计算中心天体的质量和密度
高中物理天体密度公式
![高中物理天体密度公式](https://img.taocdn.com/s3/m/65ecc8236ad97f192279168884868762cbaebb4f.png)
高中物理天体密度公式天体密度是物理学中一个重要的概念,它指的是天体单位体积内所含的质量。
在天文学中,我们常常需要计算天体的密度,以了解其内部结构和性质。
而在高中物理中,我们可以使用天体密度公式来进行计算,该公式可以帮助我们快速准确地得出天体的密度数值。
天体密度公式可以表示为:ρ = m / V其中,ρ代表天体的密度,m代表天体的质量,V代表天体的体积。
根据这个公式,我们可以通过已知的质量和体积来计算天体的密度。
下面我们将通过两个具体的例子来说明如何使用这个公式。
首先我们来考虑地球的密度。
已知地球的质量约为5.97×10^24千克,体积约为1.08×10^12立方千米。
将这些数值代入天体密度公式,我们可以得到地球的密度:ρ = 5.97×10^24 / 1.08×10^12 ≈ 5.53千克/立方千米地球的密度约为5.53千克/立方千米。
这意味着地球单位体积内的质量为5.53千克,可以帮助我们了解地球内部的物质分布情况。
接下来,我们考虑一个更具挑战性的例子,太阳的密度。
已知太阳的质量约为1.989×10^30千克,体积约为1.41×10^18立方千米。
将这些数值代入天体密度公式,我们可以得到太阳的密度:ρ = 1.989×10^30 / 1.41×10^18 ≈ 1.41克/立方厘米太阳的密度约为1.41克/立方厘米。
与地球相比,太阳的密度要大得多。
这是因为太阳内部存在着极高的温度和压力,导致物质更加紧密地堆积在一起。
除了地球和太阳,我们还可以利用天体密度公式计算其他天体的密度。
例如,我们可以计算月球的密度,已知月球的质量约为7.34×10^22千克,体积约为2.20×10^10立方千米。
将这些数值代入公式,我们可以得到月球的密度。
通过计算,我们可以得到月球的密度约为3.33克/立方厘米。
月球的密度相对较小,这意味着其内部物质的堆积程度相对较低。
2024年高一物理寒假提升(人教版)第二十天:万有引力理论的成就(解析版)
![2024年高一物理寒假提升(人教版)第二十天:万有引力理论的成就(解析版)](https://img.taocdn.com/s3/m/172b6006ff4733687e21af45b307e87101f6f82f.png)
第二十天:万有引力理论的成就万有引力定律的内容的考点:1、预言彗星的回归,发现未知天体;2、根据已知量计算出天体的质量;3、计算中心天体的质量和密度;4、已知近地表运行周期求密度;5、已知地月/卫系统常识可以求出的物理量;6、不同纬度的重力加速度;7、其他星球表面的重力加速度;8、在地球上空距离地心r=R+h 处的重力加速度;9、天体自转对自身结构及表面g 的影响;10、不计自转,万有引力与地球表面的重力加速度。
知识点1:万有引力理论的成就一、“称量”地球的质量解决思路:若不考虑地球自转的影响,地球表面的物体的重力等于地球对物体的引力。
解决方法:mg =Gmm 地R 2。
得到的结论:m 地=gR 2G,只要知道g 、R 、G 的值,就可计算出地球的质量。
知道某星球表面的重力加速度和星球半径,可计算出该星球的质量。
二、计算天体的质量解决思路:质量为m 的行星绕阳做匀速圆周运动时,行星与太阳间的万有引力充当向心力。
解决方法:Gmm 太r 2=m 4π2T 2r 。
得到的结论:m 太=4π2r 3GT 2,只要知道引力常量G ,行星绕太阳运动的周期T 和轨道半径r 就可以计算出太阳的质量。
已知引力常量G ,卫星绕行星运动的周期和卫星与行星之间的距离,可计算出行星的质量。
运用万有引力定律,不仅可以计算太阳的质量,还可以计算其他天体的质量。
以地球质量,月球的已知量为例,介绍几种计算天体质量的方法。
已知量求解方法质量的求解公式月球绕地球做匀速圆周运动的周期为T,半径为r 根据万有引力等于向心力,得222GM mm rr T月地月2324rMGT地月球绕地球做匀速圆周运动的半径r和月球运行的线速度v 地球对月球的引力等于月球做匀速圆周运动的向心力,得22M m vG mr r月地月2/M rv G地月球运行的线速度v和运行周期T 地球对月球的引力等于月球做匀速圆周运动的向心力,得2M mG m vr T月地月和22/M mG m v rr月地月两式消去r,解得:3/(2)M v T G地地球的半径R和地球表面的重力加速度g 物体的重力近似等于地球对物体的引力,得2M mmg GR地2R gMG地三、天体密度的计算类型分析方法已知天体表面的重力加速度g和天体半径R。
高中天体物理公式总结
![高中天体物理公式总结](https://img.taocdn.com/s3/m/e7b36769b307e87101f696ba.png)
高中天体物理公式总结那么物理公式中关于天体运动公式有哪些呢?下面给大家带来高中天体物理公式,希望对你有帮助。
高中天体物理公式1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11Nm2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r 地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}强调:(1)天体运动所需的向心力由万有引力提供,F向=F万; (2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小;(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
高中物理易错知识点1.受力分析,往往漏“力百出对物体受力分析,是物理学中最重要、最基本的知识,分析方法有“整体法与“隔离法两种。
对物体的受力分析可以说贯穿着整个高中物理始终,如力学中的重力、弹力(推、拉、提、压)与摩擦力(静摩擦力与滑动摩擦力),电场中的电场力(库仑力)、磁场中的洛伦兹力(安培力)等。
在受力分析中,最难的是受力方向的判别,最容易错的是受力分析往往漏掉某一个力。
在受力分析过程中,特别是在“力、电、磁综合问题中,第一步就是受力分析,虽然解题思路正确,但考生往往就是因为分析漏掉一个力(甚至重力),就少了一个力做功,从而得出的答案与正确结果大相径庭,痛失整题分数。
万有引力专题02:中心天体质量和密度的估算
![万有引力专题02:中心天体质量和密度的估算](https://img.taocdn.com/s3/m/ae660514da38376baf1faeda.png)
专题02:中心天体质量和密度的估算模块一:知识点归纳1、中心天体质量和密度常用的估算方法2、应用公式时注意区分“两个半径”和“两个周期”(1)天体半径和卫星的轨道半径,通常把天体看成一个球体,天体的半径指的是球体的半径.卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径.卫星的轨道半径大于等于天体的半径.(2)自转周期和公转周期,自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间.自转周期与公转周期一般不相等.模块二:典型例题1、为了研究某彗星,人类先后发射了两颗人造卫星.卫星A在彗星表面附近做匀速圆周运动,运行速度为v,周期为T;卫星B绕彗星做匀速圆周运动的半径是彗星半径的n倍.万有引力常量为G,则下列计算不正确的是( )A .彗星的半径为vT2π B .彗星的质量为v 3T4πGC .彗星的密度为3πGT2 D .卫星B 的运行角速度为2πT n32、我国计划于2019年发射“嫦娥五号”探测器,假设探测器在近月轨道上绕月球做匀速圆周运动,经过时间t (小于绕行周期),运动的弧长为s ,探测器与月球中心连线扫过的角度为θ(弧度),引力常量为G ,则( )A .探测器的轨道半径为 θtB .探测器的环绕周期为 πt θC .月球的质量为 s 3Gt 2θD .月球的密度为 3θ24Gt模块三:针对训练1、通过观测冥王星的卫星,可以推算出冥王星的质量。
假设卫星绕冥王星做匀速圆周运动,除了引力常量外,至少还需要两个物理量才能计算出冥王星的质量。
这两个物理量可以是( )A .卫星的速度和角速度B .卫星的质量和轨道半径C .卫星的质量和角速度D .卫星的运行周期和轨道半径2、近年来,人类发射了多枚火星探测器,对火星进行科学探究,为将来人类登上火星、开发和利用火星资源奠定了坚实的基础。
如果火星探测器环绕火星做“近地”匀速圆周运动,并测得该探测器运动的周期为T ,则火星的平均密度ρ的表达式为(k 是一个常数)( ) A .ρ=kTB .ρ=kTC .ρ=kT2D .ρ=k GT 23、火星成为我国深空探测的第二颗星球,假设火星探测器在着陆前,绕火星表面匀速飞行(不计周围其他天体的影响),宇航员测出飞行N 圈用时t ,已知地球质量为M ,地球半径为R ,火星半径为r ,地球表面重力加速度为g 。
求中心天体的质量与密度
![求中心天体的质量与密度](https://img.taocdn.com/s3/m/a0bc017bd0d233d4b04e6919.png)
求天体的加速度、质量、密度一.知识聚焦 1。
加速度:表面上 mg MmG=2R得2g R GM = 非表面 ()m a R MmG=+2h 得)(2R a h GM +=万有引力与航天 )基础知识:一、研究对象:绕中心天体的行星或卫星r m v r Mm G 22= G r v M 2= (已知线速度与半径)22ωmr r Mm G = G r M 32ω= (已知角线速度与半径) 22)2(T mr r Mm G π= GT r M 232)2(π= (已知周期与半径) 总结:线速度vr ,这三个物理量中,任意组合二个,一定能求出中心天体的质量M 。
或者说:中心天体的质量M 、及三个物理量中,只要知道其中的两个,可求出其它物理量。
二、研究对象:绕中心天体表面运行的行星或卫星R m v RMm G 22= G R v M 2= (已知线速度与半径)22ωmR R Mm G = G R M 32ω= (已知角线速度与半径) G πωρ432=(已知角速度) 22)2(T mR R Mm G π=已知周期与半径已知周期)如果绕中心天体表面运转,三、研究对象:距离地面h 高处的物体,万有引力等于重力mg h R MmG =+2)( G h R g M 2)(+= (已知某高度处的重力加速度与距离)四、研究对象:地球表面的物体,万有引力等于重力mg R Mm G =2 G gR M 2= (已知中心天体表面的重力加速度与半径) GRgπρ43=训练题(真题)1宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为3L ,已知两落地点在同一水平面上,该星球的半径为R ,引力常量为G,求该星球的质量M 和密度ρ.图21[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为221gt y =设初始平抛小球的初速度为v ,则水平位移为x=vt .有2222)()21(L vt gt =+ 错误!当以2v 的速度平抛小球时,水平位移为x'= 2vt .所以有2222)3()2()21(L vt gt =+ ②在星球表面上物体的重力近似等于万有引力,有mg=G 2RMm③联立以上三个方程解得22332Gt LR M =而天体的体积为334R V π=,由密度公式V M =ρ得天体的密度为RGt L 223πρ=。
高考物理考题一 天体质量(密度)的估算
![高考物理考题一 天体质量(密度)的估算](https://img.taocdn.com/s3/m/16ccadc56c175f0e7dd13710.png)
考题一 天体质量(密度)的估算求解中心天体质量、密度的方法1.利用天体表面的重力加速度g 和天体半径R 求解 由于G Mm R 2=mg ,故天体质量M =gR 2G .2.利用卫星绕天体做匀速圆周运动求解(1)已知卫星的轨道半径r 和该轨道上的重力加速度g ,根据GMm r 2=mg ,得M =gr 2G ;(2)已知卫星线速度v 和轨道半径r ,根据GMm r 2=m v 2r 得M =r v 2G ;(3)已知卫星运转周期T 和轨道半径r ,由GMm r 2=m 4π2T 2r 得M =4π2r 3GT 2;(4)已知卫星线速度v 和运转周期T ,根据GMm r 2=m v 2πT 和r =v T 2π得M =v 3T 2πG.3.天体密度的估算一般在质量估算的基础上,利用M =ρ·43πR 3进行.例1 宇宙中有两颗相距无限远的恒星S 1、S 2,半径均为R 0.图1分别是两颗恒星周围行星的公转周期T 2与半径r 3的图象,则( )图1A.恒星S 1的质量大于恒星S 2的质量B.恒星S 1的密度小于恒星S 2的密度C.恒星S 1的第一宇宙速度大于恒星S 2的第一宇宙速度D.距两恒星表面高度相同的行星,S 1的行星向心加速度较大解析 两颗恒星周围的行星绕恒星做匀速圆周运动,万有引力提供向心力,G Mm r 2=m 4π2T 2r ,变形得T 2r 3=4π2GM .故图象的斜率越大,质量越小.故恒星S 1的质量小于恒星S 2的质量.故A 错.因为两颗恒星的半径相等,所以体积相等,故恒星S 1的密度小于恒星S 2的密度,故B 对.由G MmR 2=m v 2R变形后得第一宇宙速度v = GMR,即质量越大,第一宇宙速度越大.故恒星S 1的第一宇宙速度小于恒星S 2的第一宇宙速度,故C 错.行星向心加速度a =GMr 2,行星距两恒星表面高度相同,故质量越大,加速度越大,故D 错. 答案 B 变式训练1.地质勘探发现某地区表面的重力加速度发生了较大的变化,怀疑地下有空腔区域.进一步探测发现在地面P 点的正下方有一球形空腔区域储藏有天然气,如图2所示.假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计.如果没有该空腔,地球表面正常的重力加速度大小为g ;由于空腔的存在,现测得P 点处的重力加速度大小为kg (k <1).已知引力常量为G ,球形空腔的球心深度为d ,则此球形空腔的体积是( )图2A.kgd GρB.kgdGρ C.(1-k )gd GρD.(1-k )gd 2Gρ答案 D解析 如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值,因此,如果将空腔填满,地面质量为m 的物体重力为mg ,没有填满时是kmg ,故空腔填满后引起的引力为(1-k )mg ;由万有引力定律,有:(1-k )mg =G ρVmd 2,解得:V =(1-k )gd 2Gρ,D对.2.某行星外围有一圈厚度为d 的发光带(发光的物质),简化为如图3甲所示模型,R 为该行星除发光带以外的半径.现不知发光带是该行星的组成部分还是环绕该行星的卫星群,某科学家做了精确地观测,发现发光带绕行星中心的运行速度与到行星中心的距离r 的关系如图乙所示(图中所标量为已知),则下列说法正确的是( )图3A.发光带是该行星的组成部分B.该行星的质量M =v 20RGC.行星表面的重力加速度g =v 20RD.该行星的平均密度为ρ=3v 20R4πG (R +d )3答案 BC解析 若发光带是该行星的组成部分,则其角速度与行星自转角速度相同,应有v =ωr ,v 与r 应成正比,与图不符,因此该发光带不是该行星的组成部分,故A 错误,发光带是环绕该行星的卫星群,由万有引力提供向心力,则有:G Mm r 2=m v 2r 得该行星的质量为:M =v 2r G;由题图知,r =R 时,v =v 0,则有:M =v 20R G .故B 正确.当r =R 时有mg =m v 2R ,得行星表面的重力加速度g =v 20R ,故C 正确.该行星的平均密度为ρ=M 43πR 3=3v 204πGR 2,故D 错误,故选B 、C.3.“嫦娥二号”绕月卫星于10月1日18时59分57秒在西昌卫星发射中心发射升空,并获得了圆满成功.“嫦娥二号”新开辟了地月之间的“直航航线”,即直接发射至地月转移轨道,再进入距月面约h =1×105 m 的圆形工作轨道,开始进行科学探测活动.设月球半径为R ,月球表面的重力加速度为g 月,万有引力常量为G ,则下列说法正确的是( ) A.由题目条件可知月球的平均密度为3g 月4πGRB.“嫦娥二号”在工作轨道上绕月球运行的周期为2π R G 月C.“嫦娥二号”在工作轨道上的绕行速度为g 月(R +h )D.“嫦娥二号”在工作轨道上运行时的向心加速度为(R R +h )2g 月答案 AD解析 在月球表面重力与万有引力相等,由G mM R 2=mg 月可得月球质量M =g 月R 2G ,据密度公式可得月球密度ρ=MV =g 月R 2G 43πR 3=3g 月4πGR,故A 正确;根据万有引力提供圆周运动的向心力有 G Mm (R +h )2=m (R +h )4π2T 2,可得周期T = 4π2(R +h )3GM= 4π2(R +h )3g 月R 2,故B 错误;根据万有引力提供圆周运动的向心力有 G mM(R +h )2=m v 2R +h可得“嫦娥二号”绕行速度v =GMR +h= g 月R 2R +h,故C 错误; 根据万有引力提供圆周运动的向心力有 G mM (R +h )2=ma , 可得“嫦娥二号”在工作轨道上的向心加速度 a =GM (R +h )2=(R R +h)2g 月,故D 正确. 考题二 人造卫星问题解答卫星问题的三个关键点 1.根据G Mmr2=F向=m v 2r =mrω2=mr 4π2T2=ma ,推导、记忆v = GMr、ω= GMr 3、T = 4π2r 3GM 、a =GMr2等公式. 2.理解掌握第一宇宙速度的意义、求法及数值、单位.3.灵活应用同步卫星的特点,注意同步卫星与地球赤道上物体的运动规律的区别与联系.例2 (·江苏·7)如图4所示,两质量相等的卫星A 、B 绕地球做匀速圆周运动,用R 、T 、E k 、S 分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有( )图4A.T A >T BB.E k A >E k BC.S A =S BD.R 3A T 2A =R 3B T 2B解析 由GMm R 2=m v 2R =m 4π2T 2R 和E k =12m v 2可得T =2π R 3GM, E k =GMm 2R ,因R A >R B ,则T A >T B ,E k A <E k B ,A 对,B 错; 由开普勒定律可知,C 错,D 对. 答案 AD 变式训练4.(·全国丙卷·14)关于行星运动的规律,下列说法符合史实的是( ) A.开普勒在牛顿定律的基础上,导出了行星运动的规律 B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律 答案 B解析 开普勒在天文观测数据的基础上总结出了开普勒天体运动三定律,找出了行星运动的规律,而牛顿发现了万有引力定律.5.水星或金星运行到地球和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星凌日”.已知地球的公转周期为365天,若将水星、金星和地球的公转轨道视为同一平面内的圆轨道,理论计算得到水星相邻两次凌日的时间间隔为116天,金星相邻两次凌日的时间间隔为584天,则下列判断合理的是( ) A.地球的公转周期大约是水星的2倍 B.地球的公转周期大约是金星的1.6倍 C.金星的轨道半径大约是水星的3倍D.实际上水星、金星和地球的公转轨道平面存在一定的夹角,所以水星或金星相邻两次凌日的实际时间间隔均大于题干所给数据 答案 BD解析 水星相邻两次凌日的时间间隔为t =116天, 设水星的周期为T 1,则有:2πT 1t -2πT 2t =2π, 代入数据解得T 1≈88天,可知地球公转周期大约是水星的4倍,故A 错误; 金星相邻两次凌日的时间间隔为584天,设金星的周期为T 3,则有:2πT 3t -2πT 2t =2π,代入数据解得T 3≈225天,可知地球的公转周期大约是金星的1.6倍,故B 正确; 根据G Mm r 2=mr (2πT )2,得r = 3GMT 24π2,因为水星的公转周期大约是金星的0.4倍,则水星的轨道半径大约是金星的0.5倍,故C 错误;由所给资料,若运行轨道平面不存在夹角,那么行星凌日间隔时间会与理论时间一致,而实际与理论不同,故运行轨道平面必然存在夹角,故D 正确.考题三 双星与多星问题1.双星问题的模型构建对于做匀速圆周运动的双星问题,双星的角速度(周期)以及向心力大小相等,基本方程式为G M 1M 2L 2=M 1r 1ω2=M 2r 2ω2,式中L 表示双星间的距离,r 1,r 2分别表示两颗星的轨道半径,L =r 1+r 2.2.做匀速圆周运动的双星问题中需要注意的几个关键点(1)双星绕它们连线上的某点做匀速圆周运动,两星轨道半径之和与两星距离相等; (2)双星做匀速圆周运动的角速度必相等,因此周期也必然相等;(3)双星做匀速圆周运动的向心力由双星间相互作用的万有引力提供,大小相等;(4)列式时须注意,万有引力定律表达式中的r 表示双星间的距离,而不是轨道半径(双星系统中两颗星的轨道半径一般不同).抓住以上四个“相等”,即向心力、角速度、周期相等,轨道半径之和与两星距离相等,即可顺利求解此类问题.例3 (12分)天体A 和B 组成双星系统,围绕两球心连线上的某点做匀速圆周运动的周期均为T .天体A 、B 的半径之比为2∶1,两天体球心之间的距离为R ,且R 远大于两天体的半径.忽略天体的自转,天体A 、B 表面重力加速度之比为4∶1,引力常量为G ,求A 天体的质量. [思维规范流程]每式各2分. 变式训练6.美国在2月11日宣布“探测到引力波的存在”.天文学家通过观测双星轨道参数的变化来间接验证引力波的存在,证实了GW150914是一个36倍太阳质量的黑洞和一个29倍太阳质量的黑洞合并事件.假设这两个黑洞绕它们连线上的某点做圆周运动,且这两个黑洞的间距缓慢减小.若该黑洞系统在运动过程中各自质量不变且不受其他星系的影响,则关于这两个黑洞的运动,下列说法正确的是( ) A.这两个黑洞运行的线速度大小始终相等B.这两个黑洞做圆周运动的向心加速度大小始终相等C.36倍太阳质量的黑洞轨道半径比29倍太阳质量的黑洞轨道半径大D.随两个黑洞的间距缓慢减小,这两个黑洞运行的周期也在减小 答案 D解析 这两个黑洞共轴转动,角速度相等,根据v =ωr 可知,由于不知道两个黑洞的转动半径关系,所以线速度大小不一定相等,故A 错误;根据a =ω2r 可知,由于不知道两个黑洞的转动半径关系,所以向心加速度大小不一定相等,故B 错误;两个黑洞都是做圆周运动,则Gm 1m 2r 2=m 1ω2r 1=m 2ω2r 2,可以得到半径与质量成反比关系,质量大的半径小,故选项C 错误;根据G m 1m 2r 2=m 14π2r 1T 2可得,m 2=4π2r 2GT 2r 1,根据G m 1m 2r 2=m 24π2r 2T 2可得,m 1=4π2r 2T 2r 2,所以m 1+m 2=4π2r 2GT 2(r 1+r 2)=4π2r 3GT 2,当m 1+m 2不变时,r 减小,则T 减小,即双星系统运行周期会随间距减小而减小,故D 正确.7.由三颗星体构成的系统,叫做三星系统.有这样一种简单的三星系统:质量刚好都相同的三个星体a 、b 、c 在三者相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同周期的圆周运动,若三个星体的质量均为m ,三角形的边长为a ,万有引力常量为G ,则下列说法正确的是( ) A.三个星体做圆周运动的轨道半径为a B.三个星体做圆周运动的周期均为2πaa3GmC.三个星体做圆周运动的线速度大小均为3GmaD.三个星体做圆周运动的向心加速度大小均为3Gma 2答案 B解析 由几何关系知,它们的轨道半径为r =a 232=33a ,故A 错误;根据合力提供向心力有:2·Gm 2a 2cos 30˚=ma ′=m v 2r =mr 4π2T 2,得星体做圆周运动的周期为:T =2πa a3Gm,线速度为:v =Gm a ,向心加速度为:a ′=3Gma2,故B 正确,C 、D 错误. 专题规范练1.有研究表明,目前月球远离地球的速度是每年3.82±0.07 cm.则10亿年后月球与现在相比( )A.绕地球做圆周运动的周期变小B.绕地球做圆周运动的加速度变大C.绕地球做圆周运动的线速度变小D.地月之间的引力势能变小 答案 C解析 对月球进行分析,根据万有引力提供向心力,则:GMm r 2=m (2πT)2r ,则:T =4π2r 3GM,由于半径变大,故周期变大,故选项A 错误.根据GMm r 2=ma ,则:a =GMr 2,由于半径变大,故加速度变小,故选项B 错误;根据GMmr 2=m v 2r,则v =GMr,由于半径变大,故线速度变小,故选项C 正确;由于月球远离地球,万有引力做负功,故引力势能变大,故选项D 错误.2.3月8日,马来西亚航空公司从吉隆坡飞往北京的航班MH370失联,MH370失联后多个国家积极投入搜救行动,在搜救过程中卫星发挥了巨大的作用.其中我国的北斗导航系统和美国的GPS 导航系统均参与搜救工作,北斗导航系统包含5颗地球同步卫星,而GPS 导航系统由运行周期为12小时的圆轨道卫星群组成,下列说法正确的是( ) A.发射人造地球卫星时,发射速度只要大于7.9 km/s 就可以 B.北斗同步卫星的线速度与GPS 卫星的线速度之比为312C.北斗同步卫星的机械能一定大于GPS 卫星的机械能D.卫星向地面上同一物体拍照时,GPS 卫星的拍摄视角小于北斗同步卫星的拍摄视角 答案 B解析 发射不同的人造地球卫星,发射速度要求是不相同的,故A 错;北斗同步卫星的周期是24 h ,GPS 导航系统卫星的周期为12小时,根据开普勒第三定律可得半径比为34,万有引力提供向心力,由v =GMr ,得线速度之比为312,B 对;不知道北斗同步卫星和GPS 卫星的质量,无法比较机械能,C 错;GPS 卫星半径小于北斗同步卫星运动半径,得GPS 卫星的拍摄视角大于北斗同步卫星的拍摄视角,D 错.3.(多选)我国志愿者王跃曾与俄罗斯志愿者一起进行“火星 500”的模拟实验活动.假设王跃登陆火星后,测得火星的半径是地球半径的12,质量是地球质量的19.已知地球表面的重力加速度是g ,地球的半径为R ,王跃在地球表面能竖直向上跳起的最大高度为h ,忽略自转的影响.下列说法正确的是( ) A.火星的密度为2g3πGRB.火星的第一宇宙速度与地球的第一宇宙速度相等C.火星表面的重力加速度为4g 9D.王跃在火星表面能竖直向上跳起的最大高度为9h4答案 ACD4.(·四川理综·3)国务院批复,自起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km ,远地点高度约为2 060 km ;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km 的地球同步轨道上.设东方红一号在远地点的加速度为a 1,东方红二号的加速度为a 2,固定在地球赤道上的物体随地球自转的加速度为a 3,则a 1、a 2、a 3的大小关系为( ) A.a 2>a 1>a 3 B.a 3>a 2>a 1 C.a 3>a 1>a 2 D.a 1>a 2>a 3答案 D解析 由于东方红二号卫星是同步卫星,则其角速度和赤道上的物体角速度相等,根据a =ω2r ,r 2>r 3,则a 2>a 3;由万有引力定律和牛顿第二定律得,G Mmr 2=ma ,由题目中数据可以得出,r 1<r 2,则a 2<a 1;综合以上分析有,a 1>a 2>a 3,选项D 正确.5.(·天津理综·3)如图1所示,我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图1A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接 答案 C解析 若使飞船与空间实验室在同一轨道上运行,然后飞船加速,所需向心力变大,则飞船将脱离原轨道而进入更高的轨道,不能实现对接,选项A 错误;若使飞船与空间实验室在同一轨道上运行,然后空间实验室减速,所需向心力变小,则空间实验室将脱离原轨道而进入更低的轨道,不能实现对接,选项B 错误;要想实现对接,可使飞船在比空间实验室半径小的轨道上加速,然后飞船将进入较高的空间实验室轨道,逐渐靠近空间实验室后,两者速度接近时实现对接,选项C 正确;若飞船在比空间实验室半径小的轨道上减速,则飞船将进入更低的轨道,不能实现对接,选项D 错误.6.(多选)已知地球自转周期为T 0,有一颗与同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径的四分之一,该卫星两次在同一城市的正上方出现的时间间隔可能是( ) A.T 04 B.3T 04 C.3T 07 D.T 07答案 CD解析 设地球的质量为M ,卫星的质量为m ,运动周期为T ,因为卫星做圆周运动的向心力由万有引力提供,有:GMm r 2=4π2mrT2,解得:T =2πr 3GM. 同步卫星的周期与地球自转周期相同,即为T 0.已知该人造卫星的运行半径为同步卫星轨道半径的四分之一,所以该人造卫星与同步卫星的周期之比是:T T 0=r 3(4r )3=18,解得T =18T 0.设卫星至少每隔t 时间才在同一地点的正上方出现一次,根据圆周运动角速度与所转过的圆心角的关系θ=ωt 得:2πT t =2n π+2πT 0t ,解得t =nT 07,当n =1时t =T 07,n =3时t =3T 07,故A 、B 错误,C 、D 正确.7.据新华社北京3月21日电,记者21日从中国载人航天工程办公室了解到,已在轨工作1 630天的“天宫一号”目标飞行器在完成与三艘神舟飞船交会对接和各项试验任务后,由于超期服役两年半时间,其功能已于近日失效,正式终止了数据服务.根据预测,“天宫一号”的飞行轨道将在今后数月内逐步降低,并最终进入大气层烧毁.若“天宫一号”服役期间的轨道可视为圆且距地面h (h ≈343 km),运行周期为T ,地球的半径为R ,下列关于“天宫一号”的说法正确的是( )A.因为“天宫一号”的轨道距地面很近,其线速度小于同步卫星的线速度B.女航天员王亚平曾在“天宫一号”中漂浮着进行太空授课,那时她不受地球的引力作用C.“天宫一号”进入外层稀薄大气一小段时间内,克服气体阻力的功小于引力势能的减小量D.由题中信息可知地球的质量为4π2R 3GT 2答案 C解析 根据万有引力提供向心力可知:G Mmr 2=m v 2r,解得:v =GMr,由于“天宫一号”的轨道半径小于同步卫星的半径,则其线速度大于同步卫星的线速度,故A 错误;航天员在“天宫一号”中处于失重状态,地球对她的万有引力提供她随“天宫一号”围绕地球做圆周运动的向心力,不是不受地球的引力作用,故B 错误;根据动能定理可知引力与空气阻力对“天宫一号”做的总功应为正值,而引力做的功等于引力势能的减少,即“天宫一号”克服气体阻力做的功小于引力势能的变化,故C 正确; 根据万有引力提供向心力可知, G Mm(R +h )2=m 4π2(R +h )T 2, 解得:M =4π2(R +h )3GT 2,故D 错误.8.宇宙间是否存在暗物质是物理学之谜,对该问题的研究可能带来一场物理学的革命.为了探测暗物质,我国在12月17日成功发射了一颗被命名为“悟空”的暗物质探测卫星.已知“悟空”在低于同步卫星的轨道上绕地球做匀速圆周运动,经过时间t (t 小于其运动周期),运动的弧长为L ,与地球中心连线扫过的角度为θ(弧度),引力常量为G ,则下列说法中正确的是( )A.“悟空”的质量为L 3Gθt 2B.“悟空”的环绕周期为2πtθC.“悟空”的线速度大于第一宇宙速度D.“悟空”的向心加速度小于地球同步卫星的向心加速度 答案 B解析 “悟空”绕地球做匀速圆周运动,根据万有引力提供向心力,只能求出地球质量,不能求出“悟空”的质量,故A 错误;“悟空”经过时间t (t 小于“悟空”的周期),它运动的弧长为L ,它与地球中心连线扫过的角度为θ(弧度),则“悟空”的角速度为:ω=θt ,周期T=2πω=2πtθ,故B 正确;“悟空”在低于地球同步卫星的轨道上绕地球做匀速圆周运动,万有引力提供向心力,则有:GMmr 2=m v 2r,得v =GMr,可知卫星的轨道半径越大,速率越小,第一宇宙速度是近地卫星的环绕速度,故“悟空”在轨道上运行的速度小于地球的第一宇宙速度,故C 错误;由GMm r 2=ma 得:加速度a =G Mr 2,则知“悟空”的向心加速度大于地球同步卫星的向心加速度,故D 错误.9.一半径为R 、密度均匀的自行旋转的行星,其赤道处的重力加速度为极地处重力加速度的n 倍(n <1).求该行星的同步卫星距离地面的高度.答案 (311-n-1)R 解析 设行星的质量为M ,自转的角速度为ω,其极地处的重力加速度为g .对质量为m 1的物体位于极地和赤道时,根据万有引力定律 G Mm 1R2=m 1g G Mm 1R2-nm 1g =m 1Rω2 设同步卫星的质量为m 2,距离地面的高度为h ,根据万有引力定律 G Mm 2(R +h )2=m 2(R +h )ω2 整理得h = (311-n-1)R . 10.假设某天你在一个半径为R 的星球上,手拿一只小球从离星球表面高h 处无初速度释放,测得小球经时间t 落地.若忽略星球的自转影响,不计一切阻力,万有引力常量为G .求: (1)该星球的质量M ;(2)在该星球上发射卫星的第一宇宙速度大小v . 答案 (1)2hR 2Gt 2 (2)2hRt解析 (1)根据h =12gt 2可知g =2ht 2由GMmR 2=mg 可得M =2hR 2Gt2(2)根据GMmR 2=mg =m v 2R可得v =2hRt.。
高考物理一轮复习导学案:万有引力定律(第1课时)
![高考物理一轮复习导学案:万有引力定律(第1课时)](https://img.taocdn.com/s3/m/a856631d178884868762caaedd3383c4bb4cb4e5.png)
万有引力定律及应用第1课时-----导学思练测学习目标:1.了解开普勒三定律内容,会用开普勒第三定律进行相关计算。
2.理解万有引力定律的内容,知道适用范围。
3.掌握计算天体质量和密度的方法。
一、考情分析考情分析试题情境生活实践类地球不同纬度重力加速度的比较学习探究类开普勒第三定律的应用,利用“重力加速度法”、“环绕法”计算天体的质量和密度,卫星运动参量的分析与计算,人造卫星,宇宙速度,天体的“追及”问题,卫星的变轨和对接问题,双星或多星模型。
二、考点总结与提升(一)开普勒行星运动定律1、一段探索的历程回扣教材,阅读课本P46--P48,涉及人物:托勒密、哥白尼、第谷、开普勒...2、开普勒行星定律【知识固本】定律内容图示或公式开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是,太阳处在的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的相等开普勒第三定律(周期定律) 所有行星轨道的半长轴的跟它的公转周期的的比都相等a3T2=k,k是一个与行星无关的常量【深入思考】已知同一行星在轨道的两个位置的速度:近日点速度大小为v 1,远日点速度大小为v 2,近日点距太阳距离为r 1,远日点距太阳距离为r 2。
(1)v 1与v 2大小什么关系? (2)试推导r 1v 1=v 2r 2【考向洞察】近似计算可以使题目更加简单! 【知识提升】①行星运动 近似圆 处理。
②开普勒行星运动定律不仅适用于行星绕太阳运转,对于卫星绕行星运转,也遵循类似的运动规律。
③比例系数k 与 有关,与行星或卫星质量无关,是个常量,但不是恒量,在不同的星系中,k 值 。
(二)万有引力定律 【知识固本】万有引力定律的内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与 成正比、与它们之间 成反比。
即F = ,G 为引力常量,通常取G =6.67×10-11N ·m 2/kg 2,由物理学家卡文迪什测定。
求解中心天体质量和密度
![求解中心天体质量和密度](https://img.taocdn.com/s3/m/54bfc1bb5fbfc77da269b1c8.png)
G
Mm r2
m
2
T
2
r
M
4 2r3
GT 2
球体的体积公式:V 4 R3
3
三、计算天体的密度 求解中心天体质量和密度
创新微课
已知太阳某行星的公转周期T、轨道半径r, 太阳的半径R,求太阳的密度?
F引=Fn
G
Mm r2
m
2
T
2
r
M
4 2r3
F引=Fn
只可求出中心天体的质量, 求不出环绕体的质量。
求解中心天体质量和密度
创新微课
这种方法可以计算中心天体的质量
如已知:
月亮周期:
T
月亮轨道半径: r
求 地球的质量 M?
F引=Fn
求解中心天体质量和密度
创新微课
二、计算中心天体的质量
如果不知道环绕体的公转周期,而知
道环绕体的线速度或角速度及其轨道半径,
黄金代换:GM=gR 2
2.将行星(或卫星)的运动看成 是匀速圆周运动.
3.万有引力充当向心力 F引=F向
明确各个物理量 求解中心天体质量和密度
创新微课
转动天体m
轨道半经r
中心天体M 天体半经R
同学,下节再见
创新微课 现在开始
行星运动的三定律
求解中心天体质量和密度
创新微课
一、“称量地球的质量” 求解中心天体质量和密度
创新微课
黄金代换:GM=gR 2
g---半径
求解中心天体质量和密度
二、计算太阳的质量
创新微课
我们可以测出太阳某行星的公转周期T、轨道半径r, 能不能由此求出太阳的质量M?
万有引力与航天——原卷版高一物理同步讲义(人教版2019必修第二册)
![万有引力与航天——原卷版高一物理同步讲义(人教版2019必修第二册)](https://img.taocdn.com/s3/m/f8bd9a45001ca300a6c30c22590102020740f2ec.png)
第7讲 万有引力与航天模块一:天体运动的一般规律1. 分析天体运动的主要思路(1)一个模型无论是自然天体(行星,月球等),还是人造航天器(人造卫星,空间站等),只要研究对象的轨迹是圆形,就可将其简化为质点的匀速圆周运动. (2)两条规律①中心天体表面附近重力近似等于万有引力,即2GMmmg R=,则2gR GM =(g 表示中心天体表面附近的重力加速度.②绕中心天体的行星或卫星的运动近似看作匀速圆周运动,所受的万有引力等于其向心力,即:22222π=====Mm v G ma m mr mv m r r r T ωω⎛⎫ ⎪⎝⎭向 2.人造卫星(1)人造卫星的分类在地球上水平抛出的物体,当它的速度足够大时,物体就永远不会落到地面上,它将围绕地球旋转,变为一颗人造地球卫星,简称人造卫星. ①人造卫星按运行轨道可分为低轨道卫星、中轨道卫星、高轨道卫星,以及地球同步轨道卫星、极地轨道卫星等.②人造卫星按用途可分为科学卫星、技术试验卫星和应用卫星. (2)人造卫星的运动规律卫星运行的轨道一般为椭圆形,中学阶段我们只考虑卫星的轨道为圆形的情况,这样卫星受到的万有引力提供了卫星做圆周运动的向心力.设卫星的轨道半径为r ,线速度大小为v ,角速度大小为ω,周期为T ,向心加速度为a .知识点碎片难度天体运动的一般规律★★★☆☆ 宇宙速度 ★★★☆☆ 同步卫星与近地卫星 ★★★☆☆ 计算中心天体的质量和密度★★★☆☆线速度22Mm v Gm r r= GM v r =或1v r ∝ 轨道半径越大,环绕天体的线速度、角速度和向心加速度越小,周期越大角速度22MmG m r rω= 3GMr ω=或31r ω∝ 环绕周期 2224Mm Gm r r Tπ= 234rT GMπ=或3T r ∝ 向心加速度 2MmGma r =向 2GM a r =向或.21a r∝向. 轨道平面规律环绕天体的运行轨道中心必定是中心天体的球心例1.★★★★★如图所示,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2,线速度大小分别为v 1、v 2,则12v v 等于( ) A .21r rB .12r rC .21r rD .221()r r练1-1.★★★★★两颗人造地球卫星,它们质量的比m 1★m 2=1★2,它们运行的线速度的比是v 1★v 2=1★2,那么( )A .它们运行的周期比为1★1B .它们运行的轨道半径之比为4★1C .它们所受向心力的比为1★2D .它们运动的向心加速度的比为1★8练1-2.★★★★★a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上.某时刻四颗卫星的运行方向及位置如图示.下列说法中正确的是( )A .a 、c 的加速度大小相等,且大于b 的加速度B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞危险模块二:宇宙速度1.宇宙速度及其意义(1)第一宇宙速度人造卫星的环绕速度随着卫星轨道半径r 的增大而减小,当轨道半径取最小值R 时,人造卫星的最大环绕速度即为第一宇宙速度.第一宇宙速度是人造卫星的最大环绕速度. ①第一宇宙速度的两种求解方法方法一:由于地球对卫星的万有引力是卫星环绕运动的向心力,即22Mm v G m R R =,则有GMv R =.式中R 取地球半径6400R =km ,地球质量34610M =⨯kg ,则有第一宇宙速度17.9v =km/s .方法二:由于地球对卫星的万有引力约等于卫星所在处的重力,这个重力就是卫星环绕地球运动的向心力.所以2v m mg R=,则v gR .式中R 取地球半径6400R =km ,g 为地球重力加速度9.8g =m/s 2,则有第一宇宙速度17.9v =km/s .由第一宇宙速度的两种表达式可以看出,第一宇宙速度的值由中心星体决定,可以说任何一颗恒星都有自己的第一宇宙速度,都应以GMv R=或v gR 表示,式中G 为万有引力常量,M 为中心星体的质量,g 为中心星体表面的重力加速度,R 为中心星体的半径. ②第一宇宙速度的意义第一宇宙速度是物体围绕地球做匀速圆周运动所需要的最小发射速度,又称最小发射速度、最大环绕速度、近地环绕速度,其值为:317.910v =⨯m/s .第一宇宙速度是人造卫星的最小地面发射速度.一个质量为m 的卫星在地面被发射入轨,设发射速度为v 0.若01v v =,则22Mm v G m R R=,即卫星入轨后恰好环绕地球做匀速圆周运动.若v 0 > v 1,则202Mm v G m R R<,即卫星所受万有引力不足以提供足够的向心力,卫星入轨后将先做离心运动,其轨迹可能是椭圆,抛物线或双曲线.若v 0 < v 1,则202Mm v G m R R>,即卫星所受万有引力大于卫星所需向心力.卫星将做靠近圆心的运动而落回地面.可见要在地面上将卫星送入轨道,需要017.9v v ≥=km/s ,即人造卫星的最小地面发射速度为17.9v =km/s .(2)第二宇宙速度当卫星的发射速度等于或大于11.2 km/s 的时候,物体就可以挣脱地球引力的束缚,成为绕太阳运动的人造行星,或飞到其它行星上去,我们把v2=11.2 km/s叫做第二宇宙速度,也称为脱离速度.第二宇宙速度是挣脱地球引力束缚的最小发射速度.如果卫星的发射速度大于7.9 km/s而小于11.2 km/s,卫星将做椭圆运动.(3)第三宇宙速度当卫星的发射速度等于或大于16.7 km/s时,物体就可以摆脱太阳引力的束缚,飞到太阳系以外的宇宙空间中去,我们把v3=16.7 km/s叫做第三宇宙速度,也称为逃逸速度.第三宇宙速度是挣脱太阳系而飞向太阳系以外的宇宙空间所需要的最小发射速度.2.卫星发射速度对运动状态的影响当发射速度v与宇宙速度分别有如下关系时,被发射物体的运动情况将有所不同.(1)当v<v1时,被发射物体最终仍将落回地面;(2)当v1≤v<v2时,被发射物体将环绕地球运动,成为地球卫星;(3)当v2≤v<v3时,被发射物体将脱离地球束缚,成为环绕太阳运动的“人造行星”;(4)当v≥v3时,被发射物体将从太阳系中逃逸.例2.★★★★★关于地球的第一宇宙速度,下列表述正确的是( )A.第一宇宙速度的大小为7.9 km/sB.若火箭发射卫星的速度大于第一宇宙速度,卫星将脱离地球的吸引C.人造地球卫星的环绕速度都大于第一宇宙速度D.第一宇宙速度跟地球的半径无关练2-1.★★★★★某探测卫星的轨道是圆形的,且贴近星球表面.已知月球的质量约为地球质量的181,月球的半径约为地球半径的14,地球上的第一宇宙速度约为7.9 km/s,则该探月卫星绕月运行的速率约为( )A.0.4 km/s B.1.8 km/s C.11 km/s D.36 km/s练2-2.★★★★★2013年12月15日4时35分,嫦娥三号着陆器与巡视器(“玉兔号”月球车)成功分离,登陆月球后玉兔号月球车将开展3个月巡视勘察.一同学设计实验来测定月球的第一宇宙速度:设想通过月球车上的装置在距离月球表面h高处平抛一个物体,抛出的初速度为v,测量出水平射程L,已知月球的半径为R,月球的第一宇宙速度为( )A0v hRL B02vhRLC02v hRLD022vhRL模块三:近地卫星和同步卫星1.近地卫星近地卫星的轨道半径近似等于地球的R ,其运行的速度1=7.9km/s v ,是所有卫星的最大绕行速度,运行周期T =85 min ,是所有卫星的最小周期;向心加速度9.8==a g m/s 2,是所有卫星的最大加速度. 2.同步卫星相对地面静止,跟地球自转同步的卫星叫做地球同步卫星,也称为静止轨道卫星. ★周期一定:T =24h★角速度一定:其绕地运行的角速度等于地球自转的角速度. ★轨道一定a .所有同步卫星的轨道必在赤道平面内b .所有同步卫星的轨道半径都相同,即在同一轨道运动,据2224πMm G m r r T =,得24324.24104πGMT r ==⨯ km ,卫星离地面高度 5.6h r R R =-≈=43.5910⨯ km ,确定的高度为43.5910⨯ km★环绕线速度一定:在轨道半径一定的条件下,同步卫星的环绕速率也一定,且为:2 3.08GM R g v R R h===+ km/s 且环绕方向为地球自转方向★向心加速度大小一定:在轨道半径一定的条件下,同步卫星的向心加速度a ⊥的大小一定,由牛顿第二定律和万有引力定律得:()()222GMR ha R h R h ⊥==++,其向心加速度大小都约为0.23m/s 23.同步卫星、近地卫星和赤道上物体的比较如图所示,用A 代表同步卫星,B 代表近地卫星,C 代表赤道上的物体.同步卫星A 和近地卫星B 都是卫星,绕地球运行的向心力由地球对它们的万有引力提供,所以卫星的运动规律都适用;赤道上的物体C 随地球自转的向心力由万有引力的一个分力提供,所以卫星的运动规律对赤道上的物体不适用比较内容 赤道表面的物体 近地卫星同步卫星向心力来源 万有引力的分力万有引力向心力方向指向地心线速度11v r ω=2GMv R=()33GMv R h R hω=+=+ 132v v v <<(2v 为第一宇宙速度)角速度 1=ωω自 23=GMR ω ()33==GMR h ωω+自例3.★★★☆☆北斗卫星导航系统是我国自行研制开发的区域性三维卫星定位与通信系统(CNSS),建成后的北斗卫星导航系统包括5颗同步卫星和30颗一般轨道卫星.对于其中的5颗同步卫星,下列说法中正确的是( )A .它们运行的线速度一定不小于7.9 km/sB .地球对它们的吸引力一定相同C .一定位于赤道上空同一轨道上D .它们运行的加速度一定相同 练3-1.★★★★★关于环绕地球运动的卫星,下列说法正确的是( )A .分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B .沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C .在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D .沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合练3-2.★★★★★研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( ) A .角速度变大B .线速度变大C .向心加速度变大D .距地面的高度变大例4.★★★☆☆均匀分布在地球赤道平面上空的三颗同步通信卫星能够实现除地球南北极等少数地区外的“全球通信”.已知地球半径为R ,地球表面的重力加速度为g ,地球自转周期为T ,则三颗卫星中任意两颗卫星间的距离为( ) A .3RB .23RC .232243πgR TD .223234πgR T练4-1.★★★★★(多选)假设月亮和同步卫星都绕地心做匀速圆周运动,下列说法正确的是( ) A .同步卫星的线速度大于月亮的线速度 B .同步卫星的角速度大于月亮的角速度 C .同步卫星的向心加速度大于月亮的向心加速度 D .同步卫星的轨道半径大于月亮的轨道半径练4-2.★★★★★地球的同步卫星距地面高H 约为地球半径R 的6倍,同步卫星正下方有一静止在地面上的物体A ,则同步卫星与物体A 的向心加速度之比是多少?若给物体A 以适当的绕行速度,使A 成为近地卫星,则同步卫星与近地卫星的向心加速度之比是多少?模块四:计算中心天体的质量和密度1.中心天体的质量求解(1)利用重力加速度g 求解若已知地球的半径R 和地球表面的重力加速度g ,根据物体的重力近似等于地球对物体的引力,则有:2mMmg GR =,可以求得地球质量2gR M G =.(2)利用圆周运动求解若已知月球绕地球做匀速圆周运动的周期为T ,半径为R ,根据万有引力提供向心力,即:222πMm G mR R T ⎛⎫= ⎪⎝⎭,可求得地球质量2324πR M GT =.若已知月球绕地球匀速圆周运动的半径R 和月球运动的线速度v ,由于地球对月球的万有引力提供月球做匀速圆周运动的向心力,根据牛顿第二定律得22Mm v Gm R R =,解得地球的质量为2Rv M G=. 若已知月球运行的线速度v 和运行周期T ,由于地球对月球的万有引力提供月球做匀速圆周运动的向心力,根据牛顿第二定律得222πMm G mR R T ⎛⎫= ⎪⎝⎭,22Mm v G m R R =,将以上两式消去R ,解得32πTv M G =.2.中心天体的密度求解通过观察绕天体做匀速圆周运动的卫星的周期T 、半径r ,由万有引力等于向心力,即21222π=m m G m r r T ⎛⎫ ⎪⎝⎭,得天体质量2324πr M GT =(1)若已知天体的半径R ,则天体的密度3233πr GT R ρ=(2)若天体的卫星环绕天体表面运动,其轨迹半径r 等于天体的半径R ,其周期为T ,则天体的密度23πGT ρ=. 例5.★★★☆☆利用万有引力定律可以测量中心天体的质量,通常有两种方法,例如:测地球质量. (1)测地球的质量的第一种方法英国物理学家卡文迪许,在实验室里巧妙地利用扭秤装置,比较精确地测量出了引力常量的数值,他把自己的实验说成是“称量地球的质量”.已知地球表面重力加速度为g ,地球半径为R ,引力常量为G .若忽略地球自转影响,求地球的质量. (2)测地球的质量的第二种方法月球在地球引力作用下做匀速圆周运动,月球绕地球的运行周期为T ,地球与月球两球心的距离为r ,已知引力常量为G .求地球质量.练5-1.★★★★★利用引力常量G 和下列某一组数据,不能计算出地球质量的是( ) A .地球的半径及重力加速度(不考虑地球自转)B .人造卫星在地面附近绕地球做圆周运动的速度及周期C .月球绕地球做圆周运动的周期及月球与地球间的距离D .地球绕太阳做圆周运动的周期及地球与太阳间的距离练5-2.★★★★★为研究太阳系内行星的运动,需要知道太阳的质量,已知地球半径为R ,地球质量为m ,太阳中心与地球中心间距为r ,地球表面的重力加速度为g ,地球绕太阳公转的周期为T .则太阳的质量为( )A .23224πr T R gB .23224πmr T R gC .22234πT R g mrD .22234πR mg T r 练5-3.★★★★★ 过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51peg b”的发现拉开了研究太阳系外行星的序幕.“51peg b”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的120,该中心恒星与太阳的质量比约为( ) A .110 B .1C .5D .10练5-4.★★★★★(多选)为了对火星及其周围的空间环境进行探测,我国发射了一颗火星探测器——“萤火一号”.假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G .仅利用以上数据,可以计算出( )A .火星的质量B .“萤火一号”的质量C .火星对“萤火一号”的引力D .火星表面的重力加速度练5-5.★★★★★假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为0g ,在赤道的大小为g ,地球自转的周期为T ,引力常量为G .地球的密度为( )A .0203πg g GT g (-)B .()0203πg GT g g -3πGT D.023πgGT gC.2第7讲作业万有引力与航天 1. 有两颗人造地球卫星A 、B ,它们的轨道半径的关系是r A =2r B ,则它们做匀速圆周运动的线速度之比A B v v 等于( ) A .12 B .21 C 2 D 22. 我国自主研发的“北斗”卫星导航系统中含有同步卫星,关于同步卫星下列说法中正确 的是( )A .同步卫星处于平衡状态B .同步卫星的线速度是不变的C .同步卫星的高度是一定的D .线速度应大于第一宇宙速度3. 海王星的质量是地球的17倍,它的半径是地球的4倍,则绕海王星表面做圆周运动的宇宙飞船,其运行速度是地球上第一宇宙速度的( )A .17倍B .4倍C .174倍D 17倍4. 己知地球半径为R ,静置于赤道上的物体随地球自转的向心加速度为a ;地球同步卫星作匀速圆周运动的轨道半径为r ,向心加速度大小为a 0,引力常量为G ,以下结论正确的是( )A .地球质量M =20a r GB .地球质量2aR M G= C .向心加速度之比220a r a R= D .向心加速度之比0a r a R=5. 2016年1月11日,中国正式批复首次火星探测任务并立项,将在2020年左右发射一颗火星探测卫星.已知引力常量为G ,火星半径为R ,在距火星表面为R 处的重力加速度为g 0.求:(1)火星的质量;(2)火星的第一宇宙速度.。
物理-L28-万有引力计算天体质量和密度问题
![物理-L28-万有引力计算天体质量和密度问题](https://img.taocdn.com/s3/m/8d04d41cb84ae45c3b358c83.png)
即mg海=G
可得 g海=
同理地球表面的重力加速度g地=
因g海≈g地,所以G =G
M海=16M地=9.6×1025 kg.
9
例题2 在某行星上宇航员用弹簧秤测质量为m的物体的重力为F,乘宇宙飞船在靠 近该行星的空间飞行,测得其环绕周期为T,根据这些数据求该星球的质量.
解题思路:在行星表面的物体的重力等于行星对它的万有引力, 在行星附近飞行的飞船,由万有引力提供其做圆周运动的向心力.
3
得
3 r3
GT 2R3
.
特别提醒 要注意R、r的区分.R指中心天体的半径,r指行星或卫星的轨道半径.若绕近地轨道运行,则有R=r.
23
24
25
M= 根据数学知识星球的体积V=πR3. 所以天体的密度ρ===. 若卫星距天体表面高为h处运行,则有 G=m(R+h)
3
(3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运 动的向心力,根据牛顿第二定律,得
G
=m月·v·
以上两式消去r,解得
G
=m月.
M地=v3T/(2πG). (4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的 引力,得
mg=G ,
解得地球质量为M地= .
4
由以上论述可知,在万有引力定律这一章中,求天体质量的方法主要有两种:一种方法是根 据天体表面的重力加速度来求天体质量,即g=G ,则M= ,另一种方法是根据天体的 圆周运动,即根据天体做匀速圆周运动的向心力由万有引力提供,列出方程: G =m r=m =mω2r来求得质量M= = = 用第二种方法只能求出圆心处天体质量(即中心天体).
21
专题2.6 中心天体质量密度的计算问题(解析版)
![专题2.6 中心天体质量密度的计算问题(解析版)](https://img.taocdn.com/s3/m/b951afee27284b73f3425009.png)
高考物理备考微专题精准突破专题2.6 中心天体质量密度的计算问题【专题诠释】中心天体质量和密度常用的估算方法【高考领航】【2019·新课标全国Ⅰ卷】在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M的半径是星球N的3倍,则()A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍 【答案】AC【解析】A 、由a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有:mg kx ma -=,变形式为:k a g x m =-,该图象的斜率为km-,纵轴截距为重力加速度g 。
根据图象的纵轴截距可知,两星球表面的重力加速度之比为:00331M N a g g a ==;又因为在某星球表面上的物体,所受重力和万有引力相等,即:2Mm G m g R '=',即该星球的质量2gR M G=。
又因为:343R M πρ=,联立得34g RG ρπ=。
故两星球的密度之比为:1:1NM M N N MR g g R ρρ=⋅=,故A 正确;B 、当物体在弹簧上运动过程中,加速度为0的一瞬间,其所受弹力和重力二力平衡,mg kx =,即:kxm g=;结合a –x 图象可知,当物体P 和物体Q 分别处于平衡位置时,弹簧的压缩量之比为:00122P Q x x x x ==,故物体P 和物体Q 的质量之比为:16p N P Q Q M x g m m x g =⋅=,故B 错误;C 、物体P 和物体Q 分别处于各自的平衡位置(a =0)时,它们的动能最大;根据22v ax =,结合a –x 图象面积的物理意义可知:物体P 的最大速度满足2000012332P v a x a x =⋅⋅⋅=,物体Q 的最大速度满足:2002Qv a x =,则两物体的最大动能之比:222212412Q QkQ Q Q kPP P P P m v E m vE m v m v ==⋅=,C 正确;D 、物体P 和物体Q 分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体P 和Q 振动的振幅A 分别为0x 和02x ,即物体P 所在弹簧最大压缩量为20x ,物体Q 所在弹簧最大压缩量为40x ,则Q 下落过程中,弹簧最大压缩量时P 物体最大压缩量的2倍,D 错误;故本题选AC 。
(完整版)求中心天体的质量与密度
![(完整版)求中心天体的质量与密度](https://img.taocdn.com/s3/m/02c97b489e31433238689372.png)
求天体的加速度、质量、密度一.知识聚焦1. 加速度:万有引力与航天)基础知识:一、研究对象:绕中心天体的行星或卫星总结:线速度v、角速度ω(周期T 、频率f、转速n)、轨道半径r,这三个物理量中,任意组合二个,一定能求出中心天体的质量M。
或者说:中心天体的质量M、及三个物理量中,只要知道其中的两个,可求出其它物理量。
表面上MmG M R m2mg 得g G R M2R非表面Mmma 得aGMMm mv22rr2vr(已知线速度与半径)MmG 2 mrr2r3(已知角线速度与半径)Mm2rmr(2T)2(2 )2r3T2G(已知周期与半径)Mm 2 mv v2R(已知线速度与半径)GR2RMGGMmmR22R3 R(已知角线速度与半径)2MR2G4G已知角速、研究对象:绕中心天体表面运行的行星或卫星度)32四、研究对象:地球表面的物体,万有引力等于重力4 GRMmR 2mR(2T ) 2(2 )2 R 3T 2G(已知周期与半径 )GT 2 (已知周期 )如果绕中心天体表面运转,中心天体的密度与周期的平方即: 任何因数都无关。
23T 是一个常量,与 G三、研究对象:距离地面 h 高处的物体,万有引力等于重力(已知某高度处的重力加速度与距离 )MmR 2mgM gR2G 3g( 已知中心天体表面的重力加速度与半径 )训练题(真题)1 宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间表面,测得抛出点与落地点之间的距离为 L ,若抛出时的初速度增大到地点间的距离为 3 L ,已知两落地点在同一水平面上,该星球的半径为 R ,引力常量为G ,求该星球的质量 M 和密度ρ[解析 ]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密 度.12根据平抛运动的特点得抛出物体竖直方向上的位移为 y 1 gt 2 2设初始平抛小球的初速度为 v ,则水平位移为 x=vt .有 (1 gt 2) 2 (vt)2 L 2 ○11当以 2v 的速度平抛小球时, 水平位移为 x'= 2vt .所以有 (1 gt 2)2 (2vt)2 ( 3L)22 在星球表面上物体的重力近似等于万有引力,有 mg=G Mm 2 ③R 2160N ,把此物体放在航天器中,若航天器以加速度 a g ( g 为地球表面的重力加速度)垂直地面上升,这时再用同一弹簧测力计2测得物体的重力为 90N ,忽略地球自转的影响, 已知地球半径 R ,求此航天器距地面的高度。
物理万有引力知识点
![物理万有引力知识点](https://img.taocdn.com/s3/m/0f13a524366baf1ffc4ffe4733687e21af45ffad.png)
物理万有引力知识点物理万有引力知识点在学习中,不管我们学什么,都需要掌握一些知识点,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。
还在苦恼没有知识点总结吗?下面是店铺为大家整理的物理万有引力知识点,希望能够帮助到大家。
物理万有引力知识点篇11、参考系:运动是绝对的,静止是相对的。
一个物体是运动的还是静止的,都是相对于参考系在而言的。
通常以地面为参考系。
2、质点:(1)定义:用来代替物体的有质量的点。
质点是一种理想化的模型,是科学的抽象。
(2)物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。
且物体能否看成质点,要具体问题具体分析。
(3)物体可被看做质点的几种情况:①平动的物体通常可视为质点。
②有转动但相对平动而言可以忽略时,也可以把物体视为质点。
③同一物体,有时可看成质点,有时不能、当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看做质点,反之,则可以。
【注】质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、位移和路程:位移用来描述质点位置的变化,是质点的由初位置指向末位置的有向线段,是矢量;路程是质点运动轨迹的长度,是标量。
5、速度:用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为,方向与位移的方向相同。
平均速度对变速运动只能作粗略的描述。
(2)瞬时速度:是质点在某一时刻或通过某一位置的速度,瞬时速度简称速度,它可以精确变速运动。
瞬时速度的大小简称速率,它是一个标量。
物理万有引力知识点篇2一、知识点(一)行星的运动1、地心说、日心说:内容区别、正误判断2、开普勒三条定律:内容(椭圆、某一焦点上;连线、相同时间相同面积;半长轴三次方、周期平方、比值、定值)、适用范围(二)万有引力定律1、万有引力定律:内容、表达式、适用范围2、万有引力定律的科学成就(1)计算中心天体质量(2)发现未知天体(海王星、冥王星)(三)宇宙速度:第一、二、三宇宙速度的数值、单位,物理意义(最小发射速度、环绕速度;脱离地球引力绕太阳运动;脱离太阳系)(四)经典力学的局限性:宏观(相对普朗克常量)低速(相对光速)二、重点考察内容、要求及方式1、地心说、日心说:了解内容及其区别,能够判断其科学性(选择)2、开普勒定律:熟知其内容,第三定律考察尤多;适用范围(选择)3、万有引力定律的科学成就:计算中心天体质量、发现未知天体(选择)4、计算中心天体质量、密度:重力等于万有引力或者万有引力提供向心力、万有引力的表达式、向心力的几种表达式(选择、填空、计算)5、宇宙速度:第一、二、三宇宙速度的数值、物理意义(选择、填空);计算第一宇宙速度:万有引力等于向心力或重力提供向心力(计算)6、计算重力加速度:匀速圆周运动与航天结合(或求周期)、平抛运动与航天结合(或求高度、时间)、受力分析(计算)7、经典力学的局限性:了解其局限性所在,适用范围(选择)物理学专业介绍物理学是研究物质运动最一般规律和物质基本结构的学科,它揭示物质产生、演化、转化和相互作用等方面的基本规律,涉及从微观、宏观到宇观,从少体到多体,从简单到复杂的各种系统,是自然科学的核心和工程技术的基础,并与社会学科具有很强的交叉性;本专业旨在培养掌握坚实的、系统的物理学基础理论及较广泛的物理学基本知识和基本实验方法,具有一定的基础科学研究能力和应用开发能力,能发展成为在物理学及其相关交叉学科的不同专业领域继续深造或在相应的科学技术领域中从事科研、教学、技术、应用和管理等方面的创新性人才。
天体运动中天体质量和密度的估算与天体表面重力加速度问题(解析版)
![天体运动中天体质量和密度的估算与天体表面重力加速度问题(解析版)](https://img.taocdn.com/s3/m/25d5074087c24028915fc3ce.png)
天体表面重力加速度问题与天体质量和密度的估算一、天体表面上的重力加速度问题重力是由于物体受到地球的万有引力而产生的,严格说重力只是万有引力的一个分力,另一个分力提供物体随地球自转做圆周运动的向心力,但由于向心力很小,一般情况下认为重力约等于万有引力,即mg=GMmR2,这样重力加速度就与行星质量、半径联系在一起,高考也多次在此命题。
计算重力加速度的方法(1)在地球表面附近的重力加速度g(不考虑地球自转):mg=GmMR2,得g=GMR2(2)在地球上空距离地心r=R+h处的重力加速度为g′,mg′=GmMR+h2,得,g′=GMR+h2所以gg′=R+h2R2(3)其他星球上的物体,可参考地球上的情况做相应分析.【典例1】宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为()A.0 B.GMR+h2C.GMmR+h2D.GMh2【解析】飞船受的万有引力等于在该处所受的重力,即GMmR+h2=mg,得g=GMR+h2,选项B正确。
【答案】 B【典例2】假设有一火星探测器升空后,先在地球表面附近以线速度v环绕地球飞行,再调整速度进入地火转移轨道,最后以线速度v′在火星表面附近环绕火星飞行。
若认为地球和火星都是质量分布均匀的球体,已知火星与地球的半径之比为1∶2,密度之比为5∶7。
设火星与地球表面的重力加速度分别为g′和g。
下列结论正确的是()A.g′∶g=1∶4 B.g′∶g=7∶10C.v′∶v=528D.v′∶v=514【答案】 C【典例3】若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7。
已知该行星质量约为地球的7倍,地球的半径为R 。
由此可知,该行星的半径约为( )A.12RB.72R C .2R D.72R 【答案】 C【解析】 做平抛运动的物体在水平方向上做匀速直线运动,即x =v 0t ,在竖直方向上做自由落体运动,即h =12gt 2,所以x =v 02hg ,两种情况下,物体抛出的速度相同,高度相同,所以g 行g 地=74,根据公式G Mm R 2=mg 可得g =GMR 2,故g 行g 地=M 行R 行2M 地R 地2=74,解得R 行=2R ,故C 正确。
万有引力习题总结
![万有引力习题总结](https://img.taocdn.com/s3/m/653d082dfad6195f312ba6f8.png)
万有引力习题总结班级__________ 座号_____ 姓名__________ 分数__________1. 开普勒行星运动定律轨道定律面积定律:v 1r 1=v 2r 2周期定律:a 3/T 2=k1. 关于开普勒第三定律=k 的理解,以下说法中正确的是( )A.k 是一个与绕太阳运行的行星无关的常量,可称为开普勒常量B.T 表示行星运动的自转周期C.该定律适用于行星绕太阳的运动,不适用于卫星绕行星的运动D.若地球绕太阳运转轨道的半长轴为R 1,周期为T 1,月球绕地球运转轨道的半长轴为R 2,周期为T 2,则=2. 若金星和地球的公转轨道均视为圆形,且在同一平面内,如图所示.在地球上观测,发现金星与太阳可呈现的视角(太阳与金星均视为质点,它们与眼睛连线的夹角)有最大值,最大视角的正弦值为k ,则金星的公转周期为( )A .年 B .年 C .k 3年 D .年 二、割补法3. 如图所示,将一个半径为R 、质量为M 的均匀大球,沿直径挖去两个半径分别为大球一半的小球,并把其中一个放在球外与大球靠在一起。
若挖去小球的球心、球外小球球心、大球球心在一条直线上,则大球中剩余部分与球外小球的万有引力大小约为(已知引力常量为G )( )A .0.01 GM 2R 2B .0.02 GM 2R 2C .0.05GM 2R 2D .0.04GM 2R2月球的向心加速度地球表面重力加速度比值 =-32月272210a .m /sg=9.8m/s 2a 月/g=1/3600注意:不是月球表面重力加速度注意:不是赤道表面物体的自转向心加速度结论:与距离平方成反比,遵循同样的规律,属于同一种性质的力4. (2016•上饶三模)为了验证地面上物体的重力与地球吸引月球,太阳吸引行星的力是同一性质的力,同样遵从平方反比律的猜想,牛顿做了著名的“月﹣﹣地检验”,并把引力规律做了合理的外推,进而把决定天体运动的万有引力定律与1687年发表在《自然哲学的数学原理》中,完成了物理学的第一次大统一.已知月球绕地球运动的轨道半径约为地球半径的60倍,下列说法正确的是( )A .物体在月球轨道上运动的加速度大约是在地面附近下落时的加速度的2601B .物体在月球表面下落时的加速度是在地球表面下落时的加速度的2601 C .月球绕地球运行的周期是近地卫星绕地球运行周期的60倍 D .月球绕地球运行的线速度是近地卫星绕地球运行线速度的6015. (2019·茂名调研)宇航员在某星球上为了探测其自转周期做了如下实验:在该星球两极点,用弹簧秤测得质量为M 的砝码所受重力为F ,在赤道测得该砝码所受重力为F ′。
专题26 中心天体质量密度的计算问题(解析版)
![专题26 中心天体质量密度的计算问题(解析版)](https://img.taocdn.com/s3/m/0114e66bd0d233d4b04e6966.png)
高考物理备考微专题精准突破专题2.6 中心天体质量密度的计算问题【专题诠释】中心天体质量和密度常用的估算方法【高考领航】【2019·新课标全国Ⅰ卷】在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。
在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
已知星球M的半径是星球N的3倍,则()1=A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍【答案】AC【解析】A 、由 a –x 图象可知,加速度沿竖直向下方向为正方向,根据牛顿第二定律有: mg - kx = ma , 变形式为: a = g - k m x ,该图象的斜率为 - km ,纵轴截距为重力加速度 g 。
根据图象的纵轴截距可知,两g M 3a 0 3星球表面的重力加速度之比为: = = ;又因为在某星球表面上的物体,所受重力和万有引力相等,g Na 01即: GMm '= m 'g ,即该星球的质量 M =gR2。
又因为: M = ρ4πR3,联立得ρ=3g。
故两星球的 R2G34πRGρM 密度之比为:= g M ⋅ R N= 1:1,故 A 正确;B 、当物体在弹簧上运动过程中,加速度为 0 的一瞬间, ρNg N R M其所受弹力和重力二力平衡, mg = kx ,即: m =kx ;结合 a –x 图象可知,当物体 P 和物体 Q 分别处于平gxPx 0 衡位置时,弹簧的压缩量之比为: = 1,故物体 P 和物体 Q 的质量之比为: m P = x p ⋅ g N = 1 , x Q 2x 0 2 m Q x Q g M 6故 B 错误;C 、物体 P 和物体 Q 分别处于各自的平衡位置(a =0)时,它们的动能最大;根据v 2 = 2ax ,结 合 a –x 图象面积的物理意义可知:物体 P 的最大速度满足v 2 = 2 ⋅ 1⋅3a ⋅ x = 3a x ,物体 Q 的最大速度满P20 0 0 01 2E m Q v Q m v 2足: v 2= 2a x ,则两物体的最大动能之比: kQ = 2= Q ⋅ Q = 4 ,C 正确;D 、物体 P 和物体 Q Q 0 0 E 1 2m v 2kP2m P v P P P分别在弹簧上做简谐运动,由平衡位置(a =0)可知,物体 P 和 Q 振动的振幅 A 分别为 x 0 和2x 0 ,即物体 P所在弹簧最大压缩量为 2 x 0 ,物体 Q 所在弹簧最大压缩量为 4 x 0 ,则 Q 下落过程中,弹簧最大压缩量时 P物体最大压缩量的 2 倍,D 错误;故本题选 AC 。
(完整版)求中心天体的质量与密度
![(完整版)求中心天体的质量与密度](https://img.taocdn.com/s3/m/5ce73a8b6bd97f192379e97a.png)
求天体的加速度、质量、密度一.知识聚焦 1.加速度:表面上 mg Mm G =2R得2g R GM=非表面 ()ma R MmG=+2h 得)(2R a h GM +=万有引力与航天 )基础知识:一、研究对象:绕中心天体的行星或卫星r mv rMm G 22= G r v M 2= (已知线速度与半径)22ωmr rMm G = G r M 32ω= (已知角线速度与半径)22)2(T mr rMm G π= G T r M 232)2(π= (已知周期与半径) 总结:线速度vr ,这三个物理量中,任意组合二个,一定能求出中心天体的质量M 。
或者说:中心天体的质量M 、及三个物理量中,只要知道其中的两个,可求出其它物理量。
二、研究对象:绕中心天体表面运行的行星或卫星R mv RMm G 22= G R v M 2= (已知线速度与半径)22ωmR RMm G = G R M 32ω= (已知角线速度与半径)G πωρ432=(已知角速度)22)2(T mR R Mm G π=(已知周期与半径) 已知周期)任何因数都无关。
三、研究对象:距离地面h 高处的物体,万有引力等于重力mg h R MmG =+2)( G h R g M 2)(+= (已知某高度处的重力加速度与距离)四、研究对象:地球表面的物体,万有引力等于重力mg RMmG =2 G gR M 2= (已知中心天体表面的重力加速度与半径)GRgπρ43=训练题(真题)1宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t ,小球落在星球表面,测得抛出点与落地点之间的距离为L ,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为3L ,已知两落地点在同一水平面上,该星球的半径为R ,引力常量为G ,求该星球的质量M 和密度ρ.[解析]此题的关键就是要根据在星球表面物体的运动情况求出星球表面的重力加速度,再根据星球表面物体的重力等于物体受到的万有引力求出星球的质量和星球的密度.根据平抛运动的特点得抛出物体竖直方向上的位移为221gt y =设初始平抛小球的初速度为v ,则水平位移为x=vt .有2222)()21(L vt gt =+ ○1当以2v 的速度平抛小球时,水平位移为x'= 2vt .所以有2222)3()2()21(L vt gt =+ ②在星球表面上物体的重力近似等于万有引力,有mg=G 2RMm③联立以上三个方程解得22332Gt LR M =而天体的体积为334R V π=,由密度公式VM=ρ得天体的密度为R Gt L 223πρ=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算天体的质量和密度知识梳理“天上”法“地上”法原理万有引力提供向心力:22m GMmv r r ==2m r ω=224m r T π=n ma万有引力等于重力:2GMmmg R=质量M=2324GT r π=2v r G =23rG ω=2n a r G2gR M G=需要已知量 G 、r 、T(或ω、v)G 、g 、R密度3233M r V GT R πρ==特例,当r=R 时:23GT πρ=34g GR ρπ=注意:计算天体质量需“一个中心、两个基本点”: “一个中心”即只能计算出中心天体的质量;“两个基本点” 即要计算中心天体的质量,除引力常量G 外,还要已知两个独立的物理量。
例题分析【例1】下列哪一组数据不能估算出地球的质量。
引力常量G 已知( )A.月球绕地球运行的周期与月地之间的距离B.地球表面的重力加速度与地球的半径C.绕地球运行卫星的周期与线速度D.地球表面卫星的周期与地球的密度【例2】已知引力常量G .月球中心到地球中心的距离R 和月球绕地球运行的周期T 。
仅利用这三个数据,可以估算出的物理量有( ) A .月球的质量 B .地球的密度C .地球的半径D .月球绕地球运行速度的大小【例3】(2006北京)一飞船在某行星表面附近沿圆轨道绕该行星飞行,认为行星是密度均匀的球体,要确定该行星的密度,只需要测量( )A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量【例4】(2005广东)已知万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球表面的重力加速度g 。
某同学根据以上条件,提出一种估算地球质量M 的方法: 同步卫星绕地球作圆周运动,由得⑴请判断上面的结果是否正确,并说明理由。
如不正确,请给出正确的解法和结果。
⑵请根据已知条件再提出两种估算地球质量的方法并解得结果。
同步练习1.已知下面的哪组数据可以计算出地球的质量?引力常量G 已知( )A .月球绕地球运动的周期和月球的半径B .地球同步卫星离地面的高度C .地球绕太阳运动的周期和地球到太阳中心的距离D .人造卫星在地面附近的运动速度和周期2.下列哪一组数据能够估算出地球的密度。
引力常量G 已知( ) A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与月地之间的距离 C.绕地球运行卫星的周期与线速度 D.绕地球表面运行卫星的周期3.(05天津)土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等.线度从1μm 到10m 的岩石.尘埃,类似于卫星,它们与土星中心的距离从7.3×104km 延伸到1.4×105km 。
已知环的外缘颗粒绕土星做圆周运动的周期约为14h ,引力常量为6.67×10-11N •m 2/kg 2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)( )A.9.0×1016kg B.6.4×1017kg C.9.0×1025kg D.6.4×1026kg4.地球公转的轨道半径是R 1,周期是T 1;月球绕地球运转的轨道半径是R 2,周期是T 2。
则太阳质量与地球质量之比是( )A. 22322131T R T R B. 21322231T R T R C. 22222121T R T R D. 21222221T R T R5.(05全国Ⅲ)最近,科学家在望远镜中看到太阳系外某一恒星有一行星,并测得它围绕该恒星运行一周所用的时间为1200 年,它与该恒星的距离为地球到太阳距离的100 倍。
假定该行星绕恒星运行的轨道和地球绕太阳运行的轨道都是圆周,仅利用以上两个数据可以求出的量有( )①恒星质量与太阳质量之比②恒星密度与太阳密度之比③行星质量与地球质量之比④行星运行速度与地球公转速度之比其中正确的是A.①② B.③④ C.①④ D.②③6.(2007宁夏卷)天文学家发现了某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和运行周期。
由此可推算出( )A.行星的质量 B.行星的半径C.恒星的质量 D.恒星的半径7.(09年全国卷Ⅰ)天文学家新发现了太阳系外的一颗行星。
这颗行星的体积是地球的4.7倍,质量是地球的25倍。
已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G=6.67×10-11N·m2/kg2,,由此估算该行星的平均密度为( )A.1.8×103kg/m3B. 5.6×103kg/m3C. 1.1×104kg/m3D.2.9×104kg/m38.(2000年,北京)地核的体积约为整个地球体积的16%,地核的质量约为地球质量的34%,经估算,地核的平均密度为_____kg/m3。
(结果取两位有效数字,R3=6.4×103km,G=6.7×10-11N·m2/kg2)9.(2008上海物理)某行星绕太阳运动可近似看作匀速圆周运动,已知行星运动的轨道半径为R,周期为T,万有引力恒量为G,则该行星的线速度大小为_____;太阳的质量可表示为_____。
10.(2007海南卷)设地球绕太阳做匀速圆周运动,半径为R,速度为v,则太阳的质量可用v、R和引力常量G表示为___。
太阳围绕银河系中心的运动可视为匀速圆周运动,其运动速度约为地球公转速度的7倍,轨道半径约为地球公转轨道半径的2×109倍。
为了粗略估算银河系中恒星的数目,可认为银河系中所有恒星的质量都集中在银河系中心,且银河系中恒星的平均质量约等于太阳质量,则银河系中恒星数目约为___。
11.(01全国理综)为了研究太阳演化进程,需知道目前太阳的质量M,已知地球半径为R=6.4×106m,地球质量m=6.0×1024Kg,日地中心距离r=1.5×1011m,地球表面处的重力加速度g=10m/s2,1年约为3.2×107s,试估算目前太阳的质量M。
12.一宇航员为了估测一星球的质量,他在该星球的表面做自由落体实验:让小球在离地面h高处自由下落,他测出经时间t 小球落地,又已知该星球的半径为R,试估算该星球的质量13. 一宇宙飞船靠近某行星时,绕行星表面做匀速圆周运动,随后在行星上着陆,为了测定该行星的质量,宇航员带有简单仪器:停表、天平、弹簧秤、水银气压计、质量为m的钩码。
⑴请为他设计一个可行的测定该行星质量的方案,简述步骤;⑵导出行星质量表达式,引力常量G可作为已知量。
D D D B C C D8解答:地表处物体所受引力约等于重力,于是有2RGmM=mg地球的平均密度为ρ=VM=334RMπ由此可得ρ=GRgπ43=611104.6107.614.348.93⨯⨯⨯⨯⨯⨯-kg/m3 =5.5×103kg/m3地核的平均密度为oρ=VM%16%34=817ρ=1.2×104kg/m39.2RTπ,2324RGTπ10.GRv2101111地球绕太阳做圆周运动,万有引力提供向心力,根据万有引力定律和牛顿第二定有2224TmrrMmGπ=①又在地球表面附近的质量为m.物体有gmRmMG'='2②①②联立解得:KggRrTmM212621127242221026.110)104.6()105.1()102.314.32(100.6)2(⨯=⨯⨯⨯⨯⨯⨯⨯⨯==π12.由自由落体规律:221tgh星=可得:22thg=星由万有引力定律得:2RGMg=星可得:222GthRM=13.解析:(1)①用停表测出宇宙飞船绕行星表面做匀速圆周运动的周期T;②宇航员在该行星上用天平测出钩码的质量m;③用弹簧秤测出钩码的重力F。
(2)宇宙飞船绕行星表面做匀速圆周运动,根据万有引力提供向心力,可得:GMm/R2=mR4π2/T2……………………①又在地球表面附近的质量为m物体有 GMm/R2=mg………………②②联立消去R,解得:M=F3T4/(16π4Gm3)。