最新RNA转录与转录后加工
RNA的转录及加工
![RNA的转录及加工](https://img.taocdn.com/s3/m/036209cb8bd63186bcebbcb0.png)
1.真核生物基因为什么要进行RNA转录后加工?(P209)原核生物没有细胞器的分化,转录与翻译同时进行。
真核生物有细胞器的分化,基因表达在时间和空间上存在明显间隔。
转录在细胞核内进行,翻译在细胞质内完成。
真核生物基因的初始转录产物被非编码序列或间隔区段分开,转录产物不连续,需要转录后加工。
2.细胞内RNA原初转录物一般都需要经过哪些过程的加工修饰?(P209)真核生物细胞内转录的RNA原初转录物要经过一系列变化,包括:①5’端形成帽子结构;②3’端形成一段PolyA;③切去内含子;④反式剪接;⑤部分核苷酸修饰;⑥RNA 编辑;⑦RNA的再编辑;⑧RNA链的断裂等过程。
3.真核生物RNA前体内含子的剪接分为哪几类?简述其区别。
(P217,P232)内含子的剪接分为三类:①自我剪接内含子②蛋白质或酶参与的内含子剪接③依赖于snRNA剪接的内含子。
区别:4.写出下列英文缩写的含义:PNaseP(212)、hnRNA(217)、RISC(252)、RNAi(251)、剪接体(220)、自我剪接(228)、反义RNA(251或上课PPT)、RNA干涉(251)、siRNA(252)、选择性剪接(235)、核酶(229)PNaseP:催化切除5’端额外核苷酸的酶hnRNA:核内不均一RNARISC:沉默复合物RNAi:RNA干涉剪接体:是mRNA前提在剪接过程中组装形成的多组分复合物,由多种snRNA和蛋白质因子组成,即剪接体是具有催化剪接过程的核塘核蛋白复合体。
自我剪接:rRNA的内含子能够自我剪接,无需剪接体反义RNA:与mRNA互补的RNA分子,也包括与其它RNA互补的RNA分子RNA干涉:在双链RNA引导的抑制过程中存在某种扩增效应,且有某种没活性参与其中。
siRNA:短干涉RNA,发生转录后基因沉默的小的双链RNA选择性剪接:一个基因的初始转录产物在不同的分化细胞、不同的发育阶段乃至不同的生理状态下,可以有不同的剪接方式,得到不同的成熟mRNA和蛋白质产物核酶:RNA本身具有酶的活性称为核酶5.名词解释:套索结构(219)、转酯反应(227)、Dicer酶(253)、顺式剪接(239)、反式剪接(239)套索结构:RNA剪接过程中的中间结构,其中有形成的带尾巴的环形结构转酯反应:在剪接体上完成剪接反应的生化本质是磷酸二酯键的转移,又称转酯反应Dicer酶:能将双链RNA特异性切成大小均一的片段的酶称为Dicer酶顺式剪接:存在与同一基因中的两个或多个外显子和内含子的剪接,称为顺式剪接反式剪接:几个外显子不在同一基因甚至不在同意染色体上的剪接叫反式剪接6.什么是RNA的自我剪接?自我剪接有哪些类型?(217或232)RNA的自我剪接:能自发进行剪接,无需酶或蛋白质参与。
RNA转录与转录后加工
![RNA转录与转录后加工](https://img.taocdn.com/s3/m/49d8d39927fff705cc1755270722192e44365813.png)
在大多数真核生物中,RNA聚合酶在转录终止后,会在3’端加上一段多聚腺苷酸尾巴。这个过程称为加尾。加 尾的主要作用是促进RNA从核内向细胞质转运,并保护RNA免受3’核酸外切酶的降解。此外,多聚腺苷酸尾巴 也是一些RNA结合蛋白的识别位点,参与mRNA的稳定性、定位和翻译调控。
剪接
总结词
剪接是指将转录的RNA中的内含子序列 去除,并将外显子序列连接起来的加工 过程。
详细描述
C-to-U编辑由胞嘧啶脱氨酶催化,将RNA 中的胞嘧啶转变为尿嘧啶,导致RNA序列 发生变化。这种编辑可以影响RNA的翻译 和功能。
其他编辑类型
总结词
除了A-to-I和C-to-U编辑外,还存在其他类型的RNA编辑,如C-to-A编辑、C-to-G编 辑等。
详细描述
这些编辑类型在特定的生物或组织中发生,由不同的酶催化,导致RNA序列发生不同 的变化。这些编辑可以影响RNA的稳定性、翻译和功能。
肽链终止
终止密码子出现时,核糖体 释放合成的多肽链,并回收 mRNA。
蛋白质合成的起始
起始氨基酸的识别
起始密码子(AUG)被识别并结合甲酰蛋氨酸,形成甲酰蛋氨酸-tRNA。
甲酰蛋氨酸-tRNA在核糖体上的定位
甲酰蛋氨酸-tRNA与起始因子结合,定位到核糖体的P位点。
起始复合物的形成
甲酰蛋氨酸-tRNA与mRNA结合,形成起始复合物。
02
翻译水平调控
03
细胞内环境调控
翻译过程中蛋白质的表达水平可 以影响RNA的稳定性。
细胞内的pH值、离子浓度等环境 因素也可以影响RNA的稳定性。
05
RNA的翻译和蛋白质合成
mRNA的翻译
翻译起始
mRNA在核糖体上定位并结 合翻译起始因子,形成起始 复合物。
简述rna转录后加工过程
![简述rna转录后加工过程](https://img.taocdn.com/s3/m/f4ca6df9c67da26925c52cc58bd63186bceb9202.png)
简述rna转录后加工过程摘要:1.RNA转录后加工过程的概述2.RNA转录后加工的主要步骤a.剪接b.剪切c.RNA编辑d.RNA降解3.各步骤的功能和意义4.实例分析5.RNA转录后加工在生物体中的作用6.研究RNA转录后加工的意义和前景正文:在我们生物体内,基因通过转录过程将DNA信息转化为RNA,但这只是RNA生命历程中的第一步。
接下来,RNA要经历一系列复杂的加工过程,才能最终发挥其生物学功能。
这个过程被称为RNA转录后加工。
RNA转录后加工的主要步骤包括剪接、剪切、RNA编辑和RNA降解。
剪接是指将RNA前体分子中的内含子去除,并将外显子连接成成熟的RNA分子。
这一过程通过特定的酶家族,如剪接酶,来实现。
剪切是指在RNA分子的3"端添加poly(A)尾巴,这是几乎所有真核生物RNA的共同特征。
RNA编辑则是指在RNA分子上发生碱基改变,这一过程依赖于特定的编辑酶和相应的底物。
最后,RNA降解是指RNA分子在细胞内的分解过程,这对于调控RNA水平和维持细胞内稳态至关重要。
这些加工过程对于RNA最终的生物学功能具有重要意义。
以剪接为例,它能消除RNA前体中无功能的RNA片段,使成熟的RNA更具特异性和高效性。
同时,RNA编辑能够改变RNA的序列,从而影响其翻译效率和稳定性。
在生物体中,RNA转录后加工涉及多种生物过程,如基因表达调控、病毒复制和免疫反应等。
对RNA转录后加工的研究,有助于我们深入了解生命过程中的基因表达调控机制,为治疗疾病和开发新型药物提供理论依据。
随着生物科学技术的不断发展,对RNA转录后加工的研究将越来越深入。
第六讲 RNA的转录与转录后加工(二)
![第六讲 RNA的转录与转录后加工(二)](https://img.taocdn.com/s3/m/1e8ee081ec3a87c24028c48d.png)
加帽加尾
真核生物mRNA的一般加工
mRNA的内部甲基化 mRNA的内部甲基化
真核生物mRNA分子内部一般都有甲基 真核生物mRNA分子内部一般都有甲基 mRNA 化的碱基,主要是N 甲基腺嘌呤( A)。 化的碱基,主要是N6-甲基腺嘌呤(m6A)。这 类修饰成分在hnRNA中已经存在, mRNA成 类修饰成分在hnRNA中已经存在,在mRNA成 hnRNA中已经存在 熟时无需再作用。 熟时无需再作用。
反 转 录 过 程
反 转 录 过 程
RNA的剪接 的剪接
Ⅰ型自我剪接
RNA的剪接 的剪接
Ⅱ 型 自 我 剪 接
RNA的剪接 的剪接
mRNA剪接体的剪接 核mRNA剪接体的剪接
RNA的剪接 的剪接
核 内
tRNA
前 体 的 酶 促 剪 接
RNA选择性剪切形式
不连续转录与病毒RNA为模板, RNA复制酶以病毒RNA为模板,4种5'-三磷酸核 复制酶以病毒RNA为模板 5'苷为底物, 5'→3'方向合成互补的RNA分子, 苷为底物,按5'→3'方向合成互补的RNA分子,但 方向合成互补的RNA分子 RNA复制酶中缺乏校正功能,因此RNA复制时错误率 RNA复制酶中缺乏校正功能,因此RNA复制时错误率 复制酶中缺乏校正功能 RNA 很高,这与反转录酶的特点相似。RNA复制酶只对 很高,这与反转录酶的特点相似。RNA复制酶只对 病毒本身的RNA起作用, 病毒本身的RNA起作用,而不会作用于宿主细胞中 RNA起作用 的RNA分子。 RNA分子。 分子
真 核 生 物
tRNA
加 工
RNA的转录后加工 的转录后加工
真核生物mRNA的一般加工 真核生物mRNA的一般加工 mRNA
RNA转录与转录后加工
![RNA转录与转录后加工](https://img.taocdn.com/s3/m/30369d102cc58bd63086bd30.png)
第7章RNA转录与转录后加工1本章主要内容1)转录的基本概念2)大肠杆菌RNA聚合酶及其转录3)真核生物的RNA聚合酶及其转录4)R NA的转录后加工和反转录2教学目的和要求通过本章学习,掌握转录的基本概念,原核转录的主要参与者(RNA聚合酶和启动子)以及原核转录的过程(起始、延伸和终止)。
1)掌握真核转录的三种主要RNA聚合酶、所转录的基因类型和参与转录过程各种因子等。
2)了解不同前体RNA的加丄机制。
3)了解反转录的特点3重点难点1)转录2)大肠杆菌RNA聚合酶、原核转录的过程3)真核生物的RNA聚合酶、真核转录过程、转录因子4)R NA的转录后加工、反转录4教学方法与手段讲授与交流互动相结合,采用多媒体教学。
5授课内容1)RNA转录概述2)细菌基因的转录3)真核生物的转录4)RNA的转录后加工5)RNA的反转录第一节RNA转录概述一、信使的发现•1955年Brachet用洋葱根尖和变形虫进行实验:一若加入RNA酶,则蛋白质合成就停止;一若再加入来自酵母的RNA, 乂可合成蛋白质。
这表明什么?•同年Goldstein和Plaut用同位素标记变形虫RXA前体---•发现标记的RNA在核内。
•标记追踪实验:经过一段时间乂发现被标记的RNA在细胞质中,•这表明什么?•1956年E. Volkin和L. Astrachan:•用同位素脉冲一追踪标记•表明T2噬菌体新合成的RNA的碱基比和自身的DM碱基比相似,而和细菌的碱基比不同。
T2感染细菌时注入的是DNA,而在细胞里合成的是RNA。
•这表明什么?•最令人信服的证据是Hall. B. D和Spiegeman, S的D\A-RNA的杂交实验:•将T2噬菌体感染E coli^产生的RNA分离出来,分别与T2和E c。
"的DNA进行分子杂交。
•结果这种RNA只能和T2的D\A形“杂种”链,而不能和E. coli的D\A进行杂交。
Jacob 和Monod预言:(1)这种“信使”应是一个多核昔酸;(2)其分子平均不小于5 105bp,足以携带一个基因的遗传信息;(3)它们至少是暂时连在核糖体上;(4)其碱基组成反映了DNA的序列;(5)它们能高速更新。
rna转录后加工方式
![rna转录后加工方式](https://img.taocdn.com/s3/m/ff14420be55c3b3567ec102de2bd960590c6d9ec.png)
rna转录后加工方式
RNA转录后加工(RNA post-transcriptional processing)是指在RNA分子合成之后,在细胞中对其进行修饰和修剪的过程。
这些加工方式可以使原始RNA分子成熟,并使其具有功能性。
以下是几种常见的RNA转录后加工方式:
剪接(Splicing):在真核生物中,基因的转录产物(前体mRNA)经过剪接过程,去除其中的内含子(intron),保留外显子(exon),从而形成成熟的mRNA分子。
剪接是通过剪接体(spliceosome)来完成的,其中包括snRNPs等辅助因子。
5'端修饰:RNA的5'端通常经过加上7-甲基鸟苷(7-methylguanosine)和三磷酸核苷酸链(PPP 链)的修饰,形成5'甲基鸟苷帽(5' cap)。
这个帽子在RNA稳定性、转运和翻译起重要作用。
3'端修饰:RNA的3'端通常经过加上聚腺苷酸(polyadenylation)的修饰。
这个poly(A)尾巴有助于RNA的稳定性、转运和翻译,并参与转录终止的过程。
RNA编辑:在一些生物体中,RNA的序列可以通过RNA编辑(RNA editing)进行改变。
这种编辑通常涉及碱基的替换、插入或删除,从而改变RNA的编码能力和功能。
RNA修饰:RNA分子可能会经历各种修饰,如甲基化、脱氨基、糖基化等。
这些修饰可以增强RNA的稳定性、调节翻译和识别,以及影响RNA的功能。
RNA转录后加工是一个复杂而精确的过程,它可以使原始的转录产物转化为功能性的RNA 分子。
这些加工方式对于基因表达调控和细胞功能起着重要的作用。
RNA转录和加工
![RNA转录和加工](https://img.taocdn.com/s3/m/43150bea6294dd88d0d26bc2.png)
套索结构的发现使人们认识到, 套索结构的发现使人们认识到,内含子的剪接是通过 两次转酯反应完成的。在第一次转酯反应中, 两次转酯反应完成的。在第一次转酯反应中,分支位 进攻5 剪接位点, 点A的2’-OH进攻5’剪接位点,使其断裂,同时这个A -OH进攻 剪接位点 使其断裂,同时这个A 与内含子的第一个核苷酸( 形成2 与内含子的第一个核苷酸(G)形成2’ , 5’ -磷酸 二酯键,内含子自身成环,形成套索结构。 剪接位 二酯键,内含子自身成环,形成套索结构。3’剪接位 点的断裂依赖于第二次转酯反应。上游外显子的3 - 点的断裂依赖于第二次转酯反应。上游外显子的3’- OH末端攻击3 剪接位点的磷酸二酯键 促使其断裂, OH末端攻击3’剪接位点的磷酸二酯键,促使其断裂, 末端攻击 剪接位点的磷酸二酯键, 使上游外显子的5 -0H和下游外显子的 - 和下游外显子的5 使上游外显子的5’-0H和下游外显子的5’-磷酸基团 连接,并释放出内含子,完成剪接过程。 连接,并释放出内含子,完成剪接过程。被切除的内 含子随后变成线性DNA 随即被降解。 DNA, 含子随后变成线性DNA,随即被降解。
通过分析体外剪接反应中形成的中间体, 通过分析体外剪接反应中形成的中间体,发现内含子 是以一种套索结构( 是以一种套索结构(lariat structure )的形式被切除 即内含子5 端的鸟苷酸依靠 , - 端的鸟苷酸依靠2 的,即内含子5’端的鸟苷酸依靠2’,5’-磷酸二酯键与 靠近内含子3 末端的一个腺苷酸连接在一起 末端的一个腺苷酸连接在一起。 靠近内含子3’末端的一个腺苷酸连接在一起。该腺苷 酸被称作分支位点 分支位点, 酸被称作分支位点,因为在套索结构中它形成了一个 RNA分支 分支。 RNA分支。
在内含子的剪接过程中, 在内含子的剪接过程中,剪接装置必须识别正确的 剪接位点,以保证外显子在剪接的过程中不被丢失, 剪接位点,以保证外显子在剪接的过程中不被丢失, 同时荫蔽的剪接位点要被忽略。 同时荫蔽的剪接位点要被忽略。所谓隐蔽剪接位点 (cryptic splice site )是指与真正的剪接位点 相似的序列。已经知道一类被称为SR蛋白( 相似的序列。已经知道一类被称为SR蛋白(SR SR蛋白 protein)的剪接因子在剪接位点的选择中发挥重要 protein) 作用。 作用。
RNA转录后的剪切与加工
![RNA转录后的剪切与加工](https://img.taocdn.com/s3/m/b1401c6c59fb770bf78a6529647d27284b733707.png)
目录
• rna转录后的剪切 • rna加工 • rna剪切与加工的相互关系 • rna剪切与加工的异常表达与疾病
01
rna转录后的剪切
剪切的定义与重要性
剪切的定义
RNA转录后,通过特定的核酸酶将 RNA分子从转录起始位点至终止位点 之间的序列进行切割的过程。
剪切的重要性
剪切的过程
在剪切过程中,核酸酶首先识别RNA分子中的特定位点,然后进行切割,产生两 个新的RNA分子片段。这些片段可能进一步被加工或降解。
剪切的调控机制
剪切的调控机制包括多种因素,如基因的启动子、增强子、沉默子和miRNA等。这些因素可以影响 RNA聚合酶的活性,从而影响转录的起始和终止,进一步影响剪切过程。
高效、更灵敏的技术用于研究这些过程。
04
rna剪切与加工的异常表 达与疾病
剪切与加工异常的表达模式
异常剪切
在某些情况下,RNA剪切过程可能发生异常,导致产生异常的RNA剪切产物。这些异常的剪切产物可能导致基因 表达的异常,进一步影响细胞功能。
异常加工
RNA加工过程中,如甲基化、磷酸化等修饰过程发生异常,也可能导致RNA的功能异常。这些异常的RNA可能 无法正确地指导蛋白质的合成,或者可能产生有毒性的RNA。
剪切与加工异常与疾病的关系
遗传性疾病
一些遗传性疾病的发生与RNA剪切与加工的异常有关。例 如,一些遗传性神经性疾病可能与特定基因的异常剪切有 关。
癌症
癌症的发生也常常伴随着RNA剪切与加工的异常。一些癌 症可能由于特定基因的异常剪切或加工而导致其表达水平 的上调或下调。
感染性疾病
某些感染性疾病也可能影响RNA的剪切与加工。例如,某 些病毒可能通过干扰宿主细胞的RNA剪切与加工过程来影 响基因表达,从而促进病毒的复制。
第06章RNA转录与转录后加工ppt课件
![第06章RNA转录与转录后加工ppt课件](https://img.taocdn.com/s3/m/54c44c0d76232f60ddccda38376baf1ffd4fe35b.png)
RNA的转录 (生物合成)
RNA Biosynthesis, Transcription
参与转录的物质
原料: NTP (ATP, UTP, GTP, CTP) 模板: DNA 酶: RNA聚合酶(RNA polymerase, RNA-pol) 其他蛋白质因子
第一节
模板和酶
Templates and Enzymes
4. mRNA的剪接
—— 除去hnRNA中的内含子,将外显子连接。 •snRNP与hnRNA结合成为并接体
①
目录
外显子1内含子源自UpA •剪接过程的二次转酯反应
外显子2 GpU
(twice transesterification)第一次转酯反应
pG-OH (ppG-OH, pppG-OH)
U-OH
参与RNA-polⅡ转录的TFⅡ
转录因子 亚基组成,分子量(kD) TFⅡD TBP* 38
TAF** TFⅡA 12,19,35 TFⅡB 33
TFⅡF TFⅡE TFⅡH
30,74 57() 34()
功能 结合TATA盒 辅助TBP-DNA结合 稳定TFⅡD-DNA复合物 促进RNA-polⅡ结合及作 为其他因子结合的桥梁 解螺旋酶
第二节
转录过程
The Process of Transcription
一、原核生物的转录过程
(一)转录起始
转录起始需解决两个问题: 1. DNA双链解开,使其中的一条链作为转录
的模板。 2. RNA聚合酶必须准确地与转录模板的起始
区域结合,形成第一个磷酸二酯键。
转录起始过程 1. RNA聚合酶全酶(2)与模板结合
目录
三、rRNA的转录后加工
rna转录后加工名词解释
![rna转录后加工名词解释](https://img.taocdn.com/s3/m/e2b4639e6e1aff00bed5b9f3f90f76c661374cba.png)
rna转录后加工名词解释
RNA转录后加工是指对在转录过程新合成的RNA的前体分子,进行进一步的加工修饰,从而使其成为具有生物学活性的、成熟的RNA 分子的过程,主要包括剪接、化学修饰等方式。
1.可变剪切:通过不同的剪切方式使得同一个基因可以产生多个不同的成熟mRNA,最终产生不同的蛋白质,从而使转录本和蛋白质结构与功能具有多样性。
2.RNA编辑:属于修饰的一种,是指转录后的RNA在编码区发生碱基的加入、丢失或转换等现象,可以在RNA水平上增加一些原来DNA模板上没有编码的碱基,从而扩充遗传信息。
因此,经过剪切或者修饰等加工,遗传信息的含量以及多样性大大增加。
转录后加工及RNA编辑
![转录后加工及RNA编辑](https://img.taocdn.com/s3/m/bfbf02ddb14e852458fb5773.png)
化在剪接之前由特异甲基化酶催化产生。这类修饰成分在
mRNA前体的加工过程中,起着被特异分子识别的作用
三、RNA的剪接、编辑和再编码
1、RNA剪接: 1.1 定义:把内含子从RNA前体中剪掉,连接外显 子组成成熟RNA的过程叫RNA的剪接。
线粒体和叶绿体rRNA基因的排列方式和转录后加工过
程一般与原核生物的rRNA基因类似。
Processing scheme of 45S human (HeLa) rRNA precursor
真核生物rRNA前体的 甲基化、假尿苷酸化 和切割都是由核仁小 RNA(snoRNA)指导 的。含有C/D框 snoRNA指导2’-O-P 甲基化;H/ACA框 snoRNA指导假尿苷酸 化
snRNA(small nuclear RNA)
大多数snRNA由RNA pol II转录,与特定蛋白形成 snRNP,存在与细胞核中
snRNA富含U,因此命名为U1、U2……
snRNP参与前体mRNA剪接、前体rRNA加工中甲
基化位点的确定
主要的核质snRNP由单一的snRNA和一组8个碱性
蛋白及多种snRNP特定蛋白组成。
译调控、或通过改变RNA的二级结构对翻译进行调控。
二、真核生物中RNA的一般加工
1、真核生物rRNA前体的加工
除5S rRNA外,由存在于核仁中的RNA polⅠ合成 不同的真核生物前体rRNA分子有差异,如酵母为7,000nt、 哺乳动物为13,500nt(47S) 前体含18S、5.8S、28S rRNA各一个 真核生物的5S rRNA由RNA pol Ⅲ合成121nt的转录产物, 几乎不需要加工 真核生物细胞的核仁是rRNA合成、加工和装配成核糖 体的场所。
转录后的加工过程及RNA复制
![转录后的加工过程及RNA复制](https://img.taocdn.com/s3/m/de415e72ef06eff9aef8941ea76e58fafab0459d.png)
➢ 外显子 (exon) : 基因组中出现在成熟mRNA分子中的序列。
➢ 内含子 (intron) : 位于外显子之间,出现在mRNA前体分子中, 剪接时被去除,不出现在成熟mRNA分子中。
E1
②
U6 U4
UG U5
UACUACA - AG
U1
U2
E2
U1、U4、U5 E1
③
U6 UG
UACUACA - AG
RNA复制酶 (RNA replicase)
RNA指导的RNA聚合酶 (RNA directed RNA polymerase, RDRP)
复制和转录的区别
模板 原料 酶 产物
配对
复制
转录Biblioteka 两股链均复制 模板链转录(不对称转录)
dNTP DNA聚合酶 子代双链DNA (半保留复制) A-T,G-C
mRNA前体经转酯反应切除内含子
剪接体参与mRNA前体的剪接(spliceosome)
剪接体: UsnRNP与mRNA前体结合形成的复合物
UsnRNP
snRNA
Uridine-rich small nuclear
ribonucleoprotein
核蛋白
分类:U1,U2,U4,U5,U6
可变剪接(alternate splicing of mRNA)
1. 各种RNA前体的加工主要有哪些类型? 2. 真核生物mRNA前体剪接部位的结构有 何特点? 3. 真核生物mRNA前体剪接部位的结构有何 特点?mRNA前体的内含子如何被切除的? 4. 为什么转录生成错误RNA远没有复制产 生错误DNA对细胞的影响大?
➢ 剪接和剪切 ➢ 3’-末端添加-CCA ➢ 碱基修饰
真核生物的转录和后加工
![真核生物的转录和后加工](https://img.taocdn.com/s3/m/9a80e7f09ec3d5bbfd0a74be.png)
– 隔断基因的线性表达而在剪接过程中被除去的 核酸序列。
鸡
卵
鸡卵清蛋
清
白基因
蛋
白
基
hnRNA
因
及
首、尾修饰
其 转
录
、
hnRNA剪接
转
录
后
成熟的mRNA
修
饰
3. 内含子的分类
I:主要存在于线粒体、叶绿体及某些低等真核生物 的 rRNA基因; II:也发现于线粒体、叶绿体,转录产物是mRNA; III:是常见的形成套索结构后剪接,大多数mRNA基
ppi
mRNA鸟苷酰转移酶 5` GpppN
pppG pi
mRNA
甲基化酶
(S-腺苷甲硫氨酸)CH3
5` m7GpppN
mRNA
注:帽子结构中G未甲基化,翻译效果差,但稳定性不变
帽子结构
3`-末端多聚腺苷酸的合成
• 先于剪接加工 • poly A polymerase 催化,转录后修饰
点序列(AAUAAA)提供信号 • 一般长度为100~200个腺苷酸
1. 转录起始前的上游区段
顺式作用元件(cis-acting element)
• 顺式作用元件是指与结构基因串联的特定DNA序列,是转录因子的结合位点,它们通 过与转录因子结合而调控基因转录的精确起始和转录效率。
AATAAA
OCT-1
翻译起始点
外显子
转录起始点
内
含
TATA盒
子
转录终止点
CAAT盒
GC盒
解聚现象。
•
核小体
转
录
延
RNA-Pol
长 转录方向
中
RNA的转录与转录后加工
![RNA的转录与转录后加工](https://img.taocdn.com/s3/m/3e653f59ff4733687e21af45b307e87101f6f8c0.png)
RNA的转录与转录后加工一、名词解释1、基因诊断2、RFLP3、启动子 4. 信号肽 5. 核受体 6.hnRNA7、基因治疗8、反义RNA9、核酶10、三链DNA11、SSCP12、管家基因13. 增强子14. 基础转录装置18. 重叠基因19.假基因20.RNA干扰21.酵母双杂交22.转录因子23.转录因子的结构24.衰减子25.内含子27.弱化子28.魔斑29.上游启动子元件30.DNA探针31.SD sequence 32.Ribozyme 33.Terminator二、填空题1、转录是以DNA一条链为模板的RNA的酶促合成。
我们把模板链称为-- --------。
2、数个生化反应可由----- -----------催化,这种具有催化功能的RNA可以剪切自身或其它的RNA分子,或者完成连接或自身剪接反应。
3.RNA酶的剪切分为()、()两种类型。
4.原核生物中有三种起始因子分别是()、()和()。
5.hnRNA与mRNA之间的差别主要有两点:(),()。
6.mRNA在转录开始后不久就与结合,形成颗粒,这种颗粒排列于mRNA 分子上,呈串珠状,就像核小体一样。
7、原始转录物的一些序列被_____________,叫做RNA编辑。
8. 真核生物mRNA的5'-帽子结构是_______,其3'末端有________结构。
9. 原核生物DNA指导的RNA聚合酶的核心酶的组成是___________.10. 真核生物RNA聚合酶III负责转录_________.11. 在转录过程中RNA聚合酶全酶的σ因子负责__________,核心酶负责________.三、选择题1、RNA合成的底物是------ ---------。
A dA TP, dTTP , dGTP , d CTPB A TP, TTP , GTP , CTPC A TP ,GTP, CTP,UTPD GTP, CTP,UTP,TTP2.模板DNA的碱基序列是3′—TGCAGT—5′,其转录出RNA碱基序列是:A.5′—AGGUCA—3′B.5′—ACGUCA—3′C.5′—UCGUCU—3′D.5′—ACGTCA—3′E.5′—ACGUGT—3′3、转录终止必需。
第14章RNA转录和转录后加工
![第14章RNA转录和转录后加工](https://img.taocdn.com/s3/m/794c195c48d7c1c708a14567.png)
The araBAD promoter is a weak promoter: CTGACG -- 18 -- TACTGT TTGACA -- 17 -- TATAAT
Promoter efficiencies can be increased or decreased by mutation
cooperative effect 提高ARII 的结合效率
当 ARII + CAP-cAMP promotion RNA pol. into -35 Box into -10 Box
starting transcription
当 Null AR II→ RNA pol. into -10 Box but transcription off
• 不对称转录:在DNA双链分子中,转录通常 只在DNA的一条链上进行,另一条链则不 能转录,但可能对转录起调节作用,这种 转录方式称不对称转录。
转录起始位点
二、细菌的RNA聚合酶及其转录
1、 E.coli RNA聚合酶
• E.coli只有一种聚合酶; • E.coli RNA pol全酶由5种亚基组成,即
的形成;链合成的起始与延伸
1407 碱性强,与模板链结合 613 识别启动子
91
σ因子:
Reusable; 修饰 RNA pol 的构型; 识别启动子,但无催化活性。
不同原核生物具有基本相同的核心酶,但σ亚基 有所差别,决定了原核生物基因的选择性表达。
1.2 原核生物RNA聚合酶抑制剂:
②RNA 在启动子上形成闭合的二元复合物
③在-10区域DNA双链打开,形成开放的二 元复合物 ④第1、2 rNTPs 结合上来,形成第一个磷酸二酯键,第 1个rNTP多为G,其次为A,很少为U, 其两侧分别为C 和T。 ⑤ RNA链合成了8~9个碱基,三元复合物
RNA的合成与加工转录后加工
![RNA的合成与加工转录后加工](https://img.taocdn.com/s3/m/789b53f6a6c30c2258019e7b.png)
一、原核生物(一)核糖体RNA:大肠杆菌共有7个核糖体RNA的转录单位,每个转录单位由16S、23S、5SRNA和若干转运RNA基因组成。
16S和23S之间常由转运RNA隔开。
转录产物在RNA酶III的作用下裂解产生核糖体RNA的前体P16和P23,再由相应成熟酶加工切除附加序列。
前体加工时还进行甲基化,产生修饰成分,特别是a-甲基核苷。
N4,2’-O二甲基胞苷(m4Cm)是16S核糖体RNA特有成分。
5S核糖体RNA一般无修饰成分。
(二)转运RNA:有60个基因,其加工包括:1.内切酶在两端切断,大肠杆菌RNA酶P是5’成熟酶2.外切酶从3’修剪,除去附加顺序。
RNA酶D是3’成熟酶3.3’端加上CCAOH,由转运RNA核苷酰转移酶催化,某些转运RNA已有,切除附加序列后即露出。
4.核苷的修饰:修饰成分包括甲基化碱基和假尿苷,修饰酶具有高度特异性。
甲基化对碱基和序列都有严格要求,一般以S-腺苷甲硫氨酸为甲基供体。
(三)信使RNA:细菌多数不用加工,转录与翻译是偶联的。
也有少数多顺反子信使RNA必须由内切酶切成较小的单位,然后翻译。
如核糖体大亚基蛋白与RNA聚合酶的b亚基基因组成混合操纵子,转录后需经RNA酶III切开,各自翻译。
因为RNA聚合酶的合成水平低得多,切开有利于各自的翻译调控。
较长的RNA会产生高级结构,不利于翻译,切开可改变其结构,从而影响其功能。
二、真核生物(一)核糖体RNA:基因拷贝数多,在几十到几千之间。
基因成簇排列在一起,由RNA聚合酶I转录生成一个较长的前体,哺乳动物为45S。
核仁是其转录、加工和装配成核糖体的场所。
RNA酶III等核酸内切酶在加工中起重要作用。
5SRNA基因也是成簇排列的,由RNA聚合酶III转录,经加工参与构成大亚基。
核糖体RNA可被甲基化,主要在核苷2’羟基,比原核生物甲基化程度高。
多数核糖体RNA没有内含子,有些有内含子但不转录。
(二)转运RNA:由RNA聚合酶III转录,加工与原核相似,但3’端的CCA 都是后加的,还有2’-O-甲基核糖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R N A转录与转录后加工第7章 RNA转录与转录后加工1 本章主要内容1)转录的基本概念2)大肠杆菌RNA聚合酶及其转录3)真核生物的RNA聚合酶及其转录4)RNA的转录后加工和反转录2 教学目的和要求通过本章学习,掌握转录的基本概念,原核转录的主要参与者(RNA聚合酶和启动子)以及原核转录的过程(起始、延伸和终止)。
1)掌握真核转录的三种主要RNA聚合酶、所转录的基因类型和参与转录过程各种因子等。
2)了解不同前体RNA的加工机制。
3)了解反转录的特点3 重点难点1) 转录2) 大肠杆菌RNA聚合酶、原核转录的过程3) 真核生物的RNA聚合酶、真核转录过程、转录因子4) RNA的转录后加工、反转录4 教学方法与手段讲授与交流互动相结合,采用多媒体教学。
5 授课内容1) RNA转录概述2)细菌基因的转录3)真核生物的转录4) RNA的转录后加工5) RNA的反转录第一节 RNA转录概述一、信使的发现•1955年Brachet用洋葱根尖和变形虫进行实验:–若加入RNA酶,则蛋白质合成就停止;–若再加入来自酵母的RNA,又可合成蛋白质。
这表明什么?•同年Goldstein和Plaut用同位素标记变形虫RNA前体——•发现标记的RNA在核内。
•标记追踪实验:经过一段时间又发现被标记的RNA在细胞质中,•这表明什么?•1956年E. Volkin和 L.Astrachan:•用同位素脉冲一追踪标记•表明T2噬菌体新合成的RNA的碱基比和自身的DNA碱基比相似,而和细菌的碱基比不同。
T2感染细菌时注入的是DNA,而在细胞里合成的是RNA。
•这表明什么?•最令人信服的证据是Hall.B.D和Spiegeman,S的DNA-RNA的杂交实验:•将T2噬菌体感染E.coli后产生的RNA分离出来,分别与T2和E.coli的DNA进行分子杂交。
•结果这种RNA只能和T2的DNA形“杂种”链,而不能和E.coli的DNA进行杂交。
Jacob和Monod预言:(1)这种“ 信使”应是一个多核苷酸;(2)其分子平均不小于5 105bp,足以携带一个基因的遗传信息;(3)它们至少是暂时连在核糖体上;(4)其碱基组成反映了DNA的序列;(5)它们能高速更新。
Jacob和Monod将它定名为: 信使RNA (Messenger RNA) 或mRNA。
二、几个基本概念•转录(transcription):是指以DNA为模板,在依赖于DNA的RNA聚和酶催化下,以4种rNTP(ATP、CTP、GTP和UTP)为原料,合成RNA的过程。
•在有些病毒中,RNA也可以指导合成RNA。
•转录是基因表达的第一步,也是最关键的一步。
三、 RNA合成的基本特点•1960年Weiss,S,B等发现RNA聚合酶(RNA Pol)。
其特点是:(1)以核糖核苷三磷酸(rNTR)为底物;(2)以DNA为模板;(3)按5′-3′方向合成;(4)无需引物的存在能单独起始链的合成;(5)第一个引入的rNTP是以三磷酸形式存在;(6)在体内DNA双链中仅一条链作为模板;(7)RNA的序列和模板是互补的。
确定有义链•1963 J.Marmur和Doty Spiegelnan区分有义链。
采用枯草杆菌的SP8噬菌体为材料,SP8 DNA 双链有“ 轻”、“ 重”差异明显。
•现在将作为转录模板的DNA单链称为模板链或反义链(antisen strand),•非模板链称为有义链(sense strand)或编码链。
•在体外DNA的两条链都可作为RNA合成的模板。
•怎样用实验证实mRNA的合成总是延着5’- 3′方向进行的?•E.coli在 0︒C时需13秒钟才能加上一个核苷酸,但在37︒C每秒就可加上40个核苷酸; •利用这个差别以14C来标记U, 在0︒C培养E.coli,。
•提取这种正在伸长的mRNA分子,发现——•14C标记首先出现在伸长的3′端,因此可以证明合成是延着5′-3′方向进行的。
四、 RNA合成和DNA复制的区别(1) 转录时只有一条DNA链为模板,而复制时两条链都可作为模板;(2) DNA-RNA杂合双链不稳定,RNA合成后释放,而DNA复制叉形成后一直打开,新链和母成子链;(3) RNA合成不需引物,而DNA复制需引物;(4) 转录的底物是rNTP,复制的底物是dNTP;(5) 聚合酶系不同。
第二节细菌基因的转录一、细菌的RNA聚合酶1. 全酶 (Holo Enzyme)和核心酶(Core Enzyme)(1) 全酶(Holo Enzyme)•用于转录的•依靠空间结构与DNA模板结合 (σ与核心酶结合后引起的构象变化)•专一性地与DNA序列(启动子)结合•结合常数:1014/mol•半衰期:数小时(107/mol 1秒以下)•转录效率低,速度缓慢(σ的结合)(2)核心酶(Core Enzyme)•作用于转录的延伸过程(终止)•依靠静电引力与DNA模板结合(蛋白质中碱性基团与DNA的磷酸根之间)•非专一性的结合(与DNA的序列无关)•结合常数:1011/mol•半衰期:60秒E.Coli RNApol 的亚基组成core enzyme(3)全酶的组装过程•此外,新发现的一种ω亚基的功能尚不清楚。
2. 各亚基的特点和功能(1)σ因子• σ因子可重复使用• 修饰RNApol构型• 使Holo Enzyme 识别启动子的Sextama Box(-35区),并通过σ与模板链结合E.coli中不同的 因子可识别不同的启动子(2)α因子•核心酶的组建因子•促使RNApol 与DNA模板链结合•前端α因子--使模板DNA双链解链为单链•尾端α因子--使解链的单链DNA重新聚合为双链(3)β因子•完成NMP之间的磷酸酯键的连接;•Editing 功能 (排斥与模板链不互补的碱基);•与Rho (ρ)因子竞争RNA 3’-end;•构成Holoenzyme 后,β因子含有两个位点;•I site (initiation site . Rifs): 该位点专一性地结合;•ATP或者GTP (需要高浓度的ATP或GTP);•E site(elongation site RifR): 对NTP非专一性地结合(催化作用和Editing功能). (4)β’ 因子•参与RNA非模板链(sense strand)的结合(充当SSB)•有义DNA链结合位点(β’亚基提供)•DNA/RNA杂交链结合位点(β亚基提供)•双链DNA解链位点(前端α亚基提供)•单链DNA重旋位点(后端α亚基提供)•σ因子作用位点原核生物RNApol (Core) 的结构与功能RNA pol 执行多种功能(1) 识别DNA双链上的启动子;(2) 使DNA变性在启动子处解旋成单链;(3) 通过阅读启动子序列,RNA pol确定它自己的转录方向和模板链;(4)最后当它达到终止子时,通过识别停止转录。
二、原核生物转录的起始延伸1.启动子(promoter)的结构和功能启动子(promoter):是指DNA分子上被RNA聚合酶识别并结合形成起始转录复合物的区域,它还包括一些调节蛋白因子的结合位点。
启动子由两个部分组成上游部分— CAP-cAMP结合位点:(基因表达调控的正控制位点)CAP(catabolite gene Activator Protein)降解物基因活化蛋白,环腺苷酸(cAMP)的受体蛋白下游部分— RNApol的进入(结合)位点-35 ~ -10包括识别位点和结合位点(R B位点)2. RNA聚合酶的进入位点(1)Sextama 框(Sextama Box)–-35序列,RNA聚合酶的松弛(初始)结合位点–RNA聚合酶依靠其σ亚基识别该位点,为转录选择模板——识别位点(R位点)–大多数启动子中共有序列为 T82T84G78A65C54A45–重要性:很大程度上决定了启动子的强度(RNApol 的σ因子)(2) Pribonow 框(Pribonow Box)•-10序列是由Pribnow和Schaller(1975)发现,故也称为Pribnow框盒(Pribnow box)。
•-10序列,RNA聚合酶的牢固结合位点——结合位点(B位点)•一致序列:T80A95T45A60A50T9(TATP U AT),因此又称TATA Box•位置范围-4 到-13(3)转录起始位点(I)•+1位点•RNA聚合酶的转录起始位点•转录开始时模板上的第一个碱基在原核中常为A或G•而且位置固定典型启动子的结构3.起始过程(1) 全酶与模板DNA接触,生成非专一的,不稳定的复合物在模板上移动;(2) 起始识别:全酶与-35序列结合,产生封闭的酶-启动子二元复合物(closedbinary complex);(3) 全酶紧密地结合在-10序列处,模板DNA局部变性,形成开放的启动子二元复合体;(4) 酶移动到I,第一个rNTP转录开始,σ因子释放,形成酶-启动子-rNTP三元复合体(ternary complex)。
图起始过程图RNA核心酶和全酶在DNA上的分布:①σ和1/3的RNA pol结合成全酶,或在非特异位点的松散复合体中,或在启动子中的二元复合体中;②其中半数的核心酶从事转录;③余下的核心酶大量存在于闭合松散复合体中;④估计数量很少的全酶是游离的。
4.RNA链延伸三原核生物转录的终止1.终止子的种类(1)不依赖ρ因子的终止子(内在终止子) :体外实验中,只有核心酶和终止子就足以使转录终止(2)依赖ρ因子的终止子:蛋白质辅助因子--ρ因子存在时,核心酶终止转录两者有共同的结构特征(序列差异)①不依赖ρ因子的终止子(强终止子)•结构特征:☻ 一是形成一个发夹结构茎…. 7~20 bp的IR序列形成(富含G/C)环….中间不重复序列形成发夹结构的突变可阻止转录的终止☻ 二是6 ~ 8 个连续的U串(发夹结构末端)②、依赖ρ因子的终止子a 结构 IR序列中的 G/C 对含量较少发夹结构末端没有固定特征b 靠与ρ的共同作用而实现终止2.原核生物转录的终止(1)不依赖ρ因子的终止子终止转录①新生RNA链发夹结构形成造成高度延宕(典型的有60秒左右)②RNApol暂停为终止提供了机会,6 ~ 8个连续的U串可能为RNApol与模板的解离提供了信号RNA-DNA之间的 rU-dA 结合力较弱于是:RNA-DNA解离→三元复合体解体→ RNApol解离→转录终止③真正的终止点不固定,在 U串中的任何一处④IR序列和U串同等重要IR中的G/C对含量的减少U串的缩短或缺失⑤DNA上与U串对应的为富含A/T的区域说明:AT富含区在转录的终止和起始中均起重要的作用(2)依赖ρ因子的终止子终止转录①通读(read through):ρ因子的转录终止过程中, RNApol 转录了 IR 序列之后,虽发生一定时间的延宕,但如果没有ρ因子存在,则RNApol 会继续转录②ρ因子a、活性形式为六聚体促进转录终止的活性,NTPase 活性b、RNA长度大于50nt时,依赖RNA的NTPase活性最大说明:ρ因子识别和结合的是RNA③ρ因子对终止子的作用a、ρ因子与RNA结合(终止子上游的某一处,RNA的5’端)b、ρ因子沿RNA从5’→3’移动(NTP水解供能)(终止子处的较长时间的延宕给ρ因子追赶的机会)c、ρ因子与 RNApol 相互作用而造成转录的终止RNA Pol转录DNA●ρ因子附着到RNA识别位点上●ρ因子跟在R NA Pol 后沿RNA移动● RNAPol在终止位点停下,并被ρ因子追上●在转录泡中ρ因子使DNA-RNA杂种双链解开●转录终止,释放出RNA Pol, ρ子和RNA④终止反应还需要 RNA 与 DNA 的相互作用•即:需要一定的RNA序列•因为:其与模板的结合力必须弱到一定数值,才能配合ρ因子与 RNApol 的作用(发夹结构下游的AU序列)•序列不同的终止子→不同的终止程度→基因表达调控的途径之一要点回顾◆几个基本概念5’----GCAGTACATGTC-----3’编码链 DNA3’----CGTCATGTACAG-----5’模板链5’----GCAGUACAUGUC-----3’ mRNAN -----Ala--Val--His--Val------C 蛋白质➢不对称转录1.DNA双链上,一股链可转录,另一股不转录。