变压器绕组接线式
变压器接法详解
变压器接法详解常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“•”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。
变压器的接线组别
变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
变压器线圈 初次级接线方法
变压器线圈初次级接线方法变压器初级线圈和次级线圈的接线方法变压器是一种电磁装置,用于通过电磁感应将电能从一个电路传递到另一个电路,同时改变电压和电流。
变压器由两个或多个线圈组成,称为初级线圈和次级线圈。
初级线圈连接到电源,次级线圈连接到负载。
初级线圈和次级线圈可以采用不同的接线方式,每种方式都会产生不同的电压和电流特性。
最常见的接线方法包括:星形接线:- 初级线圈或次级线圈的末端连接在一起并形成一个公共连接点,称为中性线或星点。
- 线圈的另一端连接到三相电源或负载。
- 星形接线通常用于平衡负载和三相供电系统。
三角形接线:- 初级线圈或次级线圈的一端连接到另一端的相邻端,形成一个闭合回路。
- 线圈的末端连接到三相电源或负载。
- 三角形接线通常用于非平衡负载或需要更高电压的场合。
星形-三角形接线:- 初级线圈采用星形接线,次级线圈采用三角形接线。
- 此接线方式可提供灵活性,允许在初级和次级侧改变电压和电流。
自耦变压器:- 初级线圈和次级线圈使用同一组绕组。
- 绕组的一部分用作初级线圈,另一部分用作次级线圈。
- 自耦变压器通常用于调节电压或提供隔离。
接线注意事项:- 对于星形接线,中性线必须适当接地。
- 对于三角形接线,绕组的连接顺序必须正确。
- 始终使用适当尺寸的导线和绝缘材料。
- 正确连接初级和次级线圈,确保电压和电流符合预期。
- 在操作变压器之前,仔细检查所有连接。
选择接线方法:接线方法的选择取决于变压器的具体应用和要求。
考虑以下因素:- 电源或负载的特性(三相或单相、电压、电流)- 所需的电压和电流转换- 负载平衡- 成本和效率通过仔细选择接线方法,可以优化变压器的性能,满足特定应用的需求。
变压器的接线组别及其物理意义
变压器的接线组别及其物理意义变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Y n”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D (或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Y n,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,U AB与u ab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
下面是变压器接线组别的向量图及原、副边绕组的接线示意图。
例1:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。
两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。
所以,该台变压器的联结组标号为:YN,yn0,d11。
三相变压器的连接组别
一、三相变压器的连接方法 二、变压器的极性 三、变压器的连接组别 四、变压器连接组别综述(小结)
一、三相变压器的连接方法
1、 星形连接
A
将三相绕组的三个末端 X ,
B
Y , Z (低压x ,y,z) 分别连接在
C
一起,三个首端 A 、 B 、 C (低压
a、b、c) 分别引出,便构成星形连
接,用 Y表示 (新:高压Y,低压
ÙAB
ÙAB = - ÙA +ÙB Ùab = Ùb
ÙB
A
*
ÙA
Ùa
*
ÙB
Ùb
*
ÙC
Ùc
逆序三角形接法
bz Ùb
ÙAB
Ùc cx
Ùa
a y ÙA
ÙC
12
9
Ùab ÙAB
3
6
a
*Ù
ab
*
*
四、变压器连接组别综述(小结)
1、变压器的连接组别很多,为了制造和并列运行 的方便,我国电力变压器只生产Y/Y0-12、 Y0/Y12 、 Y/Y-12 、Y/△-11 及Y0/△-11五种连接组别,
y )。
2 、 三角形连接
将高、低压绕组的一相末端
与另一相的首端分别依次连接在
一起,构成一个回路,便构成三
A
角形连接,用△表示( 新:高压
D,低压d )。
顺序三角形接法:ax-by-cz-a
逆序三角形接法:ax-cz-by-a
Xx
a
Yy
b
Zz
c
星形连接
顺序三角形接法 a
逆序三角形接法
二、变压器的极性
同极性端(同名端):
任意瞬间,高压绕组的某 一端点的电位为正(高电位)
变压器星三角接法特点
变压器星三角接法特点变压器的接法有很多种,其中常见的一种是星三角接法。
星三角接法是指变压器的高压绕组与低压绕组的接线方式,即高压绕组采用星型接线,低压绕组采用三角形接线。
星三角接法的特点如下:1.适用范围广:星三角接法适用于中小容量的变压器,通常适用于变压器的主变压器和配电变压器。
2.降低电流:采用星三角接法后,变压器的低压绕组电流要比星形接法小,这是因为星形接法下高压绕组的电流通过中性点分流到三个相线上,而三角形接法下低压绕组中的电流流经相线,所以三角接法可以降低低压绕组的电流。
3.提高效率:由于低压绕组电流减小,低压侧电阻损耗也减小,从而提高了变压器的效率。
这也是星三角接法广泛应用的一个重要原因之一、提高了变压器的效率,有助于减少能源消耗,降低变压器运行成本。
4.限制短路电流:星三角接法可以限制电网故障时的短路电流。
当电网发生短路时,星形接法下的高压绕组中的电流将通过中性点分流到低压绕组的三个相线上,从而增大短路电流。
而星三角接法下,高压绕组的电流只会流经变压器本身的三角形低压绕组,因此限制了短路电流的增大。
5.空载电流大:星三角接法下的变压器空载电流较大。
这是因为星形接法下高压绕组中的电流分流到低压绕组的三个相线上,即使在无负载情况下也会有一定的电流通过。
而在三角形接法下,三角形低压绕组的电流只有很小一部分流向高压绕组。
因此空载电流较大是星三角接法的一个缺点。
总结起来,星三角接法适用于中小容量的变压器,具有降低电流、提高效率、限制短路电流等特点。
然而,星三角接法的空载电流较大,需要特别注意选择适当的变压器容量和运行条件,以保证变压器正常运行。
三相变压器绕组的连接方法
三相变压器绕组的连接方法三相变压器是一种用于电力系统中将高电压转换为低电压或低电压转换为高电压的重要电气设备。
它由三个绕组组成,分别为低压绕组、中压绕组和高压绕组。
这三个绕组之间可以采用不同的连接方法,包括星形连接和三角形连接。
本文将详细介绍三相变压器绕组的连接方法。
星形连接方法是一种常见的三相变压器绕组连接方式。
在星形连接中,每个绕组的一个端子都连接在一起形成一个星形连接点。
剩余的三个绕组的另一个端子分别作为输入或输出接线,形成一个闭合的电路。
星形连接方法的主要优点是在绕组之间提供了较好的电气隔离,从而提高了变压器的绝缘性能。
此外,星形连接还可以降低绕组的电压应力,减小了导线的规格,并且能够提供较好的对称性和稳定性,使得绕组之间的电流较为均匀。
因此,星形连接方法广泛应用于低压侧供电系统中。
然而,星形连接方法也存在一些缺点。
首先,星形连接不能提供相同的电压变化比,因为相邻绕组间的相电压是两个边向中间之和,而不是三个边之和。
其次,星形连接方法在三相不平衡负载情况下容易产生零序电流,造成能量损失和设备损坏。
为了克服星形连接的缺点,三角形连接方法也被广泛使用。
在三角形连接中,每个绕组的一个端子都连接到下一个绕组的另一个端子,形成一个闭合的三角形。
三角形连接方法的主要优点是可以提供相同的电压变换比,使得变压器能够满足不同需求的电压变化。
此外,三角形连接方法可以有效地抵消三相电流的不平衡,降低能量损耗。
然而,三角形连接方法也存在一些缺点。
首先,三角形连接不能提供较好的隔离性能,绕组之间的相电压较高,容易导致绕组之间的电气击穿。
其次,三角形连接要求绕组中心点不接地,因此在故障时难以检测和定位故障。
综上所述,星形连接和三角形连接是常用的三相变压器绕组连接方法。
星形连接具有较好的电气隔离性能和稳定性,适用于低压侧供电系统。
而三角形连接具有相同的电压变换比和抵消能力,适用于不同变压比和负载条件的要求。
根据实际应用需求,可以选择适合的连接方法来实现电能的变换和传输。
变压器的接线组别及其物理意义
变压器的接线组别及其物理意义变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D”表示为三角形接线,“Y n”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D (或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Y n,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压U ab滞后一次侧线电压U AB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,U AB与u ab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
下面是变压器接线组别的向量图及原、副边绕组的接线示意图。
例1:一台三绕组变压器,高压为中性点引出的星形联结绕组,额定电压为121kV;中压为中性点引出的星形联结绕组,额定电压为38.5kV,低压为三角形联结绕组,额定电压为10.5kV。
两个星形联结绕组的电压是同相位(钟时序数0),而三角形联结绕组上的电压超前于其他电压30°(钟时序数11)。
所以,该台变压器的联结组标号为:YN,yn0,d11。
变压器绕组星角和角星的区别
变压器绕组星角和角星的区别摘要:一、引言二、变压器绕组星角和角星的概念解释三、星角和角星接线的区别四、星角和角星接线对电压的影响五、星角和角星接线在实际应用中的优缺点六、总结正文:一、引言在电力系统中,变压器是一种重要的设备,其绕组接线方式有星角和角星两种。
这两种接线方式在电力系统中有着广泛的应用,但很多人对它们的区别并不清楚。
本文将详细介绍星角和角星接线的区别,以及它们在实际应用中的优缺点。
二、变压器绕组星角和角星的概念解释1.星角接线:星角接线是指变压器的高压绕组和低压绕组分别采用星形和角形连接方式。
在这种接线方式下,高压绕组和低压绕组的相位差为30度。
2.角星接线:角星接线是指变压器的高压绕组和低压绕组均采用角形连接方式。
在这种接线方式下,高压绕组和低压绕组的相位差为0度。
三、星角和角星接线的区别1.星角接线:星角接线的高压绕组和低压绕组相位差为30度,适用于中小型变压器,接线简单,易于调试。
2.角星接线:角星接线的高压绕组和低压绕组相位差为0度,适用于大型变压器,电压波动较小。
四、星角和角星接线对电压的影响1.星角接线:由于高压绕组和低压绕组相位差为30度,因此在负载变化时,电压波动较大。
2.角星接线:由于高压绕组和低压绕组相位差为0度,电压波动较小。
五、星角和角星接线在实际应用中的优缺点1.星角接线:优点是接线简单,易于调试;缺点是电压波动较大,适用于中小型变压器。
2.角星接线:优点是电压波动较小,适用于大型变压器;缺点是接线复杂,调试困难。
六、总结变压器绕组星角和角星接线各有优缺点,具体选用哪种接线方式需根据实际应用场景和需求来决定。
双绕组电力变压器的接线组别
三相变压器和三相变压器组可连接成星形、三角形、曲折形,在高压侧分别用Y、D、Z符号表示,在低压侧分别用y、d、z符号表示,有中性点引出时高压用YN、ZN符号表示,低压用yn、zn符号表示。
根据三相绕组的不同接线组合,可有12种接线组别。
但是为了制造及使用的方便,我国原规定了5种接线组别:Y,Yn0(Y/Y0-12);Y,Yn(Y/Y-12);YN,Yn(Y0/Y-12);Y,d11(Y/△-11);YN,d11(Y0/△-11)。
Y,Yn0(Y/Y0-12):用于配电变压器。
一、二次绕组均为星形接线,二次绕组为中性点接地方式。
YN,d11(Y0/△-11)用于高压输电线路,使电力系统的高压侧有可能接地。
Y,zn11:一次绕组为星形接线,二次绕组为中性点接地的曲折形接线(属星形接线)方式。
但上述几种接线未包括D,yn11。
在通信行业、城市电网、工矿企业及民用建筑10/0.4/0.23kV的配电系统中,多年来一直采用国家定型产品Y,Yn0接线的三相变压器,是沿袭原苏联以前采用的标准。
但从国外引进技术生产的配电变压器有二种接线方式(D,Yn0;D,yn11),国内外资企业所选用的变压器及多数国家的配电变压器均采用D,Yn11接线。
我国国家标准JGJ16-2008《民用建筑电气设计规范》对变压器接线组别的选用有以下规定:
具有如下情况之一者,宜选用接线组别为D,Yn11型变压器:
1 三相不平衡负载超过变压器每相额定功率15%以上者。
2 需要提高单相短路电流值,确保低压单相接地保护装置灵敏度者。
3 需要限制三次谐波含量者。
变压器yd接法
变压器yd接法
变压器Yd接法是指将变压器的高压绕组与低压绕组都接在Y形结构的接线盒中,通常用于配电系统中。
这种接法能够将电压从高电压向低电压转变,使得电力输送更加安全稳定。
在变压器Yd接法中,高压绕组的每相线圈之间两两串联,形成Δ形结构,而低压绕组的每相线圈则是星形接法。
首先,变压器Yd接法的原理是通过高压绕组和低压绕组之间的电磁感应,实现电压的降低或升高。
高压绕组的每相线圈之间串联,低压绕组的每相线圈则是星形接法,通过电磁感应实现电压的传递和转换。
在变压器Yd接法中,需要注意的是高压绕组的绕组电压之间不能串联,否则会导致高压绕组的电压过高,从而损坏变压器。
同时,低压绕组的每相线圈之间也不能串联,否则会影响电压的平衡,降低变压器的效率和性能。
变压器Yd接法的优点是可以实现电压的升降转换,适用于不同电压等级的配电系统。
同时,Yd接法可以实现电压的平衡,提高电力系统的稳定性和可靠性。
总的来说,变压器Yd接法是一种常用的接线方式,能够实现电压的转换和传递,提高电力系统的效率和性能。
在实际应用中,需要根据具体的电压等级和负载要求来选择合适的变压器接法,确保电力系统的安全稳定运行。
变压器连接组别及绕组方式
变压器连接组别及绕组方式三相变压器的连接组一、三相绕组的连接方法常见的连接方法有星形和三角形两种;以高压绕组为例,星形连接是将三相绕组的末端连接在一起结为中性点,把三相绕组的首端分别引出,画接线图时,应将三相绕组竖直平行画出,相序是从左向右,电势的正方向是由末端指向首端,电压方向则相反;画相量图时,应将B相电势竖直画出,其它两相分别与其相差120°按顺时针排列,三相电势方向由末端指向首端,线电势也是由末端指向首端;三角形连接是将三相绕组的首、末端顺次连接成闭合回路,把三个接点顺次引出,三角形连接又有顺接、倒接两种接法;画接线图时,三相绕组应竖直平行排列,相序是由左向右,顺接是上一相绕组的首端与下一相绕组的末端顺次连接;倒接是将上一相绕组的末端与下一相绕组的首端顺次连接;画相量图时,仍将B相竖直向上画出,三相接点顺次按顺时针排列,构成一个闭合的等边三角形,顺接时三角形指向右侧,倒接时三角形指向左侧,每相电势与电压方向与星形接线相同;也就是说,相量图是按三相绕组的连接情况画出的,是一种位形图;其等电位点在图上重合为一点,任意两点之间的有向线段就表示两面三刀点间电势的相量,方向均由末端指向首端;连接三相绕组时,必须严格按绕组端头标志和接线图进行,不得将一相绕组的首、末端互换,否则会造成三相电压不对称,三相电流不平衡,甚至损坏变压器;二、单相绕组的极性三相变压器的任一相的原、副绕组被同一主磁通所交链,在同一瞬间,当原绕组的某一端头为正时,副绕组必然有一个电位为正的对应端头,这两个相对应的端头就称为同极性端或同名端,通常以圆点标注;变压器原、副绕组之间的极性关系取决于绕组的绕向和线端的标志;当变压器原、副绕组的绕向相同,位置相对应的线端标志相同即同为首端或同为末端,在电源接通的时候,根据椤次定律,可以确定标志相同的端应同为高电位或同为低电位,其电势的相量是同相的;如果仅将原绕组的标志颠倒,则原、副绕组标志相同的线端就为反极性,其电势的相向即为反相;当原、副绕组绕向相反时,位置相同的线端标志相同,则两绕组的首端为反极性;两绕组的感应电势反相;如果改变原绕组线端标志,则两绕组首端为同极性,两绕组的感应电势同相;三、连接组标号的含义和表示方法连接组标号是表示变压器绕组的连接方法以及原、副边对应线电势相位关系的符号;连接组标号由字符和数字两部分组成,前面的字符自左向事依次表示高压、低压绕组的连接方法,后面的数字可以是0——11之间的整数,它代表低压绕组线电势对高压绕组线电势相位移的大小,该数字乘以30°即为低压边线电势滞后于高压边红电势相位移的角度数;这种相位关系通常用“时钟表示法”加以说明,即以原边线电势相量做为时钟的分针,并令其固定指向12位置,以对应的副边线电势相量做为时针,它所指的时数就是连接组标号中的数字;四、连接组标号的判定一Y,y0连接组标号原、副绕组都是星形连接,且原、副绕组都以同极性端做为首端,所以原、副绕组对应的相电势是同相位;先画出原边相电势相量图,再按原、副绕组相电势同相位画出副边相电势相量图,根据相电势与线电势的关系,画出线电势相量,再将副边的一个线电势相量平移到原边对应的线电势相量上,且令它们的末端重合,就可看出它们是同相的,用时钟表示法看,它们均指在12上,这种连接组标号就是Y,y0;二Y,y6连接组标号原、副绕组仍为星形接线,但各相原、副绕组的首端为反极性画接线图时,原绕组不变,副绕组上下颠倒,竖直向下,电势正方向由末端指向首端,原、副绕组对应相电势反相;据此,按上述方法可画出相量图,并可知,原、副绕组相对应的线电势的相位移是180°,当原边线电势相量指向12时,对应的副边线电势相量将指在6的位置上,这种连接组标号就是Y,y6;原、副绕组均为星形连接的三相变压器,除了0、6两组连接组标号外,改变绕组端头标志,还可有2、4、8、10四个偶数的连接组标号数字;三Y,d11连接组标号原绕组做星形连接,副绕组为三角形顺接,各相原、副绕组都以同极性端为首端;按前述方法画出原、副绕组相电势相量图,再根据线电势和相电势的关系,画出线电势相量,将副边的一个线电势相量平移,使其末端与对应的原边线电势末端重合,可以看出,副边线电势滞后于对应的原边线电势相量330°,用时钟表示法可判定为Y,d11连接组标号;假如Y,d连接的三相变压器各相原、副绕组的首端为反极性,原绕组仍然不变,副绕组各相极性相反,且仍然顺接,按上述方法,就可判定是Y,d5连接组标号;将Y,d11和Y,d5中的副绕组端头标志逐相轮换,还将得到3、7、9、1四种连接组标号的数字;如上所述,连接组标号不仅与原、副绕组的连接方法有关,而且与它们的绕线方向及线端标志有关,改变这三个因素中的任何一个,都会影响连接组标号;连接组标号的数字共有12个,其中偶数和奇数各6个,凡是偶数的,原、副绕组的连接方法必定一致;凡是奇数的,原、副绕组连接方法必定不同;连接组标号是变压器并列运行的条件之一;五、连接组标号的测定测定连接组标号的方法有双电压表法、直流法和相位表法;现只学电压表法,测定连接组标号之前,通常应先测定原、副绕组的相对极性;一绕组极性的测定1、直流感应法:将高压边一相绕组的首端接电池正极,末端接电池负极,对应相低压边线端接检流计;按通电路时,若检流计指针正向偏转,则与检流计正极相连的必定是首端;若检流计反向偏转,则与检流计正极相连的必定是末端,按此确定标志,则原、副绕组的首端为同极性端;2、交流感应法:将同一相高、低压绕组的首端连接在一起,在高压边的两端加一个不超过250V的交流电压,然后分别测量高、低压边的电压,以及高、低压绕组末端间的电压;若高、低压绕组末端间电压等于高压边电压与低压边电压之差,说明高、低压边电压同相,即高低压绕组的首端为同极性端;或高、低压绕组末端间电压等于高、低压边电压之和,说明高、低压边电压反相,即高、低压绕组的首端不是同极性端;二连接组标号的测定将高压边A端和低压边a端连接在一起,在高压边加一个不超过250V最好为100V,便于计算的三相交流电压,用电压表依次测量B相原边首端与B相副边首端、C相副边首端之间的电压,C相原边首端与C相副边首端间的电压;当B相原边首端与C相副边首端间的电压等于C相原边首端与B相副边首端间的电压,且二者均B相原、副边首端间的电压时,为Y,y0连接组标号;当B相原、副边首端间的电压等于B相原边首端与C相副边首端间的电压,且二者均小于C相原边首端与B相副边首端间的电压时,为Y,d11连接组标号;三相变压器的磁路系统和空载电势波形一、三相变压器的磁路系统三相变压器的磁路系统主要分为两类:一类是各相磁路彼此无关,实际存在于三相变压器组中,巨型变压器为了便于制造和运输,多采用三相变压器组;另一类是各相磁路彼此关联,三铁心柱变压器的磁路就属于此类,大多数电力变压器都是三相三铁心柱变压器,它有耗材少、效率高、占地面积小、维护简便的特点;三相变压器组是由三台单相变压器组成的,所以每相的主磁通各有独立的磁路,各相磁路互不影响,而且长短相同,因此三相磁通对称时,三相励磁电流是对称的;三相铁心柱变压器是三相的整体,所以三相磁路是相互关联的,任何一相的主磁通都借助其它两相的铁心柱作为回路;这种磁路结构可以看成是三个单相变压器磁路合并演变而成;设想将三个单相铁心的一个铁心柱贴合在一起,则三相磁路都以中间的铁心柱构成回路,从而可以用一个公共铁心柱代替,通过公共铁心柱的磁通是三相磁通之和,由于三相电压对称,所以三相磁通的总和为零,即任何瞬间公共铁心柱的磁通均为零,因此可将中间的铁心柱省去,形成组合的铁心;为了制造方便,将三个铁心柱排列在一个平面内,成为常见的三相心式变压器;由于中间一相的磁路要比旁边两相的磁路短,在三相磁通对称的情况下,中间一相的空载电流较小,使三相空载电流不对称,但空载电流与负载电流相比小得多,这种不对称对负载运行的影响可以略去不计;二、三相绕组连接方法和铁心磁路系统对相电势波形的影响在学习单相变压器空载电流时知道,当主磁通为正弦波时,由于铁心磁路饱和的影响,励磁电流为尖顶波,其中除基波外,还含有较强的三次谐波和其它高次谐波;在三相变压器中,励磁电注中的基波分量是对称系统,可在三相绕组中互成回路而流通;励磁电流中的三相谐波分量,各相的相位差是3乘以360°,任何瞬间,三次谐波电流不但大小相等而且相位相同,在无中线的星形连接中无法流通;励磁电流也因三次谐波不能出现而接近正弦波,主磁通波形不再是正弦波而变成平顶波,它不仅有基波而且含有三次及其它高次谐波;基波磁通产生基波电势,三次谐波磁通产生三次谐波电势,因此合成相电势的波形具有尖顶特性;可知三次谐波磁通引起相电势的畸变,而三次谐波磁通的大小不仅与磁路饱和程度有关,而且与变压器的磁路系统有关;总之,三相变压器相电势的波形与绕组的连接方法和铁心磁路系统都有关系;一Y,y联结的三相变压器当变压器原、副绕组均为星型连接且无中线时,三次谐波电流不能在绕组中流通,因此励磁电流为正弦波,主磁通为平顶波,这种情况下,主磁通的三次谐波分量的大小与磁路系统的型式有关;在三相变压器组中,磁路各自独立,基波磁通和三次谐波磁通均沿铁心磁路闭合,其磁阻很小,因些三次谐波磁通很大,加上其频率为基波频率的3倍,使其感应的三次谐波电势相当大,结果使相电势的波形严重畸变,呈尖峰状,可能引起绕组绝缘击穿,但在线电势中因三次谐波电势互相抵消而仍为正弦波;在三相铁心柱变压器中,三相磁路彼此关联,三次谐波磁通不能通过铁心闭合,只能溢出铁轭,借助油和油箱壁等形成回路,磁阻很大,所以三次谐波磁通很小,因此主磁通和相电势波形都很接近正弦波;但是三次谐波磁通通过油箱壁等铁件,将在其中感生涡流而引起局部发热及附加涡流损耗;综上所述,三相变压器组不能采用Y,y连接,而三相铁心柱变压器可采用Y,y连接,但从附加损耗考虑,对于容量大、电压高的三相铁心柱变压器不宜采用Y,y连接;二D,y和Y,d连接的三相变压器变压器原边作三角形连接时,三次谐波电流可在三角形回路内流过,于是主磁通及其在原、副绕组中的感应电势都是正弦波;原边为星形连接而副边为三角形连接时,原边空载电流中的三次谐波分量不能流通,因而主磁通和相电势中似乎应出现三次谐波,但因副边为三角形连接,三次谐波电势便在闭合的三角形回路内形成三次谐波环流,副边闭合回路的感抗远远地大于电阻,所以三次谐波环流几乎滞后三次谐波电势90°,副边三次谐波环流建立的三次谐波磁通又几乎与该三次谐波环流同相,因此副边三次谐波环流建立的三次谐波磁通与主磁通中的三次谐波分量反向,因而抵消了主磁通中三次谐波分量的作用,使合成主磁通及其感应电势都接近正弦波;因此,三相变压器中只要原、副边中有一边接成三角形,则不论磁路系统如何,相电势波形都可接近于正弦波;这主要是因为主磁通决定于原、副绕组的总磁势,三角形连接的绕组在原边或副边所起的作用是一样的;为了改善电势波形,总希望原、副边至少有一边为三角形连接;三绕组变压器当发电厂需要用两种不同电压向电力系统或用户供电时,或都变电站需要连接几级不同电压的电力系统时,通常采用三绕组变压器;三绕组变压器有高压、中压、低压三个绕组,每相的三个绕组套在一个铁心柱上,为了便于绝缘,高压绕组通常都置于最外层;升压变压器的低压绕组放在高、中压绕组之间,这样布置的目的是使漏磁场分布均匀,漏抗分布合理,不致因低压和高压绕组相距太远而造成漏磁通增大以及附加损耗增加,从而保证有较好的电压调整率和运行性能;降压变压器主要从便于绝缘考虑,将中压绕组放在高压、低压绕组之间;根据国内电力系统电压组合的特点,三相三绕组变压器的标准连接组标号有YN,yn0,d11和YN,yn0,y0两种;一、容量配置和电压比三绕组电力变压器各绕组的容量按需要分别规定;其额定容量是指三个绕组中容量最大的那个绕组的容量,一般为一次绕组的额定容量;并以此作为100%,则三个绕组的容量配置有100/100/50、100/50/100、100/100/100三种;三绕组变压器的空载运行原理与双绕组变压器基本相同,但有三个电压比,即高压与中压、高压与低压、中压与低压三个;二、基本方程式和等值电路三绕组变压器负载运行时,主磁通同时与三个绕组的磁通相交链,由三个绕组的磁势电流与匝数和乘积共同产生,因此,负载时的磁势平衡方程式为三个绕组的磁势之相量和等于励磁磁势相量即空载电流与一次绕组匝数的乘积,将副边折算到原边后,变为三侧电流之相量和等于空载电流相量;忽略空载电流,变为三侧电流之相量和等于零;三绕组变压器中,凡不同时与三个绕组相链的磁通都是漏磁通,其中仅与一个绕组相链而不与其它两个绕组相链的磁通称为自漏磁通;仅与两个绕组相链而不与第三个绕组相链的磁通,称为互漏磁通;每一个绕组的漏磁压降,都受到另外两个绕组的影响,因此,三绕组变压器的漏电抗与双绕组变压器的漏电抗含义不一样;为建立电压平衡方程式和等值电路,引入了等值电抗的概念,高、中、低压绕组的等值电抗包含各自绕组的自感电抗和绕组之间的互感电抗,与各绕组等值电抗相应的还有各自的等值阻抗,且均为折算到一次侧的数值;仿照双绕组变压器的分析方法,列出电势平衡方程式,即:一次侧电压相量等于一次电流在一次等值阻抗上的压降相量和二次电流折算值在二次等值阻抗上的负压降相量,以及二次绕组端电压负相量之和;也等于一次电流在一次等值阻抗上的压降相量和三次电流折算值在三次等值阻抗上的负压降相量,以及三次绕组端电压负相量之和;由磁势平衡方程式和电压平衡方程式可作出三绕组变压器的简化等值电路,它由二、三次等值阻抗并联,再怀一次等值阻抗串联组成;两个副绕组负载电流互相影响,当任一副绕组的电流变化时,不仅影响本侧端电压,而且另一副绕组的端电压也会随着变化;因为原边电流由两个副边电流决定,原边阻抗压降同时受到两个副边电流的影响,而原边电流在原边等值阻抗上的压降,直接影响副边电压;为了减小两个副边之间的相互影响,应尽力减小原边等值阴抗;三、参数的测定和试验三绕组变压器的短路试验要分别做三次,即高中压、高低压、中低太,不论做哪两侧之间的短路试验,都是将无关侧开路,相关侧一侧加压,另一侧短路;然后根据三个试验所得值,由公式可算出每个绕组的折算到一次侧的等值阻抗值;公式的语言描述如下:某一侧的等值阻抗等于与该侧有关的两个试验所得值之和,减去与该侧无关的试验所得值,得数除二;如一次侧的等值阻抗等于一、二次间的试验所得值加上一、三次间的试验所得值,减去二、三次间的试验所得值,得数再除二;由此可知,要减小一次侧的等值阻抗,就必须减小一、二次间的等值阻抗和一、三次间的等值阻抗,增大二、三次间的等值阻抗值,升压变压器之所以将低压绕组放在中间,就是为了使原边具有较小的等值阻抗;三绕组变压器高压绕组和低压绕组的线端标志与双绕组变压器相同,中压绕组的首、末端下标换成了m;自耦变压器自耦变压器与普通的双绕组和三绕组变压器的区别是它的原、副绕组之间不仅有磁的联系,而且有电的直接联系;它没有独立的副绕组,而是把原绕组的一部分匝数作为副绕组,也就是说,原、副绕组共用一部分绕组,这部分绕组称为公用绕组;一、基本电磁关系它的变比仍然等于原、副绕组的感应电势之比,等于原、副绕组的匝数之比,约等于原、副绕组端电压之比;负载运行时的磁势平衡方程式为原、副绕组磁势的相量和等于原绕组的空载磁势相量也即励磁磁势;当忽略空载电流时,为原、副绕组的磁势相量和等于零;通过变换可知,原边电流相量等于副边电流负相量与变比倒数之积;在原、副绕组公共部分的电流相量等于原、副边电流的相量和,等于副边电流相量的一减变比倒数倍;从上述关系可知,原、副边电流相位相差180°,流过绕组公共部分的电流的有效值,等于副边电流与原边电流有效值之差,等于副边电流有效值的一减变比倒数倍,或都通过变换可知,副边电流的有效值等于原边电流与公共绕组电流有效值之和;也就是说副边电流由两部分组成,一部分是从原边直接流过来的原边电流,另一部分是通过电磁感应从公共绕组感应而来的电流;显然公共绕组电流的有效值小于副边电流的有效值,与双绕组变压器流过副边电流的副绕组相比,自耦变压器公共绕组的导线截面可以小一些,而且变比愈接近于一,公共绕组的电流愈小,经济效益越高,通常变比在至2之间;自耦变压器的视在功率等于原边电压与电流之积,也等于副边电压与电流之积;将副边电流的有效值等于公共绕组电流与原边电流有效值之和代入,可知,视在功率由两部分组成,一部分为二次电压与公共绕组电流有效值的乘积,它是通过公共绕组电磁感应传递到副边的功率,占视在功率的一减变比倒数倍,称为电磁功率;另一部分为二次电压与一次电流的有效值的乘积,是由原边通过电传导的方式传递到副边的,占视在功率的变比倒数倍,称为传导功率;由于副边能直接从原边吸取一部分功率,所以自耦变压器的额定容量和计算容量是不同的,额定容量由输出功率决定,计算容量则由电磁功率决定;二、特点和应用自耦变压器的原、副绕组有电的直接联系,副边能直接从原边吸取部分功率;这是一个特点;正因为这样,自耦变压器的计算容量只有额定容量的一减变比倒数倍,而变压器的重量和尺寸决定于计算容量,因此,和相同容量的普通变压器相比,自耦变压器能节省材料,缩小体积,减轻重量;而且随着有效材料的减少,铜损和铁损也相应减少,从而提高了效率;另一方面,由于自耦变压器原、副边有电的直接联系,使电力系统中的过电压保护较为复杂;又因为自耦变压器的短路阻抗是相当于把绕组的串联部分仅属原绕组的部分作为原边,公共部分作为副边时的双绕组变压器的短路阻抗,其标么值较同容量的普通变压器小,帮短路故障电流较大;分裂变压器分裂变压器的结构特点是把其中一个或几个绕组分裂成几个部分,每个部分形成一个分支,几个分支之间没有电的联系;几个分支容量相同,额定电压相等或接近,可以单独运行或同时运行,可以承担相同或不同负载;分裂支路之间应具有较大的阻抗,而分裂路与不分裂绕组之间应具有相同的阻抗;通常把低压绕组作为分裂绕组,分裂成两个或三个支路,线端标志为小写字母加数字;不分裂的高压绕组由两个并联支路组成,线端标志不变;一、参数和等值电路当分裂绕组的几个分支并联成一个总的低压绕组对高压绕组运行时,称为穿越运行,此时变压器的短路阻抗称为穿越阻抗;当低压分裂绕组的一个分支对高压绕组运行时,你为半穿越运行,此时变压器的短路阻抗称为半穿越阻抗;当分裂绕组的一个分支对另一个分支运行时,称为分裂运行,此时变压器的短路阻抗称为分裂阻抗;分裂阻抗与穿越阻抗之比称为分裂系数,它是分裂变压器的基本参数之一,一般为3——4;三相双绕组双分裂变压器,每相有三个绕组:一个不分裂的高压绕组,它有两个支路,但总是并联的,实际上是一个绕组;两个相同的低压分裂绕组;故可以仿照三绕组变压器,得到由三个等值阻抗组成的等值电路;按照分裂阻抗的定义,分裂阻抗为两个分支之间的阻抗,它等于两分支短路阻抗之和,考虑到分裂绕组各分支排列的对称性,所以各分支短路阻抗相等,等于二分之一的分裂阻抗,等于二分之一分裂系数倍的穿越阻抗;穿越阻抗是两分支关联后对高压绕组间的阻抗,即穿越阻抗等于高压绕组的短路阻抗与分支短路阻抗的一半之和;所以有:。
三相变压器的连接组别(星形连接、三角形连接)
三相变压器的连接组别(星形连接、三角形连接)三相变压器中,三个原边线圈与三相交流电源连接应当由两种解法,即星形连接和三角形0连接。
如下图(a)、(b)所示。
当星形连接(Y形)连接时,首端1U1、1V1、1W1为引出端时,将三相末端1U2、1V2、1W2连接在一起成为中性点,若要把中性点引出,则以“N”标志,接线方式用YN表示。
同样,三个副线圈的连接方式也应当有这两种接法。
三相变压器原、副边绕组都可用星形连接、三角形连接,用星形连接时,中性点可引出,也可不引出,这样原、副边绕组可有如下的组合:Y/Y或Y/Yn;Y/△或Yn/△;△/Y或△/Yn;△/△等连接方式。
但是,这些组合符号不足以完全说明原、副边绕组连接关系的全部情况,还应进一步用时针表示法来说明原、副边绕组间电动势的相位关系。
时钟盘上有两个指针,12个字码,分成12格,每格代表一个钟,一个圆周的角度是360°,故每格式30°。
以短针顺时针的方向计算,例如12点和11点之间应该是30°*11=330°;反过来时针向前转了300°,那必定指示300°/30°=10点。
变压器的连接组别就是用时计的表示方法说明原、副边线电压的相位关系。
三相变压器的一次绕组和二次绕组由于接线方式的不同,线电压间有一定相位差。
以一次线电压作长针,把它固定在12点上,二次侧相应线电压相量作为短针,如果他们相隔330度,则二次线电压相量必定落在330°/30=11点,如右图所示。
如果相差180°,那么二次电压相量必定落在6点上,也就是说这一组三相变压器接线组别属于6点。
Y/Y连接如下图所示,原副边绕组不仅都是Y连接,而且原边和副边都以同极性端作为首端,因此从相量图上可以看出原、副边的电动势是同相位,所以应标记为“12”,即把这种连接标记为Y/Y-12连接组。
新标准用(y,y0)表示在图(b)中原、副边的极性不同,因此同相量图上可以看出原副边的180°相位差,所以应标记为“6”,即这种连接法成为Y/Y-6连接组(新标准用y,y6表示)。
变压器的接线组别
变压器的接线组别变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB 330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“·”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
配电变压器常用的接线组别
配电变压器常用的接线组别
(1) Yyn0:其中Y表示高压绕组为星形接线,y表示低压绕组为星形接线,n表示从二次侧绕组中点引出中性线,0表示高压与低压的线电压相位相同。
可作为三相四线制或三相五线制的供电输出,用于容量不大的配电变压器,供应动力和照明负载。
(2) Dyn11:其中D表示高压绕组为三角形接线,y表示低压绕组为星形接线,n表示二次侧绕组中性点直接接地并有中性线引出,11表示高压与低压的线电压相位差30°。
常用于我国的TN或TT系统接地式低压电网中。
(3) Yd11:即一次侧绕组接成星形,二次侧绕组接成三角形,一般作为10kV或35kV电网的供电变压器和发电厂的厂用变压器等。
二次侧绕组接成三角形,是为了消退3次谐波电压。
(4) YNd11:即一次侧绕组接成星形,并从中性点再引出中性线直接接地,二次侧绕组接成三角形。
高压绕组接成星形比接成三角形承受电压低√3倍,因而能带来很好的经济效益,一般用在110kV及以上中性点直接接地的电力系统中。
1。
变压器接线方式
变压器接线方式变压器是电力系统中重要的电力设备。
它通过变换电压实现电能的传输和分配。
在使用变压器时,正确的接线方式是非常关键的。
不仅可以确保电能的高效传输,还可以保证电路的安全运行。
本文将介绍常见的变压器接线方式及其特点。
一、单相变压器的接线方式1. Y-△接法(星形-三角形接法)在Y-△接法中,低压绕组为星形接法,高压绕组为三角形接法。
这种接线方式适用于低压侧需要较大的电流和较小的电压,而高压侧需要较小的电流和较大的电压的情况。
Y-△接法的特点是:低压绕组电流较大,高压绕组电流较小;低压绕组电压较小,高压绕组电压较大。
2. △-Y接法(三角形-星形接法)在△-Y接法中,低压绕组为三角形接法,高压绕组为星形接法。
与Y-△接法相反,△-Y接法适用于低压侧需要较小的电流和较大的电压,而高压侧需要较大的电流和较小的电压的情况。
△-Y接法的特点与Y-△接法相反:低压绕组电流较小,高压绕组电流较大;低压绕组电压较大,高压绕组电压较小。
二、三相变压器的接线方式1. Y-Y接法(星形-星形接法)在Y-Y接法中,低压绕组和高压绕组均为星形接法。
这种接线方式适用于需要将电压降低或升高到相同比例的情况。
Y-Y接法的特点是:低压侧电流较大,高压侧电流较小;低压侧电压较小,高压侧电压较大。
2. △-△接法(三角形-三角形接法)在△-△接法中,低压绕组和高压绕组均为三角形接法。
与Y-Y接法相反,△-△接法适用于需要将电压降低或升高到相同比例的情况。
△-△接法的特点与Y-Y接法相反:低压侧电流较小,高压侧电流较大;低压侧电压较大,高压侧电压较小。
3. Y-△接法(星形-三角形接法)在Y-△接法中,低压绕组为星形接法,高压绕组为三角形接法。
这种接线方式适用于需要将电压降低或升高到不同比例的情况。
Y-△接法的特点是:低压侧电流较大,高压侧电流较小;低压侧电压较小,高压侧电压较大。
4. △-Y接法(三角形-星形接法)在△-Y接法中,低压绕组为三角形接法,高压绕组为星形接法。
变压器接法详解 (1)
变压器接法详解常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
(一)变压器接线组别变压器的极性标注采用减极性标注。
减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“•”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。
变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。
分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。
变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。
由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。
单相变压器绕组接法
单相变压器绕组接法
单相变压器的绕组接法有三种:
1. 两侧共用零线接法:这是单相变压器常用的接线方式之一,电源供电一端的两个绕组都对地,而另一端只有一个绕组对地,与电源相连的另一个绕组对接负载使用。
这种接法可以有效降低接地故障率、减少绝缘材料的使用,但是相邻相之间容易产生交流磁场,需要注意对接收机的影响。
2. 两侧各有一根引出线接法:这种接法自耦变压器和开关电源中常用,其特点是便于调节电压和保护绕组。
两个绕组之间没有共用的中性线,可以有效避免相邻相之间的交流磁场。
3. 两绕组串联接法:这种接法适用于需要输出大电压和大电流的场合。
其将电源和负载串联在一起,具有节省绝缘材料、提高输出电压、降低输入电流等优点,但同时也存在着抗干扰能力差等缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器绕组接线方式
变压器的接线组别就是变压器一次绕组和二次绕组组合接线形式的一种表示方法;
常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。
Y(或y)为星形接线,D(或d)为三角形接线。
数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。
“Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。
也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。
变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。
我国只采用“Y,y”和“Y,d”。
由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。
n表示中性点有引出线。
Yn0接线组别,UAB与uab相重合,时、分针都指在12上。
“12”在新的接线组别中,就以“0”表示。
联结组标号表示的三相变压器的联结标志示例(带▲符号者为常用的联结方法):。