将其看作一个微小的闭合回路。
电磁场边界条件的推导
![电磁场边界条件的推导](https://img.taocdn.com/s3/m/e62633ec7e192279168884868762caaedd33ba22.png)
电磁场边界条件的推导
电磁场边界条件的推导
一、电磁场传输方程的边界条件
1、定义
电磁场传输方程的边界条件,是指根据电磁场传播方程的数学形式,推导出它需要满足的边界条件的过程。
它是一个物理模型,用来描述电磁场在实际应用中的变化。
2、分析
电磁场传输方程是用来描述电磁场在介质中传播的实际方程,可表示为:
E/t = c~2 ~2E + u E
其中,E/t是电磁场强度变化的函数,c~2是介质的绝缘度,~2E 是位移电场的梯度,u是电荷的电位。
由于电磁场在介质内传播时,要满足以下几种边界条件:
(1)空气两侧的边界条件:空气电磁场的传播在两端要满足有限性条件,即对应的电场线不能漫出介质的边界;
(2)介质边界的边界条件:介质边界处电磁场的传播要满足平衡性条件,即电磁场在介质内外应当是平衡的,而且传播的电磁场线不应改变方向;
(3)源场点的边界条件:源场点的边界条件是指传播电磁场的源场的表示,即源场电磁场的两端均具有有限的电场和磁场强度。
三、总结
电磁场传输方程的边界条件是指,根据电磁场传播方程的数学形式,推导出所需满足的边界条件。
电磁场传输方程的边界条件主要有空气两侧的边界条件,介质边界的边界条件和源场点的边界条件。
电磁场三类边界条件
![电磁场三类边界条件](https://img.taocdn.com/s3/m/9186a148f342336c1eb91a37f111f18583d00cbb.png)
电磁场三类边界条件介绍在电磁学中,边界条件是解决电磁场问题时的重要问题之一。
电磁场三类边界条件指的是麦克斯韦方程组在不同介质之间的边界上的满足条件。
这些条件在电磁场问题的求解中起到了关键的作用。
在本文中,我们将详细探讨电磁场三类边界条件的定义和应用。
一、第一类边界条件第一类边界条件也称为电磁场的法向边界条件。
其主要定义了电场和磁场在边界上的法向分量之间的关系。
具体表达如下:1.在介质边界上,电场的法向分量E n1和E n2满足:E n1=E n2;2.在介质边界上,磁场的法向分量H n1和H n2满足:H n1=H n2。
第一类边界条件体现了介质边界上的电场和磁场的连续性。
二、第二类边界条件第二类边界条件也称为电磁场的切向边界条件。
其主要定义了电场和磁场在边界上的切向分量之间的关系。
具体表达如下:1.在介质边界上,电场的切向分量E t1和E t2满足:E t1ϵ1=E t2ϵ2;2.在介质边界上,磁场的切向分量H t1和H t2满足:H t1μ1=H t2μ2。
其中,ϵ1和ϵ2分别为两个介质的介电常数,μ1和μ2分别为两个介质的磁导率。
第二类边界条件体现了介质边界上的电场和磁场的连续性和切向分量之间的比例关系。
三、第三类边界条件第三类边界条件也称为电磁场的混合边界条件。
其主要定义了电场和磁场在边界上的法向分量和切向分量之间的关系。
具体表达如下:1.在介质边界上,电场的法向分量E n1和E n2满足:E n1=E n2;2.在介质边界上,磁场的法向分量H n1和H n2满足:H n1=H n2;3.在介质边界上,电场的切向分量E t1和E t2满足:E t1ϵ1=E t2ϵ2;4.在介质边界上,磁场的切向分量H t1和H t2满足:H t1μ1=H t2μ2。
第三类边界条件综合了第一类和第二类边界条件,体现了介质边界上的电场和磁场的连续性以及法向分量和切向分量之间的比例关系。
四、应用举例电磁场三类边界条件在电磁学中的应用非常广泛,下面我们以几个实际问题为例,说明其应用方法:例一:平行板电容器考虑一对平行金属板构成的电容器,两板之间填充了介电常数为ϵ的均匀介质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得到
A 80 V/m
r
r
r (2)由 E1
B1 t
1
H1 ,有 t
r
H1 t
1
1
r E1
ery
1
1
E1x z
r E
r B
t
ery
1
0
[300 sin(15 108 t
5z) 100sin(15108t
5z)]
将上式对时间 t 积分,得
H的r 切向分量连续 Er的切向分量连续 Br的法向分量连续 Dr的法向分量连续
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
9
方向角:
tg1
tg2 tg1
1 2 1
tg2 2
媒质 1
媒质 2
ern 1
2
证明: Q D1n D2n
0
y
z 0
3
xeey z255
0
x
ez
3
0
因为边界条件只在边界处成立,故只能求得分界面z=0 处的值。
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
17
例2.7.3 在两导体平板(z = 0 和 z = d)之间的空气中,已知电
场强度
r E
ery E0
sin( π d
电磁场与电磁波
第 2 章 电磁场的基本规律
1
2.7 电磁场的边界条件 • 什么是电磁场的边界条件?
ern
媒质1
ert
媒质2
实际电磁场问题都是在一定的物理空 间内发生的,该空间中可能是由多种不同 媒质组成的。边界条件就是不同媒质的分 界面两侧的电磁场物理量满足的关系。
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
r E1
(0,
t
)
r ex
[60
cos(15
108
t
)
20
cos(15
108
t
)]
r E2
(0,
t
)
erx80 cos(15108
r ex
A
cos(15
108
t
)
t
)
V/m
V/m
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
13
因分界面上电场强度的切向分量连续,即:
E1(0,t) E2 (0,t)
2
本节内容
2.7.1 边界条件一般表达式 2.7.2 两种常见的情况
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
3
2.7.1 边界条件一般表达式
D
C
C S
H dl S (
E dl S
B dS 0
J
B t
) t
dS
dS
ern
媒质1
媒质2
ert
S D dS V ρdV
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
4
边界条件的一般形式:
分界面上的自由电流面密度
errn ern en ern
rr r (Hr 1 Hr 2) JS (rE1 rE2) 0 (Br1 Br2) 0
107
cos(15 108 t )
A/m
可见,在分界面上(z = 0)处,磁场强度的切向分量是连续的。
(因为两种煤质均不导电,则在分界面上不存在面电流。故磁场
强度的切向分量是连续的)
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
15
例 2.7.2 如图所示,1区的媒质参数为 1 50 、1 0、1 0,
2区的媒质参数为
2
0、2
0、 2
0
。若已知自由空间的 r
电场强度为
ez
E2
ex
2y
ey
5z
ez
(3
z)
V/m
媒质1
er y
试问关于1区中的 E1和 D1能求得出吗?
解 : 根据边界条件,只能求得边界
媒质2
er x
面z=0 由
r
处e的n E(1E和1 DE12。)设E01
cos(15108t 5z)] V/m
媒质2中的电场强度为
r E2
(
z,
t
)
erx
A
cos(15
108
t
50
z
)
V/m
(1)试确定常数A的值;(2)求磁场强度 H1(z, t) 和 H2 (z, t) ;
(3)验证 H1(z和, t) H满2 (足z,边t)界条件。
解:(1)这是两种电介质的分界面,在分界面z = 0处,有
Q
r l
er p
ernl
rrr
B (C A) rrr
媒质2
H2
(C A) B
r (H1
r H2 )
r l
6r4 (H1
4 4r 7 H2)
4(er p4
4er8n
) l
r [en
r (H1
r H2
)]
r ep
l
r
右边= J S
erx E1x ery
,可得:
E1y
erz E1z
erz {erx E1x ery E1y erz E1z [erx 2 y ery 5x erz (3 z)]} z0
ery (E1x 2 y) erx (E1y 5x) 0
则得 E1x 2 y, E1y 5x
故得:[ern
r dS
r D
r dS
1S42t 43
0
rr
(H1 H2 )]
s0
erpl
r l J S r JS
r dl er p l
r JS
erpl 或ern H 1(tHr1
r H2) H2t JS
r JS
中国矿业大学
x
erz
kx E0
0
sin( π d
z) cos(t
kx x)
(A/m)
(2) z = 0 处导体表面的电流密度为:
r JS
erz
r H
z0
ery
πE0
0d
sin(t
kxx)
(A/m)
z = d 处导体表面的电流密度为:
r JS
(erz )
r H
zd
ery
z)
cos(t
kx x)
V/m
试求:(1)磁场强度 H;(2)导体表面的电流密度
。J S
解
(1)由
E
0
H
1
E
H t
,
有
z
t
0
y
d
1
0
(ex
E y z
ez
E y x
)
O
x
E0
0
r [ex
π d
cos( π d
z) cos(t
(D1 D2) S
H1t H2t JS E1t E2t B1n B2n
D1n D2n S
中国矿业大学
分界面上的自由电荷面密度
电磁场与电磁波
第 2 章 电磁场的基本规律
5
边界条件的推证
(1)电磁场量的法向边界条件
媒质
在两种媒质的交界面上任取一 1
点P,作一个包围点P 的扁平圆柱
πE0
0d
sin(t
kxx)
(A/m)
中国矿业大学
ern
r (B1
r B2
)
0
或 B1n B2n
电磁场与电磁波
第 2 章 电磁场的基本规律
6
(2)电磁场量的切向边界条件
左边在=C分(HHr界1面dlH两r2侧) S,(lJr选取如Dt)图 d所S示附的Ar录小AB1r.环1式Cr路: ,媒令质1ΔhΔ→lr er0erp,n 则H:er1t Δh
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
16
D1x 1E1x 100 y, D1y 1E1y 250 x
又由
ern
r (D1
r D2
)
0
,有
ez [ex D1x ey D1y ez D1z (ex D2x ey D2 y ez D2z ]z0 0
r H1 ( z, t )
r ey
1
0
[2 107
cos(15 108 t
5z)
2 3
107
cos(15 108 t
5z)]
A/m
中国矿业大学
电磁场与电磁波
第 2 章 电磁场的基本规律
14