极点极线
20.极点与极线的性质
第15讲:极点与极线的性质 125第15讲:极点与极线的性质极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途.定义:已知曲线G:ax 2+bxy+cy 2+dx+ey+f=0,则称点P(x 0,y 0)和直线l:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y ++f=0是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.称点P 与直线l 有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”.特别地,当点P 在曲线G 上时,点P 关于曲线G 的极线是曲线G 在点P 处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点.[位置关系]:已知点P 关于圆锥曲线G 的极线是直线l,则三者的位置关系是:①若点P 在曲线G 上,则直线l 是曲线G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图:l l l P M P A D M PN C N B[配极原则]:如果点P 的极线通过点Q,则点Q 的极线也通过点P.证明:设圆锥曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,点P(x p ,y p ),Q(x Q ,y Q ),则点P 、Q 关于曲线G 的极线方程分别为p:ax p x+b2yx x y p p ++cy p y+d2p x x ++e2p y y ++f=0,q:ax Q x+b2yx x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0,则点P 的极线通过点Q ⇔ax p x Q +b2Qp Q p y x x y ++cy p y Q +d2pQ x x ++e 2pQ y y ++f=0⇔点P(x p ,y p )在直线q:ax Q x+b2y x x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0上⇔点Q 的极线也通过点P.推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线;证明:设两点A 、B 连线的极点是P,即点P 的极线经过点A 、B,由配极原则知点A 、B 的极线均过点P,即点P 是此二点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线.推论2(共点共线):共线点的极线必共点;共点线的极点必共线.证明:设点A 、B 均在直线l 上,直线l 对应的极点为P,由配极原则知点A 、B 的极线均过点P,即点A 、B 的极线必共点;同理可证:共点线的极点必共线.推论3(中点性质):若圆锥曲线G 过点P 的弦AB 平行于点P 的极线,则点P 是弦AB 的中点.证明:设P(x 0,y 0),曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,则点P 的极线方程:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y + +f=0,故可设AB:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++λ=0,由点P(x 0,y 0)在直线AB 上⇒ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+λ=0⇒λ=-(ax 02+bx 0y 0+cy 02+2dx 0+2ey 0)⇒直线AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y +=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0⇒ ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++f=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+f,而该直线为以为P 中点的中点弦方程,即点P 是弦AB 的中点.[比例定理]:若过点P(x 0,y 0)的直线l 与曲线G:ax 2+bxy+cy 2+dx+ey+f=0相交于A 、B 两点,与直线:ax 0x+b200yx x y ++ 126 第15讲:极点与极线的性质cy 0y+d20x x ++e 2y y ++f=0交于点Q,则|PA||QB|=|QA||PB|. 证明:设直线l:⎩⎨⎧+=+=θθsin cos 00t y y t x x (t 为参数),代入ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y ++f=0得:(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+2(ax 02+bx 0y 0+cy 02+dx 0+ey 0+f)=0⇒t 0=-2θθθθsin 2cos sin cos 2000000200020cy by bx ax f ey dx cy y bx ax ++++++++;代入ax 2+bxy+cy 2+2dx+2ey+f=0得:(acos 2θ+bcos θsin θ+csin 2θ)t 2+(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+(ax 02+bx 0y 0+cy 02+dx 0 +ey 0+f)=0⇒t 1+t 2=-θθθθθθθθ220000sin cos sin cos sin 2cos sin cos 2c b a cy by bx ax +++++,t 1t 2=θθθθ2200200020sin cos sin cos c b a fey dx cy y bx ax +++++++⇒t 0=21212t t t t +;而|PA||QB|= |QA||PB|⇔|t 1||t 2-t 0|=|t 1-t 0||t 2|⇔t 0=21212t t t t +成立. [面积定理]:已知点P 关于圆锥曲线G 的极线为l,过点P 的直线与圆锥曲线G 相交于A 、B 两点,分别过点A 、B 的两条平行线与直线l 交于点D 、C,记△APD 、△CPD 、△BPC 的面积分别为S 1,S 2,S 3,则:S 22=4S 1S 2.证明:以椭圆G:22a x +22b y =1(a>b>0)为例,设P(x 0,y 0),则极线l:12020=+b y y a x x .设A(x 1,y 1),B(x 2,y 2),并分别过点A 、B作l 的垂线,垂足分别为D 1、C 1,则||||11BC AD =|1||1|220220210210-+-+by y a x x b y y a x x =||||2220220222102102b a y y a x x b b a y y a x x b -+-+(注意到:a 2b 2=b 2x 12+a 2y 12,a 2b 2=b 2x 22+a 2y 2) =||||222222202202212212102102y a x b y y a x x b y a x b y y a x x b --+--+=|)()(||)()(|0222022201120112y y y a x x x b y y y a x x x b -+--+-(注意到:0101x x y y --=0202x x y y --=k)=||||0201x x x x --⋅||||22221212x b ky a x b ky a ++.又因||||BP AP =||||0201x x x x --,以下只需证||||22221212x b ky a x b ky a ++=1,即|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|,由⎪⎩⎪⎨⎧=+=+2222222222212212ba y a xb b a y a x b ⇒b 2(x 1-x 2)(x 1+x 2)+a 2(y 1- y 2)(y 1+y 2)=0⇒b 2(x 1+x 2)+a 2k(y 1+y 2)=0⇒a 2ky 1+b 2x 1=-(a 2ky 2+b 2x 2)⇒|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|⇒||||BP AP =||||11BC AD ,由△ADD 1∽△BCC 1⇒||||BC AD =||||BP AP ,设AC 与BD 交于点Q,由AD ∥BC ⇒||||BC AD =||||QC AQ ⇒||||BP AP =||||QC AQ ⇒PQ ∥BC ∥AD ⇒S △BAC =S △BDC ,两边同减S △BQC 得S △QAB =S △QDC ,又因S △PQA =S △PQD ,S △PQB =S △PQC ⇒S △PCD =S △QCD +S △PQD +S △PQC =S △QCD +S △PQA +S △PQB =S △QCD +S △QAB =2S △QAB ⇒S △QAD =S △PAD =S 1,S△QBC=S △PBC =S 3,S △QAB =21S △PCD =21S 2,注意到:QAB QBC QAB QAD S S S S ∆∆∆∆⋅=||||||||QA QC QB QD ⋅=1⇒2QAB S ∆=S △QAD S △QBC ⇒S 22=4S 1S 2. 例1:极点与极线的位置关系.[始源问题]:(2010年湖北高考试题)已知椭圆C:22x +y 2=1的两焦点为F 1 ,F 2,点P(x 0,y 0)满足0<220x +y 02<1,则|PF 1|+|PF 2|的取值范围为 ,直线20xx +y 0y=1与椭圆C 的公共点个数为 . [解析]:由0<220x +y 02<1知,点P 在椭圆C 内,所以直线20x x +y 0y=1与椭圆C 相离⇒公共点个数为0;2c ≤PF 1|+|PF 2|<2a ⇒ 2≤PF 1|+|PF 2|<22⇒|PF 1|+|PF 2|的取值范围为[2,22).[原创问题]:已知椭圆C:42x +32y =1,点P(x 0,y 0)满足42x +320y >1(x 0≠0),直线l:40x x +30y y =1.(Ⅰ)求直线l 与椭圆C 的公共点个数;(Ⅱ)若射线OP 与直线l 、椭圆C 分别交于点Q 、M,求证:|OP||OQ|=|OM|2.[解析]:(Ⅰ)因椭圆C:42x +32y =1⇔⎩⎨⎧==θθsin 3cos 2y x ,θ∈[0,2π),所以,直线l 与椭圆C 的公共点个数⇔关于θ的方程第15讲:极点与极线的性质 12720x cos θ+330y sin θ=1解的个数⇔直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数;由圆心O(0,0)到直线:20x x+330y y=1的距离d=341220y x +<1⇒直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数=2⇒直线l 与椭圆C 的公共点个数=2;(Ⅱ)因射线OP:y=00x y x(x 与x 0同号),与40x x +30y y =1联立得:40x x +0203x x y =1⇒x=202004312y x x +⇒y=202004312y x y +⇒Q(202004312y x x +,22004312y x y +)⇒|OP||OQ|=2020202043)(12y x y x ++;由y=00x y x 与42x +32y =1联立得:42x +20203x y x 2=1⇒x 2=2020204312y x x +⇒y 2=2020204312y x y +⇒|OM|2=x 2+y 2=2020204312y x x ++2020204312y x y +=2020202043)(12y x y x ++⇒|OP||OQ|=|OM|2.例2:抛物线中的共线性质.[始源问题]:(2010年大纲卷Ⅰ高考试题)已知抛物线C:y 2=4x 的焦点为F,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D. (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设FB FA ⋅=98,求△BDK 的内切圆M 的方程. [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),直线l:y=k(x+1)(k ≠0),则D(x 1,-y 1),由⎩⎨⎧=+=xy x k y 4)1(2⇒ky 2-4y+4k=0⇒y 1+y 2=k 4,y 1y 2= 4;所以,点F 在直线BD 上⇔FB ∥FD ⇔(x 2-1):(x 1-1)=y 2:(-y 1)⇔y 1(k y 2-2)+y 2(ky1-2)=0⇔y 1y 2-k(y 1+y 2)=0; (Ⅱ)由FB FA ⋅=(x 1-1)(x 2-1)+y 1y 2=(k y 2-2)(k y 1-2)+y 1y 2=(1+21k )y 1y 2-k 2(y 1+y 2)+4=4(1+21k )-28k +4=8-24k=98⇒k=±43; 根据对称性,不妨设k=43,则直线AB:3x-4y+3=0,且k KD =43⇒KF 平分∠AKD ⇒圆M 的圆心M 在x 轴上;(x 2-x 1)2=(x 1+x 2)2- 4x 1x 2=7162⇒k BD =1212y y x x +-=73⇒直线BD:3x-7y-3=0;设M(t,0)(-1<t<1),则由点M 到直线AB 与BD 的距离相等⇒5|1|3+t=4|1|3-t ⇒t=91⇒圆M:(x-91)2+y 2=94. [原创问题]:已知抛物线y 2=2px 及定点A(a,b),B(-a,0)(ab ≠0,b 2≠2pa),M 是抛物线上的点,设直线AM,BM 与抛物线的另一交点分别为M 1,M 2.求证:当M 点在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标.[解析]:设M(2pt 2,2pt),M 1(2pt 12,2pt 1),M 2(2pt 22,2pt 2),则点B,M,M 2对应的极线分别为:x=a,2ty=x+2pt 2,2t 2y=x+2pt 22,由B,M,M 2三点共线⇒三线x=a,2ty=x+2pt 2,2t 2y=x+2pt 22共点⇒a=2ptt 2⇒t 2=pta2,点A,M 1对应的极线分别为:by=px+ap, 2t 1y=x+2pt 12,由A,M,M 1三点共线⇒三线by=px+ap,2ty=x+2pt 2,2t 1y=x+2pt 12共点⇒bp(t+t 1)=2p 2tt 1+ap ⇒t 1=ptb bta 2--,由⎪⎩⎪⎨⎧+=+=2222112222pt x y t pt x y t ⇒⎩⎨⎧+==)(22121t t p y t pt x ⇒⎪⎪⎩⎪⎪⎨⎧--=--=)2(2)2()2()(2pt b pt t p a b y pt b t bt a a x ⇒x-a=)2(22pt b t t p a --=b a 2y ⇒M 1,M 2对应极线的交点在定直线b p 2y=x+a, 即b p 22y=2p 2a x +上⇒直线M 1M 2恒过一个定点(a,bpa2). 128 第15讲:极点与极线的性质例3:抛物线中的比例性质.[始源问题]:(2009年全国高中数学联赛湖北初赛试题)已知抛物线C:y=21x 2与直线l:y=kx-1没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点. (Ⅰ)证明:直线AB 恒过定点Q;(Ⅱ)若点P 与(Ⅰ)中的定点Q 的连线交抛物线C 于M 、N 两点.证明:||||PN PM =||||QN QM . [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线y=21x 2在点A 、B 处的切线方程分别为x 1x=y+y 1、x 2x=y+y 2,由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=02200110y y x x y y x x ⇒直线AB:x 0x=y+y 0(注意到:y 0=kx 0-1)⇒x 0x=y+kx 0-1⇒直线AB 过定点Q(k,1);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=y+y 0,得:t Q =θθcos sin 20020x y x --;代入y=21x 2得:t 2cos 2θ+2(x 0cos θ-sinθ)t+x 02-2y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin x -,t 1t 2=θ2020cos 2y x -⇒21212t t t t +=θθcos sin 20020x y x --⇒t Q =21212t t t t +;所以,||||PN PM =||||QN QM ⇔21t t= QQ t t t t --21⇔t Q =21212t t t t +成立. [原创问题]:已知抛物线C:x 2=4y 与直线l:y=x-2,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点.(Ⅰ)证明:直线AB 恒过定点T;(Ⅱ)若过点P 的直线l 交抛物线C 于M 、N 两点,与直线AB 交于点Q.证明||PM ||PN ||PQ [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线C:x 2=4y 在点A 、B 处的切线方程分别为x 1x=2(y+y 1)、x 2x=(y+y 2),由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=)(2)(202200110y y x x y y x x ⇒直线AB:x 0x=2(y+y 0)(注意到:y 0=x 0-2)⇒x 0x=2y+2x 0-4⇒直线AB 过定点T(2,2);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=2(y+y 0),得:t Q =θθcos sin 240020x y x --;代入x 2=4y 得:t 2cos 2θ+2(x 0cos θ-2sin θ)t+x 02-4y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin 2x -,t 1t 2=θ2020cos 4y x -⇒21212t t t t +=θθcos sin 240020x y x --⇒t Q =21212t t t t +;所以||PM ||PN ||PQ ⇔11t21t =Q t 2⇔t Q =21212t t tt +成立. 例4:抛物线中的面积关系.[始源问题]:(2009年湖北高考试题)过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0),的直线与抛物线相交于M 、N两点,自M 、N 向直线l:x=-a 作垂线,垂足分别为M 1、N 1. (Ⅰ)当a=2p时,求证:AM 1⊥AN 1; (Ⅱ)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3,是否存在λ,使得对任意的a>0,都有S 22=λS 1S 3成立.若存在,求出λ的值;若不存在,说明理由.[解析]:(Ⅰ)当a=2p 时,A(2p ,0),设M(2pm 2,2pm),N(2pn 2,2pn),则M 1(-2p ,2pm),N 1(-2p ,2pn),由AM ∥AN ⇒(2pm 2- 2p ):(2pn 2-2p )=2pm:2pn ⇒mn=-41⇒1AM ⋅1AN =p 2+4p 2mn=0⇒AM 1⊥AN 1;第15讲:极点与极线的性质 129(Ⅱ)由AM ∥AN ⇒(2pm 2-a):(2pn 2-a)=2pm:2pn ⇒2pmn+a=0;因||||11NN MM =2222pn a pm a ++;当MN ⊥/x 轴时,||||AN AM =|2||2|22pn a a pm --=2222pn a a pm --;所以,||||11NN MM =||||AN AM ⇔2222pn a pm a ++=2222pn a a pm --⇔4p 2m 2n 2=a 2成立;当MN ⊥x 轴时,显然有||||11NN MM =||||AN AM ;设MN 1与NM 1交于点Q(点Q 即原点O),由MM 1∥NN 1⇒||||1QN MQ =||||11NN MM =||||AN AM ⇒AQ ∥MM 1∥NN 1;设∠MQM 1=α,则S 1=21|QM||QM 1|sin α,S 3 =21|QN||QN 1|sin α;又S △QMN =11N QM S ∆⇒S 2=11N QM S ∆+(1AQM S ∆+1AQN S ∆)=11N QM S ∆+(S △AQM +S △AQN )=11N QM S ∆+S △QMN =2S △QMN ;S 1S 3=21|QM||QM 1|sin α⋅21|QN||QN 1|sin α=21|QM||QN|sin α⋅21|QM 1||QN 1|sin α=S △QMN 11N QM S ∆=41S 22⇒S 22=4S 1S 3⇒存在λ=4,使得对任意的a>0,都有S 22=λS 1S 3成立.[原创问题]:已知抛物线C:y 2=4x,直线l:y=2x+2,过点P(1,1)的直线与抛物线C 交于A 、B 两点,A 、B 两点在直线l 上的射影点分别为N 、M,记△PAN 、△PMN 、△PBM 的面积分别为S 1、S 2、S 3. (Ⅰ)当AB ∥直线l 时,求证:P 是AB 的中点; (Ⅱ)求证:S 22=4S 1S 3.[解析]:(Ⅰ)设A(x 1,y 1),则y 12=4x 1;由P 是AB 的中点⇒B(2-x 1,2-y 1)⇒(2-y 1)2=4(2-x 1)⇒y 1=2x 1+1⇒点A 在直线y=2x+1上,同理可得点B 也在直线y=2x+1上⇒直线AB:y=2x+1⇒AB ∥直线l;由统一法知,当AB ∥直线l 时, P 是AB 的中点;(Ⅱ)设直线AB:⎩⎨⎧+=+=θθsin 1cos 1t y t x (t 为参数),代入y 2=4x 得:t 2sin 2θ+2(sin θ-2cos θ)t-3=0⇒t 1+t 2=2⋅θθθ2sin sin cos 2-,t 1t 2=-θ2sin 3;点A(1+t 1cos θ,1+t 1sin θ)到直线l 的距离|AN|=5|3sin cos 2|11+-θθt t ,点B(1+t 2cos θ,1+t 2sin θ)到直线l 的距离|BM|=5|3sin cos 2|22+-θθt t ⇒||||BM AN =|3sin cos 2||3sin cos 2|2211+-+-θθθθt t t t (由点A 、B 在直线l 的同侧⇒2t 1cos θ-t 1sin θ+3与t 2cos θ-t 2sin θ+3同号)=3sin cos 23sin cos 22211+-+-θθθθt t t t ;而||||PB PA =||||21t t (点A 、B 在点P 的异侧)=-21t t;所以,||||BM AN =||||PB PA ⇔3sin cos 23sin cos 22211+-+-θθθθt t t t=-21t t ⇔2(2cos θ-sin θ)t 1t 2+3(t 1+t 2)=0⇔2(2cos θ-sin θ)(-θ2sin 3)+3⋅2⋅θθθ2sin sin cos 2-=0成立; 以下同例题可证:S 22=4S 1S 3.例5:椭圆中的共线性质.[始源问题]:(2012年北京高考试题)已知曲线C:(5-m)x 2+(m-2)y 2=8(m ∈R).(Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设m=4,曲线C 与y 轴的交点为A,B(点A 位于点B 的上方),直线y=kx+4与曲线C 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A,G,N 三点共线.[解析]:(Ⅰ)由曲线C 是焦点在x 轴点上的椭圆⇔m-2>5-m>0⇔27<m<5.故m 的取值范围是(27,5); (Ⅱ)当m=4时,曲线C:x 2+2y 2=8⇒A(0,2),B(0,-2);设M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧=++=82422y x kx y ⇒(2k 2+1)x 2+16kx+24=0⇒△= 32(2k 2-3)>0⇒k 2>23;且x 1+x 2=-12162+k k ,x 1x 2=12242+k ;又由直线BM:y=112x y +x-2⇒G(2311+y x ,1),即G(6311+kx x ,1)⇒k AG =-1136x kx +=-3k -12x ,k AN =222x y -=222x kx +=k+22x ⇒k AN -k AG =34k +12x +22x =34k +2⋅2121x x xx +=34k +2⋅2416k -=0⇒A,G,N 三点共线.第(Ⅱ)问是本题的特色与亮点,其实质是共轭点的性质:设点P 与Q 是二次曲线G 的一对共轭点,过点Q 的直线AC 与曲线G 相交于A 、C 两点,AP 与曲线G 相交于另一点B,BQ 与曲线G 相交于另一点D,则P 、C 、D 三点共线.其中共轭点的定义:130 第15讲:极点与极线的性质若直线PQ 与圆锥曲线G 相交于A 、B 两点,且PA ⋅QB +PB ⋅QA =0,则称点P 与Q 是圆锥曲线G 的一对共轭点.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)过点D(-1,e),其中,e 是椭圆C 的离心率,椭圆C 的左、右顶点分别为A(-2,0)、B(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)过点E(4,0)的直线l 与椭圆C 交于M 、N 两点,求证:直线AM 与BN 的交点P 在一条定直线上.[解析]:(Ⅰ)由a=2,21a +22b e =1⇒1+22b c =a 2⇒b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)设M(x 1,y 1),N(x 2,y 2),直线l:y=k(x-4),由⎩⎨⎧=+-=44)4(22y x x k y ⇒(1+4k 2)x 2-32k 2x+64k 2-4=0⇒x 1+x 2=224132k k +,x 1x 2=2241464k k +- ⇒k 2=)(4322121x x x x +-+,x 1x 2(1+4k 2)=64k 2-4⇒x 1x 2⋅)(8821x x +-=)(8]8)(5[42121x x x x +--+⇒2x 1x 2=5(x 1+x 2)-8;又由直线AM:y=211+x y (x+2),直线BN:y=222-x y (x-2)⇒直线AM 与BN 的交点P 的横坐标x 满足:211+x y (x+2)=222-x y (x-2)⇒2)4(11+-x x k (x+2)= 2)4(22--x x k (x-2)⇒x=83262122121----x x x x x x =83268)(5122121-----+x x x x x x =1⇒点P 在一条定直线x=1上.例6:椭圆中的中点性质.[始源问题]:(2008年全国高中数学联赛湖南初赛试题)如图,过直线l:5x-7y-70=0上的点P 作椭圆252x +92y =1的两条切线PM 、PN,切点分别为M 、N.(Ⅰ)当点P 在直线l 上运动时,证明:直线MN 恒过定点Q; (Ⅱ)当MN ∥l 时,定点Q 平分线段MN.[解析]:(Ⅰ)设P(7t+7,5t-5),则直线MN 的方程为:2577+t x+955-t y=1⇒(257x+95y)t+(257x-95y-1)=0,由257x+95y=0,且257x-95y-1=0⇒x=1425,y=-109⇒直线MN 恒过定点Q(1425,-109);(Ⅱ)MN ∥l ⇔2577+t :955-t =5:(-7)⇔t=53392⇒直线MN 的方程为:5x-7y-35533=0,代入椭圆方程252x +92y =1得:275332⨯x2 -23753325⨯x+25[(275533⨯)2-9]=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=725⇒定点Q 平分线段MN. [原创问题]:过点Q(1,1)作己知直线l:3x+4y=12的平行线交椭圆C:42x +32y =1于点M 、N. (Ⅰ)分别过点M 、N 作椭圆C 的切线l 1、l 2.证明:三条直线l 1、l 2、l 交于一点; (Ⅱ)证明:点Q 是线段MN 的中点;(Ⅲ)设P 为直线l 上一动点,过点P 作椭圆C 的切线PA 、PB,切点分别为A 、B,证明:点Q 在直线AB 上.[解析]:(Ⅰ)设M(x 1,y 1),N(x 2,y 2),切线l 1、l 2交于点P(x 0,y 0),由切线l 1:41x x+31y y=1,切线l 2:42x x+32yy=1均过点P(x 0, y 0)⇒41x x 0+31y y 0=1,42x x 0+32yy 0=1⇒直线MN:40x x+30y y=1;又由直线MN 过点Q(1,1)⇒40x +30y =1⇒3x 0+4y 0=12⇒点P 在直线l 上⇒三条直线l 1、l 2、l 交于一点; (Ⅱ)由直线MN ∥直线l ⇒40x :30y =41:31,又40x +30y =1⇒x 0=y 0=712⇒直线MN:3x+4y=7⇒点Q 是线段MN 的中点; (Ⅲ)设P(x 0,y 0),则直线AB:3x 0x+4y 0y=12⇒3x 0x+(12-3x 0)y=12⇒点Q 在直线AB 上.第15讲:极点与极线的性质 131例7:椭圆中的比例性质.[始源问题]:(2011年山东高考试题)在平面直角坐标系xOy 中,已知椭圆C:32x +y 2=1.如图所示,斜率为k(k>0)且不过原点的直线l 交椭圆C 于A,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G 交直线x=-3于点D(-3,m).(Ⅰ)求m 2+k 2的最小值(Ⅱ)若|OG|2(i)求证:直线l 过定点(ii)试问点B,G 能否关于x 轴对称?若能,求出此时△ABG 的外接圆方程;若不能,请说明理由.[解析]:(Ⅰ)设E(-3λ,m λ),A(-3λ+t,m λ+kt),则B(-3λ-t,m λ-kt).由点A 、B 都在椭圆C 上⇒⎪⎩⎪⎨⎧=-+--=+++-3)(3)3(3)(3)3(2222kt m t kt m t λλλλ,两式相减得mk=1⇒m 2+k 2≥2mk=2,当且仅当m=k=1时等号成立,所以m 2+k 2的最小值=2.(Ⅱ)(i)设直线OG 与椭圆C 相交于另一点T,则由椭圆C 关于原点对称得:|OT|=|OG|.所以,|OG|2=|OD||OE|⇔DT EG ⋅+DG ET ⋅=0,由轨迹1知,点E 在直线-x+my=1上,即直线l 的方程为:-x+my=1⇒直线l 过定点(-1,0);(ii)若点B,G 关于x 轴对称⇒点G(-3λ-t,-m λ+kt),由点G 在直线OE 上⇒(-3λ-t):(-3λ)=(-m λ+kt):m λ⇒6m λ+mt =3kt(注意到mk=1)⇒m 2(6λ+t)=3t ⇒t=2236mm -λ,又由点E 在直线l 上⇒3λ+m 2λ=1⇒λ=231m +⇒B(-233m -,-23m m -)⇒31(233m -)2+(23mm -)2=1⇒m=1,k=1,λ=41,t=43⇒A(0,1),B(-23,-21),G(-23,21)⇒△ABG 的外接圆方程:(x+21)2+y 2=45. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),射线OP 与椭圆C 交于点N,与直线l 0:x+y-12=0交于点M,满足|OP||OM|=|ON|2,且椭圆C 在N 处的切线平行于直线l 0. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0交于点Q,与椭圆C 交于A 、B 两点(A 在P 与Q 之间),求证:|QA||PB|=|QB||PA|.[解析]:(Ⅰ)由射线OP:y=21x(x ≥0),直线l 0:x+y-12=0⇒M(8,4);设N(2t,t)(t>0),由|OP||OM|=|ON|2⇒5⋅80=4t2+t 2⇒t=2⇒N(4,2)⇒216a+24b=1,椭圆C 在N 处的切线:24ax +22by =1;由切线平行于直线l 0⇒24a=22b⇒a 2=2b 2⇒b 2=12,a2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;而|QA||PB|=|QB||PA|⇔(t Q -t 1)(-t 2)=(t Q -t 2)t 1⇔(t 1+t 2)t Q -2t 1t 2=0⇔-θθθθ22cos sin 2)cos (sin 4++⋅θθcos sin 9+-2(-θθ22cos sin 218+)=0成立. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),过点P 且平行于x 轴直线被椭圆C 截得的弦长为46,过点P 且平行于y 轴直线被椭圆C 截得的弦长为210. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0:x+y-12=0交于点Q,与椭圆C 交于A 、B 两点,若QA =λAP ,QB =μBP .求证:λ+132 第15讲:极点与极线的性质μ为定值.[解析]:(Ⅰ)由2222by ax +=1,令y=1得:|x|=ba12-b ;令x=2得:|y|=ab 42-a ;由题知,ba 12-b =26,ab 42-a =10⇒a 2=12422-b b ,22a b (a 2-4)=10⇒2412-b (12422-b b -4)=10⇒b 2=12⇒a 2=24⇒椭圆C:242x +122y =1;(Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;由QA =λAP ,QB =μBP⇒λ=11t t t Q -,μ=22t t t Q -⇒λ+μ=2-t Q ⋅2121t t t t +=2-θθcos sin 9+⋅9)cos (sin 2θθ+=0. 例8:椭圆中的共线性质.[始源问题]:(2002年澳大利亚数学奥林匹克试题)己知△ABC 为锐角三角形以AB 为直径的⊙K 分别交AC 、BC 于P 、Q,分别过A 和Q 作⊙K 的两条切线交于点R,分别过B 和P 作⊙K 的两条切线交于点S.证明:点C 在线段RS 上[解析]:设⊙K:x 2+y 2=r 2,R(-r,a),S(r,b)⇒点R,S 对应的极线分别为:AQ:-rx+ay=r 2,BP:rx+by=r 2⇒Q(2222)(r a r r a +-,2222r a ar +),P(-2222)(r b r r b +-,2222r b br +⇒AP:y=r b (x+r),BQ:y=-r a (x-r),由⎪⎪⎩⎪⎪⎨⎧+=--=)()(r x r b y r x r a y ⇒⎪⎪⎩⎪⎪⎨⎧+=+-=b a ab y r b a b a x 2⇒C(b a b a +-r,b a ab +2)⇒点C 对应的极线为:(a-b)rx+2aby=(a+b)r 2,由三线:-rx+ay=r 2,BP:rx+by=r 2,(a-b)rx+2aby=(a+b)r 2共点于(ba ba +-r, ba r +22)⇒R,C,S 三点共线⇒点C 在线段RS 上. 该题是平面几何定理:“过非等腰三角形的三个顶点作其外接圆的切线,顶点处的切线与其对边所在直线的交点共线.”的变形,以该定理为始源,取其特殊情况,并把圆压缩为椭圆得:[原创问题]:若对任意θ∈[0,2π),直线l:xcos θ+2ysin θ-2=0与椭圆C:2222b y a x +=1(a>b>0)均只有一个交点M.(Ⅰ)求椭圆C 的方程; (Ⅱ)当θ∈(0,2π)时,若直线l 与x 轴交于点N,椭圆C 的左、右顶点分别为A 、B,直线BM 上的点Q 满足QA ⊥x 轴,直线AM 与NQ 交于点P,求点P 的轨迹方程.[解析]:(Ⅰ)由⎩⎨⎧=-+=-+002sin 2cos 222222b a y a x b y x θθ⇒(a 2cos 2θ+4b 2sin 2θ)y 2-8b 2ysin θ+4b 2-a 2b 2cos 2θ=0⇒△=64b 4sin 2θ-4(a 2cos 2θ +4b 2sin 2θ)(4b 2-a 2b 2cos 2θ)=0⇒a 2-4+(4b 2-a 2)sin 2θ=0恒成立⇒a 2-4=0,4b 2-a 2=0⇒a 2=4,b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)由xcos θ+2ysin θ-2=0⇒N(θcos 2,0);(Ⅰ)知,M(2cos θ,sin θ)⇒直线AM:y=2cos 2sin +θθ(x+2),BM:y=2cos 2sin -θθ(x-2)⇒Q(-2,θθcos 1sin 2-)⇒直线NQ:y=-cot θ(x-θcos 2);令2cos 2sin +θθ(x+2)=-cot θ(x-θcos 2)⇒(2cos 2sin +θθ+θθcos sin )x=θsin 2-1cos sin +θθ⇒x=2⇒点P 的轨迹方程x=2(0<y<2).。
极点极线专题 (学生版)
极点极线专题一、极点极线发展简史极点与极线 ,是法国数学家吉拉德·笛沙格(Girard Desargues ,1591-1661)于1639年在射影几何学的奠基之作《圆锥曲线论稿》中正式阐述.吉拉德·笛沙格,1591年2月21日生于法国里昂,1661年10月卒于里昂,法国数学家和工程师,别名S .G .D .L .(是他署名Sieur Girard Desargues Lyonnois 的缩写),射影几何的创始人之一,他奠定了射影几何的基础.以他命名的事物有笛沙格定理、笛沙格图、笛沙格平面,1964年,国际天文学联合会以他的名字命名一个月球环形山.他建立了统一的二次曲线理论,是从笛沙格定理三角形的角度,也是笛沙格定理的退化(参见南师大周兴和著《高等几何》第四章P 98,科学出版社,2003).二、硬解定理1.椭圆中的硬解定理①椭圆方程为x 2a 2+y 2b2=1a >b >0 ,直线y =kx +m 与椭圆交于A 、B 两点,设A x 1,y 1 、B x 2,y 2 .联立:x 2a 2+y 2b 2=1y =kx +m,消元得:b 2+a 2k 2 x 2+2kma 2x +a 2m 2-b 2=0则x 1+x 2=-2kma 2b 2+a 2k 2,x 1x 2=a 2m 2-b 2 b 2+a 2k2y 1+y 2=kx 1+m +kx 2+m =k x 1+x 2 +2m =-2k 2ma 2b 2+a 2k 2+2k 2ma 2+2mb 2b 2+a 2k 2=2mb 2b 2+a 2k2;y 1⋅y 2=kx 1+m ⋅kx 2+m =k 2x 1x 2+k m x 1+x 2 +m 2=k 2a 2m 2-b 2 b 2+a 2k 2-2k 2m 2a 2b 2+a 2k 2+k 2m 2a 2+m 2b 2b 2+a 2k 2=m 2-a 2k 2 ⋅b 2b 2+a 2k 2;x 1y 2+x 2y 1=x 1kx 2+m +x 2kx 1+m =2kx 1x 2+m x 1+x 2 =2ka 2m 2-b 2 b 2+a 2k 2-2k m 2a 2b 2+a 2k 2=-2ka 2b 2b 2+a 2k 2;Δ=4k 2m 2a 4-4a 2m 2-b 2 b 2+a 2k 2 =4a 2b 2b 2+a 2k 2-m 2 ;弦长公式:AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅ΔA(A =b 2+a 2k 2)②椭圆方程为x 2a 2+y 2b2=1a >b >0 ,直线x =ty +m 与椭圆交于A 、B 两点,设A x 1,y 1 、B x 2,y 2 .联立:x 2a 2+y 2b 2=1x =ty +m,消元得:a 2+b 2t 2 y 2+2tmb 2y +b 2m 2-a 2=0则y 1+y 2=-2tmb 2a 2+b 2t 2,y 1y 2=b 2m 2-a 2 a 2+b 2t 2x 1+x 2=ty 1+m +ty 2+m =t y 1+y 2 +2m =-2t 2m b 2a 2+b 2t 2+2t 2m b 2+2ma 2a 2+b 2t 2=2ma 2a 2+b 2t2;x 1⋅x 2=ty 1+m ⋅ty 2+m =t 2y 1y 2+tm y 1+y 2 +m 2=t 2b 2m 2-a 2 a 2+b 2t 2-2t 2m 2b 2a 2+b 2t 2+t 2m 2b 2+m 2a 2a 2+b 2t 2=m 2-b 2t 2 ⋅a 2a 2+b 2t 2;x 1y 2+x 2y 1=y 2ty 1+m +y 1ty 2+m =2ty 1y 2+m y 1+y 2 =2t b 2m 2-a 2 a 2+b 2t 2-2tm 2b 2a 2+b 2t 2=-2ta 2b 2a 2+b 2t 2;Δ=4t 2m 2b 4-4b 2m 2-a 2 a 2+b 2t 2 =4a 2b 2a 2+b 2t 2-m 2 ;弦长公式:AB =1+t 2y 1-y 2 =1+t 2⋅y 1+y 22-4y 1y 2=1+t 2⋅ΔA(A =a 2+b 2t 2)2.双曲线中的硬解定理①双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,直线y =kx +m 与双曲线交于A 、B 两点,设A x 1,y 1 、B x 2,y 2 .联立:x 2a 2-y 2b 2=1y =kx +m,消元得:b 2-a 2k 2 x 2-2kma 2x -a 2m 2+b 2=0则x 1+x 2=2kma 2b 2-a 2k 2,x 1x 2=-a 2m 2+b 2 b 2-a 2k2y 1+y 2=kx 1+m +kx 2+m =k x 1+x 2 +2m =2k 2ma 2b 2-a 2k 2+2m b 2-2k 2ma 2b 2-a 2k 2=2m b 2b 2-a 2k2;y 1⋅y 2=kx 1+m ⋅kx 2+m =k 2x 1x 2+k m x 1+x 2 +m 2=-k 2a 2m 2+b 2 b 2-a 2k 2+2k 2m 2a 2b 2-a 2k 2+m 2b 2-k 2m 2a 2b 2-a 2k 2=m 2-a 2k 2 ⋅b 2b 2-a 2k 2;x 1y 2+x 2y 1=x 1kx 2+m +x 2kx 1+m =2kx 1x 2+m x 1+x 2 =-2ka 2m 2+b 2 b 2-a 2k 2+2km 2a 2b 2-a 2k 2=-2ka 2b 2b 2-a 2k2;Δ=4k 2m 2a 4+4a 2m 2+b 2 b 2-a 2k 2 =4a 2b 2b 2-a 2k 2+m 2 ;弦长公式:AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅ΔA(A =b 2-a 2k 2)②双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,直线x =ty +m 与双曲线交于A 、B 两点,设A x 1,y 1 、B x 2,y 2 .联立:x 2a 2-y 2b 2=1x =ty +m,消元得:b 2t 2-a 2 y 2+2tmb 2y +b 2m 2-a 2=0则y 1+y 2=-2tmb 2b 2t 2-a 2,y 1y 2=b 2m 2-a 2 b 2t 2-a 2x 1+x 2=ty 1+m +ty 2+m =t y 1+y 2 +2m =-2t 2m b 2b 2t 2-a 2+2t 2m b 2-2ma 2b 2t 2-a 2=-2ma 2b 2t 2-a2;x 1⋅x 2=ty 1+m ⋅ty 2+m =t 2y 1y 2+tm y 1+y 2 +m 2=t 2b 2m 2-a 2 b 2t 2-a 2-2t 2m 2b 2b 2t 2-a 2+t 2m 2b 2-m 2a 2b 2t 2-a 2=-m 2+b 2t 2 ⋅a 2b 2t 2-a 2;x 1y 2+x 2y 1=y 2ty 1+m +y 1ty 2+m =2ty 1y 2+m y 1+y 2 =2tb 2m 2-a 2 b 2t 2-a 2-2tm 2b 2b 2t 2-a 2=-2ta 2b 2b 2t 2-a 2;Δ=4t 2m 2b 4-4b 2m 2-a 2 b 2t 2-a 2 =4a 2b 2b 2t 2-a 2+m 2 ;弦长公式:AB =1+t 2y 1-y 2 =1+t 2⋅y 1+y 22-4y 1y 2=1+t 2⋅ΔA(A =b 2t 2-a 2)3.抛物线中的硬解定理①抛物线方程为y 2=2px p >0 ,直线y =kx +m 与抛物线交于A 、B 两点,设A x 1,y 1 、B x 2,y 2 .联立:y 2=2px p >0 y =kx +m ,消元得:k 2x 2+2km -p x +m 2=0则x 1+x 2=-2km -p k 2,x 1x 2=m 2k 2y 1+y 2=kx 1+m +kx 2+m =k x 1+x 2 +2m =-2km -p k +2kmk =2p k;y 1⋅y 2=kx 1+m ⋅kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2=m 2-2m km -p k +m 2=2pmk ;x 1y 2+x 2y 1=x 1kx 2+m +x 2kx 1+m =2kx 1x 2+m x 1+x 2 =2m 2k -2m km -p k 2=2pm k 2;Δ=4km -p 2-4k 2m 2=4p p -2km ;弦长公式:AB =1+k 2x 1-x 2 =1+k 2⋅x 1+x 22-4x 1x 2=1+k 2⋅ΔA(A =k 2)②抛物线方程为y 2=2px p >0 ,直线x =ty +m 与抛物线交于A 、B 两点,设A x 1,y 1 、B x 2,y 2 .联立:y 2=2px p >0 x =ty +m ,消元得:y 2-2tpy -2pm =0则y 1+y 2=2tp ,y 1y 2=-2pmx 1+x 2=ty 1+m +ty 2+m =t y 1+y 2 +2m =2pt 2+2m ;x 1⋅x 2=ty 1+m ⋅ty 2+m =t 2y 1y 2+tm y 1+y 2 +m 2=-2pmt 2+2pmt 2+m 2=m 2;x 1y 2+x 2y 1=y 2ty 1+m +y 1ty 2+m =2ty 1y 2+m y 1+y 2 =-4pmt +2pmt =-2pmt ;Δ=4t 2p 2-4-2pm =4p pt 2+2m ;三、切线方程1.椭圆的切线①椭圆方程为x 2a 2+y 2b 2=1a >b >0 ,点P x 0,y 0 为椭圆上一点,过点P x 0,y 0 作椭圆的切线,则切线的斜率为k =-b 2x 0a 2y 0.【证明】:设切线方程为y =k x -x 0 +y 0即y =kx +m (m =y 0-kx 0)∵点P x 0,y 0 为椭圆x 2a 2+y 2b2=1a >b >0 上一点∴x 02a 2+y 02b 2=1,则x 02-a 2=-a 2b 2y 02,y 02-b 2=-b 2a2x 02联立:x 2a 2+y 2b 2=1y =kx +m,消元得:b 2+a 2k 2 x 2+2kma 2x +a 2m 2-b 2=0则Δ=4k 2m 2a 4-4a 2m 2-b 2 b 2+a 2k 2 =4a 2b 2b 2+a 2k 2-m 2 =0,即b 2+a 2k 2-y 0-kx 0 2=0整理得:x 02-a 2 k 2-2x 0y 0k +y 02-b 2=0,即a 2b 2y 02k 2+2x 0y 0k +b 2a2x 02=0,∴a 2b 2y 02k 2+2b 2⋅x 0a 2⋅y 0k +b 4⋅x 02a 4⋅y 02=0,即a 2b 2y 02k +b 2x 0a 2y 02=0∴k =-b 2x 0a 2y 0②椭圆方程为x 2a 2+y 2b 2=1a >b >0 ,点P x 0,y 0 为椭圆上一点,过点P x 0,y 0 作椭圆的切线,则切线方程为x 0xa 2+y 0y b2=1.【证明】:∵点P x 0,y 0 为椭圆x 2a 2+y 2b2=1a >b >0 上一点∴b 2x 02+a 2y 02=a 2b 2设切线方程为y -y 0=k x -x 0 ,又k =-b 2x 0a 2y 0,则y -y 0=-b 2x 0a 2y 0x -x 0∴a 2y 0y -a 2y 02=b 2x 02-b 2x 0x ,b 2x 0x +a 2y 0y =b 2x 02+a 2y 02=a 2b 2左右两边同时除以a 2b 2得:x 0xa 2+y 0y b2=1则P x 0,y 0 处的切线方程为x 0xa 2+y 0y b2=1.③椭圆方程为x 2a 2+y 2b2=1a >b >0 ,点P x 0,y 0 为椭圆外一点,过点P x 0,y 0 作椭圆的切线PA和PB ,则切点弦方程为x 0xa 2+y 0y b2=1.【证明】:∵设A x 1,y 1 、B x 2,y 2 .∴切线PA 和切线PB 方程分别为x 1x a 2+y 1y b 2=1、x 2xa 2+y 2yb 2=1∵点P x 0,y 0 在直线PA 和PB 上∴x 1x 0a 2+y 1y 0b 2=1x 2x 0a 2+y 2y 0b 2=1即A 、B 两点都满足方程x 0xa 2+y 0y b2=1故切点弦AB 的方程为x 0xa 2+y 0yb 2=1④椭圆方程为x 2a 2+y 2b2=1a >b >0 ,点P x 0,y 0 为椭圆内一点,过点P x 0,y 0 作椭圆的一条弦AB ,与椭圆分别交于点A x 1,y 1 、B x 2,y 2 ,过点A x 1,y 1 和点B x 2,y 2 分别作椭圆的切线,切线交点为点M ,则点M 的轨迹方程为x 0xa 2+y 0y b2=1.【证明】:∵AB 可以看成是点M 的切点弦∴直线AB 的方程为x M x a 2+y M y b 2=1又点P x 0,y 0 在直线AB 上∴x M x0a 2+y M y 0b2=1即点M 满足方程x 0xM a 2+y 0y M b2=1故点M 的轨迹方程为x 0xa 2+y 0y b2=12.双曲线的切线①双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,点P x 0,y 0 为双曲线上一点,过点P x 0,y 0 作双曲线的切线,则切线的斜率为k =b 2x 0a 2y 0.【证明】:设切线方程为y =k x -x 0 +y 0即y =kx +m (m =y 0-kx 0)∵点P x 0,y 0 为双曲线x 2a 2+y 2b2=1a >0,b >0 上一点∴x 02a 2-y 02b 2=1,则x 02-a 2=-a 2b 2y 02,y 02+b 2=b 2a2x 02联立:x 2a 2-y 2b 2=1y =kx +m,消元得:b 2-a 2k 2 x 2-2kma 2x -a 2m 2+b 2=0则Δ=4k 2m 2a 4+4a 2m 2+b 2 b 2-a 2k 2 =4a 2b 2b 2-a 2k 2+m 2 =0,即b 2-a 2k 2+y 0-kx 0 2=0整理得:x 02-a 2 k 2-2x 0y 0k +y 02+b 2=0,即a 2b 2y 02k 2-2x 0y 0k +b 2a2x 02=0,∴a 2b 2y 02k 2-2b 2⋅x 0a 2⋅y 0k +b 4⋅x 02a 4⋅y 02 =0,即a 2b 2y 02k -b 2x 0a 2y 02=0∴k =b 2x 0a 2y 0②双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,点P x 0,y 0 为双曲线上一点,过点P x 0,y 0 作双曲线的切线,则切线方程为x 0xa 2-y 0y b2=1.【证明】:∵点P x 0,y 0 为双曲线x 2a 2-y 2b2=1a >0,b >0 上一点∴b 2x 02-a 2y 02=a 2b 2设切线方程为y -y 0=k x -x 0 ,又k =b 2x 0a 2y 0,则y -y 0=b 2x 0a 2y 0x -x 0∴a 2y 0y -a 2y 02=b 2x 0x -b 2x 02,b 2x 0x -a 2y 0y =b 2x 02-a 2y 02=a 2b 2左右两边同时除以a 2b 2得:x 0xa 2-y 0y b2=1则P x 0,y 0 处的切线方程为x 0xa 2-y 0yb 2=1.③双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,点P x 0,y 0 为双曲线外一点,过点P x 0,y 0 作双曲线的切线PA 和PB ,则切点弦方程为x 0xa 2-y 0y b2=1.【证明】:∵设A x 1,y 1 、B x 2,y 2 .∴切线PA 和切线PB 方程分别为x 1x a 2-y 1y b 2=1、x 2xa 2-y 2yb 2=1∵点P x 0,y 0 在直线PA 和PB 上∴x 1x 0a 2-y 1y 0b 2=1x 2x 0a 2-y 2y 0b 2=1即A 、B 两点都满足方程x 0xa 2-y 0y b2=1故切点弦AB 的方程为x 0xa 2-y 0yb 2=1④双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,点P x 0,y 0 为双曲线内一点,过点P x 0,y 0 作双曲线的一条弦AB ,与双曲线分别交于点A x 1,y 1 、B x 2,y 2 ,过点A x 1,y 1 和点B x 2,y 2 分别作双曲线的切线,切线交点为点M ,则点M 的轨迹方程为x 0xa 2-y 0y b2=1.【证明】:∵AB 可以看成是点M 的切点弦∴直线AB 的方程为x M xa 2-y M y b2=1又点P x 0,y 0 在直线AB 上∴x M x0a 2-y M y 0b2=1即点M 满足方程x 0xM a 2-y 0y M b2=1故点M 的轨迹方程为x 0xa 2-y 0y b2=13.抛物线的切线①抛物线方程为y 2=2px p >0 ,点P x 0,y 0 为抛物线上一点,过点P x 0,y 0 作抛物线的切线,则切线的斜率为k =py 0.【证明】:设切线方程为y =k x -x 0 +y 0即y =kx +m (m =y 0-kx 0)∵点P x 0,y 0 为抛物线y 2=2px p >0 上一点∴y 02=2px 0联立:y 2=2px p >0 y =kx +m ,消元得:k 2x 2+2km -p x +m 2=0则Δ=4km -p 2-4k 2m 2=4p p -2km =0,即p =2k y 0-kx 0整理得:2x 0k 2-2y 0k +p =0,即y 02pk 2-2y 0k +p =0∴y 02p k 2-2p y 0k +p 2y 02=0,即y 02p k -p y 0 2=0∴k =p y 0②抛物线方程为y 2=2px p >0 ,点P x 0,y 0 为抛物线上一点,过点P x 0,y 0 作抛物线的切线,则切线方程为y 0y =p x 0+x .【证明】:∵点P x 0,y 0 为抛物线y 2=2px p >0 上一点∴y 02=2px 0设切线方程为y -y 0=k x -x 0 ,又k =p y 0,则y -y 0=py 0x -x 0∴y 0y -y 02=p x -x 0 ,即y 0y =p x -x 0 +y 02=p x -x 0 +2px 0=p x 0+x .则P x 0,y 0 处的切线方程为y 0y =p x 0+x .③抛物线方程为y 2=2px p >0 ,点P x 0,y 0 为抛物线外一点,过点P x 0,y 0 作抛物线的切线PA 和PB ,则切点弦方程为y 0y =p x 0+x .【证明】:∵设A x 1,y 1 、B x 2,y 2 .∴切线PA 和切线PB 方程分别为y 1y =p x 1+x 、y 2y =p x 2+x ∵点P x 0,y 0 在直线PA 和PB 上∴y 1y 0=p x 1+x 0 y 2y 0=p x 2+x 0即A 、B 两点都满足方程y 0y =p x 0+x 故切点弦AB 的方程为y 0y =p x 0+x④抛物线方程为y 2=2px p >0 ,点P x 0,y 0 为抛物线内一点,过点P x 0,y 0 作抛物线的一条弦AB ,与抛物线分别交于点A x 1,y 1 、B x 2,y 2 ,过点A x 1,y 1 和点B x 2,y 2 分别作抛物线的切线,切线交点为点M ,则点M 的轨迹方程为y 0y =p x 0+x .【证明】:∵AB 可以看成是点M 的切点弦∴直线AB 的方程为y M y =p x M +x 又点P x 0,y 0 在直线AB 上∴y M y 0=p x M +x 0即点M 满足方程y 0y =p x 0+x 故点M 的轨迹方程为y 0y =p x 0+x四、调和分割“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义:调和线束与调和点列若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地, 若AC =λCB AD =-λDB ,若λ>0且λ≠1,则A ,C ,B ,D 四点构成“调和点列”,其中A ,B 叫做基点,C ,D 叫做内、外分点.1.调和点列:如图,在直线l 上有两点A ,B ,则在l 上存在两点C ,D 到A ,B 两点的距离比值为定值,即AC BC=ADBD =λ,则称顺序点列A ,C ,B ,D 四点构成调和点列,其中A ,B 叫做基点,C ,D 叫做内、外分点.(调和关系2AB =1AC +1AD).同理,也可以C ,D 为基点,A ,B 为内、外分点”.(调和关系1DB +1DA =2DC ).则顺序点列A ,C ,B ,D 四点仍构成调和点列。
极点与极线
极点与极线对于高考而言,在全国卷大一统的形势下,纵观历年全国卷的解析几何试题,以极点极线为背景的题目,不断出现,不过基本上也是基础类型.所以,极点极线,我们还是按照一些题型来进入分类总结.极点极线的定义1.二次曲线的替换法则对于一般式的二次曲线22Ax Bxy Cy Dx ϕ+++:0Ey F ++=,用0xx 代2x ,用0yy 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y +代y ,常数项不变,可得方程:0000022x y xy x x Axx B Cyy D ++++++ 002y y E F ++= .2.极点极线的代数定义高中阶段,常见的二次曲线的极点极线的方程如下:(1)圆:①极点00()P x y ,关于圆222x y r +=的极线方程是200xx yy r +=;②极点00()P x y ,关于圆222()()x a y b r -+-=的极线方程是200()()()()x a x a y b y b r --+--=;③极点00()P x y ,关于圆220x y Dx Ey F ++++=的极线方程是:0000022x x y y xx yy D E F ++++++= .(2)椭圆:极点00(,)P x y 关于椭圆22221x y a b +=的极线方程是:00221xx yy a b +=.(3)双曲线:极点00(,)P x y 关于双曲线22221x y a b -=的极线方程是:00221xx yy a b-=.(4)抛物线极点00(,)P x y 关于抛物线22y px =的极线方程是:00()y y p x x =+.注:①极点极线是成对出现的;②焦点和焦点对应的准线就是最常见的极点极线;③已知定比分点,则其调和分点一定位于其对应极线上!3.极点极线的几何意义(1)若极点P 在二次曲线上,则极线是过点P 的切线方程.(2)若极点P 在二次曲线内部,则极线是过点P 的弦两端端点的切线交点的轨迹.如图所示,过点P 的弦AB 、CD 的两端端点作切线,得到的直线MN 即为点P 对应的极线轨迹.【极线和二次曲线必定相离】(3)若极点P 在二次曲线外部,分成两种情况:①极线在二次曲线内的部分是点P 对二次曲线的切点弦;【极线和二次曲线必定相交】②极线在二次曲线外的部分是过点P 的弦两端端点的切线交点的轨迹.4.极点极线的配极性质①点P 关于二次曲线C 的极线p 经过点Q ⇔点Q 关于二次曲线C 的极线q 经过点P .②直线p 关于二次曲线C 的极点P 在直线q 上⇔直线q 关于二次曲线C 的极点Q 在直线p 上.①②表达点P 和点Q 是二次曲线的一组调和共轭点,也是定比点差常说到的定比分点和调和分点.极点极线的综合模型——自极三角形极点极线的几何意义:(1)若点P 是圆锥曲线上的点,则过点P 的切线即为极点p 对应的极线.(2)如图所示(以椭圆图形为例),若点P 是不在圆锥曲线上的点,且不为原点O ,过点P 作割线P AB 、PCD 依次交圆锥曲线于A 、B 、C 、D 四点,连结直线AD 、BC 交于点M ,连结直线AC 、BD 交于点N ,则直线MN l 为极点P 对应的极线.类似的,也可得到极点N 对应的极线为直线PM l ,极点M 对应的极线为直线PN l ,因此,我们把PMN △称为自极三角形.【即PMN △的任一顶点作为极点,则顶点对应的边即为对应的极线,“补全自极三角形”这个技巧很常用,后面结合例题了解!】如图所示,如果我们连结直线NM 交圆锥曲线于点E 、F ,则直线PE 、PF 恰好为圆锥曲线的两条切线,此时,直线EF l 不仅是极点P 的极线,我们也称直线EF l 为渐切线.下面的共轭点模型,实际都是极点在坐标轴上的特例模型的应用,也是高考题常见.自极三角形的定点定值我们先来尝试一下抛物线的极点极线证明:如图,A 、B 、C 、D 分别为抛物线px y 22=上四点,且AB 与CD 交于)0(,m M ,则AC 与BD 的交点N 一定在定直线m x -=上.令MB AM λ=,MD CM μ=,所以m x A λ=,λpm y A 2=,λmx B =,λpmy B 2-=,m x c μ=,μpm y C 2=,μmx D =,μpmy D 2-=.三点共线:)()(D N D B D B D C N C A C A C N x x x x y y y x x x x y y y y ---+=---+=,)(2)(2D N DB DC N C A C N x x y y p y x x y y p y y -++=-++=所以)(2)(21(2μλμμμ+--=+=-pm m x p pm y y N D C )(2)(2μλλμμ+--+pm m x p N ,所以=+++)1(μλμλμm μλλμμm x x m N N +--,所以=+)1(λμm )1(λμ+-N x ,所以m x N -=.接下来我们来参考2020年的全国1卷,也是一种常见的自极三角形.【例17】(2020•新课标Ⅰ)已知A ,B 分别为椭圆222:1(1)x E y a a +=>的左、右顶点,G 为E 的上顶点,8AG GB = .P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.模型总结已知极点在长(短)轴上,证明极线相对简单,只需要利用定比设点法表达出来再联立,消掉变量即可,但是在已知极线反推极点的时候,就要将引入的比例系数λ消除,构造0+0=0λ⨯模型,此类型题目均可以快速拿满分(曲线系处理最快);抛物线通常利用对称的定比设点法,证明极点极线非常轻松,大家可以试试手.【训练18】(2021•金华模拟)如图,已知抛物线24y x =,过点(11)P -,的直线l 斜率为k ,与抛物线交于A ,B 两点.(1)求斜率k 的取值范围;(2)直线l 与x 轴交于点M ,过点M 且斜率为2k -的直线与抛物线交于C ,D 两点,设直线AC 与直线BD 的交点N 的横坐标为0x ,是否存在这样的k ,使05x =-,若存在,求出k 的值,若不存在,请说明理由.【训练19】(2021•湖南模拟)已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,点3(1)2P ,在C 上,且221PF F F ⊥.(1)求C 的标准方程;(2)设C 的左右顶点分别为A ,B ,O 为坐标原点,直线l 过右焦点2F 且不与坐标轴垂直,l 与C 交于M ,N 两点,直线AM 与直线BN 相交于点Q ,证明点Q 在定直线上.【例18】已知椭圆134:22=+y x C ,斜率为1的直线l 与椭圆交于A 、B 两点,点)04(,M ,直线AM 与椭圆交于点1A ,直线BM 与椭圆交于1B ,求证:直线11B A 过定点.模型总结若过)0(,m P 交椭圆于1AA ,1BB 两条线,若①t k AB=,②11B A 过定点)22(22t m m a m a m -+,,两者互为充要条件.大家可以自行证明.本章节到此告一段落,关于极点极线的其它性质,比如等角定理、比如斜率等差模型、斜率比值模型、焦准距的平方和共圆模型、椭圆的平行弦模型、蝴蝶定理初步,会在《高考数学满分突破》之秒杀压轴题系列2(2022年新版本)中详细阐述,二轮复习在于以题型入手的思维巩固,在于以不变应万变,秒系列在于思维深挖拓展,对一个问题的看法更加立体,也是数学爱好者的江湖情怀!【训练20】(2018•北京文)已知椭圆2222:1x y M a b+=(0)a b >>的离心率为36,焦距为22.斜率为k 的直线l 与椭圆M 有两个不同的交点A 、B .(1)求椭圆M 的方程;(2)若1=k ,求AB 的最大值;(3)设)0,2(-P ,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点41,47(-Q 共线,求k .【训练21】(2021•广东七校联考)已知椭圆2222:1x yCa b+=(0)a b>>的左顶点为(20)A-,,两个焦点与短轴的一个顶点构成等腰直角三角形,过点(10)P,且与x轴不重合的直线l与椭圆交于M、N不同两点.(1)求椭圆方程;(2)若过点P且平行于AM的直线交直线52x=于点Q,求证:直线NQ过定点.【训练22】(2020•北京)已知椭圆2222:1x yCa b+=过点(21)A--,,且2a b=.(1)求椭圆C的方程;(2)过点(40)B-,的直线l交椭圆C于点M,N,直线MA,NA分别交直线4x=-于点P,Q.求|| || PB BQ的值.。
极点极线详解-概述说明以及解释
极点极线详解-概述说明以及解释1.引言1.1 概述极点极线是复数函数理论中重要的概念,它们在解析几何和数学物理等领域均有广泛的应用。
极点是函数在复平面上的奇点,它表现为函数在该点处无穷大或无穷小的特性,而极线则是连接这些极点的曲线。
极点和极线的研究不仅有助于深入理解复函数的性质,还在实际问题的求解中发挥着重要作用。
本文将详细介绍极点和极线的定义、特性、关系以及应用,旨在帮助读者更好地理解和应用这一重要的数学概念。
1.2 文章结构文章结构部分的内容可以按照以下方式进行编写:文章结构部分本文将按照以下结构来论述极点极线的相关内容:2. 正文2.1 极点的定义和特性2.2 极线的定义和特性2.3 极点极线的关系2.4 极点极线的应用在正文部分,我们将依次介绍和探讨极点和极线在计算机视觉领域中的重要性以及相关概念、定义和特性。
首先,我们将详细讲解极点的定义和其特性,包括极点在图像处理和计算机视觉中的作用以及其在数学中的定义。
然后,我们将介绍极线的定义和特性,重点关注极线在立体视觉和图像对几何关系解决中的重要性。
接下来,我们将讨论极点和极线的关系,包括如何通过极点和极线之间的投影关系来求解立体视觉和图像重建中的几何关系。
最后,我们将探讨极点极线在实际应用中的具体应用场景,包括目标识别、图像配准和三维重建等领域,并介绍一些相关的案例和算法。
通过以上结构,我们希望能够全面而系统地介绍极点极线的相关内容,使读者对其有一个清晰的认识和理解。
在这个过程中,我们将尽可能地提供详细的解释和示例,以帮助读者更好地理解和应用极点极线的概念和方法。
在接下来的章节中,我们将从极点的定义和特性开始,逐步展开对极点极线的讨论。
让我们一起深入了解极点极线的奥秘吧。
1.3 目的本文的目的在于探讨和详解极点极线的概念、定义、特性以及其在实际应用中的重要性。
通过对极点和极线的定义和特性的介绍,我们将深入了解这一数学概念的内涵和本质。
同时,我们还将研究极点和极线之间的关系以及它们在几何学、计算机视觉和图像处理领域的应用。
极点极线 高数证明
极点极线高数证明
极点极线是高等数学中的一个重要概念,它在几何学和微积分中都有广泛的应用。
极点极线主要用于描述曲线的性质和特征,通过它我们可以更深入地理解曲线的形状和变化规律。
在几何学中,极点极线是通过极坐标系来定义的。
极坐标系是一种将平面上的点用极径和极角来表示的坐标系。
对于给定的一条曲线,我们可以找到它的一个极点,然后通过连接这个极点和曲线上的各个点得到一些直线,这些直线就是极点极线。
极点极线在几何学中被广泛应用于研究曲线的切线、法线和曲率等性质。
在微积分中,极点极线被用于描述曲线的导数和微分。
通过极点极线,我们可以求得曲线上任意一点的切线斜率,并且可以计算曲线上各点的曲率。
这对于研究曲线的变化趋势和几何形状具有重要意义。
极点极线还可以用于求解曲线的最值问题,通过求导和分析极点极线的性质,我们可以找到曲线上的极值点和极值。
极点极线在实际应用中也有广泛的运用。
它可以用于描述天体运动的轨迹、电磁场中的电荷分布、流体力学中的流线等问题。
在这些领域中,通过分析极点极线的性质和变化规律,我们可以更好地理解和解释自然界中的现象和规律。
总结来说,极点极线是一种重要的数学工具,它在几何学和微积分中具有广泛的应用。
通过极点极线,我们可以深入地理解曲线的性
质和特征,求解曲线的切线、法线和曲率等问题,以及研究曲线的最值和实际应用。
极点极线的研究不仅可以丰富我们对数学的认识,还可以帮助我们更好地理解和解释自然界中的现象和规律。
极点极线当极点在圆锥曲线内的写法
极点极线当极点在圆锥曲线内的写法圆锥曲线是高中数学学习中比较重要且难以学习的部分。
其中,极点极线是较为复杂的概念。
本文将介绍极点极线当极点在圆锥曲线内的写法。
一、极点极线的定义
极点极线是指在平面直角坐标系中,从一点向圆锥曲线上的所有点引一条直线,那么这条直线叫做极线,这个点就是极点。
二、圆锥曲线的分类
圆锥曲线一共有四种类型:圆、椭圆、双曲线和抛物线。
不同类型的圆锥曲线的性质不同。
本文主要介绍当极点在圆锥曲线内时的情况。
三、椭圆的情况
当极点在椭圆内部时,极线的两个端点分别交于椭圆的两个焦点上,且与椭圆的切线垂直。
四、双曲线的情况
当极点在双曲线内部时,极线的两个端点分别交于双曲线的两个焦点上,且与双曲线的渐近线垂直。
五、抛物线的情况
当极点在抛物线内部时,极线的两个端点分别交于抛物线的顶点和抛物线的对称轴上,且与抛物线的准线垂直。
六、圆的情况
当极点在圆内部时,极线是过圆心并垂直于圆的直径的直线。
总结:极点极线是圆锥曲线的一个重要概念,不同类型的圆锥曲线在极点极线方面会有不同的表现。
当极点在圆锥曲线内部时,可以根据不同的类型进行判断。
极点极线公式
极点极线公式在几何学中,极点极线公式是研究平面上点和线之间关系的重要定理之一。
它通过选取一个点作为极点,从而确定一系列与该点相关的极线。
这个公式在计算机视觉、图像处理以及相机几何等领域具有广泛的应用。
本文将全面介绍极点极线公式的概念、原理和应用,并提供一些指导意义的实际例子。
极点极线公式的核心思想是,通过选择一个点作为极点,可以将平面上的所有线段都与该点相关联。
具体而言,对于平面上的任意一条线段,可以通过连接该线段上的两个端点与极点,从而确定一条极线。
反之,对于平面上的任意一条直线,可以通过该直线与极点的交点,确定一对极点,从而确定一个极线。
这种极点和极线之间的对应关系,可以用数学公式来表达。
设平面上的点P(x,y)是极点,直线l为极线,过点P的直线与直线l的交点分别为A和B,且点A在直线l上方。
则有如下公式:PA·PB = PX^2其中,PA表示点P到点A的距离,PB表示点P到点B的距离,PX 表示点P到直线l的距离。
根据这个公式,我们可以得到一些有趣的性质和应用。
首先,如果点P在直线l上,则有PA=0,这时候公式变为PA·PB=0,即点P到任意一点B的距离为0,说明点P与所有点B重合。
因此,极点在直线上时,所有直线通过这个极点。
其次,如果点P到直线l的距离为0,即PX=0,那么公式就变成了PA·PB=0,即线段AB的两个端点在直线l 上。
换句话说,极线上的所有点都与极点P连接成一个线段。
这个性质在计算机视觉中的目标跟踪和图像配准中经常使用。
极点极线公式在相机几何中也有广泛的应用。
在相机的成像过程中,平面上的点在图像中表现为像素。
通过选择相机的光心作为极点,可以将像平面上的所有直线与光心相关联。
这样就可以通过计算像平面上的两个像素点与光心的极线交点,确定一个极线。
这个过程在计算机视觉中的三维重建和相机标定中起着重要的作用。
总之,极点极线公式是几何学中研究点和线之间关系的重要定理。
极点极线公式
极点极线公式
极点极线公式是复平面上的一种数学公式。
对于复数平面上带权重的n个点,若将每个点看作是一个点电荷,其权重就是它的电荷量,那么在复数平面上任一
点处的电势就可以定义为它到这n个电荷的带权距离的代数和。
极点极线公式的核心概念是资料点与极点及极线之间的位置关系,通常应用于复平面的一种数学转化方法。
这种转化方法在复分析中起着非常重要的作用,是解决很多复分析问题的重要手段。
复分析中的许多基本问题,如Cauchy积分公式,Laurent级数展开,留数计算,等都可以用极点极线公式来解决。
在应用极点极线公式时,我们主要关注资料点与极点的位置关系以及对应的极线。
极线的存在是复平面上一个非常奇特的现象,它在很多复分析问题中都起着重要的作用。
极线是一种特殊的直线,它与极点的位置关系可以通过极点极线公式来描述。
极点极线公式是一个高级的数学工具,需要一定的复分析基础才能理解和掌握。
理解和掌握极点极线公式,不仅能够解决复分析中的许多基本问题,还能进一步研究复平面上的更广泛的问题。
推广到更多情况,利用极点极线公式可以解决许多
复分析中的深入问题。
总的来说,极点极线公式是复分析中一种重要的数学工具,它的理论深厚,应用广泛。
只要深入研究,必能获取复分析领域的丰富知识和实践技能。
2023全国乙卷理科第20题 极点极线
2023全国乙卷理科第20题极点极线【导读】极点与极线是解析几何中的重要概念,它们在数学领域中有着广泛的应用。
本文将深入探讨极点与极线的定义、性质和应用,并共享对这一主题的个人理解。
【正文】一、极点与极线的定义1. 极点的定义极点是与给定圆的两条切线相交的一个点,这两条切线是从极点到圆上的两个不同点的切线。
在平面直角坐标系中,给定一点 P(x1, y1),以及一个圆 C:(x - a)² + (y - b)² = r²。
点 P 是圆 C 的极点,当且仅当从 P 到圆 C 上的任意一点 Q 的斜率相等。
即∠OPQ为直角,其中O(a, b) 是圆 C 的圆心。
2. 极线的定义过给定点和给定圆的两条切线所确定的交点的轨迹叫做极线。
根据定义,极线是由圆 C 的所有极点所决定。
在平面直角坐标系中,假设圆的方程是(x - a)² + (y - b)² = r²,圆的极线可以表示为下面形式的方程:xx1 + yy1 = a(x + x1) + b(y + y1) + r²。
这里,(x1, y1) 是圆的极点。
二、极点与极线的性质1. 极点的性质(1)极点坐标的性质通过上述定义,可得到极点P(x1, y1) 的坐标对称形式是P′(-x1, -y1)。
意味着,极点 P 关于圆心 O 对称。
(2)极点的存在性对于给定圆 C,如果有直角坐标系中的点 P(x,y)满足OP⊥OQ,那么点 P 就是圆 C 的极点。
2. 极线的性质(1)极线的对称性已知圆 C 关于 X 轴和 Y 轴的极线方程为 a1x + b1y + c1 = 0 和 a2x + b2y + c2 = 0。
易得,关于 X 轴和 Y 轴的两条极线方程互为对称。
(2)极线的交点性质两条极线的交点坐标为(-ab/a1 - a2, -ab/b1 - b2, 非常重要)。
三、极点与极线的应用1. 应用一:极点极线在密码学中的应用极点极线广泛应用于密码学领域,尤其是在椭圆曲线密码学中。
高数证明:极点极线
高数证明:极点极线高数(高等数学)是大学中的重要课程,其中有一部分内容是关于证明(极点极线)的。
本文将深入探讨证明中的各个方面,并分享我对这一主题的观点和理解。
一、引言在高等数学中,极点极线是一个重要的概念,它与复数、函数和几何有着紧密的联系。
证明极点极线的性质和定理是高数学习的重要内容之一,对于提高学生的逻辑思维和分析能力具有很大的帮助。
二、概念解释1. 极点:在复平面上,给定一个复数的一列值,当这个复数趋近于某个值时,如果它的绝对值趋近于无穷大,那么这个值就被称为极点。
2. 极线:在复平面上,给定一个复数的一列值,连结它们与极点的直线,这些直线称为极线。
三、证明的基本方法在证明极点极线相关定理时,通常采用直接证明或间接证明的方法。
直接证明是通过逻辑推理和运用数学公式一步一步推导出结论,而间接证明则是通过假设目标结论不成立,然后推导出一个矛盾来证明结论是正确的。
四、证明极点极线的性质和定理1. 极点和极线的存在性:对于任意一个非常数的复数函数,至少存在一个极点和一条与之对应的极线。
2. 极点的唯一性:复数函数的极点是唯一的,即一个复数函数只能有一个极点。
3. 极线的唯一性:复数函数的极线也是唯一的,即给定一个复数函数的极点,它的极线也只有一条。
4. 极点的性质:极点具有局部性质,即它只与函数在某个足够小的邻域内的取值有关。
5. 极线的性质:极线是直线或者圆。
五、对极点极线的理解和观点在我对极点极线这一概念的学习过程中,我深刻体会到它与函数、复数和几何之间的联系。
通过证明极点极线的性质和定理,我不仅提高了自己的逻辑思维和分析能力,还对复数函数的行为有了更深刻的理解。
我认为学习极点极线不仅仅是为了掌握高等数学的知识,更重要的是培养我们的思维能力和解决问题的能力。
证明极点极线需要我们运用数学公式、运算规则和推理思维,这对我们在日常生活和职业发展中都有着重要的意义。
我认为在学习极点极线的过程中,思考和探索是非常重要的。
20.极点与极线的性质
20.极点与极线的性质第15讲:极点与极线的性质125第15讲:极点与极线的性质极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途.定义:已知曲线G:ax 2+bxy+cy 2+dx+ey+f=0,则称点P(x 0,y 0)和直线l:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y ++f=0是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.称点P 与直线l 有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”.特别地,当点P 在曲线G 上时,点P 关于曲线G 的极线是曲线G 在点P 处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点.[位置关系]:已知点P 关于圆锥曲线G 的极线是直线l,则三者的位置关系是:①若点P 在曲线G 上,则直线l 是曲线G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图:l l l P M P A D M PN C N B[配极原则]:如果点P 的极线通过点Q,则点Q 的极线也通过点P.证明:设圆锥曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,点P(x p,y p),Q(x Q,y Q),则点P 、Q 关于曲线G 的极线方程分别为p:ax p x+b 2yx x y p p ++cy p y+d2p x x ++e2p y y ++f=0,q:ax Q x+b2yx x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0,则点P 的极线通过点Q⇔ax p x Q +b 2Qp Q p y x x y ++cy p y Q +d 2pQ x x ++e2pQ y y ++f=0⇔点P(x p ,y p )在直线q:ax Q x+b2y x x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0上⇔点Q 的极线也通过点P.推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线;证明:设两点A 、B 连线的极点是P,即点P 的极线经过点A 、B,由配极原则知点A 、B 的极线均过点P,即点P 是此二点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线.推论2(共点共线):共线点的极线必共点;共点线的极点必共线.证明:设点A 、B 均在直线l 上,直线l 对应的极点为P,由配极原则知点A 、B 的极线均过点P,即点A 、B 的极线必共点;同理可证:共点线的极点必共线.推论3(中点性质):若圆锥曲线G 过点P 的弦AB 平行于点P 的极线,则点P 是弦AB 的中点. 证明:设P(x 0,y 0),曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,则点P 的极线方程:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y + +f=0,故可设AB:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++λ=0,由点P(x 0,y 0)在直线AB 上⇒ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+λ=0⇒λ=-(ax 02+bx 0y 0+cy 02+2dx 0+2ey 0)⇒直线AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y +=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0⇒ ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++f=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+f,而该直线为以为P 中点的中点弦方程,即点P 是弦AB 的中点.[比例定理]:若过点P(x 0,y 0)的直线l 与曲线G:ax 2+bxy+cy 2+dx+ey+f=0相交于A 、B 两点,与直线:ax 0x+b200yx x y ++ 126 第15讲:极点与极线的性质cy 0y+d20x x ++e 2y y ++f=0交于点Q,则|PA||QB|=|QA||PB|. 证明:设直线l:⎩⎨⎧+=+=θθsin cos 0t y y t x x (t 为参数),代入ax 0x+b 200y x x y ++cy 0y+d 20xx ++e2y y ++f=0得:(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+2(ax 02+bx 0y 0+cy 02+dx 0+ey 0+f)=0⇒t 0=-2θθθθsin 2cos sin cos 2000000200020cy by bx ax fey dx cy y bx ax ++++++++;代入ax 2+bxy+ cy 2+2dx+2ey+f=0得:(acos 2θ+bcos θsin θ+csin 2θ)t 2+(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sinθ)t+(ax 02+bx 0y 0+cy 02+dx 0 +ey 0+f)=0⇒t 1+t 2=-θθθθθθθθ220000sin cos sin cos sin 2cos sin cos 2c b a cy by bx ax +++++,t 1t 2=θθθθ2200200020sin cos sin cos c b a fey dx cy y bx ax +++++++⇒t 0=21212t t t t +;而|PA||QB|=|QA||PB|⇔|t 1||t 2-t 0|=|t 1-t 0||t 2|⇔t 0=21212t t t t +成立. [面积定理]:已知点P 关于圆锥曲线G 的极线为l,过点P 的直线与圆锥曲线G 相交于A 、B 两点,分别过点A 、B 的两条平行线与直线l 交于点D 、C,记△APD 、△CPD 、△BPC 的面积分别为S 1,S 2,S 3,则:S 22=4S 1S 2.证明:以椭圆G:22ax +22by =1(a>b>0)为例,设P(x 0,y 0),则极线l:12020=+b y y ax x .设A(x 1,y 1),B(x 2,y 2),并分别过点A 、B 作l 的垂线,垂足分别为D 1、C 1,则||||11BC AD =|1||1|220220210210-+-+b y y a x x b y y a x x =||||2220220222102102b a y y a x x b b a y y a x x b -+-+(注意到:a 2b 2=b 2x 12+a 2y 12,a 2b 2=b 2x 22+a 2y 2) =||||222222202202212212102102y a x b y y a x x b y a x b y y a x x b --+--+=|)()(||)()(|0222022201120112y y y a x x x b y y y a x x x b -+--+-(注意到:0101x x y y --=0202x x y y --=k)=||||0201x x x x --⋅||||22221212x b ky a x b ky a ++.又因||||BP AP =||||0201x x x x --,以下只需证||||22221212x b ky a x b ky a ++=1,即|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|,由⎪⎩⎪⎨⎧=+=+2222222222212212ba y a xb b a y a x b ⇒b 2(x 1-x 2)(x 1+x 2)+a 2(y 1- y 2)(y 1+y 2)=0⇒b 2(x 1+x 2)+a 2k(y 1+y 2)=0⇒a 2ky 1+b 2x 1=-(a 2ky 2+b 2x 2)⇒|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|⇒||||BP AP =||||11BC AD ,由△ADD 1∽△BCC 1⇒||||BC AD =||||BP AP ,设AC 与BD 交于点Q,由AD ∥BC ⇒||||BC AD =||||QC AQ ⇒||||BP AP =||||QC AQ ⇒PQ ∥BC ∥AD ⇒S △BAC =S △BDC ,两边同减S △BQC 得S △QAB =S △QDC ,又因S △PQA =S △PQD ,S △PQB =S △PQC ⇒S △PCD =S △QCD +S △PQD +S △PQC =S △QCD +S △PQA +S △PQB =S △QCD +S △QAB =2S △QAB ⇒S △QAD =S △PAD =S 1,S△QBC=S △PBC =S 3,S △QAB =21S △PCD =21S 2,注意到:QAB QBC QAB QAD S S S S ∆∆∆∆⋅=||||||||QA QC QB QD ⋅=1⇒2QAB S ∆=S △QAD S △QBC ⇒S 22=4S 1S 2. 例1:极点与极线的位置关系.[始源问题]:(2010年湖北高考试题)已知椭圆C:22x +y 2=1的两焦点为F 1 ,F 2,点P(x 0,y 0)满足0<220x +y 02<1,则|PF 1|+|PF 2|的取值范围为 ,直线20xx +y 0y=1与椭圆C 的公共点个数为 . [解析]:由0<220x +y 02<1知,点P 在椭圆C 内,所以直线20x x +y 0y=1与椭圆C 相离⇒公共点个数为0;2c ≤PF 1|+|PF 2|<2a ⇒2≤PF 1|+|PF 2|<22⇒|PF 1|+|PF 2|的取值范围为[2,22).[原创问题]:已知椭圆C:42x +32y =1,点P(x 0,y 0)满足420x +320y >1(x 0≠0),直线l:40x x +30y y =1. (Ⅰ)求直线l 与椭圆C 的公共点个数;(Ⅱ)若射线OP 与直线l 、椭圆C 分别交于点Q 、M,求证:|OP||OQ|=|OM|2.[解析]:(Ⅰ)因椭圆C:42x +32y =1⇔⎩⎨⎧==θθsin 3cos 2y x ,θ∈[0,2π),所以,直线l 与椭圆C 的公共点个数⇔关于θ的方程第15讲:极点与极线的性质12720x cos θ+330y sin θ=1解的个数⇔直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数;由圆心O(0,0)到直线:20x x+330y y=1的距离d=3412020y x +<1⇒直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数=2⇒直线l 与椭圆C 的公共点个数=2;(Ⅱ)因射线OP:y=00x y x(x 与x 0同号),与40x x +30y y =1联立得:40x x +0203x x y =1⇒x=202004312y x x +⇒y=202004312y x y +⇒Q(202004312y x x +,22004312y x y +)⇒|OP||OQ|=2020202043)(12y x y x ++;由y=00x y x 与42x +32y =1联立得:42x +20203x y x 2=1⇒x 2=2020204312y x x +⇒y 2=2020204312y x y +⇒ |OM|2=x 2+y 2=2020204312y x x ++2020204312y x y +=2020202043)(12y x y x ++⇒|OP||OQ|=|OM|2.例2:抛物线中的共线性质.[始源问题]:(2010年大纲卷Ⅰ高考试题)已知抛物线C:y 2=4x 的焦点为F,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D. (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设FB FA ⋅=98,求△BDK 的内切圆M 的方程. [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),直线l:y=k(x+1)(k ≠0),则D(x 1,-y 1),由⎩⎨⎧=+=xy x k y 4)1(2⇒ky 2-4y+4k=0⇒y 1+y 2=k 4,y 1y 2= 4;所以,点F 在直线BD 上⇔FB ∥FD ⇔(x 2-1):(x 1-1)=y 2:(-y 1)⇔y 1(ky 2-2)+y 2(k y1-2)=0⇔y 1y 2-k(y 1+y 2)=0;(Ⅱ)由FB FA ⋅=(x 1-1)(x 2-1)+y 1y 2=(k y 2-2)(k y 1-2)+y 1y 2=(1+21k )y 1y 2-k 2(y 1+y 2)+4=4(1+21k )-28k +4=8-24k=98⇒k=±43;根据对称性,不妨设k=43,则直线AB:3x-4y+3=0,且k KD =43⇒KF 平分∠AKD ⇒圆M 的圆心M 在x 轴上;(x 2-x 1)2=(x 1+x 2)2- 4x 1x 2=7162⇒k BD =1212y y x x +-=73⇒直线BD:3x-7y-3=0;设M(t,0)(-1<t<1),则由点M 到直线AB 与BD 的距离相等⇒5|1|3+t =4|1|3-t ⇒t=91⇒圆M:(x-91)2+y 2=94. [原创问题]:已知抛物线y 2=2px 及定点A(a,b),B(-a,0)(ab ≠0,b 2≠2pa),M 是抛物线上的点,设直线AM,BM与抛物线的另一交点分别为M 1,M 2.求证:当M 点在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标.[解析]:设M(2pt 2,2pt),M 1(2pt 12,2pt 1),M 2(2pt 22,2pt 2),则点B,M,M 2对应的极线分别为:x=a,2ty=x+2pt 2,2t 2y=x+2pt 22,由B,M,M 2三点共线⇒三线x=a,2ty=x+2pt 2,2t 2y=x+2pt 22共点⇒a=2ptt 2⇒t 2=pta2,点A,M 1对应的极线分别为:by=px+ap, 2t 1y=x+2pt 12,由A,M,M 1三点共线⇒三线by=px+ap,2ty=x+2pt 2,2t 1y=x+2pt 12共点⇒bp(t+t 1)=2p 2tt 1+ap ⇒t 1=ptb bta 2--,由⎪⎩⎪⎨⎧+=+=2222112222pt x y t pt x y t ⇒⎩⎨⎧+==)(22121t t p y t pt x ⇒⎪⎪⎩⎪⎪⎨⎧--=--=)2(2)2()2()(2pt b pt t p a b y pt b t bt a a x ⇒x-a=)2(22pt b t t p a --=b a 2y ⇒M 1,M 2对应极线的交点在定直线b p 2y=x+a, 即b p 22y=2p 2a x +上⇒直线M 1M 2恒过一个定点(a,bpa2).128 第15讲:极点与极线的性质例3:抛物线中的比例性质.[始源问题]:(2009年全国高中数学联赛湖北初赛试题)已知抛物线C:y=21x 2与直线l:y=kx-1没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点. (Ⅰ)证明:直线AB 恒过定点Q;(Ⅱ)若点P 与(Ⅰ)中的定点Q 的连线交抛物线C 于M 、N 两点.证明:||||PN PM =||||QN QM .[解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线y=21x 2在点A 、B 处的切线方程分别为x 1x=y+y 1、x 2x=y+y 2,由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=02200110y y x x y y x x ⇒直线AB:x 0x=y+y 0(注意到:y 0=kx 0-1)⇒x 0x=y+kx 0-1⇒直线AB 过定点Q(k,1);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=y+y 0,得:t Q =θθcos sin 20020x y x --;代入y=21x 2得:t 2cos 2θ+2(x 0cos θ-sinθ)t+x 02-2y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin x -,t 1t 2=θ2020cos 2y x -⇒21212t t t t +=θθcos sin 20020x y x --⇒t Q =21212t t t t +;所以,||||PN PM =||||QN QM ⇔21t t= QQ t t t t --21⇔t Q =21212t t t t +成立. [原创问题]:已知抛物线C:x 2=4y 与直线l:y=x-2,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点.(Ⅰ)证明:直线AB 恒过定点T;(Ⅱ)若过点P 的直线l 交抛物线C 于M 、N 两点,与直线AB 交于点Q.证明||PM ||PN =||PQ [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线C:x 2=4y 在点A 、B 处的切线方程分别为x 1x=2(y+y 1)、x 2x=(y+y 2),由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=)(2)(202200110y y x x y y x x ⇒直线AB:x 0x=2(y+y 0)(注意到:y 0=x 0-2)⇒x 0x=2y+2x 0-4⇒直线AB 过定点T(2,2); (Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=2(y+y 0),得:t Q =θθcos sin 240020x y x --;代入x 2=4y 得:t 2cos 2θ+2(x 0cos θ-2sin θ)t+x 02-4y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin 2x -,t 1t 2=θ2020cos 4y x -⇒21212t t t t +=θθcos sin 240020x y x --⇒t Q =21212t t t t +;所以||PM ||PN ||PQ ⇔11t21t =Q t 2⇔t Q =21212t t tt +成立. 例4:抛物线中的面积关系.[始源问题]:(2009年湖北高考试题)过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0),的直线与抛物线相交于M 、N 两点,自M 、N 向直线l:x=-a 作垂线,垂足分别为M 1、N 1. (Ⅰ)当a=2p时,求证:AM 1⊥AN 1; (Ⅱ)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3,是否存在λ,使得对任意的a>0,都有S 22=λS 1S 3成立.若存在,求出λ的值;若不存在,说明理由.[解析]:(Ⅰ)当a=2p 时,A(2p ,0),设M(2pm 2,2pm),N(2pn 2,2pn),则M 1(-2p ,2pm),N 1(-2p ,2pn),由AM ∥AN ⇒(2pm 2-2p ):(2pn 2-2p )=2pm:2pn ⇒mn=-41⇒1AM ⋅1AN =p 2+4p 2mn=0⇒AM 1⊥AN 1;第15讲:极点与极线的性质129(Ⅱ)由AM ∥AN ⇒(2pm 2-a):(2pn 2-a)=2pm:2pn ⇒2pmn+a=0;因||||11NN MM =2222pn a pm a ++;当MN ⊥/x 轴时,||||AN AM =|2||2|22pn a a pm --=2222pn a a pm --;所以,||||11NN MM =||||AN AM ⇔2222pn a pm a ++=2222pn a a pm --⇔4p 2m 2n 2=a 2成立;当MN ⊥x 轴时,显然有||||11NN MM =||||AN AM ;设MN 1与NM 1交于点Q(点Q 即原点O),由MM 1∥NN 1⇒||||1QN MQ =||||11NN MM =||||AN AM ⇒AQ ∥MM 1∥NN 1;设∠MQM 1=α,则S 1=21|QM||QM 1|sin α,S 3 =21|QN||QN 1|sin α;又S △QMN =11N QM S ∆⇒S 2=11N QM S ∆+(1AQM S ∆+1AQN S ∆)=11N QM S ∆+(S △AQM +S △AQN )=11N QM S ∆+S △QMN =2S △QMN;S 1S 3=21 |QM||QM 1|sin α⋅21|QN||QN 1|sin α=21|QM||QN|sin α⋅21|QM 1||QN 1|sin α=S △QMN 11N QM S ∆=41S 22⇒S 22=4S 1S 3⇒存在λ=4,使得对任意的a>0,都有S 22=λS 1S 3成立.[原创问题]:已知抛物线C:y 2=4x,直线l:y=2x+2,过点P(1,1)的直线与抛物线C 交于A 、B 两点,A 、B 两点在直线l 上的射影点分别为N 、M,记△PAN 、△PMN 、△PBM 的面积分别为S 1、S 2、S 3. (Ⅰ)当AB ∥直线l 时,求证:P 是AB 的中点; (Ⅱ)求证:S 22=4S 1S 3.[解析]:(Ⅰ)设A(x 1,y 1),则y 12=4x 1;由P 是AB 的中点⇒B(2-x 1,2-y 1)⇒(2-y 1)2=4(2-x 1)⇒y 1=2x 1+1⇒点A 在直线y=2x+1上,同理可得点B 也在直线y=2x+1上⇒直线AB:y=2x+1⇒AB ∥直线l;由统一法知,当AB ∥直线l 时, P 是AB 的中点;(Ⅱ)设直线AB:⎩⎨⎧+=+=θθsin 1cos 1t y t x (t 为参数),代入y 2=4x 得:t 2sin 2θ+2(sin θ-2cos θ)t-3=0⇒t 1+t 2=2⋅θθθ2sin sin cos 2-,t 1t 2=-θ2sin 3;点A(1+t 1cos θ,1+t 1sin θ)到直线l 的距离|AN|=5|3sin cos 2|11+-θθt t ,点B(1+t 2cos θ,1+t 2sin θ)到直线l 的距离|BM|=5|3sin cos 2|22+-θθt t ⇒||||BM AN =|3sin cos 2||3sin cos 2|2211+-+-θθθθt t t t (由点A 、B 在直线l 的同侧⇒2t 1cos θ-t 1sin θ+3与t 2cos θ-t 2sin θ+3同号)=3sin cos 23sin cos 22211+-+-θθθθt t t t ;而||||PB PA =||||21t t (点A 、B 在点P 的异侧)=-21t t;所以,||||BM AN =||||PB PA ⇔3sin cos 23sin cos 22211+-+-θθθθt t t t=-21t t ⇔2(2cos θ-sin θ)t 1t 2+3(t 1+t 2)=0⇔2(2cos θ-sin θ)(-θ2sin 3)+3⋅2⋅θθθ2sin sin cos 2-=0成立; 以下同例题可证:S 22=4S 1S 3.例5:椭圆中的共线性质.[始源问题]:(2012年北京高考试题)已知曲线C:(5-m)x 2+(m-2)y 2=8(m ∈R).(Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设m=4,曲线C 与y 轴的交点为A,B(点A 位于点B 的上方),直线y=kx+4与曲线C 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A,G,N 三点共线.[解析]:(Ⅰ)由曲线C 是焦点在x 轴点上的椭圆⇔m-2>5-m>0⇔27<m<5.故m 的取值范围是(27,5); (Ⅱ)当m=4时,曲线C:x 2+2y 2=8⇒A(0,2),B(0,-2);设M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧=++=82422y x kx y ⇒(2k 2+1)x 2+16kx+24=0⇒△= 32(2k 2-3)>0⇒k 2>23;且x 1+x 2=-12162+k k ,x 1x 2=12242+k ;又由直线BM:y=112x y +x-2⇒G(2311+y x ,1),即G(6311+kx x ,1)⇒k AG =-1136x kx +=-3k -12x ,k AN =222x y -=222x kx +=k+22x ⇒k AN -k AG =34k +12x +22x =34k +2⋅2121x x xx +=34k +2⋅2416k -=0⇒A,G,N 三点共线.第(Ⅱ)问是本题的特色与亮点,其实质是共轭点的性质:设点P 与Q 是二次曲线G 的一对共轭点,过点Q 的直线AC 与曲线G 相交于A 、C 两点,AP 与曲线G 相交于另一点B,BQ 与曲线G 相交于另一点D,则P 、C 、D 三点共线.其中共轭点的定义:130 第15讲:极点与极线的性质若直线PQ 与圆锥曲线G 相交于A 、B 两点,且PA ⋅QB +PB ⋅QA =0,则称点P 与Q 是圆锥曲线G 的一对共轭点.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)过点D(-1,e),其中,e 是椭圆C 的离心率,椭圆C 的左、右顶点分别为A(-2, 0)、B(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)过点E(4,0)的直线l 与椭圆C 交于M 、N 两点,求证:直线AM 与BN 的交点P 在一条定直线上.[解析]:(Ⅰ)由a=2,21a +22b e =1⇒1+22b c =a 2⇒b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)设M(x 1,y 1),N(x 2,y 2),直线l:y=k(x-4),由⎩⎨⎧=+-=44)4(22y x x k y ⇒(1+4k 2)x 2-32k 2x+64k 2-4=0⇒x 1+x 2=224132k k +,x 1x 2=2241464k k +-⇒k 2=)(4322121x x x x +-+,x 1x 2(1+4k 2)=64k 2-4⇒x 1x 2⋅)(8821x x +-=)(8]8)(5[42121x x x x +--+⇒2x 1x 2=5(x 1+x 2)-8;又由直线AM:y=211+x y (x+2),直线BN:y=222-x y (x-2)⇒直线AM 与BN 的交点P 的横坐标x 满足:211+x y (x+2)=222-x y (x-2)⇒2)4(11+-x x k (x+2)= 2)4(22--x x k (x-2)⇒x=83262122121----x x x x x x =83268)(5122121-----+x x x x x x =1⇒点P 在一条定直线x=1上.例6:椭圆中的中点性质.[始源问题]:(2008年全国高中数学联赛湖南初赛试题)如图,过直线l:5x-7y-70=0上的点P 作椭圆252x +92y =1的两条切线PM 、PN,切点分别为M 、N. (Ⅰ)当点P 在直线l 上运动时,证明:直线MN 恒过定点Q;(Ⅱ)当MN ∥l 时,定点Q 平分线段MN.[解析]:(Ⅰ)设P(7t+7,5t-5),则直线MN 的方程为:2577+t x+955-t y=1⇒(257x+95y)t+(257x-95y-1)=0,由257x+95y=0,且257x-95y-1=0⇒x=1425,y=-109⇒直线MN 恒过定点Q(1425,-109); (Ⅱ)MN ∥l ⇔2577+t :955-t =5:(-7)⇔t=53392⇒直线MN 的方程为:5x-7y-35533=0,代入椭圆方程252x +92y =1得:275332⨯x2 -23753325⨯x+25[(275533⨯)2-9]=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=725⇒定点Q 平分线段MN.[原创问题]:过点Q(1,1)作己知直线l:3x+4y=12的平行线交椭圆C:42x +32y =1于点M 、N.(Ⅰ)分别过点M 、N 作椭圆C 的切线l 1、l 2.证明:三条直线l 1、l 2、l 交于一点; (Ⅱ)证明:点Q 是线段MN 的中点;(Ⅲ)设P 为直线l 上一动点,过点P 作椭圆C 的切线PA 、PB,切点分别为A 、B,证明:点Q 在直线AB 上.[解析]:(Ⅰ)设M(x 1,y 1),N(x 2,y 2),切线l 1、l 2交于点P(x 0,y 0),由切线l 1:41x x+31y y=1,切线l 2:42x x+32y y=1均过点P(x 0, y 0)⇒41x x 0+31y y 0=1,42x x 0+32yy 0=1⇒直线MN:40x x+30y y=1;又由直线MN 过点Q(1,1)⇒40x +30y =1⇒3x 0+4y 0=12⇒点P 在直线l 上⇒三条直线l 1、l 2、l 交于一点; (Ⅱ)由直线MN ∥直线l ⇒40x :30y =41:31,又40x +30y =1⇒x 0=y 0=712⇒直线MN:3x+4y=7⇒点Q 是线段MN 的中点; (Ⅲ)设P(x 0,y 0),则直线AB:3x 0x+4y 0y=12⇒3x 0x+(12-3x 0)y=12⇒点Q 在直线AB 上.第15讲:极点与极线的性质131例7:椭圆中的比例性质.[始源问题]:(2011年山东高考试题)在平面直角坐标系xOy 中,已知椭圆C:32x +y 2=1.如图所示,斜率为k(k>0)且不过原点的直线l 交椭圆C 于A,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G 交直线x=-3于点D(-3,m).(Ⅰ)求m 2+k 2的最小值; D y (Ⅱ)若|OG|2=|OD||OE|. G A (i)求证:直线l 过定点; E(ii)试问点B,G 能否关于x 轴对称?若能,求出 -3 O x 此时△ABG 的外接圆方程;若不能,请说明理由.[解析]:(Ⅰ)设E(-3λ,m λ),A(-3λ+t,m λ+kt),则B(-3λ-t,m λ-kt).由点A 、B 都在椭圆C 上⇒⎪⎩⎪⎨⎧=-+--=+++-3)(3)3(3)(3)3(2222kt m t kt m t λλλλ,两式相减得mk=1⇒m 2+k 2≥2mk=2,当且仅当m=k=1时等号成立,所以m 2+k 2的最小值=2.(Ⅱ)(i)设直线OG 与椭圆C 相交于另一点T,则由椭圆C 关于原点对称得:|OT|=|OG|.所以,|OG|2=|OD||OE|⇔DT EG ⋅+DG ET ⋅=0,由轨迹1知,点E 在直线-x+my=1上,即直线l 的方程为:-x+my=1⇒直线l 过定点(-1,0);(ii)若点B,G 关于x 轴对称⇒点G(-3λ-t,-m λ+kt),由点G 在直线OE 上⇒(-3λ-t):(-3λ)=(-m λ+kt):m λ⇒6m λ+mt=3kt(注意到mk=1)⇒m 2(6λ+t)=3t ⇒t=2236mm -λ,又由点E 在直线l 上⇒3λ+m 2λ=1⇒λ=231m+⇒B(-233m-,-23m m -)⇒31(233m -)2+(23mm -)2=1⇒m=1,k=1,λ=41,t=43⇒A(0,1),B(-23,-21),G(-23,21)⇒△ABG 的外接圆方程:(x+21)2+y 2=45.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),射线OP 与椭圆C 交于点N,与直线l 0:x+y-12=0交于点M,满足|OP||OM|=|ON|2,且椭圆C 在N 处的切线平行于直线l 0. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0交于点Q,与椭圆C 交于A 、B 两点(A 在P 与Q 之间),求证:|QA||PB|=|QB||PA|.[解析]:(Ⅰ)由射线OP:y=21x(x ≥0),直线l 0:x+y-12=0⇒M(8,4);设N(2t,t)(t>0),由|OP||OM|=|ON|2⇒5⋅80=4t2+t 2⇒t=2⇒N(4,2)⇒216a +24b =1,椭圆C 在N 处的切线:24a x +22by =1;由切线平行于直线l 0⇒24a =22b ⇒a 2=2b 2⇒b 2=12,a2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;而|QA||PB|=|QB||PA|⇔(t Q -t 1)(-t 2)=(t Q -t 2)t 1⇔(t 1+t 2)t Q -2t 1t 2=0⇔-θθθθ22cos sin 2)cos (sin 4++⋅θθcos sin 9+-2(-θθ22cos sin 218+)=0成立. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),过点P 且平行于x 轴直线被椭圆C 截得的弦长为46,过点P 且平行于y 轴直线被椭圆C 截得的弦长为210.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0:x+y-12=0交于点Q,与椭圆C 交于A 、B 两点,若QA =λAP ,QB =μBP .求证:λ+132 第15讲:极点与极线的性质μ为定值.[解析]:(Ⅰ)由2222by ax +=1,令y=1得:|x|=ba 12-b ;令x=2得:|y|=ab 42-a ;由题知,ba12-b =26,ab 42-a =10⇒a 2=12422-b b ,22a b (a 2-4)=10⇒2412-b (12422-b b -4)=10⇒b 2=12⇒a 2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;由QA =λAP ,QB =μBP⇒λ=11t t t Q -,μ=22t t t Q -⇒λ+μ=2-t Q ⋅2121t t t t +=2-θθcos sin 9+⋅9)cos (sin 2θθ+=0. 例8:椭圆中的共线性质.[始源问题]:(2002年澳大利亚数学奥林匹克试题)己知△ABC 为锐角三角形, R以AB 为直径的⊙K 分别交AC 、BC 于P 、Q,分别过A 和Q 作⊙K 的两条切线交 C 于点R,分别过B 和P 作⊙K 的两条切线交于点S.证明:点C 在线段RS 上. P Q S[解析]:设⊙K:x 2+y 2=r 2,R(-r,a),S(r,b)⇒点R,S 对应的极线分别为:AQ:-rx+ay=r 2,BP:rx+by=r 2⇒Q(2222)(r a r r a +-,2222r a ar +),P(-2222)(r b r r b +-,2222r b br +) A K B⇒AP:y=r b (x+r),BQ:y=-r a (x-r),由⎪⎪⎩⎪⎪⎨⎧+=--=)()(r x r b y r x r a y ⇒⎪⎪⎩⎪⎪⎨⎧+=+-=b a ab y r b a b a x 2⇒C(b a b a +-r,b a ab +2)⇒点C 对应的极线为:(a-b)rx+2aby=(a+b)r 2,由三线:-rx+ay=r 2,BP:rx+by=r 2,(a-b)rx+2aby=(a+b)r 2共点于(ba ba +-r, ba r +22)⇒R,C,S 三点共线⇒点C 在线段RS 上. 该题是平面几何定理:“过非等腰三角形的三个顶点作其外接圆的切线,顶点处的切线与其对边所在直线的交点共线.”的变形,以该定理为始源,取其特殊情况,并把圆压缩为椭圆得:[原创问题]:若对任意θ∈[0,2π),直线l:xcos θ+2ysin θ-2=0与椭圆C:2222b y a x +=1(a>b>0)均只有一个交点M.(Ⅰ)求椭圆C 的方程; (Ⅱ)当θ∈(0,2π)时,若直线l 与x 轴交于点N,椭圆C 的左、右顶点分别为A 、B,直线BM 上的点Q 满足QA ⊥x 轴,直线AM 与NQ 交于点P,求点P 的轨迹方程.[解析]:(Ⅰ)由⎩⎨⎧=-+=-+002sin 2cos 222222b a y a x b y x θθ⇒(a 2cos 2θ+4b 2sin 2θ)y 2-8b 2ysin θ+4b 2-a 2b 2cos 2θ=0⇒△=64b 4sin 2θ-4(a 2cos 2θ+4b 2sin 2θ)(4b 2-a 2b 2cos 2θ)=0⇒a 2-4+(4b 2-a 2)sin 2θ=0恒成立⇒a 2-4=0,4b 2-a 2=0⇒a 2=4,b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)由xcos θ+2ysin θ-2=0⇒N(θcos 2,0);(Ⅰ)知,M(2cos θ,sin θ)⇒直线AM:y=2cos 2sin +θθ(x+2),BM:y=2cos 2sin -θθ(x-2)⇒Q(-2,θθcos 1sin 2-)⇒直线NQ:y=-cot θ(x-θcos 2);令2cos 2sin +θθ(x+2)=-cot θ(x-θcos 2)⇒(2cos 2sin +θθ+θθcos sin )x=θsin 2-1cos sin +θθ⇒x=2⇒点P 的轨迹方程x=2(0<y<2).。
极点极线10个二级结论
极点极线10个二级结论
1. 极点是极线的交点。
2. 极线是过极点的切线。
3. 极点和极线是一一对应的。
4. 极点在极线上的投影是极线的中点。
5. 两个极点的连线是它们对应的两个极线的公共切线。
6. 一条直线上的所有点的极线都经过同一个极点。
7. 一个平面上的两条直线的交点是它们对应的两个极点的连线的极线。
8. 一个平面上的两个交叉直线的交点是它们对应的两个极点。
9. 一个平面上的两个相交直线的交点是它们对应的两个极点的连线的极线的交点。
10. 一个平面上的两个相交直线的交点是它们对应的两个极点的连线的延长线的交点。
极点极线10个二级结论
极点极线10个二级结论摘要:一、引言二、极点极线的概念1.极点2.极线三、10 个二级结论1.极点与极线的关系2.极点与极线的性质3.极点与极线的应用四、结论正文:【引言】极点极线是数学中的一个基本概念,它在几何学、微积分学等学科中都有着广泛的应用。
本文将详细介绍极点极线的概念以及10 个二级结论,帮助读者更好地理解和掌握这一重要概念。
【极点极线的概念】极点是数学中的一个点,它满足某个函数在此点处的导数等于零。
换句话说,极点是函数的局部最小值或最大值点。
极线是与极点相关的直线,它表示函数在极点处的切线。
【10 个二级结论】1.极点与极线的关系:极点处的切线就是极线。
极线是函数在极点处的局部性质,反映了函数在极点处的变化趋势。
2.极点与极线的性质:极点与极线是相互关联的,它们共同决定了函数在极点处的局部性质。
极点的性质包括局部最小值、局部最大值等,极线的性质包括切线的斜率、切线方程等。
3.极点与极线的应用:极点与极线在数学的许多分支中都有着广泛的应用。
例如,在微积分学中,极点与极线可以用来求解函数的极值;在几何学中,极点与极线可以用来分析图形的性质。
4.函数的极值与极点极线的关系:函数的极值点就是极点,函数在极值点处的导数值就是极线的斜率。
5.函数的单调性与极点极线的关系:函数的单调区间与极点极线密切相关。
在单调递增的区间,函数的导数大于零,极线是上升的;在单调递减的区间,函数的导数小于零,极线是下降的。
6.函数的凹凸性与极点极线的关系:函数的凹凸性决定了极点极线的性质。
在凹函数的区间,极点是局部最小值点,极线是下凸的;在凸函数的区间,极点是局部最大值点,极线是上凸的。
7.极点极线在微分方程中的应用:微分方程中的极点极线可以用来分析系统的稳定性和动态行为。
例如,在常微分方程中,极点可以表示系统的平衡状态,极线可以表示系统在平衡状态下的动态行为。
8.极点极线在数值分析中的应用:极点极线在数值分析中有着广泛的应用,例如在插值和拟合问题中,极点极线可以用来提高算法的收敛性和准确性。
数学复习:极点与极线
数学复习:极点与极线知识与方法极点极线是射影几何中的重要内容,在中学教材中并未提及,但纵观历年高考的解析几何大题,可以发现诸多试题都有极点极线的背景,所以了解极点极线,可以让我们站在更高处来看待问题.这一小节我们先介绍极点极线的几何定义、代数定义和一些常用的性质,再辅以若干典型的高考真题的极点极线观点,来加深大家的理解.1.极点极线的几何定义:以椭圆为例,如图1所示,设P 为椭圆外一点,过P 作椭圆的两条割线分别与椭圆相交于A 、B 和C 、D 四点,AC 与BD 交于点M ,AD 与BC 交于点N ,则称点P 为直线MN 关于椭圆的极点,直线MN 为点P 关于椭圆的极线.另一方面,图1也可以这么来看,从椭圆外的点N 作椭圆的两条割线分别交椭圆于A 、D 和B 、C 四点,AC 与BD 交于点M ,AB 与CD 交于点P ,所以点N 和直线PM 也是一对极点极线,事实上,点M 和直线PN 也是一对极点极线,因此在PMN 中,以其中一个顶点作为极点,那么该顶点的对边所在的直线就是对应的极线,从而我们将PMN 称为“自极三角形”,为了加以区分,图中画成了虚线.这个图形有两种特殊情况:(1)如图2所示,当四边形ABCD 有一组对边平行时,如∥AD BC ,此时我们看成AD 和BC 的交点N 在无穷远处,那么以M 为极点,对应的极线是图2中的PN 2,其中∥PN BC 2;以P 为极点,那么极线是MN 1,其中∥MN BC 1;(2)如图3所示,当其中一条割线变成切线时,此时D 、M 、N 几个点就都与切点C 重合,从而点C 和切线PC 是一对极点极线.2.极点极线的代数定义:在平面直角坐标系xOy 中,设有圆锥曲线C (圆、椭圆、双曲线、抛物线均可)和不与C 的对称中心重合的点P x y ,00)(,在圆锥曲线C 的方程中,用x x 0替换x 2,y y 0替换y 2,+x x 20替换x ,+y y20替换y ,得到的方程即为以P 作为极点的极线l 的方程.例如,设椭圆C 的方程为+=y x 2122,极点为P 2,4)(,则与P 对应的极线为+=y x 2412,即+−=x y 410;又如,设抛物线C 的方程为=y x 22,极点为P 2,4)(,则与P 对应的极线为=⋅+y x2422,即−+=x y 420.可以看到,极点与极线是一个成对的概念,且若给定极点,求极线的规则是统一的,与圆锥曲线的类型无关,与极点P 的位置无关,下面以椭圆为例,说明极点P 在不同位置时,极线l 的情形:(1)当点P 在椭圆C 上时,极线l 为椭圆C 在P 处的切线,如图4所示;(2)当点P 在椭圆C 外部时,极线l 为点P 对椭圆C 的切点弦所在直线,如图5所示;(3)当点P 在椭圆C 内部时,过点P 任作椭圆C 的一条割线交C 于A 、B 两点,椭圆C 在A 、B 两点处的切线交于点Q ,则当割线AB 绕着点P 旋转时,点Q 的轨迹就是极线l ,如图6所示.3.极点极线的常用性质:(下面以椭圆为例)(1)如图7所示,O 为椭圆中心,点P 在椭圆内,延长OP 交椭圆于点Q ,交椭圆与点P 对应的极线l 于点M ,则OP 、OQ 、OM 成等比数列;当P 恰好为弦AB 的中点时,直线AB 的方程为+=+a b a bx x y y x y 2222000022,且极线l 和椭圆在点Q 处的切线均与AB 平行.(2)调和分割性:如图8所示,设极点P 的极线是直线l ,过P 作椭圆的一条割线交椭圆于A 、B 两点,交极线l 于点Q ,则P 、A 、Q 、B 成调和点列,即=PBQBPA QA (或写成=+PQ PA PB211) (3)配极原理:若点P 关于椭圆的极线过点Q ,则点Q 关于椭圆的极线也过点P .由此出发,我们可以得出共线点的极线必然共点,共点极线的极点必然共线,如图9所示,极点P 1、P 2、P 3的极线分别为l 1、l 2、l 3,则P 1、P 2、P 3共线⇔l 1、l 2、l 3共点.提醒:极点极线的分析方法只能让我们在看到问题时能够迅速“窥得天机”,不能作为正式的作答,我们在学习时,仍然应该以基本方法为主,技巧偏方为辅,不能本末倒置.典型例题【例1】(2021·新高考Ⅱ卷·多选)已知直线+−=l ax by r :02与圆+=C x y r :222,点A a b ,)(则下列说法正确的是( )A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切【解析】解法1:A 项,若点A 在圆C 上,则+=a b r 222,圆心C 到直线l 的距离=d r ,所以直线l 与圆C 相切,故A 项正确;B 项,若点A 在圆C 内,则+<a b r 222,圆心C 到直线l 的距离==>d r 2,所以直线l 与圆C 相离,故B 项正确;C 项,若点A 在圆C 外,则+>a b r 222,圆心C 到直线l 的距离==d r 2,所以直线l 与圆C 相交,故C 项错误;D 项,若点A 在直线l 上,则+−=a b r 0222,即+=a b r 222,圆心C 到直线l 的距离==d r ,所以直线l 与圆C 相切,故D 项正确.解法2:显然对于圆C ,以A a b ,)(作为极点,那么极线就是+−=l ax by r :02A 项,若极点A 在圆C 上,则极线l 是圆C 的切线,故A 项正确;B 项,若极点A 在圆C 内,则极线l 与圆C 相离,故B 项正确;C 项,若极点A 在圆C 外,则极线l 是圆C 的切点弦,应与圆C 相交,故C 项错误;D 项,若极点A 在直线l 上,这是极线恰好为切线,极点为切点的情形,故D 项正确. 【答案】ABD【例2】(2011·四川)椭圆有两个顶点−A 1,0)(,B 1,0)(,过其焦点F 0,1)(的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P ,直线AC 与BD 交于点Q .(1)当=CD 时,求直线l 的方程; (2)当P 点异于A 、B 两点时,证明:⋅OP OQ 为定值.【解析】(1)由题意,椭圆的短半轴长=b 1,半焦距=c 1,所以长半轴长=a ,故椭圆的方程为+=x y 2122,当=CD 2时,易得直线l 与x 轴垂直,故可设l 的方程为=+y kx 1≠≠±k k 0,1)(, 设C x y ,11)(,D x y ,22)(,联立⎩⎪+=⎨⎪⎧=+x y y kx 21122消去y 整理得:++−=k x kx 221022)(, 判别式∆=+>k 8102)(,由韦达定理,②①⎩+⎪=−⎪⎨+⎪⎪+=−⎧k x x k x x k 2122212212,所以=−==CD x x 12=k 所以直线l的方程为=+y 1.(2)极点极线看问题:设P m ,0)(,以P 为极点,则对应的极线为=mx 1,即=mx 1, 显然点Q 在极线上,所以=m x Q 1,不难发现⋅=⋅+⋅=mOP OQ m y Q 011. 注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写.解法1:直线AC 的斜率为+=x k y AC 111,其方程为+=+x y x y1111)(③,直线BD 的斜率为−=x k y BD 122,其方程为−=−x y x y1122)(④,用式③除以式④整理得:−−=++x y x x y x 11111221)()(,即−−=++x y x y x x Q Q 11111221)()(, 而−+−−+−==++++++y x kx x kx x kx x kx x kx x y x kx x 111111111212121212212121)()()()()()(,所以−−+−=++++x kx x kx x kx x kx x x Q Q 111112121221,由①知+=−−k x x k22212, 故⎝⎭+++ ⎪++−−−−+−⎛⎫−+−+===+++−+−+−−++−−−k k k k x k x x x k k k k k k k k k x kx x k x k kk k Q Q 222111121212221111212222222222222)()()()()()(,解得:=−x k Q ,易得⎝⎭⎪−⎛⎫k P ,01,故⋅==−⋅−=k OP OQ x x k P Q 11)(,即⋅OP OQ 为定值1.解法2:直线AC 的斜率为+=x k y AC 111,其方程为+=+x y x y1111)(③,直线BD 的斜率为−=x k y BD 122,其方程为−=−x y x y1122)(④,用式③除以式④整理得:−−=++x y x x y x 11111221)()(,即−−=++x y x y x x Q Q 11111221)()(⑤ 所以⎝⎭−−−−−−−++ ⎪ ⎪====+++++++⎛⎫−+y x x x x x x x x x x y x x x x x x x x x x Q Q 121111111111121112121212122222212112122122222)()()()()()()()()()()()( ++−++⎝⎭+ ⎪=++⎛⎫−−−+k k k k k k k k22111222111222222, 因为x 1,∈−x 1,12)(,所以−<+x x 10121,结合⑤可得−+x x Q Q 11与y y 12异号, 又++++=++=+++=−−+==−+−k k k k y y kx kx k x x k x x k k k k k 222211112222112222121212122222)()()()()(++=−⋅−+k k k k 2112122)(, 所以y y 12与+−k k 11异号,即y y 12与+−k k 11异号,从而−+x x Q Q 11与+−k k 11同号,所以−+=−+x k k x Q Q 1111,解得:=−x k Q ,易得⎝⎭⎪−⎛⎫k P ,01,故⋅==−⋅−=k OP OQ x x k P Q 11)(,即⋅OP OQ 为定值1.【例3】(2020·新课标Ⅰ卷)已知A 、B 分别为椭圆+=>aE y a x :11222)(的左、右顶点,G为E 的上顶点,⋅=AG GB 8,P 为直线=x 6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意,−A a ,0)(,B a ,0)(,G 0,1)(,故=AG a ,1)(,=−GB a ,1)(, 所以⋅=−=AG GB a 182,解得:=a 3或−3(舍去),故E 的方程为+=y x 9122.(2)极点极线看问题:如图1,设AB 和CD 交于点Q ,AD 和CB 交于点M ,则PQM 为自极三角形,所以点Q 和直线PM 是一对极点极线,设Q m ,0)(,则极线PM 的方程为=mx91,即=m x 9,又点P 在直线=x 6上,所以=m 69,从而=m 23,故⎝⎭⎪⎛⎫Q 2,03,这样就得到了直线CD 过定点⎝⎭⎪⎛⎫2,03.注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写. 解法1:由(1)知−A 3,0)(,B 3,0)(,设P t 6,)(,C x y ,11)(,D x y ,22)(,当≠t 0时,直线PA 的方程为=−t x y 39,代入+=y x 9122消去x 化简得:⎝⎭⎪+−=⎛⎫t t y y 90815422, 解得:=y 0或+t t 962,所以+=t y tC 962,故+=−=−t t x y t C C 93927322,从而⎝⎭++ ⎪−⎛⎫t t C t t 99,2736222,直线PB 的方程为=+t x y 33,代入+=y x 9122消去x 化简得:⎝⎭⎪++=⎛⎫t t y y 9091822,解得:=y 0或+−t t 122,所以+=−t y t D 122,从而+=+=−t t x y t D D 1333322,故⎝⎭++ ⎪−−⎛⎫t t D t t 11,332222,设⎝⎭ ⎪⎛⎫T 2,03,则⎝⎭++ ⎪= ⎪−⎛⎫t t TC t t 299,2796222)(,⎝⎭++ ⎪=− ⎪−⎛⎫t t TD t t 211,392222)(,即+=−+t TC TD t 93122)(,故∥TC TD ,所以T 、C 、D 三点共线,从而直线CD 过定点⎝⎭⎪⎛⎫T 2,03,当=t 0时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,显然直线CD 也过点T ,综上所述,直线CD 过定点⎝⎭⎪⎛⎫T 2,03解法2:由(1)知−A 3,0)(,B 3,0)(,设C x y ,11)(,D x y ,22)(,P y 6,0)(当≠y 00时,由图2可知点C 不与点B 重合,因为+=y x 911122,所以=−y x 9911122)(,故CA 、CB 的斜率之积为+−−⋅=⋅==−x x x k k y y y CA CB 3399111121112① 又PA 的斜率==k k y PA CA 90,PB 的斜率==k k y PB BD 30,所以=k k CA BD 31, 代入式①化简得:BC 、BD 的斜率之积⋅=−k k BC BD 31,显然CD 不与y 轴垂直,否则AC 与BD 的交点在y 轴上,故可直线CD 的方程为=+x my t ,联立⎩⎪=++=⎨⎪⎧x my y tx 9122消去x 整理得:+++−=m y mty t 9290222)(, 判别式∆=−+−>m t m t 449902222)()(,所以+−>m t 9022, 由韦达定理,++=−m y y mt 92212,+=−m y y t 992122,所以++=++=m x x m y y t t 921821212)(,+=+++=−m x x m y y mt y y t t m 99921212122222)(,−−−++⋅=⋅==−x x x x x x k k y y y y BC BD 3339311212121212)(,故−=−++y y x x x x 339121212)(,即+++−⋅=−⋅+−−m m m t t m t 99933999918222222,整理得:−+=t t 29902,解得:=t 23或3,若=t 3,则C 、D 中有一个点与B 重合,不合题意,所以=t 23,满足∆>0,即直线CD 过定点⎝⎭ ⎪⎛⎫2,03,当=y 00时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,也过点⎝⎭ ⎪⎛⎫2,03,综上所述,直线CD 过定点⎝⎭⎪⎛⎫2,03【例4】(2018·新课标Ⅰ卷)设椭圆+=C y x 2:122的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,点M 的坐标为2,0)(.(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠=∠OMA OMB .【解析】(1)由题意,F 1,0)(,当l 与x 轴垂直时,其方程为=x 1, 由⎩⎪+=⎨⎪⎧=y x x 21122解得:=y ,即点A的坐标为⎝⎭ ⎪ ⎪⎛⎫21,, 当点A的坐标为⎝⎭ ⎛2时,直线AM的方程为=y x 2, 当点A的坐标为⎝⎭⎛1,时,直线AM的方程为=−y . (2)极点极线看问题:如图,设'A 、'B 分别为A 、B 关于x 轴的对称点, 则显然四边形''AA BB 构成等腰梯形,其对角线的交点为F ,以F 1,0)(为极点, 则对应的极线为+⋅=⋅y x2011,即=x 2,而'BA 和'B A 的交点应该在极线上, 从而M 2,0)(就是'BA 和'B A 的交点, 由图形的对称性不难发现∠=∠OMA OMB . 且这一结论还可以推广,若F 不是焦点, 而是椭圆内x 轴正半轴上的一个一般的点, 比如可设为t ,0)(,那么它的极线为+⋅=y tx201,即=t x 2,所以点⎝⎭⎪⎛⎫t M ,02必定也能使∠=∠OMA OMB注意:上面的过程不能作为正式的作答,卷面上可以按下面的解法来写. 解:当⊥l y 轴时,易得∠=∠=︒OMA OMB 0当l 不与y 轴垂直时,可设其方程为=+x my 1,设A x y ,11)(,B x y ,22)(, 联立⎩⎪+=⎨⎪⎧=+y x x my 21122消去x 整理得:++−=m y my 221022)(,易得判别式∆>0, 由韦达定理,++=−m y y m 22212,+=−m y y 21212, −−−−−−+=+==−+−+−+x x x x x x k k y y y x y x x y x y y y AM BM 222222222121212121221122112)()()()()()()( 而+−+x y x y y y 2122112)(=+++−+=−+my y my y y y my y y y 11221221121212)()()()( ⎝⎭⎝⎭++ ⎪ ⎪=⋅−−−=⎛⎫⎛⎫m m m m 22201222,所以+=k k AM BM 0,从而∠=∠OMA OMB , 综上所述,∠=∠OMA OMB .【例5】(2008·安徽)设椭圆+=>>a bC a b x y :102222)(过点M),且左焦点为F 1)(.(1)求椭圆C 的方程;(2)当过点P 4,1)(的动直线l 与椭圆C 相交于两个不同的点A 、B 时,在线段AB上取点Q ,满足⋅=⋅AP QB AQ PB ,求证:点Q 在某定直线上.【解析】(1)由题意,⎩⎪+=⎨⎪−=⎧ab a b 12122222,解得:=a 42,=b 22,所以椭圆C 的方程为+=x y 42122. (2)极点极线看问题:因为⋅=⋅AP QB AQ PB ,所以=PBQBAP AQ ,故P 、A 、Q 、B 是一组调和点列,从而点Q 必定在点P 的极线上,因为点P 的坐标为4,1)(,所以它的极线为+=⋅x y42141,化简得:+−=x y 220,从而点O 在定直线+−=x y 220上. 注意:上面的过程不能作为正式的作答,卷面上可以按下面的定比点差法来写. 解:设Q x y ,)(,A x y ,11)(,B x y ,22)( 因为⋅=⋅AP QB AQ PB ,所以=PBQBAP AQ ,设==λPBQBAP AQ >≠λλ0,1)(,则=λPA PB ,=λAQ QB ,而=−−PA x y 4,111)(,=−−PB x y 4,122)(,=−−AQ x x y y ,11)(,=−−QB x x y y ,22)(所以⎩⎪−=−⎨⎪⎧−=−λλy y x x 11441212)()(,且⎩⎪−=−⎨⎪⎧−=−λλy y y y x x x x 1212)()(,从而②①⎩−⎪=⎪−⎨−⎪⎪=⎧−λλλλy y x x 11141212,且④③⎩+⎪=⎪+⎨+⎪⎪=⎧+λλλλy y y x x x 111212,①×③得:−=−λλx x x 14212222,②×④得:−=−λλy y y 1212222,所以−−+⋅=+−−λλλλx yx x y y 11242221212222222,即−=++−+λλx y x y x y 142222112222222)(⑤ 又A 、B 在椭圆C 上,所以⎩⎪+=⎪⎨⎪⎪+=⎧x y x y 42142122221122, 从而⎩⎪+=⎨⎪+=⎧x y x y 242422221122,代入⑤的:−=+−λλx y 1424422, 化简得:+−=x y 220,即点Q 始终在直线+−=x y 220上.强化训练1.(★★★)对于抛物线=C y x :22,设点P x y ,00)(满足<y x 2002,则直线=+l y y x x :00与抛物线C ( ) A.恰有1个交点B.恰有2个交点C.没有交点D.有1个或2个交点【解析】显然直线l 是点P 对应的极线,因为<y x 2002,所以点P 在抛物线内部,从而直线l 与抛物线C 没有交点. 【答案】C2.(★★★)已知椭圆+=C y x 2:122的右焦点为F ,过点A 2,2)(的直线与椭圆C 在x 轴上方相切于点B ,则直线BF 的方程为______.【解析】由题意,F 1,0)(,以F 为极点,则极线为=x21,即=x 2,所以点A 在极线上,根据配极原理,以A 为极点的极线过点F ,所以该极线就是BF ,其方程为+=y x2212,即+=x y 21【答案】+=x y 213.(★★★)过点P 2,1)(的直线l 与椭圆+=y x 4122相交于点A 和B ,且=λAP PB ,点Q 满足=−λAQ QB ,若O 为原点,则OQ 的最小值为________.【解析】由题意,==λPBQAPA QA所以点Q 是对应极点P 的极线与直线l 的交点,如图,易求得极线l 的方程为+=y x412,即+−=x y 220,所以点Q在该极线上,从而==OQ 5min .【答案】54.(★★★★)设椭圆+=>>a bC a b x y :102222)(的左、右顶点分别为A 、B ,上顶点为D ,点P 是椭圆C 上异于顶点的动点,已知椭圆C的离心率=e ,短轴长为2. (1)求椭圆C 的方程; (2)如下图所示,直线AD 与直线BP 交于点M ,直线DP 与x 轴交于点N ,证明:直线MN 过定点,并求出该定点.【解析】(1)由题意,=b 22,所以=b 1,椭圆C的离心率=e ,所以=a 2,故椭圆C 的方程为+=y x 4122.(2)极点极线看问题:如图,连接AP 、BD 交于点Q ,显然点Q 的极线是直线MN , 当P 在椭圆上运动的过程中,点Q 会在直线BD 上运动,根据共线极点的极线必然共点不难发现直线MN 是过定点的直线,易求得直线BD 的方程为+=x y 22,所以可设−Q t t 22,)(,那么极线MN 的方程为+=−ty t x4122)(,整理得:−−−=x t x y 220)(,所以直线MN 过的定点是2,1)(.下面给出规范的作答过程.解:由(1)可得D 0,1)(,B 2,0)(,−A 2,0)(,可设直线BP 的方程为=+x my 2≠≠±m m 0,2)(, 联立⎩⎪+=⎨⎪⎧=+y x x my 41222消去x 整理得:++=m y my 44022)(,解得:=y 0或+−m m 442,所以+=−m y m p 442,从而+=+=−m x my m p p 428222,故⎝⎭++ ⎪−−⎛⎫m m P m m 44,824222,从而直线DP 的斜率为+−−−===+−−−+−−m m m m k m m m m mDP 482228244421422222)(故直线DP 的方程为−=++m y x m 2212)(,联立⎩−⎪=+⎨+⎪⎧=m y x m y 2212)(解得:+=−m x m 222)(,所以⎝⎭+ ⎪⎛⎫−m N m 2,022)(, 直线AD 的方程为−+=x y 211,即−+=x y 220,联立⎩=+⎨⎧−+=x my x y 2220,解得:⎩−⎪=−⎪⎨−⎪⎪=−⎧+m y m x m 24224,所以点M 的坐标为⎝⎭−− ⎪−−⎛⎫+m m m 22,244,设G 2,1)(, 则⎝⎭−− ⎪=−−⎛⎫+m m GM mm 22,42,⎝⎭+ ⎪=−−⎛⎫m GN m 2,14, 从而−=+m GM GN m 22,故G 、M 、N 三点共线, 即直线MN 过定点G 2,1)(.【反思】求解这道题时,可以先在草稿纸上用极点极线的知识去找到定点G 2,1)(,那么在严格求解时,心中就有答案了,可以通过证明GM 与GN 共线,从而得出直线MN 过定点G . 5.(★★★★)如下图所示,椭圆+=E x y 43:122的左、右顶点分别为A 、B ,左焦点为F ,过F 的直线与椭圆E 交于不与A 、B 重合的C 、D 两点,记直线AC 和BD 的斜率分别k 1,k 2,证明:k k 21为定值.【解析】极点极线看问题:由题意,−F 1,0)(,椭圆E 的极点F 对应的极线为+=−⋅⋅x y43110,即=−x 4,如图,AC 与BD 的交点P 应在极线上,所以可设−P y 4,0)(,显然−A 2,0)(,B 2,0)(,所以直线AC 的斜率==−k k y PA 210,直线BD 的斜率==−k k yPB 620, 从而=k k 321.下面给出严格求解过程. 解:由题意,−F 1,0)(,直线CD 不与y 轴垂直,可设其方程为=−x my 1,设C x y ,11)(,D x y ,22)(,联立⎩⎪⎨⎪⎧−+==x my x y 143122消去x 整理得:+−−=m y my 3469022)(, 易得判别式∆>0, 由韦达定理,++=m y y m 346212,+=−m y y 349212, 所以=−+my y y y 231212)( 显然−A 2,0)(,B 2,0)(,所以直线AC 的斜率+=x k y 2111, 直线BD 的斜率−=x k y 2222, 从而−++−−+++======−−−−+−−−y y y y y k x y my y my y y k my y y y x y my y y y y y 222213313222323339312212212121221121121212112)()()()()()(.6.(★★★★)已知椭圆+=>>a b C a b x y :102222)(的上、下顶点分别为A 和B ,左焦点为F , 原点O 到直线FA的距离为2. (1)求椭圆C 的离心率; (2)设=b 2,直线=+y kx l :4与椭圆C 交于不同的两点M 、N ,证明:直线BM 与直线AN 的交点G 在定直线上.【解析】(1)由题意,原点O 到直线FA的距离===⋅AFa d bc OA OF , 所以椭圆C的离心率==a e c 2. (2)极点极线看问题:由题意,直线l 与y 轴交于定点P 0,4)(,显然点G 在点P 对应的极线上,当=b 2时,易求得椭圆C 的方程为+=x y 84122,从而该极线的方程为+=⋅x y 84104,即=y 1,所以点G 在定直线=y 1上.下面给出严格求解过程.解:由题意,A 0,2)(,−B 0,2)(,设M x y ,11)(,N x y ,22)(, 联立⎩⎪+=⎨⎪⎧=+x y y kx 841422消去y 整理得:+++=k x kx 121624022)(,判别式∆=−+⨯>k k 1641224022)()(所以<k 2或>k 2,由韦达定理,②①⎩+⎪=⎪⎨+⎪⎪+=−⎧k x x k x x k 12241216212212直线BM 的方程为+=+x y x y 2211,直线AN 的方程为−=−x y x y 2222,联立⎩⎪−=⎪−⎨⎪⎪+=⎧+x y xy x y x y 22222211消去x 可得:−−=++y y x y y x 22222112)()(,从而−−++===++++y y x kx x kx x x kx x x y y x kx x G G 2222622621211211221212)()()()(③, 接下来给出以下两种计算非对称结构++kx x x kx x x 26121122的方法:法1:由①②知=−+kx x x x 231212)(, 代入式③得:−++−+===−+−++−+x x x x x kx x x kx x x x x x x x 222223133222663391211212112212212)()(, 从而−=+y y G G 232,解得:=y G 1,所以点G 在定直线=y 1上. 法2:由①知+=−−k x x k1216212代入式③得:⎝⎭+++ ⎪+−−−−⎛⎫+===−+++++k k k x x kx x x k k k k k kx x x x x k k12121222224168312126662424222221211222222从而−=−+y y G G 232,解得:=y G 1,所以点G 在定直线=y 1上.。
极点极线四个定理
极点极线四个定理简介极点极线是极坐标系中的概念,用于描述平面上的点与一条直线的联系。
在几何学中,极点极线有着重要的应用,并且有四个定理与之相关。
定理一:极点极线定理定义在平面上给定一条直线l和一点P,如果通过P的所有过l的直线中,与l交点的轨迹是一条直线,那么称P为直线l的极点,这条直线称为直线l的极线。
性质1.极点极线定理成立的充要条件是:l上至少存在一个点P使得P是l的极点。
2.极点极线定理中的极线的方向与直线l的方向是相反的。
例子假设平面上有一条直线l,通过该直线的所有直线中,与l交点的轨迹是一条直线m。
那么m就是l的极线,而过l与m的交点P就是直线l的极点。
定理二:极点唯一性定理定义在平面上给定一条直线l,如果存在两个不重合的点A和B,使得A和B都是直线l的极点,则A和B之间的连线就是直线l的极线。
性质1.直线l的两个极点A和B之间的连线一定与l垂直。
2.极点唯一性定理说明了直线l的极点是唯一的。
例子假设在平面上有一条直线l,存在两个点A和B分别位于l的两侧,并且A和B都是l的极点。
那么直线AB就是l的极线。
定理三:极点的轨迹定理定义在平面上给定一族相互平行的直线l1, l2, l3, …,如果存在一条直线m,通过m上的每个点P,与l1, l2, l3, …上的每个点PA, PB, PC, …分别构成一组对称点对,则直线m上的点构成一条直线m’,且m’与l1, l2, l3, …的交点P’构成的点集称为m’的轨迹。
性质1.极点的轨迹是一条直线。
2.极点的轨迹与给定的直线族l1, l2, l3, …平行。
例子在平面上给定一族平行直线l1, l2, l3, …,存在一条直线m,通过m上的每个点P,与l1, l2, l3, …的每个点PA, PB, PC, …构成一组对称点对。
那么直线m上的点构成一条直线m’,且m’与l1, l2, l3, …平行。
定理四:任意两条相交直线的极点连线定义在平面上给定两条相交的直线l1和l2,分别过l1和l2的交点P和Q的所有直线中,与l1和l2的交点构成的点集为一条直线m,则直线m为直线l1和l2的极线。
高中极点极线基本定理
高中极点极线基本定理高中数学中极点极线基本定理是微积分中的重要概念之一,也是理解极限概念的关键所在。
在这篇文章中,我们将认真地讲解这一定理的背景、定义、相关公式和实例应用。
一、背景简介极点极线基本定理是牛顿和莱布尼兹的微积分学的基石。
在使用微积分和几何学解决问题时,它常常是一个非常有用的工具。
极点极线基本定理可以用来描述平面直角坐标系中的曲线和指定点上的切线交点。
二、定义简介定义1:对于曲线方程y = f(x),如果x = a是奇点点,则对于直线L:x = a存在一个唯一点P(x_0,y_0),使得曲线y=f(x)在P处的切线与直线L重合,则直线L称为曲线y=f(x)在a处的极线,点P称为曲线y=f(x)在a处的极点.定义2:当直线L:x=X_0是曲线y=f(x)的极线时,曲线y=f(x)在点(x_0,f(x_0))处的切线垂直于直线L.三、相关公式1. 极点的横纵坐标公式:x_0=t(t为曲线关于一条直线的交点),设曲线过点(P_0,Q_0),则Q_0=f(t);2. 极线的方程:x=t(t为曲线关于一条直线的交点),极点为(P_0,Q_0),方程即为x=t;3. 极点处的切线方程:y-y_0=f`(x_0)(x-x_0)(y=f(x_0)(x-x_0)+y_0);4. 极线方程代入曲线得到极点坐标公式:Q_0=f(x_0)=f(t)=(t-f(x))/(1/f`_(t))。
四、实例应用1. 极点极线基本定理在数学中有很多应用,例如在计算圆周率π和求解最值问题等;2. 在物理学中,极点极线基本定理可用于计算万有引力和物体的加速度等。
综上所述,极点极线基本定理是微积分学中的基础概念之一,对求解问题有着重要的应用价值。
对于高中生而言,学习此定理对于提高数学能力和兴趣大有帮助。
极点与极线的性质
.极点与极线的性质————————————————————————————————作者:————————————————————————————————日期:第15讲:极点与极线的性质 125第15讲:极点与极线的性质极点与极线是高等几何中的基本且重要的概念,虽然中学数学没有介绍,但以此为背景命制的高考试题经常出现.掌握极点与极线的初步知识,可使我们“登高望远”,抓住问题的本质,确定解题方向,寻找简捷的解题途.定义:已知曲线G:ax 2+bxy+cy 2+dx+ey+f=0,则称点P(x 0,y 0)和直线l:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y ++f=0是曲线G 的一对极点与极线,点P 称为直线l 关于曲线G 的极点;直线l 称为点P 关于曲线G 的极线.称点P 与直线l 有“配极关系”,或“对偶关系”,相互为对方的“配极元素”,或“对偶元素”.特别地,当点P 在曲线G 上时,点P 关于曲线G 的极线是曲线G 在点P 处的切线;圆锥曲线的焦点对应的极线是该焦点对应的准线;圆锥曲线的准线对应的极点是该准线对应的焦点.[位置关系]:已知点P 关于圆锥曲线G 的极线是直线l,则三者的位置关系是:①若点P 在曲线G 上,则直线l 是曲线G 在点P 处的切线;②若点P 在曲线G 外,则直线l 是由点P 向曲线G 引两条切线的切点弦;③若点P 在曲线G 内,则直线l 是经过点P 的曲线G 的弦的两端点处的切线交点轨迹.如图:l l l P M P A D M PN C N B[配极原则]:如果点P 的极线通过点Q,则点Q 的极线也通过点P.证明:设圆锥曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,点P(x p ,y p ),Q(x Q ,y Q ),则点P 、Q 关于曲线G 的极线方程分别为p:ax p x+b2yx x y p p ++cy p y+d2p x x ++e2p y y ++f=0,q:ax Q x+b2yx x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0,则点P 的极线通过点Q ⇔ax p x Q +b2Qp Q p y x x y ++cy p y Q +d2pQ x x ++e 2pQ y y ++f=0⇔点P(x p ,y p )在直线q:ax Q x+b2y x x y Q Q ++cy Q y+d2Q x x ++e2Q y y ++f=0上⇔点Q 的极线也通过点P.推论1:两点连线的极点是此二点极线的交点,两直线交点的极线是此二直线极点的连线;证明:设两点A 、B 连线的极点是P,即点P 的极线经过点A 、B,由配极原则知点A 、B 的极线均过点P,即点P 是此二点极线的交点;同理可证:两直线交点的极线是此二直线极点的连线.推论2(共点共线):共线点的极线必共点;共点线的极点必共线.证明:设点A 、B 均在直线l 上,直线l 对应的极点为P,由配极原则知点A 、B 的极线均过点P,即点A 、B 的极线必共点;同理可证:共点线的极点必共线.推论3(中点性质):若圆锥曲线G 过点P 的弦AB 平行于点P 的极线,则点P 是弦AB 的中点.证明:设P(x 0,y 0),曲线G:ax 2+bxy+cy 2+2dx+2ey+f=0,则点P 的极线方程:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 2y y + +f=0,故可设AB:ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++λ=0,由点P(x 0,y 0)在直线AB 上⇒ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+λ=0⇒λ=-(ax 02+bx 0y 0+cy 02+2dx 0+2ey 0)⇒直线AB:ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y +=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0⇒ ax 0x+b200y x x y ++cy 0y+d 20x x ++e 20y y ++f=ax 02+bx 0y 0+cy 02+2dx 0+2ey 0+f,而该直线为以为P 中点的中点弦方程,即点P 是弦AB 的中点.[比例定理]:若过点P(x 0,y 0)的直线l 与曲线G:ax 2+bxy+cy 2+dx+ey+f=0相交于A 、B 两点,与直线:ax 0x+b200yx x y ++ 126 第15讲:极点与极线的性质cy 0y+d20x x ++e 2y y ++f=0交于点Q,则|PA||QB|=|QA||PB|. 证明:设直线l:⎩⎨⎧+=+=θθsin cos 00t y y t x x (t 为参数),代入ax 0x+b 200y x x y ++cy 0y+d 20x x ++e 20y y ++f=0得:(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+2(ax 02+bx 0y 0+cy 02+dx 0+ey 0+f)=0⇒t 0=-2θθθθsin 2cos sin cos 2000000200020cy by bx ax f ey dx cy y bx ax ++++++++;代入ax 2+bxy+cy 2+2dx+2ey+f=0得:(acos 2θ+bcos θsin θ+csin 2θ)t 2+(2ax 0cos θ+bx 0sin θ+by 0cos θ+2cy 0sin θ)t+(ax 02+bx 0y 0+cy 02+dx 0 +ey 0+f)=0⇒t 1+t 2=-θθθθθθθθ220000sin cos sin cos sin 2cos sin cos 2c b a cy by bx ax +++++,t 1t 2=θθθθ2200200020sin cos sin cos c b a fey dx cy y bx ax +++++++⇒t 0=21212t t t t +;而|PA||QB|= |QA||PB|⇔|t 1||t 2-t 0|=|t 1-t 0||t 2|⇔t 0=21212t t t t +成立. [面积定理]:已知点P 关于圆锥曲线G 的极线为l,过点P 的直线与圆锥曲线G 相交于A 、B 两点,分别过点A 、B 的两条平行线与直线l 交于点D 、C,记△APD 、△CPD 、△BPC 的面积分别为S 1,S 2,S 3,则:S 22=4S 1S 2.证明:以椭圆G:22a x +22b y =1(a>b>0)为例,设P(x 0,y 0),则极线l:12020=+b y y a x x .设A(x 1,y 1),B(x 2,y 2),并分别过点A 、B作l 的垂线,垂足分别为D 1、C 1,则||||11BC AD =|1||1|220220210210-+-+by y a x x b y y a x x =||||2220220222102102b a y y a x x b b a y y a x x b -+-+(注意到:a 2b 2=b 2x 12+a 2y 12,a 2b 2=b 2x 22+a 2y 2) =||||222222202202212212102102y a x b y y a x x b y a x b y y a x x b --+--+=|)()(||)()(|0222022201120112y y y a x x x b y y y a x x x b -+--+-(注意到:0101x x y y --=0202x x y y --=k)=||||0201x x x x --⋅||||22221212x b ky a x b ky a ++.又因||||BP AP =||||0201x x x x --,以下只需证||||22221212x b ky a x b ky a ++=1,即|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|,由⎪⎩⎪⎨⎧=+=+2222222222212212ba y a xb b a y a x b ⇒b 2(x 1-x 2)(x 1+x 2)+a 2(y 1- y 2)(y 1+y 2)=0⇒b 2(x 1+x 2)+a 2k(y 1+y 2)=0⇒a 2ky 1+b 2x 1=-(a 2ky 2+b 2x 2)⇒|a 2ky 1+b 2x 1|=|a 2ky 2+b 2x 2|⇒||||BP AP =||||11BC AD ,由△ADD 1∽△BCC 1⇒||||BC AD =||||BP AP ,设AC 与BD 交于点Q,由AD ∥BC ⇒||||BC AD =||||QC AQ ⇒||||BP AP =||||QC AQ ⇒PQ ∥BC ∥AD ⇒S △BAC =S △BDC ,两边同减S △BQC 得S △QAB =S △QDC ,又因S △PQA =S △PQD ,S △PQB =S △PQC ⇒S △PCD =S △QCD +S △PQD +S △PQC =S △QCD +S △PQA +S △PQB =S △QCD +S △QAB =2S △QAB ⇒S △QAD =S △PAD =S 1,S△QBC=S △PBC =S 3,S △QAB =21S △PCD =21S 2,注意到:QAB QBC QAB QAD S S S S ∆∆∆∆⋅=||||||||QA QC QB QD ⋅=1⇒2QAB S ∆=S △QAD S △QBC ⇒S 22=4S 1S 2. 例1:极点与极线的位置关系.[始源问题]:(2010年湖北高考试题)已知椭圆C:22x +y 2=1的两焦点为F 1 ,F 2,点P(x 0,y 0)满足0<220x +y 02<1,则|PF 1|+|PF 2|的取值范围为 ,直线20xx +y 0y=1与椭圆C 的公共点个数为 . [解析]:由0<220x +y 02<1知,点P 在椭圆C 内,所以直线20x x +y 0y=1与椭圆C 相离⇒公共点个数为0;2c ≤PF 1|+|PF 2|<2a ⇒ 2≤PF 1|+|PF 2|<22⇒|PF 1|+|PF 2|的取值范围为[2,22).[原创问题]:已知椭圆C:42x +32y =1,点P(x 0,y 0)满足42x +320y >1(x 0≠0),直线l:40x x +30y y =1.(Ⅰ)求直线l 与椭圆C 的公共点个数;(Ⅱ)若射线OP 与直线l 、椭圆C 分别交于点Q 、M,求证:|OP||OQ|=|OM|2.[解析]:(Ⅰ)因椭圆C:42x +32y =1⇔⎩⎨⎧==θθsin 3cos 2y x ,θ∈[0,2π),所以,直线l 与椭圆C 的公共点个数⇔关于θ的方程第15讲:极点与极线的性质 12720x cos θ+330y sin θ=1解的个数⇔直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数;由圆心O(0,0)到直线:20x x+330y y=1的距离d=341220y x +<1⇒直线:20x x+330y y=1与圆:x 2+y 2=1的公共点个数=2⇒直线l 与椭圆C 的公共点个数=2;(Ⅱ)因射线OP:y=00x y x(x 与x 0同号),与40x x +30y y =1联立得:40x x +0203x x y =1⇒x=202004312y x x +⇒y=202004312y x y +⇒Q(202004312y x x +,22004312y x y +)⇒|OP||OQ|=2020202043)(12y x y x ++;由y=00x y x 与42x +32y =1联立得:42x +20203x y x 2=1⇒x 2=2020204312y x x +⇒y 2=2020204312y x y +⇒|OM|2=x 2+y 2=2020204312y x x ++2020204312y x y +=2020202043)(12y x y x ++⇒|OP||OQ|=|OM|2.例2:抛物线中的共线性质.[始源问题]:(2010年大纲卷Ⅰ高考试题)已知抛物线C:y 2=4x 的焦点为F,过点K(-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D. (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设FB FA ⋅=98,求△BDK 的内切圆M 的方程. [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),直线l:y=k(x+1)(k ≠0),则D(x 1,-y 1),由⎩⎨⎧=+=xy x k y 4)1(2⇒ky 2-4y+4k=0⇒y 1+y 2=k 4,y 1y 2= 4;所以,点F 在直线BD 上⇔FB ∥FD ⇔(x 2-1):(x 1-1)=y 2:(-y 1)⇔y 1(ky 2-2)+y 2(k y1-2)=0⇔y 1y 2-k(y 1+y 2)=0;(Ⅱ)由FB FA ⋅=(x 1-1)(x 2-1)+y 1y 2=(k y 2-2)(k y 1-2)+y 1y 2=(1+21k )y 1y 2-k 2(y 1+y 2)+4=4(1+21k )-28k +4=8-24k=98⇒k=±43;根据对称性,不妨设k=43,则直线AB:3x-4y+3=0,且k KD =43⇒KF 平分∠AKD ⇒圆M 的圆心M 在x 轴上;(x 2-x 1)2=(x 1+x 2)2- 4x 1x 2=7162⇒k BD =1212y y x x +-=73⇒直线BD:3x-7y-3=0;设M(t,0)(-1<t<1),则由点M 到直线AB 与BD 的距离相等⇒5|1|3+t=4|1|3-t ⇒t=91⇒圆M:(x-91)2+y 2=94. [原创问题]:已知抛物线y 2=2px 及定点A(a,b),B(-a,0)(ab ≠0,b 2≠2pa),M 是抛物线上的点,设直线AM,BM 与抛物线的另一交点分别为M 1,M 2.求证:当M 点在抛物线上变动时(只要M 1,M 2存在且M 1≠M 2),直线M 1M 2恒过一个定点,并求出这个定点的坐标.[解析]:设M(2pt 2,2pt),M 1(2pt 12,2pt 1),M 2(2pt 22,2pt 2),则点B,M,M 2对应的极线分别为:x=a,2ty=x+2pt 2,2t 2y=x+2pt 22,由B,M,M 2三点共线⇒三线x=a,2ty=x+2pt 2,2t 2y=x+2pt 22共点⇒a=2ptt 2⇒t 2=pta2,点A,M 1对应的极线分别为:by=px+ap, 2t 1y=x+2pt 12,由A,M,M 1三点共线⇒三线by=px+ap,2ty=x+2pt 2,2t 1y=x+2pt 12共点⇒bp(t+t 1)=2p 2tt 1+ap ⇒t 1=ptb bta 2--,由⎪⎩⎪⎨⎧+=+=2222112222pt x y t pt x y t ⇒⎩⎨⎧+==)(22121t t p y t pt x ⇒⎪⎪⎩⎪⎪⎨⎧--=--=)2(2)2()2()(2pt b pt t p a b y pt b t bt a a x ⇒x-a=)2(22pt b t t p a --=b a 2y ⇒M 1,M 2对应极线的交点在定直线b p 2y=x+a, 即b p 22y=2p 2a x +上⇒直线M 1M 2恒过一个定点(a,bpa2). 128 第15讲:极点与极线的性质例3:抛物线中的比例性质.[始源问题]:(2009年全国高中数学联赛湖北初赛试题)已知抛物线C:y=21x 2与直线l:y=kx-1没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点. (Ⅰ)证明:直线AB 恒过定点Q;(Ⅱ)若点P 与(Ⅰ)中的定点Q 的连线交抛物线C 于M 、N 两点.证明:||||PN PM =||||QN QM . [解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线y=21x 2在点A 、B 处的切线方程分别为x 1x=y+y 1、x 2x=y+y 2,由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=02200110y y x x y y x x ⇒直线AB:x 0x=y+y 0(注意到:y 0=kx 0-1)⇒x 0x=y+kx 0-1⇒直线AB 过定点Q(k,1);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=y+y 0,得:t Q =θθcos sin 20020x y x --;代入y=21x 2得:t 2cos 2θ+2(x 0cos θ-sinθ)t+x 02-2y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin x -,t 1t 2=θ2020cos 2y x -⇒21212t t t t +=θθcos sin 20020x y x --⇒t Q =21212t t t t +;所以,||||PN PM =||||QN QM ⇔21t t= QQ t t t t --21⇔t Q =21212t t t t +成立. [原创问题]:已知抛物线C:x 2=4y 与直线l:y=x-2,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A 、B 为切点.(Ⅰ)证明:直线AB 恒过定点T;(Ⅱ)若过点P 的直线l 交抛物线C 于M 、N 两点,与直线AB 交于点Q.证明:||1PM +||1PN =||2PQ .[解析]:(Ⅰ)设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0),则抛物线C:x 2=4y 在点A 、B 处的切线方程分别为x 1x=2(y+y 1)、x 2x=(y+y 2),由点P(x 0,y 0)在这两切线上得:⎩⎨⎧+=+=)(2)(202200110y y x x y y x x ⇒直线AB:x 0x=2(y+y 0)(注意到:y 0=x 0-2)⇒x 0x=2y+2x 0-4⇒直线AB 过定点T(2,2);(Ⅱ)设直线MN:⎩⎨⎧+=+=θθsin cos 00t y y t x x ,代入直线AB:x 0x=2(y+y 0),得:t Q =θθcos sin 240020x y x --;代入x 2=4y 得:t 2cos 2θ+2(x 0cos θ-2sin θ)t+x 02-4y 0=0⇒t 1+t 2=2⋅θθθ20cos cos sin 2x -,t 1t 2=θ2020cos 4y x -⇒21212t t t t +=θθcos sin 240020x y x --⇒t Q =21212t t t t +;所以,||1PM +||1PN =||2PQ ⇔11t21t =Q t 2⇔t Q =21212t t tt +成立. 例4:抛物线中的面积关系.[始源问题]:(2009年湖北高考试题)过抛物线y 2=2px(p>0)的对称轴上一点A(a,0)(a>0),的直线与抛物线相交于M 、N两点,自M 、N 向直线l:x=-a 作垂线,垂足分别为M 1、N 1. (Ⅰ)当a=2p时,求证:AM 1⊥AN 1; (Ⅱ)记△AMM 1、△AM 1N 1、△ANN 1的面积分别为S 1、S 2、S 3,是否存在λ,使得对任意的a>0,都有S 22=λS 1S 3成立.若存在,求出λ的值;若不存在,说明理由.[解析]:(Ⅰ)当a=2p 时,A(2p ,0),设M(2pm 2,2pm),N(2pn 2,2pn),则M 1(-2p ,2pm),N 1(-2p ,2pn),由AM ∥AN ⇒(2pm 2- 2p ):(2pn 2-2p )=2pm:2pn ⇒mn=-41⇒1AM ⋅1AN =p 2+4p 2mn=0⇒AM 1⊥AN 1;第15讲:极点与极线的性质 129(Ⅱ)由AM ∥AN ⇒(2pm 2-a):(2pn 2-a)=2pm:2pn ⇒2pmn+a=0;因||||11NN MM =2222pn a pm a ++;当MN ⊥/x 轴时,||||AN AM =|2||2|22pn a a pm --=2222pn a a pm --;所以,||||11NN MM =||||AN AM ⇔2222pn a pm a ++=2222pn a a pm --⇔4p 2m 2n 2=a 2成立;当MN ⊥x 轴时,显然有||||11NN MM =||||AN AM ;设MN 1与NM 1交于点Q(点Q 即原点O),由MM 1∥NN 1⇒||||1QN MQ =||||11NN MM =||||AN AM ⇒AQ ∥MM 1∥NN 1;设∠MQM 1=α,则S 1=21|QM||QM 1|sin α,S 3 =21|QN||QN 1|sin α;又S △QMN =11N QM S ∆⇒S 2=11N QM S ∆+(1AQM S ∆+1AQN S ∆)=11N QM S ∆+(S △AQM +S △AQN )=11N QM S ∆+S △QMN =2S △QMN ;S 1S 3=21|QM||QM 1|sin α⋅21|QN||QN 1|sin α=21|QM||QN|sin α⋅21|QM 1||QN 1|sin α=S △QMN 11N QM S ∆=41S 22⇒S 22=4S 1S 3⇒存在λ=4,使得对任意的a>0,都有S 22=λS 1S 3成立.[原创问题]:已知抛物线C:y 2=4x,直线l:y=2x+2,过点P(1,1)的直线与抛物线C 交于A 、B 两点,A 、B 两点在直线l 上的射影点分别为N 、M,记△PAN 、△PMN 、△PBM 的面积分别为S 1、S 2、S 3. (Ⅰ)当AB ∥直线l 时,求证:P 是AB 的中点; (Ⅱ)求证:S 22=4S 1S 3.[解析]:(Ⅰ)设A(x 1,y 1),则y 12=4x 1;由P 是AB 的中点⇒B(2-x 1,2-y 1)⇒(2-y 1)2=4(2-x 1)⇒y 1=2x 1+1⇒点A 在直线y=2x+1上,同理可得点B 也在直线y=2x+1上⇒直线AB:y=2x+1⇒AB ∥直线l;由统一法知,当AB ∥直线l 时, P 是AB 的中点;(Ⅱ)设直线AB:⎩⎨⎧+=+=θθsin 1cos 1t y t x (t 为参数),代入y 2=4x 得:t 2sin 2θ+2(sin θ-2cos θ)t-3=0⇒t 1+t 2=2⋅θθθ2sin sin cos 2-,t 1t 2=-θ2sin 3;点A(1+t 1cos θ,1+t 1sin θ)到直线l 的距离|AN|=5|3sin cos 2|11+-θθt t ,点B(1+t 2cos θ,1+t 2sin θ)到直线l 的距离|BM|=5|3sin cos 2|22+-θθt t ⇒||||BM AN =|3sin cos 2||3sin cos 2|2211+-+-θθθθt t t t (由点A 、B 在直线l 的同侧⇒2t 1cos θ-t 1sin θ+3与t 2cos θ-t 2sin θ+3同号)=3sin cos 23sin cos 22211+-+-θθθθt t t t ;而||||PB PA =||||21t t (点A 、B 在点P 的异侧)=-21t t;所以,||||BM AN =||||PB PA ⇔3sin cos 23sin cos 22211+-+-θθθθt t t t=-21t t ⇔2(2cos θ-sin θ)t 1t 2+3(t 1+t 2)=0⇔2(2cos θ-sin θ)(-θ2sin 3)+3⋅2⋅θθθ2sin sin cos 2-=0成立; 以下同例题可证:S 22=4S 1S 3.例5:椭圆中的共线性质.[始源问题]:(2012年北京高考试题)已知曲线C:(5-m)x 2+(m-2)y 2=8(m ∈R).(Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设m=4,曲线C 与y 轴的交点为A,B(点A 位于点B 的上方),直线y=kx+4与曲线C 交于不同的两点M 、N,直线y=1与直线BM 交于点G.求证:A,G,N 三点共线.[解析]:(Ⅰ)由曲线C 是焦点在x 轴点上的椭圆⇔m-2>5-m>0⇔27<m<5.故m 的取值范围是(27,5); (Ⅱ)当m=4时,曲线C:x 2+2y 2=8⇒A(0,2),B(0,-2);设M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧=++=82422y x kx y ⇒(2k 2+1)x 2+16kx+24=0⇒△= 32(2k 2-3)>0⇒k 2>23;且x 1+x 2=-12162+k k ,x 1x 2=12242+k ;又由直线BM:y=112x y +x-2⇒G(2311+y x ,1),即G(6311+kx x ,1)⇒k AG =-1136x kx +=-3k -12x ,k AN =222x y -=222x kx +=k+22x ⇒k AN -k AG =34k +12x +22x =34k +2⋅2121x x xx +=34k +2⋅2416k -=0⇒A,G,N 三点共线.第(Ⅱ)问是本题的特色与亮点,其实质是共轭点的性质:设点P 与Q 是二次曲线G 的一对共轭点,过点Q 的直线AC 与曲线G 相交于A 、C 两点,AP 与曲线G 相交于另一点B,BQ 与曲线G 相交于另一点D,则P 、C 、D 三点共线.其中共轭点的定义:130 第15讲:极点与极线的性质若直线PQ 与圆锥曲线G 相交于A 、B 两点,且PA ⋅QB +PB ⋅QA =0,则称点P 与Q 是圆锥曲线G 的一对共轭点.[原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)过点D(-1,e),其中,e 是椭圆C 的离心率,椭圆C 的左、右顶点分别为A(-2,0)、B(2,0). (Ⅰ)求椭圆C 的方程;(Ⅱ)过点E(4,0)的直线l 与椭圆C 交于M 、N 两点,求证:直线AM 与BN 的交点P 在一条定直线上.[解析]:(Ⅰ)由a=2,21a +22b e =1⇒1+22b c =a 2⇒b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)设M(x 1,y 1),N(x 2,y 2),直线l:y=k(x-4),由⎩⎨⎧=+-=44)4(22y x x k y ⇒(1+4k 2)x 2-32k 2x+64k 2-4=0⇒x 1+x 2=224132k k +,x 1x 2=2241464k k +- ⇒k 2=)(4322121x x x x +-+,x 1x 2(1+4k 2)=64k 2-4⇒x 1x 2⋅)(8821x x +-=)(8]8)(5[42121x x x x +--+⇒2x 1x 2=5(x 1+x 2)-8;又由直线AM:y=211+x y (x+2),直线BN:y=222-x y (x-2)⇒直线AM 与BN 的交点P 的横坐标x 满足:211+x y (x+2)=222-x y (x-2)⇒2)4(11+-x x k (x+2)= 2)4(22--x x k (x-2)⇒x=83262122121----x x x x x x =83268)(5122121-----+x x x x x x =1⇒点P 在一条定直线x=1上.例6:椭圆中的中点性质.[始源问题]:(2008年全国高中数学联赛湖南初赛试题)如图,过直线l:5x-7y-70=0上的点P 作椭圆252x +92y =1的两条切线PM 、PN,切点分别为M 、N.(Ⅰ)当点P 在直线l 上运动时,证明:直线MN 恒过定点Q; (Ⅱ)当MN ∥l 时,定点Q 平分线段MN.[解析]:(Ⅰ)设P(7t+7,5t-5),则直线MN 的方程为:2577+t x+955-t y=1⇒(257x+95y)t+(257x-95y-1)=0,由257x+95y=0,且257x-95y-1=0⇒x=1425,y=-109⇒直线MN 恒过定点Q(1425,-109); (Ⅱ)MN ∥l ⇔2577+t :955-t =5:(-7)⇔t=53392⇒直线MN 的方程为:5x-7y-35533=0,代入椭圆方程252x +92y =1得:275332⨯x2 -23753325⨯x+25[(275533⨯)2-9]=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=725⇒定点Q 平分线段MN. [原创问题]:过点Q(1,1)作己知直线l:3x+4y=12的平行线交椭圆C:42x +32y =1于点M 、N. (Ⅰ)分别过点M 、N 作椭圆C 的切线l 1、l 2.证明:三条直线l 1、l 2、l 交于一点; (Ⅱ)证明:点Q 是线段MN 的中点;(Ⅲ)设P 为直线l 上一动点,过点P 作椭圆C 的切线PA 、PB,切点分别为A 、B,证明:点Q 在直线AB 上.[解析]:(Ⅰ)设M(x 1,y 1),N(x 2,y 2),切线l 1、l 2交于点P(x 0,y 0),由切线l 1:41x x+31y y=1,切线l 2:42x x+32yy=1均过点P(x 0, y 0)⇒41x x 0+31y y 0=1,42x x 0+32yy 0=1⇒直线MN:40x x+30y y=1;又由直线MN 过点Q(1,1)⇒40x +30y =1⇒3x 0+4y 0=12⇒点P 在直线l 上⇒三条直线l 1、l 2、l 交于一点; (Ⅱ)由直线MN ∥直线l ⇒40x :30y =41:31,又40x +30y =1⇒x 0=y 0=712⇒直线MN:3x+4y=7⇒点Q 是线段MN 的中点; (Ⅲ)设P(x 0,y 0),则直线AB:3x 0x+4y 0y=12⇒3x 0x+(12-3x 0)y=12⇒点Q 在直线AB 上.第15讲:极点与极线的性质 131例7:椭圆中的比例性质.[始源问题]:(2011年山东高考试题)在平面直角坐标系xOy 中,已知椭圆C:32x +y 2=1.如图所示,斜率为k(k>0)且不过原点的直线l 交椭圆C 于A,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线x=-3于点D(-3,m). (Ⅰ)求m 2+k 2的最小值; D y (Ⅱ)若|OG|2=|OD||OE|. G A (i)求证:直线l 过定点; E(ii)试问点B,G 能否关于x 轴对称?若能,求出 -3 O x 此时△ABG 的外接圆方程;若不能,请说明理由.[解析]:(Ⅰ)设E(-3λ,m λ),A(-3λ+t,m λ+kt),则B(-3λ-t,m λ-kt).由点A 、B 都在椭圆C 上⇒⎪⎩⎪⎨⎧=-+--=+++-3)(3)3(3)(3)3(2222kt m t kt m t λλλλ,两式相减得mk=1⇒m 2+k 2≥2mk=2,当且仅当m=k=1时等号成立,所以m 2+k 2的最小值=2.(Ⅱ)(i)设直线OG 与椭圆C 相交于另一点T,则由椭圆C 关于原点对称得:|OT|=|OG|.所以,|OG|2=|OD||OE|⇔DT EG ⋅+DG ET ⋅=0,由轨迹1知,点E 在直线-x+my=1上,即直线l 的方程为:-x+my=1⇒直线l 过定点(-1,0);(ii)若点B,G 关于x 轴对称⇒点G(-3λ-t,-m λ+kt),由点G 在直线OE 上⇒(-3λ-t):(-3λ)=(-m λ+kt):m λ⇒6m λ+mt =3kt(注意到mk=1)⇒m 2(6λ+t)=3t ⇒t=2236mm -λ,又由点E 在直线l 上⇒3λ+m 2λ=1⇒λ=231m +⇒B(-233m -,-23m m -)⇒31(233m -)2+(23mm -)2=1⇒m=1,k=1,λ=41,t=43⇒A(0,1),B(-23,-21),G(-23,21)⇒△ABG 的外接圆方程:(x+21)2+y 2=45. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),射线OP 与椭圆C 交于点N,与直线l 0:x+y-12=0交于点M,满足|OP||OM|=|ON|2,且椭圆C 在N 处的切线平行于直线l 0. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0交于点Q,与椭圆C 交于A 、B 两点(A 在P 与Q 之间),求证:|QA||PB|=|QB||PA|.[解析]:(Ⅰ)由射线OP:y=21x(x ≥0),直线l 0:x+y-12=0⇒M(8,4);设N(2t,t)(t>0),由|OP||OM|=|ON|2⇒5⋅80=4t2+t 2⇒t=2⇒N(4,2)⇒216a+24b=1,椭圆C 在N 处的切线:24ax +22by =1;由切线平行于直线l 0⇒24a=22b⇒a 2=2b 2⇒b 2=12,a2=24⇒椭圆C:242x +122y =1; (Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;而|QA||PB|=|QB||PA|⇔(t Q -t 1)(-t 2)=(t Q -t 2)t 1⇔(t 1+t 2)t Q -2t 1t 2=0⇔-θθθθ22cos sin 2)cos (sin 4++⋅θθcos sin 9+-2(-θθ22cos sin 218+)=0成立. [原创问题]:已知椭圆C:2222b y a x +=1(a>b>0)内一点P(2,1),过点P 且平行于x 轴直线被椭圆C 截得的弦长为46,过点P 且平行于y 轴直线被椭圆C 截得的弦长为210. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 的任意一条直线l 与直线l 0:x+y-12=0交于点Q,与椭圆C 交于A 、B 两点,若QA =λAP ,QB =μBP .求证:λ+132 第15讲:极点与极线的性质μ为定值.[解析]:(Ⅰ)由2222by ax +=1,令y=1得:|x|=ba12-b ;令x=2得:|y|=ab 42-a ;由题知,ba 12-b =26,ab 42-a =10⇒a 2=12422-b b ,22a b (a 2-4)=10⇒2412-b (12422-b b -4)=10⇒b 2=12⇒a 2=24⇒椭圆C:242x +122y =1;(Ⅱ)设直线l:⎩⎨⎧+=+=θθsin 1cos 2t y t x (t 为参数),代入242x +122y =1得:(2sin 2θ+cos 2θ)t 2+4(sin θ+cos θ)t-18=0⇒t 1+t 2=-11 θθθθ22cos sin 2)cos (sin 4++,t 1t 2=-θθ22cos sin 218+;代入x+y-12=0得:(sin θ+cos θ)t-9=0⇒t Q =θθcos sin 9+;由QA =λAP ,QB =μBP ⇒λ=11t t t Q -,μ=22t t t Q -⇒λ+μ=2-t Q ⋅2121t t t t +=2-θθcos sin 9+⋅9)cos (sin 2θθ+=0. 例8:椭圆中的共线性质.[始源问题]:(2002年澳大利亚数学奥林匹克试题)己知△ABC 为锐角三角形, R以AB 为直径的⊙K 分别交AC 、BC 于P 、Q,分别过A 和Q 作⊙K 的两条切线交 C于点R,分别过B 和P 作⊙K 的两条切线交于点S.证明:点C 在线段RS 上. P Q S[解析]:设⊙K:x 2+y 2=r 2,R(-r,a),S(r,b)⇒点R,S 对应的极线分别为:AQ:-rx+ay=r 2,BP:rx+by=r 2⇒Q(2222)(r a rr a +-,2222r a ar +),P(-2222)(r b rr b +-,2222r b br +) A K B⇒AP:y=r b (x+r),BQ:y=-r a (x-r),由⎪⎪⎩⎪⎪⎨⎧+=--=)()(r x r b y r x r a y ⇒⎪⎪⎩⎪⎪⎨⎧+=+-=b a ab y r b a b a x 2⇒C(b a b a +-r,b a ab +2) ⇒点C 对应的极线为:(a-b)rx+2aby=(a+b)r 2,由三线:-rx+ay=r 2,BP:rx+by=r 2,(a-b)rx+2aby=(a+b)r 2共点于(b a b a +-r, ba r +22)⇒R,C,S 三点共线⇒点C 在线段RS 上. 该题是平面几何定理:“过非等腰三角形的三个顶点作其外接圆的切线,顶点处的切线与其对边所在直线的交点共线.”的变形,以该定理为始源,取其特殊情况,并把圆压缩为椭圆得:[原创问题]:若对任意θ∈[0,2π),直线l:xcos θ+2ysin θ-2=0与椭圆C:2222b y a x +=1(a>b>0)均只有一个交点M. (Ⅰ)求椭圆C 的方程;(Ⅱ)当θ∈(0,2π)时,若直线l 与x 轴交于点N,椭圆C 的左、右顶点分别为A 、B,直线BM 上的点Q 满足QA ⊥x 轴,直线AM 与NQ 交于点P,求点P 的轨迹方程.[解析]:(Ⅰ)由⎩⎨⎧=-+=-+002sin 2cos 222222b a y a x b y x θθ⇒(a 2cos 2θ+4b 2sin 2θ)y 2-8b 2ysin θ+4b 2-a 2b 2cos 2θ=0⇒△=64b 4sin 2θ-4(a 2cos 2θ +4b 2sin 2θ)(4b 2-a 2b 2cos 2θ)=0⇒a 2-4+(4b 2-a 2)sin 2θ=0恒成立⇒a 2-4=0,4b 2-a 2=0⇒a 2=4,b 2=1⇒椭圆C:42x +y 2=1; (Ⅱ)由xcos θ+2ysin θ-2=0⇒N(θcos 2,0);(Ⅰ)知,M(2cos θ,sin θ)⇒直线AM:y=2cos 2sin +θθ(x+2),BM:y=2cos 2sin -θθ(x-2) ⇒Q(-2,θθcos 1sin 2-)⇒直线NQ:y=-cot θ(x-θcos 2);令2cos 2sin +θθ(x+2)=-cot θ(x-θcos 2)⇒(2cos 2sin +θθ+θθcos sin )x=θsin 2-1cos sin +θθ ⇒x=2⇒点P 的轨迹方程x=2(0<y<2).。
可以讲讲圆曲里的极点和极线相关问题和定理推导吗?
圆曲线是一种特殊的二次曲线,它具有很多独特的性质和定理。
其中,极点和极线是圆曲线中最重要的概念之一。
极点和极线是描述圆曲线上的点和直线之间的关系的数学工具。
我们将深入探讨圆曲线中的极点和极线相关问题和定理推导。
一、极点和极线的定义极点是圆曲线上的一个点,它具有一个特殊的性质:如果通过这个点画一条直线,那么这条直线和圆曲线的交点将是一对共轭点。
换句话说,极点是圆曲线上的一个点,它与圆曲线上的每个点都有一对共轭点。
极线是圆曲线上的一条直线,它具有一个特殊的性质:如果通过这条直线画一条过圆曲线上的任意一点的直线,那么这条直线和极线的交点将是一对共轭点。
换句话说,极线是圆曲线上的一条直线,它与圆曲线上的每个点都有一对共轭点。
二、极点和极线的性质1、极点和极线是一一对应的。
也就是说,圆曲线上的每个点都对应着一条唯一的极线,而圆曲线上的每条直线都对应着一个唯一的极点。
2、圆曲线上的任意两个点的共轭点都在同一条直线上。
这条直线就是它们的极线。
3、圆曲线上的任意两条直线的交点都在同一个点上。
这个点就是它们的极点。
4、圆曲线上的任意一点和它的极线上的任意一点都是共轭点。
5、圆曲线上的任意一条直线和它的极点上的任意一点都是共轭点。
三、极点和极线的定理1、极点定理对于圆曲线上的任意一条直线L和任意一点P,如果P不在L上,那么P在L上的投影点P'是P关于L的极点。
证明:设P关于L的投影点为P',那么P和P'是共轭点。
P'在圆曲线上的任意一条直线L'上的投影点P''是P'关于L'的极点。
又因为P'在L上,所以P''在L'上。
P''是P关于L'的投影点。
由于P和P'是共轭点,所以P'是P关于L的极点。
2、极线定理对于圆曲线上的任意一点P和任意一条直线L,如果P不在L上,那么L是P关于圆曲线的极线。
极点极线10个二级结论
极点极线10个二级结论
1. 极点是一个曲线上的点,只有一个极线通过它。
2. 两个不相交的曲线可以有一个公共的极点。
3. 如果一条直线通过一个二次曲线的两个不同的交点,那么这条直线的极线是这两个交点的连线。
4. 如果一条直线通过二次曲线的一个切点,那么这条直线的极线是通过这个切点的切线。
5. 一条直线的极点是通过这条直线的两个切线的交点。
6. 如果一个曲线有一个重射文,它的极线是在这两个重射文上的两点的直线。
7. 如果一个曲线有一个重射文,它的极点是重射文上的两个点的连线。
8. 两个不相交的曲线可以有两个公共的极点。
9. 如果两条直线辅助一条曲线的光锥轴,那么这两条直线的极点是一个复共轭对。
10. 一个复共轭对表示两个不相交的极点集中的点对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
222极点与极线,配极原则
(一)作图原理
定理(配极原则)如果P点的极线通过Q点,则Q点的极线也通过P点。
证明:这二阶曲线的方程为S 0 , P点的坐标为(P j, p2, P3), Q点的坐标为
(q i,q2,q3),于是,P点关于S 0的极线为S p 0,Q点关于S 0的极线为S q 0,因P点的极线通过Q点,所以有S pq 0,但S pq S qp。
所以有S qp 0,这表示Q点的极线S q 0通
过P点。
推论1两点连线的极点是此二点极线的交点;两直线交点的极线是此二直线极点的连线。
推论2共线点的极线必共点;共点线的极点必共线。
推论3设PA, PB为二次曲线的切线,若其中代B为切点,则AB为P点的极线.
定义3.3如果一个三点形的三个顶点恰是对边的极点,则此三点形叫做自极三点形。
(二)作图举例
例1、一个完全四点形的四哥顶点若在一条二阶曲线上,则这个完全四点形的对边三点形的顶点是其对边的极点。
证明:如下图10,设XYZ是完全四点形ABCD的对边三点形,于是
(BC,XE) 1,(AD,XF) 1,所以E,F均为关于二阶曲线的共轭点,从而直线
EF即直线YZ是X的极线。
同理,XY是Z的极线,由配极原则知,XZ是Y的极线
4
AT
例2、已知点P不在二阶曲线(C)上,求作P点关于(C)的极线。
解:过P点作(C)的两条割线,与(c)分别交于A, B与C, D,如下图所示,设AC 与BD交于点Q,AD与BC交于点R,则直线QR就是P点的极线。
事实上,由例1可知PQR是自极三点形。