八年级下学期数学竞赛试题及答案(沪科版)

合集下载

(沪科版)八年级下学期数学竞赛试题及答案

(沪科版)八年级下学期数学竞赛试题及答案

沪科版八年级第二学期竞赛数 学 试 卷 (沪科版)考试时间:120分钟 满分:120分一、精心选一选:(本大题共7小题,每小题3分,共21分。

)1、实数a 在数轴上对应的点如图所示,则a 、-a 、1的大小关系正确的是【 】A 、-a <a <1B 、a <-a <1C 、1<-a <aD 、a <1<-a2、已知关于x 的方程3x +2a =2的解是a -1,则a 的值是 【 】A 、1B 、53 C 、51D 、-13 【 】A 、点PB 、点QC 、点MD 、点N4、若一元二次方程22(2)240m x x m -++-=的常数项为0,则m 得值为 【 】 A 、2. B 、 2-. C 、 2±. D 、4±. 5、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是 【 】 A 、22n +B 、22n -+C 、22n -D 、22n --6、已知方程20x bx a ++=有一个根是()0a a -≠,则下列代数式的值恒为常数的是 【 】A 、abB 、ab C 、a b + D 、a b - 7、若关于x 的一元二次方程22(21)10k x k x -++=有两不相等的实数根,那么k 的取值范围是【 】A 、k >14-B 、k >14-且0k ≠C 、k <14-D 、14k ≥-且0k ≠ 二、耐心填一填:(本大题共8小题,每小题4分,共32分。

)8、若a 、b 都是无理数,且a+b=2,则a 、b 的值可以是 . (填上一组满足条件的值即可)0 1第2题图9、已知113 x y-=,则代数式21422x xy yx xy y----的值为.10、一个同学在进行多边形内角和计算时,求得内角和为02750,当发现错了之后,重新检查,发现少加了一个内角,则这个内角是度。

11、对于定义一种新运算“”:,其中为常数,等式右边是通常的加法和乘法的运算.已知:,那么= .12、如图,已知点F的坐标为(3,0),点A B,分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点...设点P的横坐标为x,PF的长为d,且d与x之间满足关系:355d x=-(05x≤≤),则结论:①2AF=;②5BF=;③5OA=;④3OB=中,正确结论的序号是_ .13、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_________.14、图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________.15、化简aaa3|2|2-=三、用心想一想:(本大题是解答题,共67分。

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1)的值为?A. 0B. 1C. 2D. 32. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 若a > b,则下列哪个选项是正确的?A. a c > b cB. a + c < b + cC. ac < bcD. a/c > b/c (c ≠ 0)4. 下列哪个方程的解集是实数集?A. x² + 1 = 0B. x² 2x + 1 = 0C. x² + x + 1 = 0D. x² x + 1 = 05. 若一组数据的平均数为10,则这组数据的和为?A. 5B. 10C. 20D. 50二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。

()2. 两个负数相乘的结果是正数。

()3. 任何实数的平方都是非负数。

()4. 若a、b、c是等差数列,则a²、b²、c²也是等差数列。

()5. 两个无理数的和一定是无理数。

()三、填空题(每题1分,共5分)1. 若a + b = 5,a b = 3,则a = ______,b = ______。

2. 若x² 5x + 6 = 0,则x = ______或x = ______。

3. 若一组数据的方差为4,则这组数据的平均数为______。

4. 若等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 = ______,d = ______。

5. 若函数f(x) = 2x + 3,则f(2) = ______。

四、简答题(每题2分,共10分)1. 解释什么是无理数。

2. 什么是等差数列?给出一个等差数列的例子。

3. 解释函数的定义。

沪科版八年级下册数学期末专项测评试题 卷(Ⅱ)(含答案及解析)

沪科版八年级下册数学期末专项测评试题 卷(Ⅱ)(含答案及解析)

沪科版八年级下册数学期末专项测评试题 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、满足下列条件的三角形中,不是直角三角形的是( ) A .三内角之比为3:4:5B .三边长的平方之比为1:2:3C .三边长之比为7:24:25D .三内角之比为1:2:3 2、关于x 的一元二次方程22(1)230k x x k k +-+--=有一个根为0,则k 的值是( ) A .3B .1C .1或3-D .1-或33、下列式子为一元二次方程的是( ) A .5x 2﹣1 B .4a 2=81 C .14(2)25x x += D .(3x ﹣2)(x +1)=8y ﹣3 4x 的值可能为( ) A .0B .﹣2C .﹣1D .1 5、在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( )·线○封○密○外A .平均数是8B .众数是8.5C .中位数8.5D .极差是56、用配方法解一元二次方程2870x x -+=时,方程可变形为( )A .2(4)7x -=B .2(8)57-=xC .2(4)9x -=D .2(4)25x -=7、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行了初步测试,测试成绩如表:如果将学历、经验和工作态度三项得分依次按30%,30%,40%的比例确定各人的最终得分,那么最终得分最高的是( )A .甲B .乙C .丙D .丁8、甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是9.1环,四人的方差分别是S 甲2=0.63,S 乙2=2.56,S 丙2=0.49,S 丁2=0.46,则射箭成绩最稳定的是( )A .甲B .乙C .丙D .丁9、把方程()213x x x -=化成一元二次方程的一般形式,则二次项系数、一次项系数、常数项分别是( )A .2,5,0B .2,5,1C .2,-5,0D .2,1,010、下列新冠疫情防控标识图案中,中心对称图形是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,已知Rt ABC 中,90ACB ∠=︒,4AC BC ==,动点M 满足1AM =,将线段CM 绕点C 顺时针旋转90︒得到线段CN ,连接AN ,则AN 的最小值为_________. 2、为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是____°. 32的有理化因式可以是 ___.4、已知一个多边形的每一个外角都是45︒,则这个多形是_____边形.5、如图,将一张边长为4cm 的正方彩纸片ABCD 折叠,使点A 落在点P 处,折痕经过点D 交边AB 于点E .连接BP 、CP ,若90BPC ∠=︒,则AE 的长为______cm . ·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、解方程:(1)(2)20x x x -+-=;(2)2240x x +-=.2、2020年,受新冠肺炎疫情影响,口罩紧缺,某网店以每袋8元(一袋十个)的成本价购进了一批口罩,二月份以一袋14元的价格销售了256袋,三、四月该口罩十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到400袋.(1)求三、四这两个月销售风的月平均增长率;(2)为回馈客户,该网店决定五月降价促销,经调查发现,在四月份销量的基础上,该口罩每袋降价1元,销售量就增加40袋,当口罩每袋降价多少元时,五月份可获利1920元?3、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形.如图1,四边形ABCD 中,AB =CD ,AB ⊥CD ,四边形ABCD 即为等垂四边形,其中相等的边AB 、CD 称为腰,另两边AD 、BC 称为底.(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:①等垂四边形两个钝角的和为 °;②若等垂四边形的两底平行,则它的最小内角为 °.(2)拓展研究:①小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M 、N 分别为等垂四边形ABCD 的底AD 、BC 的中点,试探索MN 与AB 的数量关系,小坤的想法是把其中一腰绕一个中点旋转180°,请按此方法求出MN 与AB 的数量关系,并写出AB 与MN 所在直线相交所成的锐角度数. ②如图1,等垂四边形ABCD 的腰为AB 、CD ,AB =CD =AD =3,则较长的底BC 长的取值范围是 .(3)实践应用:如图3,直线l 1,l 2是两条相互垂直的公路,利用三段围栏AB 、BC 、AD 靠路边按如图方式围成一块四边形种植园,第四条边CD 做成一条隔离带,已知AB =250米,BC =240米,AD =320米,此隔离带最长为多少米? 4、用适当的方法解下列方程: (1)()229x -=. (2)2280x x --=. 5、如图,利用一面墙(墙长25米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD ,且中间共留两个1米的小门,设栅栏BC 长为x 米. (1)若矩形围栏ABCD 面积为210平方米,求栅栏BC 的长; (2)矩形围栏ABCD 面积是否有可能达到240平方米?若有可能,求出相应x 的值,若不可能,请说明理由.-参考答案- 一、单选题1、 A·线○封○密○外【分析】根据勾股定理逆定理及三角形内角和可直接进行排除选项.【详解】解:A 、由三内角之比为3:4:5可设这个三角形的三个内角分别为3,4,5k k k ,根据三角形内角和可得345180k k k ++=︒,所以15k =︒,所以这个三角形的最大角为5×15°=75°,故不是直角三角形,符合题意;B 、由三边长的平方之比为1:2:3可知该三角形满足勾股定理逆定理,即1+2=3,所以是直角三角形,故不符合题意;C 、由三边长之比为7:24:25可设这个三角形的三边长分别为7,24,25k k k ,则有()()()22272425k k k +=,所以是直角三角形,故不符合题意; D 、由三内角之比为1:2:3可设这个三角形的三个内角分别为,2,3k k k ,根据三角形内角和可得23180k k k ++=︒,所以30k =︒,所以这个三角形的最大角为3×30°=90°,是直角三角形,故不符合题意;故选A .【点睛】本题主要考查勾股定理逆定理及三角形内角和,熟练掌握勾股定理逆定理及三角形内角和是解题的关键.2、A【分析】把x =0代入原方程得到转化关于k 的方程,然后结合二次项系数不等于0求解即可.【详解】解:∵关于x 的一元二次方程22(1)230k x x k k +-+--=的一个根是0,∴2k -2k -3=0,且k +1≠0,∴k =3.故选A.【点睛】本题主要考查了一元二次方程根的定义,一元二次方程的解法,一元二次方程的定义等知识点,熟练掌握一元二次方程根的定义是解题的关键.3、B【详解】解:A、不是方程,故本选项不符合题意;B、是一元二次方程,故本选项符合题意;C、分母中含有未知数,不是一元二次方程,故本选项不符合题意;D、含有两个未知数,不是一元二次方程,故本选项不符合题意;故选:B【点睛】本题主要考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的次数的最高次数为1的整式方程称为一元二次方程是解题的关键.4、D【分析】10,10xx得到不等式组的解集,再逐一分析各选项即可.【详解】解:在实数范围内有意义,1010xx①②·线○封○密○外由①得:1,x≥由②得:1,x≠-所以:1,x≥故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.5、C【分析】计算这组数据的平均数、众数、中位数及极差即可作出判断.【详解】这组数据的平均数为:1(72109382)8.3758⨯⨯++⨯+⨯=,众数为9,中位数为8.5,极差为10-7=3,故正确的是中位数为8.5.故选:C【点睛】本题考查了反映一组数据平均数、众数、中位数、极差等知识,正确计算这些统计量是关键.6、C【分析】先把常数项7移到方程右边,然后把方程两边加上42即可.【详解】方程变形为:x2-8x=-7,方程两边加上42,得x2-8x+42=-7+42,∴(x -4)2=9.故选C .【点睛】 本题考查了利用配方法解一元二次方程()200++=≠ax bx c a :先把二次系数变为1,即方程两边除以a ,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半,这样把方程变形为:(x -2b a )2=244b ac a -. 7、A 【分析】 根据图表数据利用计算加权平均数的方法直接求出甲、乙、丙、丁四名应聘者的加权平均数,两者进行比较即可得出答案. 【详解】 解:甲的最终得分:8×30%+6×30%+7×40%=7, 乙的最终得分:9×30%+4×30%+7×40%=6.7, 丙的最终得分:7×30%+8×30%+6×40%=6.9, 丁的最终得分:6×30%+8×30%+5×40%=6.2, ∴甲>丙>乙>丁, 故选A . 【点睛】 本题考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键. 8、D 【分析】 根据方差的意义即可得. 【详解】·线○封○密○外解:22220.63, 2.56,0.49,0.46S S S S ====甲乙丁丙,且0.460.490.63 2.56<<<,∴射箭成绩最稳定的是丁(方差越小,成绩越稳定),故选:D .【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.9、C【分析】先把方程化为一般形式,再判断三项系数即可.【详解】 解: ()213x x x -=,2223,x x x2250,x x所以二次项系数、一次项系数、常数项分别是2,5,0-.故选C【点睛】本题考查的是一元二次方程的一般形式,二次项系数、一次项系数、常数项,掌握“一元二次方程的三项系数的判断”是解本题的关键.10、A【分析】一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:选项B 、C 、D 不能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以不是中心对称图形; 选项A 能找到这样的一个点,使图形绕某一点旋转180°后与原图重合,所以是中心对称图形; 故选:A .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合. 二、填空题 1、1## 【分析】 证明△AMC ≌△BNC ,可得1BN AM ==,再根据三角形三边关系得出当点N 落在线段AB 上时,AN 最小,求出最小值即可. 【详解】 解:∵线段CM 绕点C 顺时针旋转90︒得到线段CN , ∴MC NC =,90MCN ∠=︒, ∵90ACB ∠=︒,4AC BC ==, ∴ACM BCN ∠=∠,AB =∴△AMC ≌△BNC , ∴1BN AM ==,∵1AN AB BN ≥-= ∴AN的最小值为1;故答案为:1. 【点睛】·线○封○密○外本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出1BN AM ==,根据三角形三边关系取得最小值.2、43.2【分析】先求出阅读时间不少于6小时的人数,再根据公式计算即可.【详解】解:阅读时间不少于6小时的频数为50-7-13-24=6,∴一周课外阅读时间不少于6小时的这部分扇形的圆心角是636050︒⨯=43.2°, 故答案为:43.2.【点睛】此题考查了求部分的圆心角度数,正确计算某组的频数及掌握圆心角度数的计算公式是解题的关键.32【分析】利用平方差公式进行有理化即可得.【详解】解:因为2)514x x =--=-,22,2.【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键.4、八【分析】根据多边形的外角和等于360°进行解答即可得.【详解】解:360458︒÷︒=,故答案为:八.【点睛】本题考查了多边形的外角和,解题的关键是熟记多边形的外角和等于360︒.5、43## 【分析】 如图所示,过点P 作GF ⊥CD 交CD 于F ,交AB 于G ,过点P 作PH ⊥BC 于H ,取BC 中点M ,连接PM ,则12cm 2PM BC ==,然后证明四边形ADFG 是矩形,得到AG =DF ,GF =AD ,同理可证PH =BG =CF ,HC =PF ,设cm DF x =,cm PF y =,则()4cm GP y =-,()=4cm PH CF CD DF x ==--,cm HC y =,在直角△PHM 中,222PM PH MH =+,得到()()222242x y =-+-,228416x y x y +=++①;由折叠的性质可得4cm PD AD ==,AE =PE ,在直角△DPF 中222DP DF PF =+,得到2216x y =+②;联立①②得:8432x y +=即28x y +=,由此求出125x =,165y =,12cm 5AG =45GP =, 设cm AE PE z ==,则12cm 5GE AG AE z ⎛⎫=-=- ⎪⎝⎭,在直角△PEG 中222PE PG EG =+,得到22212455z z ⎛⎫=-+ ⎪⎝⎭,由此求解即可. 【详解】 解:如图所示,过点P 作GF ⊥CD 交CD 于F ,交AB 于G ,过点P 作PH ⊥BC 于H ,取BC 中点M ,连接PM , ∵∠BPC =90°, ·线○封○密○外∴12cm 2PM BC ==, ∵四边形ABCD 是正方形,∴∠A =∠ADF =90°,又∵GF ⊥CD ,∴四边形ADFG 是矩形,∴AG =DF ,GF =AD ,同理可证PH =BG =CF ,HC =PF ,设cm DF x =,cm PF y =,则()4cm GP y =-,()=4cm PH CF CD DF x ==--,cm HC y =, ∵12cm 2CM BC ==, ∴()2cm HM HC CM y =-=-,在直角△PHM 中,222PM PH MH =+,∴()()222242x y =-+-, ∴228416x y x y +=++①;由折叠的性质可得4cm PD AD ==,AE =PE ,在直角△DPF 中222DP DF PF =+,∴2216x y =+②;联立①②得:8432x y +=即28x y +=,∴82y x =-③,把③代入②中得:()228216x x +-=,解得125x =或4x =(舍去), ∴165y =,12cm 5AG = ∴45GP =, 设cm AE PE z ==,则12cm 5GE AG AE z ⎛⎫=-=- ⎪⎝⎭, 在直角△PEG 中222PE PG EG =+, ∴22212455z z ⎛⎫=-+ ⎪⎝⎭, 解得43z =, ∴4cm 3AE =, 故答案为:43. 【点睛】 本题主要考查了折叠的性质,正方形的性质,勾股定理,矩形的性质与判定,熟知相关知识是解题的关键. 三、解答题1、(1)12x =,21x =- ·线○封○密○外(2)11x =-21x =-【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可.(1)(2)20x x x -+-=(2)(1)0x x -+=20x -=,10x +=∴12x =,21x =-(2)2240x x +-=224x x +=22+15x x +=2(1)5x +=1x +=∴11x =-21x =-【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解答此题的关键2、(1)25%(2)当口罩每袋降价2元时,五月份可获利1920元【分析】(1)设三、四这两个月销售量的月平均增长率为x ,根据题目已知条件列出方程即可求解; (2)设口罩每袋降价y 元,则五月份的销售量为()40040y +袋,根据题目已知条件得出()()148400401920y y --+=,解方程即可得出结果. (1)解:设三、四这两个月销售量的月平均增长率为x ,依题意,得:()22561400x +=, 解得:10.2525%x ==,2 2.25x =-(不合题意,舍去). 答:三、四这两个月销售量的月平均增长率为25%; (2) 解:设口罩每袋降价y 元,则五月份的销售量为()40040y +袋, 依题意,得:()()148400401920y y --+=, 化简,得:24120y y +-=,解得:12y =,26y =-(不合题意,舍去). 答:当口罩每袋降价2元时,五月份可获利1920元. 【点睛】 本题主要考查的是一元二次方程的实际应用,根据题目意思正确的列出方程是解题的关键. 3、 (1)①270;②45; ·线○封○密○外(2)①MN AB =,AB 与MN 所在直线相交所成的锐角度数为45°,理由见解析;②3BC ≤+(3)650米【分析】(1)①延长CD 与BA 延长线交于点P ,则∠P =90°,可以得到∠B +∠C =90°,再由∠B +∠C +∠BAD +∠ADC =360°,即可得到∠BAD +∠ADC =270°;②延长CD 交BA 延长线于P ,过点D 作DE ∥AB 交BC 于E ,则∠DEC =∠B ,由等垂四边形的两底平行,即AD ∥BC ,可证四边形ABED 是平行四边形,得到DE =AB ,再由AB =CD ,AB ⊥CD 得到DE =CD ,DE ⊥CD ,则∠DEC =∠C =45°,即四边形ABCD 的最小内角为45°;(2)①延长CD 交BA 延长线与P ,交NM 延长线与Q ,NM 延长线与BA 延长线交于点F ,将腰AB 绕中点M 旋转180°得到DE ,连接CE ,BE ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM ,则CD =AB =DE ,AB ∥DE ,即可推出∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,由勾股定理得到CE ==,∠DEC =∠DCE =45°,再证MN 是△BCE 的中位线,得到12MN CE AB ==,MN ∥CE ,则∠NQC =∠DCE =45°,由此即可推出直线AB 与直线MN 所在直线相交所成的锐角度数为45°;②延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°,则1322PM AD ==,12PN BC =,即2BC PN =,由(2)①可知MN AB ==即可推出23BC PN =≤+PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC ==3BC ≤+(3)仿照(2)②进行求解即可.(1)解:①如图所示,延长CD 与BA 延长线交于点P ,∵四边形ABCD 为等垂四边形,即AB =CD ,AB ⊥CD ,∴∠P =90°,∴∠B +∠C =90°,∵∠B +∠C +∠BAD +∠ADC =360°,∴∠BAD +∠ADC =270°,故答案为:270; ②如图所示,延长CD 交BA 延长线于P ,过点D 作DE ∥AB 交BC 于E , ∴∠DEC =∠B ,∵等垂四边形的两底平行,即AD ∥BC ,∴四边形ABED 是平行四边形,∴DE =AB ,又∵AB =CD ,AB ⊥CD∴DE =CD ,DE ⊥CD ,∴∠DEC =∠C =45°,∴四边形ABCD 的最小内角为45°,故答案为:45; (2)解:①MN AB ,AB 与MN 所在直线相交所成的锐角度数为45°,理由如下: 延长CD 交BA 延长线与P ,交NM 延长线与Q ,NM 延长线与BA 延长线交于点F ,将腰AB 绕中点M 旋转180°得到DE ,连接CE ,BE ,·线○封○密○外∵四边形ABCD 是等垂四边形,∴AB =CD ,AB ⊥CD ,∴∠BPC =90°,∵M 是AD 的中点,∴MA =MD ,由旋转的性质可得:MB =ME ,AB =DE ,∠ABM =∠DEM , ∴CD =AB =DE ,AB ∥DE ,∴∠DEC =∠DCE ,∠EDC =∠EDP =∠BPD =90°,∴CE =,∠DEC =∠DCE =45°, 又∵M 、N 分别是BE ,BC 的中点,∴MN 是△BCE 的中位线,∴12MN CE AB ==,MN ∥CE , ∴∠NQC =∠DCE =45°,∵∠BPC =90°,∴∠QPF =90°,∴∠QFP =45°,∴直线AB 与直线MN 所在直线相交所成的锐角度数为45°;②如图所示,延长CD 交BA 延长线于P ,取AD ,BC 的中点,M 、N 连接PM ,PN ,同理可得∠APD =90°, ∴1322PM AD ==,12PN BC =,即2BC PN =, 由(2)①可知MN AB ==∵32PN MN PM ≤+=+∴23BC PN =≤+ 又∵∠PMN 随着PA 减小而减小,当点P 与点A 重合时,∠PMN 最小,此时PN 最小,即BC 最小,即此时A 、D 、C 三点共线由勾股定理得:BC∴3BC ≤≤+故答案为:3BC ≤≤+(3)解:如图所示,取AB ,CD 的中点M ,N ,连接MN ,作点C 关于M 的对称点E ,连接CE ,AE ,DE ,设直线l 1与直线l 2交于点P , 由(2)可知,AE ∥BC ,AE =BC =240米, ∵l 1⊥l 2,∴∠APB =∠PAE =90°,∴∠DAE =90°,∴400DE =米, ·线○封○密○外∵M、N分别是CE,CD的中点,∴MN是△CED的中位线,∴12002MN ED==米,MN∥DE,∵M为AB的中点,∠APB=90°,∴11252PM AB==米,同理可得12PN CD=,即2CD PN=∴325PN PM MN≤+=米,∴2650CD PN=≤米,∴隔离带最长为650米.【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解.4、(1)x1=5,x2=-1;(2)x1=4,x2=-2.【分析】(1)根据直接开方法即可求出答案;(2)根据因式分解法即可求出答案.(1)解:∵(x -2)2=9,∴x -2=±3,∴x =2±3,∴x 1=5,x 2=-1;(2)解:∵x 2−2x −8=0,因式分解得(x -4)(x +2)=0,∴x -4=0或x +2=0, ∴x 1=4,x 2=-2. 【点睛】 本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 5、(1)栅栏BC 的长为10米;(2)矩形围栏ABCD 面积不可能达到240平方米. 【分析】 (1)先表示出AB 的长,再根据矩形围栏ABCD 面积为210平方米,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论;(2)根据矩形围栏ABCD 面积为240平方米,即可得出关于x 的一元二次方程,由根的判别式Δ=-31<0,可得出该方程没有实数根,进而可得出矩形围栏ABCD 面积不可能达到240平方米. 【详解】 解:(1)依题意,得:(513)210x x -=, 整理,得:217700x x -+=, 解得:127,10x x ==.·线○封○密·○外当7x =时,5133025AB x =-=>,不合题意,舍去,当10x =时,51321AB x =-=,符合题意,答:栅栏BC 的长为10米;(2)不可能,理由如下:依题意,得:(513)240x x -=,整理得:217800x x -+=,∵2(17)4180310∆=--⨯⨯=-<,∴方程没有实数根,∴矩形围栏ABCD 面积不可能达到240平方米.【点睛】本题考查了一元二次方程的应用、列代数式以及根的判别式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出AB 的长;(2)找准等量关系,正确列出一元二次方程;(3)牢记“当Δ<0时,方程无实数根”.。

八年级下数学竞赛真题试卷

八年级下数学竞赛真题试卷

一、选择题(每题5分,共25分)1. 下列各数中,是正数的是()A. -3/2B. 0C. -√4D. 3/42. 若a、b是实数,且a+b=0,则下列等式中正确的是()A. a^2+b^2=0B. a^2+b^2>0C. a^2+b^2<0D. a^2+b^2≥03. 已知a=√2,b=√3,则a^2+b^2的值是()A. 5B. 4C. 3D. 24. 下列各式中,正确的是()A. √9=3B. √16=4C. √25=5D. √36=65. 已知x=√2+√3,则x^2的值是()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 若x^2=1,则x的值为______。

7. 若√(a^2+b^2)=5,且a+b=0,则a和b的值分别为______。

8. 若x=√(3+2√2),则x^2的值为______。

9. 若a、b是实数,且a^2+b^2=0,则a和b的值分别为______。

10. 若x=√(a^2+b^2),则x^2的值为______。

三、解答题(每题10分,共30分)11. (10分)已知a、b是实数,且a+b=0,求证:a^2+b^2=0。

12. (10分)已知x=√(3+2√2),求x^2的值。

13. (10分)已知a、b是实数,且a^2+b^2=5,求证:a+b=0。

四、附加题(每题10分,共20分)14. (10分)已知x=√(a^2+b^2),且a+b=0,求证:x=√2。

15. (10分)已知x=√(3a^2+4b^2),且a+b=0,求证:x=√(3a^2+4b^2)。

注意事项:1. 本试卷共15题,满分100分。

2. 考生在规定时间内完成试卷,不得抄袭、作弊。

3. 答题时,请将答案填写在答题卡上,不得在试卷上直接填写。

4. 考试结束后,请将试卷和答题卡一并交回。

祝各位考生考试顺利!。

沪科版八年级下册数学专题测评 卷(Ⅲ)(含答案详解)

沪科版八年级下册数学专题测评 卷(Ⅲ)(含答案详解)

沪科版八年级下册数学专题测评 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列是对方程2x 2﹣x +1=0实根情况的判断,正确的是( ) A .有两个不相等的实数根B .有一个实数根C .有两个相等的实数根D .没有实数根 2、以下列各组数为边长的三角形中,不能构成直角三角形的一组是( ) A .6、8、10 B .5、12、13 C .8、15、17 D .4、5、6 3、下列运算正确的是( ) A.3=BC3-D .215= 4、关于x 的一元二次方程22(1)230k x x k k +-+--=有一个根为0,则k 的值是( ) A .3B .1C .1或3-D .1-或3 5、为了绿化荒山,某地区政府提出了2028年荒山的森林覆盖率达到45%的目标.已知2019年该地区森林覆盖率已达到34%,若要在2021年使该地区荒山的森林覆盖率达到38%.设从2019年起该地·线○封○密○外区荒山的森林覆盖率的年平均增长率为x ,则可列方程为( )A .()34%1238%x +=B .()34%1238x +=C .()234%138%x +=D .()234%138x += 6、一个直角三角形有两边长为3cm ,4cm ,则这个三角形的另一边为( )A .5cmB cmC .7cmD .5cm cm7x 的值可能为( ) A .0 B .﹣2 C .﹣1 D .18、用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 9、下列条件中,不能判定一个四边形是平行四边形的是( )A .一组对边平行且相等B .对角线互相平分C .两组对角分别相等D .一组对边平行,另一组对边相等10、在下列四组数中,不是..勾股数的一组是( ) A .15,8,7 B .4,5,6 C .24,25,7 D .5,12,13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_____.2、若2x =是关于x 的一元二次方程20x mx +=的一个根,则m 的值为__________.3、已知关于x 的一元二次方程230x kx +-=有一个根为-3,则k 的值为______.4x 的取值范围是 ___. 5、设m 、n 分别为一元二次方程x 2+2x ﹣13=0的两个实数根,则m 2+3m +n 的值为 _____. 三、解答题(5小题,每小题10分,共计50分) 1、解方程:(1)(2)20x x x -+-=;(2)2240x x +-=.2、某鞋店在一周内销售某款女鞋,尺码(单位:cm )数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 2322.5 23.5 23.5 22.5 24 24 22.5 25 23 2323.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制出不完整的频数分布表及频数分布直方图: 21.522.5x <22.523.5x <23.524.5x < 24.525.5x <·线○封○密○外(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的________,上面数据的众数为________;x<范围的鞋应购进约多少双?(3)若店主下周对该款女鞋进货200双,尺码在23.525.53、在第二十二届深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图.请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为,图中的a值为;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?4、已知a、b、c为一个等腰三角形的三条边长,并且a、b满足7b=,求此等腰三角形周长.5、某影院在国庆档期上映了两部最火的国产影片《长津湖》与《我和我的父辈》,在国庆档第一周,已知买3张《长津湖》的可以买4张《我和我的父辈》,买4张《长津湖》和3张《我和我的父辈》一共需要250元. (1)在国庆档第一周,一张《长津湖》的票价和一张《我和我的父辈)的票价分别是多少元? (2)在国庆档第一周《长津湖)卖出了6000张电影票,《我和我的父辈》卖出了4000张电影票.在国庆档第二周,长津湖的每张票价在第一周的基础上降低了a %,卖出电影票的数量却比第一周降低了3%2a ,《我和我的父辈》的票价不变,数量比第一周减少5%2a ,国庆档的第二周两部电影的票房总价比第一周两部电影的票房总价减少了12%5a ,求a 的值. -参考答案- 一、单选题1、C【分析】先求出根的判别式24b ac =-△的值,根据△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根作出判断即可. 【详解】∵根的判别式224(4210b ac =-=--⨯⨯=, ∴方程有两个相等的实数根. 故选C . 【点睛】 此题考查根据判别式判断一元二次方程根的情况,掌握根的判别公式为24b ac =-△是解答本题的关键. 2、D 【分析】 ·线○封○密○外根据题意由勾股定理的逆定理,进而验证两小边的平方和等于最长边的平方进行判断即可.【详解】解:A 、62+82=102,故是直角三角形,故此选项不符合题意;B 、52+122=132,故是直角三角形,故此选项不符合题意;C 、82+152=172,故是直角三角形,故此选项不符合题意;D 、42+52≠62,故不是直角三角形,故此选项符合题意.故选:D .【点睛】本题考查勾股定理的逆定理.注意掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、D【分析】||a ,2(0)a a =≥,计算选择即可.【详解】∵∴A 计算错误;∴B 计算错误;|3|3=-=,∴C 计算错误;∵105>,∴215=, ∴D 计算正确;故选D .【点睛】||a,2(0)a a =≥,是解题的关键. 4、A 【分析】 把x =0代入原方程得到转化关于k 的方程,然后结合二次项系数不等于0求解即可. 【详解】 解:∵关于x 的一元二次方程22(1)230k x x k k +-+--=的一个根是0, ∴2k -2k -3=0,且k +1≠0, ∴k =3. 故选A . 【点睛】 本题主要考查了一元二次方程根的定义,一元二次方程的解法,一元二次方程的定义等知识点,熟练掌握一元二次方程根的定义是解题的关键. 5、C 【分析】 增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设年平均增长率为x ,根据“2019年我市森林覆盖率已达到34%,要在2021年使全市森林覆盖率达到38%”,可列出方程. ·线○封○密·○外【详解】解:由题意可得:2020年,全市森林覆盖率为:34%(1+x);2021年,全市森林覆盖率为:34%(1+x)(1+x)=34%(1+x)2;所以可列方程为34%(1+x)2=38%;故选C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6、D【分析】根据勾股定理解答即可.【详解】解:设这个三角形的另一边为x cm,若x为斜边时,由勾股定理得:5x=,若x为直角边时,由勾股定理得:x=综上,这个三角形的另一边为5cm,故选:D.【点睛】本题考查勾股定理,利用分类讨论思想是解答的关键.7、D【分析】10,10xx得到不等式组的解集,再逐一分析各选项即可.【详解】解:在实数范围内有意义,1010xx①②由①得:1,x≥由②得:1,x≠-所以:1,x≥故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.8、B【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式.【详解】解:2250x x--=移项得:225x x-=·线○封○密·○外方程两边同时加上一次项系数一半的平方得:22151-+=+x x配方得:()216x-=.故选:B.【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.9、D【分析】根据平行四边形的判定方法一一判断即可;【详解】解:A、一组对边平行且相等的四边形是平行四边形,故本选项不符合题意;B、对角线互相平分的四边形是平行四边形,故本选项不符合题意;C、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;D、一组对边平行,另一组对边相等的四边形还可能是等腰梯形,本选项符合题意;故选:D.【点睛】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法.10、B【分析】利用勾股数的定义(勾股数就是可以构成一个直角三角形三边的一组正整数),最大数的平方=最小数的平方和,直接判断即可.【详解】解:A 、2228715+=,故A 不符合题意.B 、222456+≠,故B 符合题意.C 、22272425+=,故C 不符合题意.D 、22251213+=,故D 不符合题意.故选:B .【点睛】本题主要是考查了勾股数的判别,熟练掌握勾股数的定义,是求解该题的关键.二、填空题1、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可.【详解】解:在直角三角形中,两直角边长分别为6和8,10, ∴斜边中线长为12×10=5, 故答案为 5. 【点睛】 本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键. 2、2- 【分析】 ·线○封○密○外根据题意把x =2代入20x mx +=,得到关于m 的一元一次方程,解方程即可求出m 的值.【详解】解:把x =2代入20x mx +=,可得420m +=,解得:2m =-.故答案为:2-.【点睛】本题考查一元二次方程的解(根)的意义,以及解一元一次方程,注意掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3、2【分析】将已知根-3代入一元二次方程即可求得k 的值.【详解】将x =-3代入230x kx +-=有()()23330k -+⋅--=整理得9330k --=解得2k =故答案为:2.【点睛】本题考查了已知一元二次方程的根求参数,为一元二次方程根的定义的逆应用.判断一个数是不是一元二次方程的根,将此数代入这个一元二次方程的左、右两边,看是否相等,若相等,就是方程的根.4、1x >【分析】10,x 再解不等式即可得到答案. 【详解】 解:10,x 解得: 1.x > 故答案为:1x > 【点睛】 本题考查的是二次根式有意义的条件,掌握“二次根式的被开方数为非负数”是解本题的关键. 5、11 【分析】 由m ,n 分别为一元二次方程x 2+2x ﹣13=0的两个实数根,推出m +n =-2,m 2+2m =13,由此即可解决问题. 【详解】 解:∵m 、n 分别为一元二次方程x 2+2x ﹣13=0的两个实数根, ∴m +n =-2,m 2+2m =13, 则原式=m 2+2m +m +n =m 2+2m +(m +n ) =13-2 =11. 故答案为:11. 【点睛】 ·线○封○密○外本题考查根与系数关系,解题的关键是记住x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a.三、解答题1、(1)12x =,21x =-(2)11x =-21x =-【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可.(1)(2)20x x x -+-=(2)(1)0x x -+= 20x -=,10x +=∴12x =,21x =-(2)2240x x +-=224x x +=22+15x x +=2(1)5x +=1x +=∴11x =-21x =-【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解答此题的关键2、(1)见解析;(2)众数,23.5;(3)100双【分析】(1)根据本次收集的数据,通过划记的方式找出鞋码在22.523.5x ≤<范围内的数量,并补全分布表和直方图; (2)根据本次收集的数据,找出出现次数最多的数字,该数字即为众数,她应该关注尺码的众数; (3)根据本次收集的数据,算出鞋码在23.525.5x ≤<范围内的频率,当进货200双鞋的时候,鞋码在23.525.5x ≤<范围内的鞋子数量=进货量⨯该鞋码的频率.【详解】解:(1)根据题中所给的尺寸,根据划记可得鞋码在22.523.5x ≤<范围的数量共有12,故表中尺码为22.523.5x ≤<的鞋的频数为:12, 补全频数分布表如表所示: 21.522.5x <22.523.5x < 23.524.5x <·线○封○密○外24.525.5x <补全的频数分布直方图如图所示:(2)样本中,尺码为23.5cm 的出现次数最多,共出现9次,因此众数是23.5,她应关注的是尺码的众数,故答案为:众数;23.5;(3)鞋码在23.525.5x ≤<范围内的频率为:132=0.530+, 共进200双鞋,鞋码在23.525.5x ≤<范围内的鞋子数量为:132200=10030+⨯(双). 答:该款女鞋进货200双,尺码在23.525.5x ≤<范围的鞋应购进约100双.【点睛】本题主要考察了频数分布表、频数分布直方图、求出已知数据的众数、用样本出现的概率推测总体的概率,解题的关键在于正确处理本次收集的数据,在进行各尺码区间频数统计的时候不要出错.3、(1)100,18;(2)见解析;(3)1.5,1.5,1.32(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图; (3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为18%,400乘以18%即可求得. 【详解】 (1)总人数为:3030%100÷=(人); 18100%18%100⨯= 故答案为:100,18 (2)每天平均课外阅读时间为1.5小时的人数为:10012301840---=(人) 补充条形统计图如下: (3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5 中位数为1.5,平均数为()10.512130 1.540182 1.32100⨯⨯+⨯+⨯+⨯=; (4)40018%72⨯=(人) ∴估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有72人 【点睛】·线○封○密○外本题考查了条形统计图与扇形统计图信息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键.4、17【分析】由二次根式有意义的条件可得3030aa-≥⎧⎨-≥⎩,解不等式可得a的值,进而可得b的值,然后再分两种情况进行计算即可.【详解】解:由题意得:30 30aa-≥⎧⎨-≥⎩,解得:a=3,则b=7,若c=a=3时,3+3<7,不能构成三角形.若c=b=7,此时周长为17.【点睛】本题考查了二次根式有意义的条件和等腰三角形的性质,关键是掌握二次根式中的被开方数是非负数.5、(1)一张《长津湖》的票价是40元,一张《我和我的父辈》的票价是30元(2)a的值是10【分析】(1)设一张《长津湖》的票价是x元,一张《我和我的父辈》的票价是y元,根据“买3张《长津湖》的可以买4张《我和我的父辈》,买4张《长津湖》和3张《我和我的父辈》一共需要250元.”列出方程组,即可求解;(2)根据题意列出方程,令%a m =,可得关于m 的方程,解出即可求解.(1)解:设一张《长津湖》的票价是x 元,一张《我和我的父辈》的票价是y 元, 根据题意得3443250x y x y =⎧⎨+=⎩, 解得4030x y =⎧⎨=⎩, 答:一张《长津湖》的票价是40元,一张《我和我的父辈》的票价是30元. (2) 解:根据题意得: ()()35126000401%1%3040001%6000403040001%225a a a a ⎛⎫⎛⎫⎛⎫⨯--+⨯-=⨯+⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令%a m =,整理得()0.10m m -=, 解得0.1m =,或0m =(舍去), 所以%0.1a =,10a =, 答:a 的值是10. 【点睛】 本题主要考查了一元二次方程和二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键. ·线○封○密○外。

2020-2021学年江苏省八年级下学期数学竞赛卷1(解析版)

2020-2021学年江苏省八年级下学期数学竞赛卷1(解析版)

2020-2021学年江苏省八年级下学期数学竞赛卷1 一,单项选择题(本大题共8小题,每题5分,共40分)1.(2020•浙江自主招生)设a=﹣2,则代数式a3+4a2﹣a+6的值为()A.6B.4C.2+2D.2﹣2【解答】解:∵a=﹣2,∴(a+2)2=()2,即a2+4a=1,∴a3+4a2﹣a+6=a(a2+4a)﹣a+6=a×1﹣a+6=6.故选:A.2.(2020•田家庵区校级自主招生)若关于x的方程的解为正数,则m的取值范围是()A.B.且C.m<6D.m<6且m≠2【解答】解:去分母得:x+m﹣3m=3x﹣12,整理得:2x=﹣2m+12,解得:x=,∵关于x的方程的解为正数,∴﹣2m+12>0,解得m<6,当x=4时,x==4,解得:m=2,∴m的取值范围是:m<6且m≠2.故选:D.3.(2020•江岸区校级自主招生)如图,在▱ABCD中,BC=2AB,CE⊥AB于E,F为AD 的中点,若∠AEF=51°,则∠B的度数是()°.A.62B.72C.78D.68【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;∵BC=2AB,为AD的中点,∴BG=AB=FG=AF,连接EG,在Rt△BEC中,EG是斜边上的中线,∴BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=51°,∴∠AEG=∠AEF+∠FEG=102°,∴∠B=∠BEG=180°﹣102°=78°.故选:C.4.甲、乙、丙、丁、戊五位同学参加一次节日活动,很幸运的是他们都得到了一件精美的礼品(如图),他们每人只能从其中一串的最下端取一件礼品,直到礼物取完为止,甲第一个取得礼物,然后乙、丙、丁、戊依次取得第2到第5件礼物,他们的取法各种各样,发现礼物D最精美,那么取得礼物D可能性最大的是同学是()A.乙B.丙C.丁D.戊【解答】解:甲乙丙丁戊取礼物的顺序有10种,为:①A、B、C、D、E;②A、C、D、E、B;③A、C、D、B、E;④A、C、B、D、E;⑤C、D、E、A、B;⑥C、D、A、B、E;⑦C、D、A、E、B;⑧C、A、B、D、E;⑨C、A、D、B、E;⑩C、A、D、E、B.乙、丙、丁三人选到礼物D的概率应该分别是0.3,0.4,0.3.取得礼物D可能性最大的是丙同学,故选:B.5.(2018•温江区校级自主招生)某校九年级共有1100名学生参加“二诊”考试,随机抽取50名学生进行总成绩统计,其中有20名学生总成绩达到优秀,估计这次“二诊”考试总成绩达到优秀的人数大约为()A.400B.420C.440D.460【解答】解:随机抽取了50名学生的成绩进行统计,共有20名学生成绩达到优秀,∴样本优秀率为:20÷50=40%,又∵某校九年级共1100名学生参加“二诊”考试,∴该校这次“二诊”考试总成绩达到优秀的人数大约为:1100×40%=440人.故选:C.6.(2020•九龙坡区自主招生)如图,四边形OABC为平行四边形,A在x轴上,且∠AOC =60°,反比例函数y=(k>0)在第一象限内过点C,且与AB交于点E.若E为AB 的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.7.(2020•浙江自主招生)已知点D与点A(8,0),B(0,6),C(a,﹣a)是一平行四边形的四个顶点,则CD长的最小值为()A.8B.7C.D.6【解答】解:有两种情况:①CD是平行四边形的一条边,那么有AB=CD==10②CD是平行四边形的一条对角线,过C作CM⊥AO于M,过D作DF⊥AO于F,交AC于Q,过B作BN⊥DF于N,则∠BND=∠DF A═∠CMA=∠QF A=90°,∠CAM+∠FQA=90°,∠BDN+∠DBN=90°,∵四边形ACBD是平行四边形,∴BD=AC,∠C=∠D,BD∥AC,∴∠BDF=∠FQA,∴∠DBN=∠CAM,∵在△DBN和△CAM中,∴△DBN≌△CAM(AAS),∴DN=CM=a,BN=AM=8﹣a,D(8﹣a,6+a),由勾股定理得:CD2=(8﹣a﹣a)2+(6+a+a)2=8a2﹣8a+100=8(a﹣)2+98,当a=时,CD有最小值,是,∵<10,∴CD的最小值是=7.故选:B.8.(2020•武昌区校级自主招生)若关于x的方程++=0只有一个实数根,则实数a的所有可能取值的和为()A.7B.15C.31D.以上选项均不对【解答】解:已知方程化为4x2﹣4x﹣a+8=0①,若方程①有两个相等实根,则△=16﹣16(8﹣a)=0,即a=7,当a=7时,方程①的根x1=x2=,符合要求;若x=2是方程①的根,则8+8+a+8=0,即a=﹣24,此时,方程①的另一个根为x=﹣4,符合要求;若x=﹣2是方程①的根,则8﹣8+a+8=0,即a=﹣8,此时方程①的另一个根为x=0,符合要求,综上,符合条件的a有﹣6,﹣24,﹣8,其总和为﹣38,故选:C.二、填空题(本大题共6小题,每题5分,共30分)9.(2020•九龙坡区自主招生)在一个不透明的袋子中放有a个球,其中有8个白球,这些球除颜色外完全相同.若每次把球充分搅匀后,任意摸出一球记下颜色后再放回袋子,通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为32.【解答】解:a的值约为8÷0.25=32,故答案为:32.10.(2020•浙江自主招生)如图,已知平行四边形ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1D.若点B1恰好落在y轴上,试求的值.【解答】解:当点B1恰好落在y轴上,如图,∵DF⊥BB1,DB1⊥OB,∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°,∴∠B1DF=∠OBB1.∵∠DOA=∠BOB1=90°,∴△AOD∽△B1OB,∴,∴,∴OB1=.由轴对称的性质可得AB1=AB=m﹣n.在Rt△AOB1中,n2+()2=(m﹣n)2,整理得3m2﹣8mn=0.∵m>0,∴3m﹣8n=0,∴.故答案为:.11.(2020•浙江自主招生)已知﹣=2,则+=3.【解答】解:根据题意得(﹣)(+)=16﹣x2﹣(4﹣x2)=12,而﹣=2,所以2(+)=12,所以+=3.故答案为3.12.(2020•浙江自主招生)已知﹣|a|=1,则代数式+|a|的值为.【解答】解:∵﹣|a|=1,∴+a2﹣2=1,∴+a2=3,∴(+|a|)2=+a2+2=5,∴+|a|=±.∵﹣|a|=1,∴=|a|+1>0,∴a>0,∴+|a|=.故答案为:.13.(2020•浙江自主招生)已知,P为等边三角形ABC内一点,P A=3,PB=4,PC=5,则S△ABC=.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.∴△ABC的面积=AB2=(25+12)=;故答案为:.14.(2020•浙江自主招生)如图,在矩形OABC中,点A在反比例函数y=﹣(x<0)的图象上,点C在反比例函数y=(x>0)的图象上,边AB与反比例函数y=﹣(x <0)的图象交于点E,若E为AB的中点,则矩形OABC的面积为4.【解答】解:如图,作AM⊥x轴于M,CN⊥x轴于N,EF⊥x轴于F,连接OE,∵∠AOC=90°,∴∠AOM+∠CON=90°,∵∠AOM+∠OAM=90°,∴∠CON=∠OAM,∵∠AMO=∠ONC,∴△OAM∽△CON,∴=()2=()2,∵S△OAM=×2=1,S△OCN=×8=4,∴==,∴CN=2OM,OC=2OA,设A(m,﹣),则C(﹣,﹣2m),∴B(﹣+m,﹣2m﹣)∴E(﹣+m,﹣m﹣),∴(﹣+m)•(﹣m﹣)=﹣2,解得m2=1+∴S△OAE=S梯形AMFE=(﹣m﹣﹣)•(﹣+m﹣m)=1+=,∵E为AB的中点,∴S矩形OABC=4S△OAE=4,故答案为4.三、解答题(本大题共4小题,15题,16题7分,17,18题8分,共30分。

沪教版八年级下册数学考试真题及答案

沪教版八年级下册数学考试真题及答案

沪教版八年级下册数学考试真题及答案全文共2篇示例,供读者参考沪教版八年级下册数学考试真题及答案1第一章勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长,,满足,那么这个三角形是直角三角形。

满足的三个正整数称为勾股数。

第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

(2)性质:①当≥0时,≥0;当<0时,无意义;② = ;③ 。

2.立方根的概念及其性质:(1)概念:若,那么是的立方根,记作:;(2)性质:① ;② ;③ =3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的`一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

5.算术平方根的运算律:( ≥0,≥0); ( ≥0,>0)。

第三章图形的平移与旋转1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这点定点称为旋转中心,转动的角称为旋转角。

旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

八年级数学竞赛题及答案解析

八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟)班级: 姓名: 得分:一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5BC .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .1=-D .2)2(2-=-3.若1k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab C.3-=3(a ≥0) D.·=(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =的自变量x 的取值范围是________.12.点 P (a ,a -3)在第四象限,则a 的取值范围是 .13.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则a b 的值为__________.14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为__________.15.在△ABC 中,a ,b ,c 为其三边长,,,,则△ABC 是_________.16.在等腰△ABC 中,AB =AC =10 cm ,BC =12 cm ,则BC 边上的高是_________cm .17.若),(b a A 在第二、四象限的角平分线上,a 与b 的关系是_________.18已知:m 、n 为两个连续的整数,且m <<n ,则m +n =_________.三、解答题(共66分) 19.(8分)如图,已知等腰△的周长是,底边上的高的长是,求这个三角形各边的长.20.(8分)计算: (1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积.22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值. 23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?第24题图 第25题图25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度; (2)在坐标系中,补画s 关于t 的函数图象的其余部分;(3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?年级数学竞赛答题卡一、选择题(每题3分,共30分)D C第19题图二、填空题(每小题3分,共24分) 11. 12. 13. 14.15. 16. 17. 18.三、解答题(共66分)19. (8分)如图,已知等腰△的周长是,底边上的高的长是,求这个三角形各边的长.20.(8分)计算:(1)44.1-21.1; (2)0)31(33122-++;(3)2)75)(75(++-; (4)2224145-.21.(8分)在平面直角坐标系中,顺次连接A (-2,1),B (-2,-1),C (2,-2),D (2,3)各点,你会得到一个什么图形?试求出该图形的面积.22.(8分)已知a 31-和︱8b -3︱互为相反数,求()2-ab -27 的值. 23.(8分)设一次函数y =kx +b (k ≠0)的图象经过A (1,3),B (0,-2)两点,试求k ,b 的值.24.(8分)一架云梯长25 m ,如图所示斜靠在一面墙上,梯子底端C 离墙7 m.(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向也是滑动了4 m 吗?25.(8分)甲、乙两人匀速从同一地点到1 500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s (米),甲行走的时间为t (分),s 关于t 的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s 关于t 的函数图象的其余部分;(3)问甲、乙两人何时相距360米?26.(10分)某服装公司招工广告承诺:熟练工人每月工资至少3 000元,每天工作8小时,一个月工作25天,月工资底薪800元,另加计件工资.加工1件A 型服装计酬16元,加工1件B 型服装计酬12元.在工作中发现一名熟练工加工1件A 型服装和2件B 型服装需4小时,加工3件A 型服装和1件B 型服装需7小时.(工人月工资=底薪+计件工资)D C 第19题图(1)一名熟练工加工1件A 型服装和1件B 型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A ,B 两种型号的服装,且加工A 型 服装数量不少于B 型服装的一半”.设一名熟练工人每月加工A 型服装a 件,工资总额为 W 元,请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?期中检测题参考答案一、选择题1.C 解析:|-5|=5;|-2|=2,|1|=1,|4|=4,所以绝对值最小的数是1,故选C .2.C 解析:选项A 9=,选项B 5=,选项D 中22(=,所以只有选项C 中1=-正确.3.D 解析:∵ 81<90<100,∴ ,即910,∴ k =9. 4.D 解析:因为22ab ab a b ⋅=,所以A 项错误;因为33(2)8a a =,所以B 项错误;因为0)a =≥,所以C 0,0)a b =≥≥,所以D项正确.5.D 解析:判断一个三角形是不是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角.B 、C 满足勾股定理的逆定理,故选D.6.C 解析:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5以直角三角形的周长为3+4+5=12或3+47C .7.D 解析:筷子在杯中的最大长度为22815+=17(cm ),最短长度为8 cm ,则筷子露在杯子外面的长度h 的取值范围是24-17≤h ≤24-8,即7≤h ≤16,故选D . 8.C 解析:关于原点对称的点的坐标的特点是横、纵坐标均互为相反数,所以点(-2,3)关于原点的对称点为(2,-3).根据平移的性质,结合直角坐标系,(2,-3)点向左平移2个单位长度,即横坐标减2,纵坐标不变.故选C .9.B 解析:∵ △ABC 向左平移5个单位长度,A (4,5),4-5=-1,∴ 点A 1的坐标为(-1,5),故选B .10.D 解析:设直线l 的表达式为()0y kx b k =+≠, 直线l 经过第一、二、三象限,∴ 0k >,函数值y 随x 的增大而增大. 01>-,∴ a b >,故A 项错误;02>-,∴ 3a >,故B 项错误; 12->-,∴ 3b >,故C 项错误; 13-<,∴ 2c <-,故D 项正确.二、填空题11.x ≥2 解析:因为使二次根式有意义的条件是被开方数≥0,所以x -2≥0,所以x ≥2. 12.0<a <3 解析:本题考查了各象限内点的坐标的符号特征以及不等式的解法. ∵ 点P (a ,a -3)在第四象限,∴ a >0,a -3<0,解得0<a <3.13.25 解析:本题考查了关于y 轴对称的点的坐标特点,关于y 轴对称的点的横坐标互为相反数,纵坐标相同,可得a +b =-3,1-b =-1,解得b =2,a =-5,∴ a b =25.14.y =0.3x +6 解析:因为水库的初始水位高度是6米,每小时上升0.3米,所以y 与x 的函数关系式为y =0.3x +6(0≤x ≤5).15.直角三角形 解析:因为所以△是直角三 角形.16.8 解析:如图,AD 是BC 边上的高线.∵ AB =AC =10 cm ,BC =12 cm ,∴ BD =CD =6 cm ,∴ 在Rt △ABD 中,由勾股定理,得AD=8(cm ).17.互为相反数 解析:第二、四象限的角平分线上的点的横、纵坐标的绝对值相等,•符号 相反.18.7 解析:∵ 9<11<16,∴ 3<<4. 又∵ m 、n 为两个连续的整数,∴ m =3,n =4,∴ m +n =3+4=7.三、解答题19. 解:设,由等腰三角形的性质,知. 由勾股定理,得,即,解得, 所以,.20.解:(1).(2). (3333+=+=+=D B C第16题答图(4).61513334)31(331220=+=++=-++ (5)(6). 21.解:梯形.因为AB ∥CD ,AB 的长为2,CD 的长为5,AB 与CD 之间的距离为4,所以S 梯形ABCD =(25)42+⨯=14. 22.解: 因为a 31-≥0,︱8b -3︱≥0,且a 31-和︱8b -3︱互为相反数, 所以a 31-,0=︱8b -3︱,0= 所以,83,31==b a 所以()2-ab -27=64-27=37. 23.分析:直接把A 点和B 点的坐标分别代入y =kx +b ,得到关于k 和b 的方程组,然后解方程组即可.解:把(1,3)、(0,-2)分别代入y =kx +b ,得+32k b b =⎧⎨=-⎩,, 解得52k b =⎧⎨=-⎩,,即k ,b 的值分别为5,-2. 24.分析:(1)可设这个梯子的顶端A 距地面有x m 高,因为云梯长、梯子底端离墙距离、梯子的顶端距地面高度是直角三角形的三边长,所以x 2+72=252,解出x 即可.(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向不一定滑动了4 m ,应计算才能确定.解:( 1)设这个梯子的顶端A 距地面有x m 高,根据题意,得AB 2+BC 2=AC 2,即x 2+72=252,解得x =24,即这个梯子的顶端A 距地面有24 m 高.(2)不是.理由如下:如果梯子的顶端下滑了4 m ,即AD =4 m,BD =20 m.设梯子底端E 离墙距离为y m ,根据题意,得BD 2+BE 2=DE 2,即202+y 2=252,解得y =15.此时CE =15-7=8(m ).所以梯子的底部在水平方向滑动了8 m.25.解:(1)甲行走的速度:150530÷=(米/分).(2)补画的图象如图所示(横轴上对应的时间为50).(3)由函数图象可知,当t =12.5时,s =0;当12.5≤t ≤35时,s =20t -250;当35<t ≤50时,s =-30t +1 500.当甲、乙两人相距360米时,即s =360,360=20t -250,解得30.5=t ,360 =-30t +1 500. 解得 38=t ∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.26.解:(1)设一名熟练工加工1件A 型服装需要x 小时,加工1件B 型服装需要y 小时,由题意,得解得答:一名熟练工加工1件A 型服装需要2小时,加工1件B 型服装需要1小时.(2)当一名熟练工一个月加工A 型服装a 件时,则还可以加工B 型服装(25×8-2a )件. ∴ W =16a +12(25×8-2a )+800,∴ W =-8a +3 200.又a ≥ (200-2a ),解得a ≥50.∵ -8<0,∴ W 随着a 的增大而减小.∴ 当a =50时,W 有最大值2 800.∵ 2 800<3 000,∴ 该服装公司执行规定后违背了广告承诺.。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14C .-4D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ).A .100°B .105°C .110°D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>>6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最(第4题图)DCB小值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= . 11.已知21()()()04b cb c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 .以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共G(第8题图)HOFEDCBA(第15题图)EDCBA34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数.四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且.⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B二、填空题: 7、21x y =⎧⎨=⎩8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

下八年级数学竞赛试题及答案

下八年级数学竞赛试题及答案

八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abt a b+ D.bt atb -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当12x +=()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c b c a c a b a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 .14. 的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 816、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221210++=,10=20=10=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。

初二数学竞赛试题及答案

初二数学竞赛试题及答案

初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。

12. 一个数的立方根是2,那么这个数是______。

答案:813. 如果一个角的补角是120°,那么这个角的度数是______。

答案:60°14. 一个数的倒数是1/2,那么这个数是______。

答案:215. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。

答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ). A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ).A .a b c d >>>B .a b d c >>>C .b a c d >>>D .a d b c >>>(第4题图)DCB6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b cb c a b c a a a+-=--≠=,且,则 .12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 .以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参G(第8题图)HOFEDCBA(第15题图)EDCBA加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数.四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD . 求证:∠BAD=12∠C .参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

下八年级数学竞赛试题及答案

下八年级数学竞赛试题及答案

八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abt a b+ D.bt atb -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当12x +=()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c b c a c a b a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 .14. 的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 816、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221210++=,10=20=10=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。

沪科版八年级数学下册单元测试题全套(含答案)

沪科版八年级数学下册单元测试题全套(含答案)
26.(14分)已知关于 的方程 两根的平方和比两根的积大21,求 的值.
参考答案
一、选择题:
1、B 2、D 3、C 4、B 5、D
6、B 7、A 8、B 9、C 10、D
二、填空题:
11、提公因式12、- 或1 13、 , 14、b=a+c 15、1,-2
16、3 17、-6,3+ 18、x2-7x+12=0或x2+7x+12=0 19、-2
A. =-3 B.- =-3 C. =±3 D. =±3
7.下列各根式 、 、 、 、 其中最简二次根式的个数有()
A.1 B.2 C.3 D.4
8.下列运算正确的是()
A. =±5 B.4 - =1 C. ÷ =9 D. · =6
9.若 , 为实数,且 ,则 的值为()
A.-1 B.1 C.1或7 D.7
10.如果 是实数,则下列各式中一定有意义的是()
A. B. C. D.
二、填空题(每小题4分,共20分)
11. =.
12.已知: ; ; ; …如果n是大于1的正整数,那么请用含n的式子表示你发现的规律.
13.已知实数a在数轴上的对应点,如图所示,则化简 所得结果为.
第13题图
14.若 ,则 的取值范围是.
6.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()
A. B. C. D.
7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,
∠ADC=2∠B,AD= ,则BC的长为()
A. B. C. D.
第7题图
8.如图,一圆柱高8 cm,底面半径为 cm,一只蚂蚁从点 爬到点 处吃食,要爬行的最短路程是()cm.

【沪科版】初二数学下期末试卷含答案(1)

【沪科版】初二数学下期末试卷含答案(1)

一、选择题=,S2乙1.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S2甲172=,下列说法:256①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的有()个A.2 B.3 C.4 D.52.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是()A.平均数是-2 B.中位数是-2 C.众数是-2 D.方差是53.随着智能手机的普及,抢微信红包成为了春节期间人们最喜欢的活动之一.某中学八年级六班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20 B.30,20 C.30,30 D.20,304.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A.S2甲<S2乙B.S 2甲=S2乙C .S 2甲>S 2乙D .无法比较S 2甲和S 2乙的大小5.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .46.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( ) A . B . C . D . 7.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,4 8.函数2y x x =+-的图象上的点()P x,y 一定在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S=.其中正确结论的个数是( )A .1B .2C .3D .4 10.下列各式中,正确的是( ) A .2(3)9= B 2(3)3-=-C .93-=-D .93=11.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .412.如图所示,在Rt ABC 中,90,3,5C AC BC ∠=︒==,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则线段CD 的长是( )A .85B .165C .175D .245二、填空题13.某单位要招聘1名英语翻译,对听、说、读、写进行素质测试,小张4项的分数分别为90分、85分、90分、80分.若把听、说、读、写的成绩按3:3:2:2计算,则小张的平均成绩为_____.14.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____. 15.如图,直线l 是一次函数y kx b =+的图象,若点()4,A m 在直线l 上,则m 的值是____.16.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -++-+=_________.17.如图,在边长为8厘米的正方形ABCD 中,动点P 在线段AB 上以2厘米/秒的速度由A 点向B 点运动,同时动点Q 在线段BC 上以1厘米/秒的速度由C 点向B 点运动,当点P 到达点B 时整个运动过程立即停止.设运动时间为1秒,当AQ DP ⊥时,t 的值为______.18.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.19.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.20. 3.4 1.844≈340≈__________.三、解答题21.嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.(1)这组成绩的众数是 ;(2)求这组成绩的方差;(3)若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.22.某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班级的各5名学生的成绩,它们分别是:九(1)班:96,92,94,97,96九(2)班:90,98,97,98,92通过数据分析,列表如下:(1)__________;__________a b ==(2)计算两个班级所抽取的学生艺术成绩的方差,判断哪个班学生艺术成绩比较稳定. 23.如图,在平面直角坐标系中,O 为坐标原点,一次函数y kx b =+与x 轴交于点A ,与y 轴交于点(0,4)B ,与正比例函数3y x =-交于点(1,)C m -.(1)求直线AB 的函数表达式.(2)在y 轴上找点P ,使OCP △为等腰三角形,直接写出所有满足条件的P 点坐标. (3)在直线AB 上找点Q ,使得78COQ APB S S =,求点Q 的坐标.24.如图,在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 在BD 上,且BE DF =,连接AE 并延长,交BC 于点G ,连接CF 并延长,交AD 于点H .(1)求证:AE CF =;(2)若AC 平分HAG ∠,判断四边形AGCH 的形状,并证明你的结论.25.已知a ,b ,c 满足22|8|1025(18)0a b b c -+-++-=.试问以a ,b ,c 为边能否构成三角形?若能,求出其周长;若不能,请说明理由.26.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据中位数、众数、方差、平均数的概念来解答.【详解】解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S 甲2=172<S 乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好. 故①②③⑤正确.故选:C .【点睛】此题考查中位数和众数的定义.解题关键在于掌握各定义性质.2.D解析:D【分析】根据平均数、中位数、众数及方差的定义以及计算公式,依次计算各选项即可作出判断.【详解】解:A、平均数是-2,结论正确,故A不符合题意;B、中位数是-2,结论正确,故B不符合题意;C、众数是-2,结论正确,故C不符合题意;D、方差是203,结论错误,故D符合题意;故选:D.【点睛】本题考查平均数、中位数、众数及方差的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.3.C解析:C【解析】【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【详解】解:30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.4.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94] =54; S 乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2] =120×[9+64+64+9] =2120; ∵54>2120∴S 甲2>S 乙2故选C .【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 5.B解析:B【分析】作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值.【详解】解:∵一次函数=y x 分别交x 轴、y 轴于A 、B 两点,∴()3,0A ,(B ,3,OA OB ∴==∴AB ==, ∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ ,∴在Rt ABE △中,30ABE ∠=︒, 1123322AE AB ∴==⨯=, ()()22222333BE AB AE ∴=-=-=又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.6.A解析:A【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解.【详解】解:因为实数k 、b 满足k+b=0,且k >b ,所以k >0,b <0,所以它的图象经过一、三、四象限,故选:A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.7.A解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 8.B解析:B【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案.【详解】解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <, ∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限;故选:B .【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.C解析:C【分析】由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF=⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF =∠CFG +∠FCG ,又∵∠BGF =∠AGB +∠AGF ,∴∠CFG +∠FCG =∠AGB +∠AGF ,∵∠AGB =∠AGF ,∠CFG =∠FCG ,∴∠AGB =∠FCG ,∴AG ∥CF ,∴③正确;∵△CFG 和△CEG 中,分别把FG 和GE 看作底边,则这两个三角形的高相同. ∴35CFG CEG S FG S GE ==,∵S △GCE =12×3×4=6, ∴S △CFG =35×6=185, ∴④不正确;正确的结论有3个,故选:C .【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.10.D解析:D【分析】根据二次根式的性质逐项判断即可.【详解】解:A 、2(3=,故本选项错误;B 3=,故本选项错误;CD 3=,故本选项正确.故选:D .【点睛】a =,2(0)a a =≥.11.C解析:C【分析】根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°,∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.12.A解析:A【分析】连接AD ,由三角形全等以及三线合一可知PQ 垂直平分线段AB ,推出AD DB =,设AD DB x ==,在Rt ACD △中,90C ∠=︒ ,根据222AD AC CD =+构建方程即可解决问题.【详解】如图,连接AD ,由已知条件可知PQ 垂直平分线段AB ,∴AD DB =,设AD DB x ==,5CD x =-,在Rt ACD △中,90C ∠=︒ ,∴222AD AC CD =+,∴2223(5)x x =+-, 解得:751x =, ∴178555CD BC DB =-=-=, 故选:A .【点睛】本题考查了基本作图,圆的性质,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.二、填空题13.865分【分析】根据加权平均数的定义计算可得【详解】解:小张的平均成绩为=865(分)故答案为:865分【点睛】本题考查了加权平均数解题的关键是掌握加权平均数的定义解析:86.5分【分析】根据加权平均数的定义计算可得.【详解】 解:小张的平均成绩为90385390280210⨯+⨯+⨯+⨯=86.5(分), 故答案为:86.5分.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义. 14.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差.【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m , 则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--= 222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.15.3【分析】观察函数图象找出点的坐标利用待定系数法可求出直线的函数关系式再利用一次函数图象上点的坐标特征即可求出的值【详解】解:将代入得:解得:直线的函数关系式为当时故答案为:3【点睛】本题考查了一次 解析:3【分析】观察函数图象找出点的坐标,利用待定系数法可求出直线l 的函数关系式,再利用一次函数图象上点的坐标特征即可求出m 的值.【详解】解:将(2,0)-,(0,1)代入y kx b =+,得:201k b b -+=⎧⎨=⎩, 解得:121k b ⎧=⎪⎨⎪=⎩,∴直线l 的函数关系式为112y x =+. 当4x =时,14132m =⨯+=. 故答案为:3.【点睛】本题考查了一次函数图象上点的坐标特征、函数图象以及待定系数法求一次函数解析式,根据点的坐标,利用待定系数法求出一次函数的解析式是解题的关键. 16.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可.【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限,∴20a -<,解得:2a <,=23a a =-+-23a a =-+-52a =-,故答案为:52a -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b>0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.17.【分析】由ASA可证△ABQ≌△DAP可得AP=BQ列出方程可求t的值【详解】∵四边形ABCD是正方形∴AD=AB∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°且∠DAQ+∠BAQ=解析:8 3【分析】由“ASA”可证△ABQ≌△DAP,可得AP=BQ,列出方程可求t的值.【详解】∵四边形ABCD是正方形∴AD=AB,∠B=∠BAD=90°∵AQ⊥DP∴∠QAD+∠ADP=90°,且∠DAQ+∠BAQ=90°,∴∠BAQ=∠ADP,且∠B=∠BAD=90°,AD=AB∴△ABQ≌△DAP(ASA)∴AP=BQ∴2t=8−t∴t=83,故答案为:83.【点睛】本题考查了全等三角形判定和性质,正方形的性质,一元一次方程的应用,证明△ABQ≌△DAP是本题的关键.18.【分析】由题意和图示可知将两个边长为1的正方形沿对角线剪开将所得的四个三角形拼成一个大正方形大正方形的边长恰好是小正方形的对角线的长根据正方形的性质利用勾股定理求出小正方形对角线的长即可【详解】∵如【分析】由题意和图示可知,将两个边长为1的正方形沿对角线剪开,将所得的四个三角形拼成一个大正方形,大正方形的边长恰好是小正方形的对角线的长,根据正方形的性质,利用勾股定理求出小正方形对角线的长即可.【详解】∵如图是两个边长为1的小正方形,∴其对角线的长度==,∴【点睛】本题主要考查正方形的性质和勾股定理,熟练运用和掌握以上两个知识点是解题的关键. 19.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键 解析:98π.【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】 解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键. 20.【分析】根据二次根式的乘法运算即可得【详解】因为所以故答案为:【点睛】本题考查了二次根式的乘法运算熟练掌握运算法则是解题关键 解析:18.44【分析】根据二次根式的乘法运算即可得.【详解】1.844≈,==,=,10 1.844≈⨯,18.44≈,故答案为:18.44.【点睛】本题考查了二次根式的乘法运算,熟练掌握运算法则是解题关键.三、解答题21.(1)10;(2)87;(3)9环 【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案. (2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.22.(1)96;98;(2)九(1)班的学生的艺术成绩比较稳定.【分析】(1)根据中位数和众数的定义求解可得;(2)根据方差公式计算,再依据方差越小成绩越稳定可得答案.【详解】(1)九(1)班成绩重新排列为92,94,96,96,97,则中位数a=96,九(2)班成绩的众数为b=98;故答案为:96,98;(2)S 2(1)班=15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2, S 2(2)班=15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,∵S 2(1)班<S 2(2)班,∴九(1)班学生的艺术成绩比较稳定.【点睛】此题考查中位数、众数和方差的意义,解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.(1)4y x =+;(2)12345(0,(0,6),0,3P P P P ⎛⎫⎪⎝⎭;(3)513,22Q ⎛⎫ ⎪⎝⎭或91,22Q ⎛⎫-- ⎪⎝⎭. 【分析】 (1)由题意易得()1,3C -,然后把点B 、C 的坐标代入y kx b =+求解即可;(2)由题意易得可分①当OC OP =时,②当C 为等腰OCP △的顶点时,则C 在OP 的中垂线上,③当P 为等腰OCP △的顶点时设(0,)P a ,进而根据等腰三角形的性质进行求解即可;(3)过Q 作x 轴平行线交CO 于点D ,设(,4)Q m m +,则4,43m D m +⎛⎫-+ ⎪⎝⎭,由题意可得8AOB S =△,进而可得()12COQ c o SQD y y =⋅-,然后可得441433m +=,进而求解即可.【详解】解:(1)由题意得: 3y x =-过 (1,)C m -,3(1)3m ∴=-⨯-=,(1,3)C ∴-,∵直线:AB y kx b =+过(0,4),(1,3)B C -,代入可得43b k b =⎧⎨=-+⎩,解得14k b =⎧⎨=⎩, ∴直线AB 的解析式为4y x =+;(2)①当O 为等腰OCP △的顶点时,则OC OP =,22(OC ==OP ∴=12(0,P P ∴. ②当C 为等腰OCP △的顶点时,则C 在OP 的中垂线上,C ∴的纵坐标为OP 纵坐标的中点, 3(0,6)P ∴.③当P 为等腰OCP △的顶点时设(0,)P a , 22CP OP ∴=, ()2222(1)(3)a a ∴-+-=,解得53a =, 综上所述12345(0,10),(0,10),(0,6),0,3P P P P ⎛⎫- ⎪⎝⎭; (3)4y x =+与x 轴交于点A ,(4,0)A ∴-, 1144822AOB A B S x y ∴=⨯⨯=⨯⨯=, 778COQ AOB S S ==,过Q 作x 轴平行线交CO 于点D ,设(,4)Q m m +,则4,43m D m +⎛⎫-+ ⎪⎝⎭, ()12COQ c o S QD y y ∴=⋅-, 14323m m +=⨯+⨯, 143723m m +∴⨯+⨯=, 441433m +∴=, 441433m +∴=或441433m +=-, 解得52m =或92m =-, 513,22Q ⎛⎫∴ ⎪⎝⎭或91,22Q ⎛⎫-- ⎪⎝⎭.本题主要考查一次函数与几何的综合,熟练掌握一次函数的性质及等腰三角形的性质是解题的关键.24.(1)见解析;(2)四边形AGCH 是菱形,见解析【分析】(1)利用SAS 证明△AOE ≌△COF 即可得到结论;(2)四边形AGCH 是菱形.根据△AOE ≌△COF 得∠EAO=∠FCO ,推出AG ∥CH ,证得四边形AGCH 是平行四边形,再根据AD ∥BC ,AC 平分HAG ∠,得到GAC ACB ∠=∠,证得GA=GC ,即可得到结论.【详解】证明:(1)四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OB BE OD DF ∴-=-,即OE OF =,又AOE COF ∠=∠,AOE COF ∴≌,AE CF ∴=. (2)四边形AGCH 是菱形.理由:AOE COF ≌,EAO FCO ∴∠=∠,//AG CH ∴,四边形ABCD 是平行四边形,//AD BC ∴,∴四边形AGCH 是平行四边形,//AD BC ,HAC ACB ∠∠∴=,AC 平分HAG ∠,HAC GAC ∠∠∴=,∴GAC ACB ∠=∠,GA GC ∴=,∴平行四边形AGCH 是菱形.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定定理,等角对等边证明边相等,熟记平行四边形的判定定理是解题的关键.25.能构成三角形,其周长为【分析】利用已知条件以及绝对值的性质确定a ,b ,c 的值即可,根据三角形的三边关系判断能构成三角形,然后再求周长即可.解:能构成三角形,理由:∵2|(0a c =,∴=0,(b-5)2=0,,∴a,b =5,c ;∵5,∴能构成三角形,周长为:+5.【点睛】本题主要考查了绝对值;二次根式;非负数的性质,关键是掌握绝对值、算术平方根和偶次幂具有非负性.26.(1)证明见详解;(2)【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由30,3AED AE ∠=︒=,可求得AD 、DE 的长,再利用勾股定理求得CD 的长即可.【详解】(1)∵AD ∥BC ,∠A =90°,∴∠A =∠B =90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE=⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x +=解得x =∴在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴CD【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.。

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.6332.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,93.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣14.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.1965.化简(a﹣1)的结果是()A.B.C.﹣D.﹣6.方程组的解的个数是()A.1 B.2 C.3 D.47.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=.12.若关于x的分式方程有整数解,m的值是.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M N.三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?参考答案与试题解析一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.633【考点】幂的乘方与积的乘方.【分析】分别把277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,比较它们的底数的大小即可求解.【解答】解:∵277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,而27=128,35=243,54=625,63=216,∴最大的数是544.故选C.2.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,9【考点】完全平方公式.【分析】根据完全平方公式把(ax+3y)2展开,再根据对应项系数相等列出方程求解即可.【解答】解:∵(ax+3y)2=a2x2+6axy+9y2,∴a2x2+6axy+9y2=4x2﹣12xy+by2,∴6a=﹣12,b=9,解得a=﹣2,b=9.故选C.3.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣1【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m 的值.【解答】解:由两函数解析式可得出:P(0,1﹣m),Q(0,m2﹣3),又∵P点和Q点关于x轴对称,∴可得:1﹣m=﹣(m2﹣3),解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故选D.4.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196【考点】二元一次方程组的应用.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.5.化简(a﹣1)的结果是()A.B.C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】代数式(a﹣1)有意义,必有1﹣a>0,由a﹣1=﹣(1﹣a),把正数(1﹣a)移到根号里面.【解答】解:原式=﹣=﹣.故选D.6.方程组的解的个数是()A.1 B.2 C.3 D.4【考点】解二元一次方程组.【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可作出判断.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,①+②得:2x=14,即x=7,②﹣①得:2y=﹣6,即y=﹣3,则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选A7.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选B.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小【考点】分式的混合运算.【分析】根据不等式的性质,在不等式两边同时加上同一个数,不等号的方向不变和分式的加法法则计算即可.【解答】解:∵,∴,∴<<,又a、b、c都是负数,∴a+b<b+c<c+a,∴b<a<c,故选:C.9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d【考点】三角形的面积.【分析】分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.可得△APF、△BGC、△DHE、△GHP都是等边三角形,求得答案.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴P A=PF=AF=b,BG=CG=BC=f,DH=EH=DE=d,∴a+b+f=f+e+d=d+c+b,∴a+b=e+d,f+e=c+b,a+f=d+c.故选C.10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4【考点】规律型:数字的变化类.【分析】先设报3的人心里想的数,利用平均数的定义表示报5的人心里想的数;报7的人心里想的数;抱9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【解答】解:设报3的人心里想的数是x,则报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2.故选B.二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=25.【考点】整式的除法;幂的乘方与积的乘方.【分析】根据积的乘方得出4x6n÷(4x2n),根据单项式除以单项式法则得出x4n,根据幂的乘方得出(x2n)2,代入求出即可.【解答】解:∵n是正整数,且x2n=5,∴(2x3n)2÷(4x2n)=4x6n÷(4x2n)=(4÷4)x6n﹣2n=x4n=(x2n)2=52=25.故答案为:25.12.若关于x的分式方程有整数解,m的值是4或3或0.【考点】解分式方程.【分析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.【解答】解:,∴mx﹣1﹣1=2(x﹣2),∴x=﹣,而分式方程有整数解,∴m﹣2=1,m﹣2=﹣1,m﹣2=2,m﹣2=﹣2,但是m﹣2=﹣1时,x=2,是分式方程的增根,不合题意,舍去∴m﹣2=1,m﹣2=2,m﹣2=﹣2,∴m=4,m=3,m=0.故答案为:m=4,m=3,m=0.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是(﹣b,a).【考点】坐标与图形性质.【分析】本题用三角函数解答,由A和A1向坐标轴作垂线即可得解.【解答】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β=90°sinα=cosβcosα=sinβsinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为0.【考点】根与系数的关系;一元二次方程的解.【分析】因为x13=x1•x12=x1•(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,所以x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19.【解答】解:∵x1,x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1;又∵x13=x1x12=x1(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,∴x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19=﹣4﹣15+19=0.故答案为:0.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为x2﹣3x+2=0.【考点】根与系数的关系;非负数的性质:偶次方;配方法的应用.【分析】根据非负数的性质,求出a+b、ab的值,再由根与系数的关系,写出以a,b为根的一元二次方程即可.【解答】解:∵a2﹣4ab+5b2﹣2b+1=0,∴a2﹣4ab+4b2+b2﹣2b+1=0,∴(a﹣2b)2+(b﹣1)2=0,∴a=2,b=1,∴a+b=2,ab=1,∴以a,b为根的一元二次方程为x2﹣3x+2=0.故答案为:x2﹣3x+2=0.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是17个;第n个图形中三角形的个数是4n﹣3个.【考点】规律型:图形的变化类.【分析】把前面一个图形当成后一个图形的中间部分,就会发现后面的图形比前一个图形多4个三角形,从而得出变化规律,根据变换规律找出第n个图形中三角形的个数,套入数据即可得出结论.【解答】解:观察图形发现规律:后一个图形比前一个图形多4个三角形,∵第一个图形中只有一个三角形,∴第n个图形中有4(n﹣1)+1=4n﹣3个三角形.令n=5,则4×5﹣3=17(个).故答案为:17;4n﹣3.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.【考点】三角形的面积;钟面角.【分析】设OA边上的高为h,则h≤OB,所以,当OA⊥OB 时,等号成立,此时△OAB的面积最大.【解答】解:设经过t秒时,OA与OB第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6﹣0.1)t=90,解得t=.故经过秒钟后,△OAB的面积第一次达到最大.故答案为:.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M>N.【考点】整式的混合运算.【分析】利用M﹣N与0大小的比较来比较M、N的大小.【解答】解:M﹣N=(a1+a2+…+a2006)(a2+a3+…+a2007)﹣(a1+a2+…+a2007)(a2+a3+…+a2006)=(a1+a2+…+a2006)(a2+a3+…+a2006)+(a1+a2+…+a2006)a2007﹣(a1+a2+…+a2006)(a2+a3+…+a2006)﹣a2007(a2+a3+…+a2006)=(a1+a2+…+a2006)a2007﹣a2007(a2+a3+…+a2006)=a1a2007>0∴M>N三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.【考点】含绝对值符号的一元一次方程.【分析】根据分类讨论:x<2,2≤x<3,x≥3,可化简绝对值,根据解方程,可得答案.【解答】解:①当x<2时,原方程等价于2﹣x+3﹣x=2,解得;②当2≤x≤3时,原方程等价于x﹣2+3﹣x=2无解;③当x≥3时,原方程等价于x﹣2+x﹣3=2,解得,综上所述:方程的解是x=,x=.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?【考点】一次函数的应用.【分析】(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,把将(2.4,48)代入即可求出此一次函数的表达式,再根据图中S=30即可求出t的值;(2)可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入即可求出此表达式,进而可求出t的值,同理设乙车由B地返回A地的函数的解析式为s=﹣30t+n,把将(1.8,48)代入即可求解;(3)求出乙车返回到A地时所需的时间及乙车的速度即可.【解答】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2.4,48)代入,解得k=20,所以s=20t,由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).即甲车出发1.5小时后被乙车追上,(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入,得,解得,所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,甲车要比乙车先回到A地,速度应大于(千米/小时).。

2019-2020学年沪科版八年级数学下册测试题(含答案 )

2019-2020学年沪科版八年级数学下册测试题(含答案 )

2019-2020学年八年级数学下册测试卷 一.选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)• 1.如果a 为任意实数,下列根式一定有意义的是( )A B C D2.下列式子中y 是x 的正比例函数的是( )A .y=3x-5B .y=2xC .y=25xD .3.直线y=x-2与x 轴的交点坐标是( )A .(2,0)B .(-2,0)C .(0,-2)D .(0,2)A .2-3之间B .3-4之间C .4-5之间D .5-6之间5.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:则该校排球队21名同学身高的众数和中位数分别是(单位:cm )( )A .185,178B .178,175C .175,178D .175,175A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1 B.1.5 C.2 D.2.58.如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是()A.-2 B.C.-1 D.()A.x≥3B.x≤3C.x≤2D.x≥210.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A)2013B)2014C.(12)2013D.(12)201412.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的(填”平均数”“众数”或“中位数”)13.如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为cm2.14.如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有(填序号).三.解答题(本大题共8小题,计90分)(2)判断△PQR的形状,请说明理由.20.为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.21.某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?22.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…【应用与探究】在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)参考答案与试题解析1.【分析】根据二次根式的性质,被开方数大于等于0【解答】解:被开方数大于或等于0时,二次根式一定有意义,几个被开方数中,不论a取何值,一定大于0的只有a2+1.故选C.【点评】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【分析】根据正比例函数的定义:形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数进行分析即可.【解答】解:A、y=3x-5,是一次函数,不是正比例函数,故此选项错误;B、y=2x,是反比例函数,不是正比例函数,故此选项错误;C、y=25x是正比例函数,故此选项正确;D、故选:C.【点评】此题主要考查了正比例函数定义,关键是掌握正比例函数的一般形式.3.【分析】令y=0,求出x的值即可.【解答】解:∵令y=0,则x=2,∴直线y=x-2与x轴的交点坐标为(2,0).故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的坐标特点是解答此题的关键.4.【分析】在哪两个整数之间.【解答】解:∵22=4,32=9,∴23;∴3<4.故选:B.【点评】此题主要考查了无理数的估算能力,需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:因为175出现的次数最多,所以众数是:175cm;因为第十一个数是175,所以中位数是:175cm.故选:D.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.【分析】根据ab>0,ac<0,可以得到a、b、c的正负,从而可以判断一次函数a c y xb b =--的图象经过哪几个象限,不经过哪个象限,本题得以解决.【解答】解:∵ab>0,ac<0,∴当a>0时,b>0,c<0,当a<0时,b<0,c>0,∴当a>0时,b>0,c<0时,一次函数a cy xb b=--的图象经过第一、二、四象限,不经过第三象限,当a<0时,b<0,c>0时,一次函数a cy xb b=--的图象经过第一、二、四象限,不经过第三象限,由上可得,一次函数a cy xb b=--的图象不经过第三象限,故选:C.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.7.【分析】由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.【解答】解:过C点作CG⊥BD于G,∵CF是∠DCE的平分线,∴∠FCE=45°,∵∠DBC=45°,∴CF∥BD,∴CG等于△PBD的高,∵BD=2,∴CG=1,△PBD的面积等于12×2×1=1.故选A.【点评】考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.8.【分析】先求出AC的长度,再根据勾股定理求出AB的长度,然后根据B1到原点的距离是-1,即可得到点B1所表示的数.【解答】解:根据题意,AC=3-1=2,∵∠ACB=90°,AC=BC,∴AB=∴B1到原点的距离是-1.又∵B′在原点左侧,∴点B1表示的数是1-.故选:D.【点评】本题主要考查了实数与数轴,勾股定理,求出AB的长度是解题的关键.解题时注意实数与数轴上的点是一一对应关系.9.【分析】以交点为分界,结合图象写出不等式kx≥-12x+4的解集即可.【解答】解:∵函数y=kx和y=-12x+4的图象相交于点A(3,m),∴由图象知,当x≥3时,kx≥-12x+4.即:不等式kx≥-12x+4的解集为:x≥3.故选:A.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S3=12S2=1,S4=12S3=12,…,∴S n=(12)n−3.当n=2016时,S2016=(12)2016−3=(12)2013.故选:C.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.11.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=63⨯==故答案为:【点评】本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.12.【分析】七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【解答】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.【点评】考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.13.【分析】根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=12BC×AF=12×10×8=40cm2.故答案为:40.【点评】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.14.【分析】根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为:①②④.【点评】本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.15.【分析】首先取绝对值以及化简二次根式和利用二次根式乘法运算去括号,进而合并同类项得出即可.【解答】|3|3(3-=-6.【点评】此题主要考查了二次根式的混合运算,正确掌握运算法则是解题关键.16.【分析】(1)根据四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD即可得出结论;(2)四边形ABCD中有直角.根据勾股定理得到CD=5,再根据勾股定理的逆定理即可求解.【解答】解:(1)如图,∵四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD=5×5-12×1×5-12×2×4-12×1×2-12×(1+5)×1=1412;(2)四边形ABCD中有直角.理由:连结BD,CD=5,∵CD2=BC2+CD2,∴∠C=90°,∴四边形ABCD 中有直角.【点评】本题考查的是勾股定理的逆定理、勾股定理,熟知勾股定理及勾股定理的逆定理是解答此题的关键.17. 【分析】根据AAS 证△AFE ≌△DBE ,推出AF=BD .结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF 是菱形.【解答】证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠∠∠∠⎧⎪⎨⎪⎩===,∴△AFE ≌△DBE (AAS );∴AF=DB .∵DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC , ∴四边形ADCF 是菱形.【点评】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,演艺圈的三角形的性质解决问题,属于中考常考题型.18. 【分析】(1)根据题意和当x=10时,y=7,当x=15时,y=6.5,可以求得一次函数的解析式并写出自变量x 的取值范围;(2)根据题意,可以得到w 与x 的函数关系式,再根据一次函数的性质和(1)中x 的取值范围即可解答本题.【解答】解:(1)设成本y (元千克)与第x 天的函数关系式是y=kx+b ,10715 6.5k b k b ⎩+⎨+⎧==,得0.18k b -⎧⎨⎩==, 即成本y (元千克)与第x 天的函数关系式是y=-0.1x+8(0<x≤20且x 为整数);(2)w=15-(-0.1x+8)=0.1x+7,∵0<x≤20且x 为整数,∴当x=20时,w 取得最大值,此时w=0.1×20+7=9,答:第20天每千克的利润w (元)最大,最大利润是9元/千克.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.19. 【分析】(1)正方形对角线AC 是对角的角平分线,可以证明△ADP ≌△DCG ,即可求证DP=CG .(2)由(1)的结论可以证明△CEQ ≌△CEG ,进而证明∠PQR=∠QPR .故△PQR 为等腰三角形.【解答】解:(1)证明:在正方形ABCD 中,AD=CD ,∠ADP=∠DCG=90°,∠CDG+∠ADH=90°,∵DH ⊥AP ,∴∠DAH+∠ADH=90°,∴∠CDG=∠DAH ,∴△ADP ≌△DCG ,∵DP ,CG 为全等三角形的对应边,∴DP=CG .(2)△PQR 为等腰三角形.∠QPR=∠DPA ,∠PQR=∠CQE ,∵CQ=DP ,由(1)的结论可知∴CQ=CG ,∵∠QCE=∠GCE ,CE=CE ,∴△CEQ ≌△CEG ,即∠CQE=∠CGE ,∴∠PQR=∠CGE ,∵∠QPR=∠DPA ,且(1)中证明△ADP ≌△DCG ,∴∠PQR=∠QPR ,所以△PQR 为等腰三角形.【点评】本题中证明△ADP≌△DCG是关键,并且利用(1)的结论来证明(2)的推论.本题考查的是正方形对角线即角平分线,考查全等三角形的证明,并把所求角转换为全等三角形对应角进行证明.20.【分析】(1)根据11-12点闯红灯的人数除以所占的百分比即可求出7-12这一时间段共有的人数;(2)根据7-8点所占的百分比乘以总人数即可求出7-8点闯红灯的人数,同理求出8-9点及10-11点的人数,补全条形统计图即可;求出9-10及10-11点的百分比,分别乘以360度即可求出圆心角的度数;(3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.【解答】解:(1)根据题意得:40÷40%=100(人),则这一天上午7:00~12:00这一时间段共有100人闯红灯;(2)根据题意得:7-8点的人数为100×20%=20(人),8-9点的人数为100×15%=15(人),9-10点占10100=10%,10-11点占1-(20%+15%+10%+40%)=15%,人数为100×15%=15(人),补全图形,如图所示:9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°;(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为15人.【点评】此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.【分析】(1)由题意知道甲乙合作了2天,完成了总工程的111244-=,剩余的工程还是合作,那么需要的天数=112424⎛⎫÷⨯=⎪⎝⎭(天),已经做了5天,总天数=5+4=9;(2)根据甲的工作效率是112,于是得到甲9天完成的工作量是9×112=34,即可得到结论.【解答】解:(1)设一次函数的解析式(合作部分)是y=kx+b(k≠0,k,b是常数).∵(3,14),(5,12)在图象上.代入得134152k bk b ⎧=+⎪⎪⎨⎪=+⎪⎩解得:1818 kb⎧=⎪⎪⎨⎪=-⎪⎩∴一次函数的表达式为y=18x-18.当y=1时,18x-18=1,解得x=9,∴完成此房屋装修共需9天;(2)由图象知,甲的工作效率是1 12,∴甲9天完成的工作量是:9×112=34,∴34×8=6万元.【点评】本题主要考查了一次函数的应用,待定系数法求函数解析式,数学公式(工作效率=工作总量÷工作时间)的灵活运用,能根据图象提供的数据进行计算是解此题的关键,题型较好.22.【分析】[发现与证明]由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA=12(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;[应用与探究]:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=2.【解答】解:[发现与证明]:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=12(180°-∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;[应用与探究]:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,;∴AC=2②如图2所示:AC=BC=2;综上所述:AC2.【点评】本题考查了平行四边形的性质、正方形的性质、翻折变换、等腰三角形的判定以及平行线的判定;熟练掌握平行四边形的性质、翻折变换的性质,并能进行推理计算是解决问题的关键.1、三人行,必有我师。

八年级下数学竞赛试题(含答案)

八年级下数学竞赛试题(含答案)

八年级(下)数学期末竞赛测试卷一、选择题(每小题3分,共30分)1、下列多项式中能用完全平方公式分解的是( ) A.x 2-x +1 B.1-2xy +x 2y 2 C.a 2+a +21D.-a 2+b 2-2ab 2、不等式组⎩⎨⎧>-≥-04012x x 的整数解为( )A.1个B.2个C.3个D.4个 3、下列各分式中,与分式ba a--的值相等的是 ( ) A 、b a a -- B 、b a a + C 、a b a - D 、-ab a -4、.若分式34922+--x x x 的值为0,则x 的值为( )A . 3-B .3或3-C .3D .无法确定5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定6、某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为( )A .10 mB .12 mC .13 mD .15 m7、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( )A .1B .1.5C .2D .2.5(第7题图) (第9题图)8、赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A .1421140140=-+x x B .1421280280=++x x C .1421140140=++x x D .1211010=++x x 9、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.36π平方米B .0.81π平方米C .2π平方米D .3.24π平方米10.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B. a 2b =a ·ab C.ab-a-b+1=(a-1)(b-1) D.m 2-2m-3=m(m-2-m3)二、填空题(每小题3分,共24分)11、已知:线段AB=10cm ,C 为AB 有黄金分割点,AC>BC ,则AC=_________. 12、不等式(a -b )x>a -b 的解集是x <1,则a 与b 的大小关系是________. 13、已知x 1,x 2,x 3的标准差是2,则数据2x 1+3,2x 2+3,2x 3+3的方差是 .. 14、计算机生产车间制造a 个零件,原计划每天造x 个,后为了供货需要,每天多造了b 个,则可提前______________天完成。

八年级数学竞赛试题(含答案)-

八年级数学竞赛试题(含答案)-

CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷(含解析)

八年级(下)数学竞赛试卷一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.6332.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,93.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣14.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.1965.化简(a﹣1)的结果是()A.B.C.﹣D.﹣6.方程组的解的个数是()A.1 B.2 C.3 D.47.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=.12.若关于x的分式方程有整数解,m的值是.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M N.三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?参考答案与试题解析一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.633【考点】幂的乘方与积的乘方.【分析】分别把277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,比较它们的底数的大小即可求解.【解答】解:∵277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,而27=128,35=243,54=625,63=216,∴最大的数是544.故选C.2.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,9【考点】完全平方公式.【分析】根据完全平方公式把(ax+3y)2展开,再根据对应项系数相等列出方程求解即可.【解答】解:∵(ax+3y)2=a2x2+6axy+9y2,∴a2x2+6axy+9y2=4x2﹣12xy+by2,∴6a=﹣12,b=9,解得a=﹣2,b=9.故选C.3.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣1【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m 的值.【解答】解:由两函数解析式可得出:P(0,1﹣m),Q(0,m2﹣3),又∵P点和Q点关于x轴对称,∴可得:1﹣m=﹣(m2﹣3),解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故选D.4.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196【考点】二元一次方程组的应用.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.5.化简(a﹣1)的结果是()A.B.C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】代数式(a﹣1)有意义,必有1﹣a>0,由a﹣1=﹣(1﹣a),把正数(1﹣a)移到根号里面.【解答】解:原式=﹣=﹣.故选D.6.方程组的解的个数是()A.1 B.2 C.3 D.4【考点】解二元一次方程组.【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可作出判断.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,①+②得:2x=14,即x=7,②﹣①得:2y=﹣6,即y=﹣3,则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选A7.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选B.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小【考点】分式的混合运算.【分析】根据不等式的性质,在不等式两边同时加上同一个数,不等号的方向不变和分式的加法法则计算即可.【解答】解:∵,∴,∴<<,又a、b、c都是负数,∴a+b<b+c<c+a,∴b<a<c,故选:C.9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d【考点】三角形的面积.【分析】分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.可得△APF、△BGC、△DHE、△GHP都是等边三角形,求得答案.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴P A=PF=AF=b,BG=CG=BC=f,DH=EH=DE=d,∴a+b+f=f+e+d=d+c+b,∴a+b=e+d,f+e=c+b,a+f=d+c.故选C.10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4【考点】规律型:数字的变化类.【分析】先设报3的人心里想的数,利用平均数的定义表示报5的人心里想的数;报7的人心里想的数;抱9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【解答】解:设报3的人心里想的数是x,则报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2.故选B.二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=25.【考点】整式的除法;幂的乘方与积的乘方.【分析】根据积的乘方得出4x6n÷(4x2n),根据单项式除以单项式法则得出x4n,根据幂的乘方得出(x2n)2,代入求出即可.【解答】解:∵n是正整数,且x2n=5,∴(2x3n)2÷(4x2n)=4x6n÷(4x2n)=(4÷4)x6n﹣2n=x4n=(x2n)2=52=25.故答案为:25.12.若关于x的分式方程有整数解,m的值是4或3或0.【考点】解分式方程.【分析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.【解答】解:,∴mx﹣1﹣1=2(x﹣2),∴x=﹣,而分式方程有整数解,∴m﹣2=1,m﹣2=﹣1,m﹣2=2,m﹣2=﹣2,但是m﹣2=﹣1时,x=2,是分式方程的增根,不合题意,舍去∴m﹣2=1,m﹣2=2,m﹣2=﹣2,∴m=4,m=3,m=0.故答案为:m=4,m=3,m=0.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是(﹣b,a).【考点】坐标与图形性质.【分析】本题用三角函数解答,由A和A1向坐标轴作垂线即可得解.【解答】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β=90°sinα=cosβcosα=sinβsinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为0.【考点】根与系数的关系;一元二次方程的解.【分析】因为x13=x1•x12=x1•(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,所以x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19.【解答】解:∵x1,x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1;又∵x13=x1x12=x1(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,∴x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19=﹣4﹣15+19=0.故答案为:0.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为x2﹣3x+2=0.【考点】根与系数的关系;非负数的性质:偶次方;配方法的应用.【分析】根据非负数的性质,求出a+b、ab的值,再由根与系数的关系,写出以a,b为根的一元二次方程即可.【解答】解:∵a2﹣4ab+5b2﹣2b+1=0,∴a2﹣4ab+4b2+b2﹣2b+1=0,∴(a﹣2b)2+(b﹣1)2=0,∴a=2,b=1,∴a+b=2,ab=1,∴以a,b为根的一元二次方程为x2﹣3x+2=0.故答案为:x2﹣3x+2=0.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是17个;第n个图形中三角形的个数是4n﹣3个.【考点】规律型:图形的变化类.【分析】把前面一个图形当成后一个图形的中间部分,就会发现后面的图形比前一个图形多4个三角形,从而得出变化规律,根据变换规律找出第n个图形中三角形的个数,套入数据即可得出结论.【解答】解:观察图形发现规律:后一个图形比前一个图形多4个三角形,∵第一个图形中只有一个三角形,∴第n个图形中有4(n﹣1)+1=4n﹣3个三角形.令n=5,则4×5﹣3=17(个).故答案为:17;4n﹣3.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.【考点】三角形的面积;钟面角.【分析】设OA边上的高为h,则h≤OB,所以,当OA⊥OB 时,等号成立,此时△OAB的面积最大.【解答】解:设经过t秒时,OA与OB第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6﹣0.1)t=90,解得t=.故经过秒钟后,△OAB的面积第一次达到最大.故答案为:.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M>N.【考点】整式的混合运算.【分析】利用M﹣N与0大小的比较来比较M、N的大小.【解答】解:M﹣N=(a1+a2+…+a2006)(a2+a3+…+a2007)﹣(a1+a2+…+a2007)(a2+a3+…+a2006)=(a1+a2+…+a2006)(a2+a3+…+a2006)+(a1+a2+…+a2006)a2007﹣(a1+a2+…+a2006)(a2+a3+…+a2006)﹣a2007(a2+a3+…+a2006)=(a1+a2+…+a2006)a2007﹣a2007(a2+a3+…+a2006)=a1a2007>0∴M>N三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.【考点】含绝对值符号的一元一次方程.【分析】根据分类讨论:x<2,2≤x<3,x≥3,可化简绝对值,根据解方程,可得答案.【解答】解:①当x<2时,原方程等价于2﹣x+3﹣x=2,解得;②当2≤x≤3时,原方程等价于x﹣2+3﹣x=2无解;③当x≥3时,原方程等价于x﹣2+x﹣3=2,解得,综上所述:方程的解是x=,x=.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?【考点】一次函数的应用.【分析】(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,把将(2.4,48)代入即可求出此一次函数的表达式,再根据图中S=30即可求出t的值;(2)可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入即可求出此表达式,进而可求出t的值,同理设乙车由B地返回A地的函数的解析式为s=﹣30t+n,把将(1.8,48)代入即可求解;(3)求出乙车返回到A地时所需的时间及乙车的速度即可.【解答】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2.4,48)代入,解得k=20,所以s=20t,由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).即甲车出发1.5小时后被乙车追上,(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入,得,解得,所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,甲车要比乙车先回到A地,速度应大于(千米/小时).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A、 B、 C、 D、
6、已知方程 有一个根是 ,则下列代数式的值恒为常数的是【】
A、 B、 C、 D、
7、若关于x的一元二次方程 有两不相等的实数根,那么 的取值范围是【】
A、 > B、 > 且 C、 < D、 且
二、耐心填一填:(本大题共8小题,每小题4分,共32分。)
8、若a、b都是无理数,且a+b=2,则a、b的值可以是.(填上一组满足条件的值即可)
9、已知 ,则代数式 的值为.
10、一个同学在进行多边形内角和计算时,求得内角和为 ,当发现错了之后,重新检查,发现少加了一个内角,则这个内角是度。
11、对于 定义一种新运算“ ”: ,其中 为常数,等式右边是通常的加法和乘法的运算.已知: ,那么 =.
12、如图,已知点 的坐标为(3,0),点 分别是某函数图象与 轴、 轴的交点,点 是此图象上的一动点.设点 的横坐标为 , 的长为 ,且 与 之间满足关系: ( ),则结论:① ;② ;③ ;④ 中,正确结论的序号是_.
17.①m=1、m=-4
②证明:(1)连结BE,
∵DB=BC,点E是CD的中点,∴BE⊥CD.∵点F是Rt△ABE中斜边上的中点,∴EF= ;
(2)[方法一]在△ 中, , ,∴ .
在△ 和△ 中, ,∠AEB=∠AEG=90°,∴△ABE≌△AGE;
[方法二]由(1)得,EF=AF,∴∠AEF=∠FAE.
⑴若二分队在营地不休息,问二分队几小时能赶到A镇?
⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?
⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。
2008—2009学年度第二学期八年级竞赛
数学试卷参考答案(沪科版)
15、化简 =
三、用心想一想:(本大题是解答题,共67分。解答应写出说明文字、演算式等步骤。)
16、化简或计算:(共14分,每小题7分)
①若 、 均为整数,当x= -1时,代数式 的值为0,求 的算术平方根。
②实数 、 在数轴上的位置,化简
17、解答题(共14分程 的根,求 的值.
刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A镇;二分队因疲劳可在营地休息a(0≤a≤3)小时再往A镇参加救灾。一分队了发后得知,唯一通往A镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。
∵EF//AG,∴∠AEF=∠EAG.∴∠EAF=∠EAG.
∵AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE.
18.①过C作CE⊥BE交BA的延长线于E
∵∠CAB=120°,∴∠CAE=60°,
∴∠ACE=30°
∵AC=2,∴AE=1
在Rt△ACE中,由勾股定理可得:CE2=AC2-AE2=3∴CE=
②在⊿ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.
(1)求证:EF= AB;
(2)过点A作AG∥EF,交BE的延长线于点G,求证:⊿ABE≌⊿AGE.
18、解答题(共14分,每小题7分)
①已知:如图,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求:AD的长.
2、已知关于x的方程3x+2a=2的解是a-1,则a的值是【】
A、1B、 C、 D、-1
3、如图,在数轴上表示实数 的点可能是【】
A、点 B、点 C、点 D、点
4、若一元二次方程 的常数项为0,则 得值为【】
A、2.B、 .C、 .D、 .
5、已知 是关于 的一元二次方程 的两实数根,则式子 的值是【】
②如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
19、(本小题12分)
已知 是关于 的一元二次方程 的两个实数根,且 — — =115
①求k的值;②求 + +8的值。
20、(本小题13分)
一、精心选一选:本大题共7小题,每小题3分,共21分。
题号
1
2
3
4
5
6
7
答案
D
A
C
B
D
D
B
二、耐心填一填:本大题共8小题,每小题4分,共32分。
题号
8
9
10
11
12
13
14
15
答案
4
130
2
①②③
4
或—1
三、用心想一想:本大题是解答题,共6小题,共67分。
16.① =2 b=-2
∴ 的算术平方根为

2011—2012学年度第二学期八年级竞赛
数学试卷(沪科版)
考试时间:120分钟满分:120分
题号



总分
16
17
18
19
20
得分
一、精心选一选:(本大题共7小题,每小题3分,共21分。)
1、实数a在数轴上对应的点如图所示,则a、-a、1的大小关系正确的是【】
A、-a<a<1B、a<-a<1
C、1<-a<aD、a<1<-a
当k =-11时 =36—4k=36+44>0∴k =-11符合题意
∴k的值为—11
②x +x =6,x x =-11
而x +x +8=(x +x ) —2x x +8=36+2×11+8=66
20.(1)若二分队在营地不休息,则a=0,速度为4千米/时,行至塌方处需 (小时)
因为一分队到塌方处并打通道路需要 (小时),故二分队在塌方处需停留0.5小时,
在Rt△BCE中,由勾股定理可得:BC2=CE2+BE2=28∴BC=
∵ AB×CE= CB×AD∴4× = ×AD,∴AD=
②17km
19.①∵x ,x 是方程x -6x+k=0的两个根
∴x + x =6 x x =k
∵ — — =115∴k —6=115
解得k =11,k =-11
当k =11时 =36—4k=36—44<0,∴k =11不合题意
13、在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_________.
14、图中的螺旋形由一系列等腰直角三角形组成,其序号依次
为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________.
相关文档
最新文档