三坐标测量机 (1)
三坐标最大允许误差
三坐标最大允许误差摘要:1.三坐标测量机的概述2.三坐标允许误差的定义3.三坐标测量机的最大允许误差标准4.三坐标测量机的应用领域正文:1.三坐标测量机的概述三坐标测量机,又称为三坐标测量仪,是一种高精度的测量设备,主要用于测量物体的三维空间尺寸,包括长度、高度和深度等。
它具有高精度、高效率和操作简便等特点,被广泛应用于机械制造、航空航天、汽车制造等领域。
2.三坐标允许误差的定义三坐标允许误差是指三坐标测量机在测量过程中,测量结果与实际值之间的差异。
通常情况下,三坐标测量机的允许误差包括绝对误差和相对误差两种。
3.三坐标测量机的最大允许误差标准我国对三坐标测量机的最大允许误差有严格的标准。
根据GB/T 13850-2019《三坐标测量机》标准规定,三坐标测量机的最大允许误差应满足以下要求:(1)长度测量的最大允许误差:±(5+L/1000)μm,其中L 为测量长度(mm);(2)高度测量的最大允许误差:±(5+H/1000)μm,其中H 为测量高度(mm);(3)深度测量的最大允许误差:±(5+D/1000)μm,其中D 为测量深度(mm)。
4.三坐标测量机的应用领域三坐标测量机在多个领域具有广泛的应用,如:(1)机械制造:用于测量各种机械零件的尺寸,以确保其符合设计要求;(2)航空航天:用于测量航空航天器的零部件,以确保其满足高精度、高可靠性的要求;(3)汽车制造:用于测量汽车零部件的尺寸,以确保汽车的性能和安全性;(4)电子行业:用于测量电子元器件的尺寸,以确保其符合电子产品的设计要求。
总之,三坐标测量机是一种高精度的测量设备,具有重要的应用价值。
三坐标测量仪
三坐标测量仪三坐标测量仪三坐标测量仪是指在⼀个六⾯体的空间范围内,能够表现⼏何形状、长度及圆周分度等测量能⼒的仪器,⼜称为三坐标测量机或三坐标量床。
三坐标测量仪⼜可定义“⼀种具有可作三个⽅向移动的探测器,可在三个相互垂直的导轨上移动,此探测器以接触或⾮接触等⽅式传递讯号,三个轴的位移测量系统(如光栅尺)经数据处理器或计算机等计算出⼯件的各点(x,y,z)及各项功能测量的仪器”。
三坐标测量仪的测量功能应包括尺⼨精度、定位精度、⼏何精度及轮廓精度等。
机型介绍结构型式:三轴花岗岩、四⾯全环抱的德式活动桥式结构传动⽅式:直流伺服系统+预载荷⾼精度空⽓轴承长度测量系统:RENISHAW开放式光栅尺,分辨率为0.1µm测头系统:雷尼绍控制器、雷尼绍测头、雷尼绍测针机台:⾼精度(00级)花岗岩平台使⽤环境:温度(20±2)℃,湿度40%-70%,温度梯度1℃/m,温度变化1℃/h空⽓压⼒:0.4MPa-0.6Mpa空⽓流量:25L/min长度精度MPEe:≤2.1+L/350(µm)探测球精度MPEp:≤2.1µm主要特征三轴采⽤天然⾼精密花岗岩导轨,保证了整体具有相同的热⼒学性能,避免由于三轴材质不同热膨胀系数不同所造成的机器精度误差。
花岗岩与航空铝合⾦的⽐较1.铝合⾦材料热膨胀系数⼤。
⼀般使⽤航空铝合⾦材料的横梁和Z轴在使⽤⼏年之后,三坐标的测量基准——光栅尺就会受损,精度改变。
2.由于三坐标的平台是花岗岩结构,这样三坐标的主轴也是花岗岩材质。
主轴采⽤花岗岩⽽横梁和Z轴采⽤铝合⾦等其他材质,在温度变化时会因为三轴的热膨胀系数不均同⽽引起测量精度的失真和稳定。
三轴导轨采⽤全天然花岗岩四⾯全环抱式矩形结构,配上⾼精度⾃洁式预应⼒⽓浮轴承,是确保机器精度长期稳定的基础,同时轴承受⼒沿轴向⽅向,受⼒稳定均衡,有利于保证机器硬件寿命。
3.采⽤⼩孔出⽓专利技术,耗⽓量为30L/Min,在轴承间隙形成冷凝区域,抵消轴承运动摩擦带来的热量,增加设备整体热稳定性。
三坐标测量机的原理及应用
三坐标测量机的原理及应用1. 三坐标测量机的基本原理1.1 三坐标测量机的定义和作用三坐标测量机是一种高精度测量设备,它能够通过测量工件表面上的各种点的坐标来了解工件的几何形状和尺寸。
它的主要作用是用来检测工件的几何形状和尺寸是否符合设计要求,以实现工件的质量控制。
1.2 三坐标测量机的工作原理三坐标测量机通过夹具固定工件,并由数控系统控制探头在三个坐标轴上移动,测量工件表面上各个点的坐标值。
具体的工作原理如下:1.夹具固定工件:首先,将需要测量的工件夹在测量机的工作台上,固定工件的位置。
2.移动探头:测量机的数控系统会根据设定的测量路径,控制探头在三个坐标轴上进行移动。
探头可以实现旋转、抬升、下降等运动。
3.测量点坐标:当探头接触到工件的表面时,测量机会采集探头的坐标值,并记录下来。
通过多次测量不同的点,可以得到工件的整体几何形状。
4.数据处理:测量的数据会被送入三坐标测量机的计算机系统中。
计算机系统会对数据进行处理和分析,生成测量报告和测量结果。
2. 三坐标测量机的应用三坐标测量机在制造业中有广泛应用,特别是在需要高精度测量的行业。
以下是三坐标测量机的一些主要应用领域:2.1 航空航天工业三坐标测量机被广泛应用于航空航天工业中。
在航空航天工业中,各种零部件和组件的尺寸和形状对于正常的工作至关重要。
三坐标测量机可以快速、精确地测量各种复杂曲面的形状和尺寸,保证了飞机和航天器的质量。
2.2 汽车制造业在汽车制造业中,三坐标测量机被广泛应用于汽车零部件的测量和质量控制。
利用三坐标测量机可以对发动机、车身、底盘等关键部件进行精确的测量,确保汽车的质量和性能符合设计要求。
2.3 机械制造业在机械制造业中,三坐标测量机被用于测量各种机械零部件的尺寸和形状。
机械制造业对于零部件的尺寸精度要求很高,使用三坐标测量机可以快速、准确地测量各种复杂形状的零部件。
2.4 其他领域除了上述应用领域外,三坐标测量机还被广泛应用于电子制造、仪器仪表、模具制造等行业。
三坐标测量机的检定(一)
三坐标测量机的检定(一)【要求】①仪器的工作面、导轨、标准球、块规应无锈迹、碰伤和显然划痕等缺陷;涂漆或镀层表面应平滑、匀称、色调全都;无斑点、皱纹、脱漆或镀层脱落等现象。
②X,Y,Z方向移动应平稳,无阻滞、急进及噪声,移动范围应大于工作行程;限位、锁紧、应急开关必需平安灵便牢靠。
③仪器上应标有创造厂名(或厂标)、出厂编号。
④用法中的仪器应无影响精确度的缺陷。
【检定办法】目力观看和试验。
2.计算机、打印机及软件功能【要求】计算机功能必需齐全正确,显示和打印无误;软件应具备所需功能。
【检定办法】仪器所配备的计算机、打印机都必需具有故障诊断程序,按该程序检查,并按测量机的操作办法调用各有关软件,观看屏幕是否显示所具备的功能,再任测一典型零件,通过测量和计算来考核测量和软件的功能。
3.各项精度指标的检定 (1)平面度的检定平面度可用激光仪检测,可将测得数据绘出图形.指出误差的位置和数值大小,便于修复。
测平面度常用附件有平面度镜和基板。
基板普通有3种尺寸:50mm,100mm,150mm 各1块,基板的大小由测量点打算。
平面度误差也可用电子水平仪测量。
(2)工作台面与X,Y运动平面平行度的检定用电感式比较仪或三坐标测量机测头检定,受检点应匀称分布,8.3.1所示。
其点数按照工作台的长度尺寸按表8.3.1确定。
检定时,使测量头挺直与工作台面接触,或在测量头与工作台面间垫一块尺寸为20 mm的4等量块。
在固定Z坐标轴的状况下,移动X,Y滑架或工作台,按受检点的分布举行检定。
工作台面与X,Y运动平面的平行度,以各受检点所得读数中的最大值与最小值的差值确定。
表8.3.1 受检点数与工作台长度的关系 (3) X,Y,Z方向移动直线度的检定 X,Y方向移动的直线度,用零级矩形平尺分离在水平面和垂直面内检定Z方向移动的直线度,用零级直角尺分离在ZX,ZY两个平面内检定。
检定X方向在垂直平面内的移动直线度时,将矩形平尺安置于工作台面中间部位,其工作面与X方向平行,支承点距平尺端面的距离为ι=0.2232L,L为平尺的长第1页共2页。
三坐标测量机的基本操作
三坐标测量机的基本操作
三坐标测量机(CMM)是一种用于测量物体三维几何形状的
机器。
它通过测量物体表面上的点坐标,来计算出物体的尺寸、位置和形状等信息。
三坐标测量机的基本操作包括以下几个步骤:
1. 定位和固定物体:将被测物体固定在三坐标测量机的测量平台上,并使用夹具、夹具角或软夹等方式使其稳定。
2. 选择测量程序:根据被测物体的形状和尺寸选择相应的测量程序。
测量程序是事先编程好的,包括测量路径、测量点的分布和测量方法等。
3. 校准和参考点:使用已知尺寸和位置的参考物体或标定球进行校准,确保测量机的测量结果准确可靠。
在测量之前,还需要定义被测物体上的一些参考点或基准面。
4. 进行测量:启动测量程序,三坐标测量机会自动进行测量。
它会按照预定的测量路径,在被测物体上通过探针探测点的坐标,并记录下来。
根据测量路径和测量点的坐标,可以计算出物体的尺寸、位置和形状等信息。
5. 数据分析和处理:根据测量结果,进行数据分析和处理。
可以使用专业的测量软件进行数据处理,例如计算物体的圆度、直径、角度等。
还可以将测量结果与设计图进行比对,检测出偏差和误差。
6. 结果输出:将测量结果输出,可以以数据表格、图形、图像或报告等形式进行展示和记录。
测量结果可以用于质量控制、产品改进、工艺改进等方面。
在进行三坐标测量机的基本操作时,需要注意操作规范和注意事项,比如保持测量环境的清洁和稳定,避免人为误差,及时进行维护和校准等。
三坐标机的测量原理
三坐标机的测量原理
三坐标测量机是一种用于测量物体三维坐标的仪器设备。
其测量原理主要包括以下几个步骤:
1. 位置设置:首先需要在测量范围内设置三个坐标轴,通常为X轴、Y轴和Z 轴,并确定原点。
这些坐标轴由机器上的感应器负责检测和定位。
2. 探头接触:将测量物体放置在机器的工作台上,手动或自动控制探头与测量物体接触。
探头通常是一种灵活的机械手臂,可以移动并接触物体表面。
3. 探头测量:一旦探头接触到测量物体,它会沿着预设的路径移动,并通过感应器测量每个点的相对位置。
这些相对位置根据已知的坐标轴和原点确定。
4. 数据计算:测量机会收集并记录所有采集到的位置数据。
通过将这些相对位置数据与坐标轴和原点的绝对位置进行计算,可以得出物体的三维坐标。
5. 数据分析:得到物体的三维坐标后,可以进行数据分析和比较。
可以将测量结果与预期尺寸进行对比,以判断物体的几何形状是否满足要求。
需要注意的是,不同型号的三坐标测量机在具体实现上可能存在细微的差异,但其基本的测量原理是相似的。
三坐标测量机的工作原理
三坐标测量机的工作原理
三坐标测量机是一种用于测量物体的形状和尺寸的精密测量设备。
其工作原理包括以下几个步骤:
1. 探测器系统:三坐标测量机配备了高精度的探测器系统,通常是光电探测器。
这些探测器可以在三个坐标轴上进行移动,并可以测量目标物体与参考基准之间的距离。
2. 参考基准:三坐标测量机上通常也有一套参考基准系统,用于确定物体的位置和方向。
该系统通常包括参考平面、直线和角度基准。
根据测量的需要,可以选择不同的基准来进行测量。
3. 测量操作:在进行测量前,需要先将目标物体放置在测量机的工作台上。
然后,根据测量要求,使用探测器系统的运动控制,将探测器移动到目标物体上,并测量不同点之间的距离和角度。
4. 数据处理:测量完成后,测量机会将测量的数据传输给计算机系统进行处理。
计算机会根据测量机的几何参数和测量数据,计算出目标物体的尺寸、形状和位置等信息。
5. 结果显示:最后,三坐标测量机会将测量结果在计算机显示屏上显示出来。
这些结果可以以数字或图形的形式呈现,方便用户进行分析和比较。
总的来说,三坐标测量机通过探测器系统和参考基准来测量目标物体的形状和尺寸,并通过数据处理和结果显示来提供测量
结果。
它具有高精度、快速、自动化等优点,在制造业和科学研究领域得到广泛应用。
三坐标测量机测量原理
三坐标测量机测量原理三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种外表测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。
三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。
将被测物体置于三坐标测量空间,可获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经计算求出被测物体的几何尺寸,形状和位置。
三坐标测量机的组成:1,主机机械系统(X、Y、Z三轴或其它);2,测头系统;3,电气控制硬件系统;4,数据处理软件系统(测量软件);三坐标测量机在现代设计制造流程中的应用逆向工程定义:将实物转变为C AD模型相关的数字化技术,几何模型重建技术和产品制造技术的总称。
广义逆向工程:包括几何逆向,工艺逆向,材料逆向,管理逆向等诸多方面的系统工程。
正向工程:产品设计-->制造-->检验(三坐标测量机)逆向工程:早期:美工设计-->手工模型(1:1)-->3轴靠模铣床当今:工件(模型)-->3维测量(三坐标测量机)-->设计à制造逆向工程设备:1,测量机:获得产品三维数字化数据(点云/特征);2,曲面/实体反求软件:对测量数据进行处理,实现曲面重构,甚至实体重构;3, CAD/CAE/CAM软件;4,数控机床;逆向工程中的技术难点:1,获得产品的数字化点云(测量扫描系统);2,将点云数据构建成曲面及边界,甚至是实体(逆向工程软件);3,与CAD/CAE/CAM系统的集成;(通用CAD/CAM/CAE软件)4,为快速准确地完成以上工作,需要经验丰富的专业工程师(人员);三坐标测量机测量原理三坐标测量机是测量和获得尺寸数据的最有效的方法之一,因为它可以代替多种外表测量工具及昂贵的组合量规,并把复杂的测量任务所需时间从小时减到分钟。
三坐标测量机的功能是快速准确地评价尺寸数据,为操作者提供关于生产过程状况的有用信息,这与所有的手动测量设备有很大的区别。
三坐标最大允许误差
三坐标最大允许误差
一、三坐标测量机的概述
三坐标测量机,作为一种高精度的测量设备,广泛应用于工业生产、航空航天、汽车制造等领域。
它通过对物体三个坐标轴(X、Y、Z)的精确测量,为产品质量控制、工艺改进提供重要依据。
二、三坐标最大允许误差的定义和意义
三坐标最大允许误差,是指在测量过程中,测量设备在三个坐标轴上所允许的最大误差值。
它直接影响着测量结果的准确性和可靠性。
最大允许误差越小,测量设备的精度越高,对生产过程的把控能力越强。
三、三坐标最大允许误差的影响因素
1.测量设备的精度:测量设备的精度越高,最大允许误差越小。
2.测量环境:温度、湿度等环境因素对测量设备的精度有较大影响,进而影响最大允许误差。
3.测量操作技巧:操作人员的技术水平和经验,直接关系到测量结果的准确性。
四、提高三坐标测量精度的方法
1.选择高精度测量设备:选购时注意了解设备的分辨率、测量范围等技术参数,确保设备精度满足需求。
2.定期校准和维护:定期对三坐标测量机进行校准,确保测量结果的准确性。
同时,定期维护设备,保证设备处于良好的工作状态。
3.控制环境因素:确保测量环境温湿度稳定,避免对测量设备造成影响。
4.提高操作技能:加强操作人员的技术培训,提高测量操作水平。
五、总结与展望
三坐标测量机在现代制造业中具有重要地位,其最大允许误差直接关系到测量结果的准确性。
通过选购高精度设备、定期校准维护、控制环境因素和提高操作技能等方法,可以有效提高三坐标测量精度,为我国制造业的发展提供有力支持。
论述三坐标测量机的重要作用
论述三坐标测量机的重要作用一、三坐标测量机简介。
三坐标测量机,简称CMM,是由三个相互垂直的运动轴X、Y、Z建立起一个直角坐标系,测头的一切运动都在这个坐标系中进行,测头的运动轨迹由测球中心点来表示。
测量时,把被测零件放在工作台上,测头与零件表面接触,三坐标测量机的检测系统可以随时给出测球中心点在坐标系中的精确位置。
当测球沿着工件的几何型面移动时,就可以得出被测几何型面上各点的坐标值。
将这些数据送入计算机,通过相应的软件进行处理,就可以精确地计算出被测工件的几何尺寸、形状和位置公差等。
它广泛应用于机械制造、仪器制造、电子工业、航空工业等各领域。
二、三坐标测量机的引进提高了检测效率和精度、加速了公司产品质量的提高。
三坐标测量机使用以前的检测设备大部分都是基于手工检测,检测结果受人为因素的影响较大,同时也严重的影响了工作效率。
由于以前缺少先进的检测手段,有些形状和位置公差无法检测,而采用专用检具检测又往往难以正确反映产品的加工精度,引进三坐标测量机后这些已不在是问题,全都轻松实现,大大的提高了检测精度。
原来需做工装才能完成测量的工件在三坐标测量机上直接就可以测量,节省大量的工装制作费用和存放空间,降低了产品成本费用。
对产品质量进行了预防控制,通过对重点关键零部件进行定期、定量抽检,形成了固定的检测程序,节省了大量的时间,提高了检测效率的同时,还提供了大量的可以对比分析的数据。
同时还对生产现场的质量问题时时测量跟踪,对于检测不合格的产品及时进行工艺、工装、设计等方面的改进,使产品质量不断的获得提高,产品的合格率越来越高。
三、三坐标测量机为提高公司生产工艺水平作出了贡献。
三坐标测量机使用以前的检测设备大部分缺少三维检测手段,影响了各公司生产工艺水平的提高,是企业长期难以解决的问题。
汽车车身主要由冲压件焊接而成,因此模具的好坏直接影响到钣金件以至于整车质量,而汽车的完美特性使得模具曲面更加复杂,如果用常规的检测方法很难实现对模具的检测,因此通过三坐标测量机测量冲压件,能够生成精确到微米级的三维数据偏差和图形报告,可以直接看到某一位置的质量优劣,给模具的修改带来前所未有的便捷。
三坐标测量机的简介
第一章三坐标测量机的概述一、三坐标测量机的发展历史世界上第一台测量机是英国FERRANTI公司于1956年研制成功,当时的测量方式是测头接触工件后,靠脚踏板来记录当前坐标值,然后使用计算器来计算元素间的位置关系。
1962年菲亚特汽车公司一位质量工程师在意大利都灵创建了世界上第一家专业制造坐标测量设备的公司,即先在仍然知名的DEA(Digital Electronic Automation)公司。
随后,DEA公司先后推出了手动、机动并首先使用气浮导轨技术的测量机,也相应配备了各种测头和软件,使之成为世界上最大的测量机供应商之一。
1964年,瑞士SIP公司开始使用软件来计算两点间的距离,开始了利用软件进行测量数据计算的时代。
随后的国ZEISS公司使用计算机辅助工件坐标系代替机械对准,从此测量机具备了对工件基本几何元素尺寸、形位公差的检测功能。
随着计算机的飞速发展,测量机技术进入了CNC控制机时代,完成了复杂机械零件的测量和空间自由曲线曲面的测量,测量模式增加和完善了自学习功能,改善了人机界面,使用专门测量语言,提高了测量程序的开发效率。
从90年代开始,随着工业制造行业向集成化、柔性化和信息化发展,产品的设计、制造和检测趋向一体化,这就对作为检测设备的三坐标测量机提出了更高的要求,从而提出了新一代测量机的概念。
其特点是:1、具有与外界设备通讯的功能;2、具有与CAD系统直接对话的标准数据协议格式;3、硬件电路趋于集成化,并以计算机扩展卡的形式,成为计算机的大型外部设备。
到1992年全球就拥有三坐标测量机46100台,工业发达的欧美、日韩每6-7台机床配备一台三坐标测量机,我国三坐标测量机生产始于20世纪70年代,现在已被广泛应用在机械制造、汽车、家电、电子、模具和航空航天等制造领域,并保持快速增长。
国内外生产三坐标的厂家较多如:德国的蔡司、意大利的Cord3、日本的三丰、美国的谢菲尔德,国内的海克斯康、青岛雷顿、西安爱德华、北京航空精密机械研究所(303所)、上海机床厂、上海第三机床厂、北京二机床、北京机床研究所、天津大学和新天光学仪器厂。
三坐标测量机
三坐标测量机三坐标测量机是20世纪60年代后期发展起来的一种高效率的精密测量仪器。
它的出现,一方面是由于生产发展的需要。
即高效率加工机床的出现,产品质量要求进一步提高,复杂立体形状加工技术的发展等都要求有快速、可靠的测量设备与之配合;另一方面也由于电子技术、计算技术及精密加工技术的发展,为三坐标测量机的出现提供了技术基础。
三坐标测量机(CMM)是一种以精密机械为基础,综合应用电子技术、计算机技术、光栅与激光干涉技术等先进技术的检测仪器。
三坐标测量机的主要功能是:1)可实现空间坐标点的测量,可方便的测量各种零件的三维轮廓尺寸、位置精度等。
测量精确可靠,万能性强。
2)由于计算机的引人,可方便的进行数字运算与程序控制,并具有很高的智能化程度。
因此它不仅可方便地进行空间三维尺寸的测量,还可实现主动测量和自动检测。
在模具制造工业中,充分显示了在测量方面的万能性、测量对象的多样性。
三坐标测量机广泛应用于机械制造、仪器制造、电子工业、航空和国防工业各部门,特别适用于测量箱体类零件的孔距和面距、模具、精密铸件、电子线路板、汽车外壳、发动机零件、凸轮以及飞机型体等带有空间曲面的工件。
三坐标测量机的作用不仅是由于它比传统的计量仪器增加了一二个坐标,使测量对象广泛,而且它的生命力还表现在它已经成为有些加工机床不可缺少的伴侣。
例如它能卓有成效地为数控机床制备数字穿孔带,而这种工作由于加工型面愈来愈复杂,用传统的方法是难以完成的,因此,它与数控“加工中心”相配合己具有“测量中心”之称号。
第一节三坐标测量机的类型三坐标测量机有多种分类方法,下面从不同的角度对其进行分类。
一、按照技术水平的高低分类(1)数显及打字型(N)——这种类型主要用于几何尺寸测量,采用数字显示,并可打印出测量结果,一般采用手动测量,但多数具有微动机构和机动装置,这类测量机的水平不高,虽然提高了测量效率,解决了数据打印问题,但记录下来的数据仍需进行人工运算。
三坐标测量机的基本原理
三坐标测量机(Coordinate Measuring Machining,简称CMM)是一种三维尺寸的精密测量仪器,主要用于零部件尺寸、形状和相互位置的检测。
是基于三坐标测量原理,即将被测物体置于三坐标测量机的测量空间,获得被测物体上各测点的坐标位置,根据这些点的空间坐标值,经过数学运算,求出被测的几何尺寸、形状和位置,来判断被测产品是否达到加工图纸所标国标公差的范围内。
又称三坐标测量仪或三次元。
三坐标测量仪是20世纪60年代发展起来的一种新型高效的精密测量仪器。
它的出现,一方面是由于自动机床、数控机床高效率加工以及越来越多复杂形状零件加工需要有快速可靠的测量设备与之配套;另一方面是由于电子技术、计算机技术、数字控制技术以及精密加工技术的发展为三坐标测量机的产生提供了技术基础。
1960年,英国FERRANTI公司研制成功世界上第一台三坐标测量机,到20世纪60年代末,已有近十个国家的三十多家公司在生产CMM,不过这一时期的CMM尚处于初级阶段。
进入20世纪80年代后,以ZEISS、LEITZ、DEA等为代表的众多三坐标测量机生产公司不断推出新产品,使得CMM的发展速度加快。
现代CMM不仅能在计算机控制下完成各种复杂测量,而且可以通过与数控机床交换信息,实现对加工的控制,并且还可以根据测量数据,实现反求工程。
目前,三坐标测量仪CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备。
三坐标测量机按照结构形式分类可分为移动桥式结构、固定桥式结构、龙门式结构、悬臂式结构、立柱式结构等等。
三坐标测量机详细原理功能价格介绍,如何选购三坐标测量机2011-10-15 10:18第一节概述一、三坐标测量机的产生三坐标测量机(Coordinate Measuring Machining,简称CMM)是20世纪60年代发展起来的一种新型高效的精密测量仪器。
三坐标测量机
从清单中选 择测座类型
41
产生测头文件
精选ppt
第三步 从清单中 选择测头 附件
42
产生测头文件
精选ppt
第四步 从清单中选 择相应的传 感器如: Tp20, Tp200 等
43
产生测头文件
精选ppt
第五步 从测头清单 中选择所用 的测杆,如 :4 *20 〔直 径、长度〕
15
精选ppt
〔2〕测头系统 测头是坐标测量机触测被测零件的发讯开关, 是
坐标测量机的关键部件,测头精度的上下决定了坐标 测量机的测量重复性。三坐标测量机的功能、工作效 率、精度与测头密切相关。三坐标测头的两大根本功 能是测微和触发瞄准。
16
精选ppt
测头的分类
– 按结构原理,测头可分为机械式、光学式和电气式。 – 按测量方法,测头可分为接触式和非接触式。
〔4〕测量软件
测量机本体只是提取零件外表空间坐标 点的工具。 测量机精度在很大程度上依赖 于软件。测量机软件成 为决定测量机性能 的主要因素。
测量软件从功能上可以分成以下几类:
① 通用测量软件
②专用测量评价软件
20
③附加功能软件
精选ppt
测量软件功能与应用的分类有以下几方面。
①箱体类零件 ②自由曲面类零件 ③特定形 面类零件 ④反求测量
建立零件坐标系时需要做三件事: 找正 (用任何元素的方向矢量〕。找正元素控制了工作平面的方向。 旋转坐标轴 (用所测量元素的方向矢量). 旋转元素需垂直于已找正的 元素。这控制着轴线相对于工作平面的旋转定位。 原点 (任意测量元素或将其设为零点的定义了X、Y、Z值的元素)。
61
精选ppt
三坐标测量机的结构组成
三坐标测量机的结构组成三坐标测量机是一种用于测量物体三维几何形状的精密测量设备。
它由许多不同的组成部件组成,每个部件都发挥着重要的作用。
下面将详细介绍三坐标测量机的结构组成。
1. 床身:床身是三坐标测量机的主要支撑结构,也是整个测量机的基础。
它通常由材料坚固且具有良好的稳定性,如铸铁等制成。
床身上通常会有精确的水平调节系统,以确保整个测量机的稳定性和测量精度。
2. 测量平台:测量平台是测量机的工作平台,用于放置待测物体。
它通常具有XY两个方向的移动装置,以便在平面内对物体进行移动和定位。
测量平台通常由石英或石英玻璃制成,具有良好的硬度和平整度。
3. 支撑结构:支撑结构用于支撑和定位测头和测量装置。
它通常由铸铁或钢制成,具有足够的刚度和稳定性。
支撑结构通常包括底座、横梁和立柱等部分,它们通过精确的连接装置进行组装和调整,以确保整个系统的稳定性和测量精度。
4. 测头系统:测头系统是三坐标测量机的测量装置,用于测量物体表面的几何形状和尺寸。
测头系统通常包括一个触发式测头和一个测量电子设备。
触发式测头通常采用机械式或光学式触发方式,能够对物体表面进行接触式或非接触式测量。
测量电子设备则负责接收和处理测量信号,并将其转换为数字信号进行数据处理和分析。
5. 控制系统:控制系统是三坐标测量机的核心部分,用于控制测量平台和测头系统的运动。
控制系统通常由一个或多个计算机和相关的控制软件组成。
计算机负责执行测量任务的计算和运行相应的软件程序,控制运动控制器实现测量平台和测头系统的精确运动控制。
控制软件提供友好的用户界面,允许用户进行测量参数设置、数据采集和测量结果分析等操作。
6. 精密导轨系统:精密导轨系统是三坐标测量机的关键组成部分,用于确保测量平台和测头系统的精确运动。
它通常由高精度的线性导轨和滚珠丝杠组成,能够提供平滑、稳定和精确的运动控制。
精密导轨系统通常具有高速度、高精度和高负载能力,以满足不同测量任务的需求。
三坐标测量机测量原理
三坐标测量机测量原理三坐标测量机是一种精密测量设备,广泛应用于制造业中的精密测量和品质控制过程中。
它可以通过测量物体的三维坐标,获取物体的尺寸、形状和位置等关键信息。
下面详细介绍三坐标测量机的测量原理。
三坐标测量机的测量原理基于三维坐标系。
它由三个互相垂直的坐标轴组成,通常表示为X轴、Y轴和Z轴,分别对应物体的长度、宽度和高度方向。
测量机通过测量物体在三轴上的坐标值,并结合探测器的运动和转动,计算出物体的三维坐标。
三坐标测量机主要由以下组成部分构成:1. 测头:测头是三坐标测量机的核心部件,负责测量物体的坐标值。
测头通常包括机械结构、接触或非接触传感器和信号处理单元等。
常见的测头有机械测头和光学测头两种类型。
2. 测量台:测量台是用于支撑待测物体的平台。
它通常具有精确的平面度和位置控制能力,以确保物体在测量过程中保持稳定的位置和姿态。
3. 运动系统:运动系统是用于控制测头在三维空间内移动和定位的部件。
它通常由电动或气动驱动的滑块、导轨和伺服系统等组成,可实现高精度的物体定位和测量。
4. 控制系统:控制系统是整个三坐标测量机的核心,负责控制测量台和测头的运动,并接收和处理测量数据。
控制系统通常由计算机和相关软件组成,提供测量数据的显示、分析和存储等功能。
在进行测量时,首先需要校准三坐标测量机,确保其准确度和精度。
然后,将待测物体放置在测量台上,并根据测量需求调整物体的位置和姿态。
接下来,通过控制系统操纵测头,将测头移动到待测物体的特定位置,并在物体表面与测头接触时进行测量。
测量过程中,测头会收集物体在三轴上的坐标值,并将其转化为数字信号输入到控制系统进行处理。
控制系统会计算出物体的尺寸、形状和位置等关键信息,并以可视化的方式显示在计算机屏幕上。
根据测量需求,还可以进行数据分析、对比和存储等操作。
需要注意的是,三坐标测量机在测量过程中对物体具有一定的要求,如物体表面应平整、干净,以及尺寸适合测量台的尺寸等。
三坐标测量机的基本操作步骤
三坐标测量机的基本操作步骤引言三坐标测量机是一种精密测量设备,广泛应用于制造业中的质量控制和检测工作。
它能够精确测量物体的尺寸、形状和位置,对于确保产品质量至关重要。
本文将介绍三坐标测量机的基本操作步骤,帮助您快速上手并正确使用三坐标测量机。
步骤一:开机与系统校准1.启动三坐标测量机的电源开关,等待系统启动。
2.在系统启动完成后,进行系统校准。
校准过程包括坐标轴零点位置的校准、运动轴的校准和探针的校准。
3.针对每个校准项,按照系统提示完成相应的步骤。
确保坐标轴零点位置准确、运动轴运行平稳和探针垂直于工作平面。
步骤二:工作台设置1.根据需要测量的物体尺寸和形状,选择合适的夹具和夹具夹持方式,并将其安装在工作台上。
2.调整工作台的高度、倾斜角度和旋转角度,使得物体能够安全而稳定地放置在工作台上,并且方便进行测量。
步骤三:导入测量程序1.打开三坐标测量机的测量软件。
2.创建新的测量程序,或者选择已有的测量程序。
3.根据实际需求,在测量程序中设置测量的参数,包括测量方式、测量点数量和测量精度等。
4.将测量程序导入到三坐标测量机中,并确保导入成功。
步骤四:加载测量物体1.将待测量的物体放置在工作台上,并进行正确的夹持。
确保物体稳定且不会发生移动。
2.使用三坐标测量机的运动控制器,将探针移动到待测量物体的初始位置。
步骤五:执行测量1.在测量软件中,启动测量程序并开始执行测量。
按照系统提示完成每个测量点的测量。
2.在完成每个测量点的测量后,三坐标测量机会自动计算物体的尺寸、形状和位置。
这些测量结果将在软件中显示出来。
步骤六:结果分析与报告生成1.分析测量结果,检查物体的尺寸、形状和位置是否符合要求。
如果不符合要求,可以通过调整测量程序或重新测量来获取更准确的结果。
2.根据需要,生成测量报告。
测量报告应包括物体的尺寸、形状和位置数据,以及测量的参数和条件。
3.导出测量报告,并进行存档或打印。
结论通过按照上述步骤正确操作三坐标测量机,您可以快速而准确地执行物体的尺寸、形状和位置测量。
三坐标测量机名词解释
三坐标测量机名词解释
三坐标测量机(Coordinate Measuring Machine,简称CMM)是一种精密测量设备,用于测量物体的几何形状和尺寸。
它通过测量对象的三个坐标轴上的位置信息,以及在这些坐标轴上的指定点,来确定物体的精确尺寸和形状。
三坐标测量机由三个坐标轴组成:X轴、Y轴和Z轴。
这些轴可以沿着物体的不同方向移动,同时还配备了用于测量的探测器和触发系统。
使用三坐标测量机进行测量通常涉及以下步骤:
1.放置测量对象:将待测物体放置在测量机的测量区域内,通常
使用特定夹具或支撑。
2.设置坐标系统:根据物体的几何特征,设置测量机的坐标系统。
3.游标测量:使用测量机上的触发探头,将游标或探针放置在待
测物体的关键点上,测量其坐标位置。
4.数据采集与分析:测量机通过控制系统将所得的数据转换成数
字形式,然后进行数据分析和处理。
5.结果输出:根据测量需求,可以输出测量结果的图形、数值或
报告。
三坐标测量机广泛应用于制造业、工程设计、质量控制等领域。
它们具有高精度、非接触式测量、多样化测量功能等特点,能够快速、准确地测量各种形状和尺寸的物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张海涛 zhanghaitao@ 指导教师:刘书桂教授
精密测试技术及仪器国家重点实验室
2
几何量用来描叙物体的大小、长短、形状和位置
几何量
等几何特征。 长度量和角度量
直线度、平面度、圆度、圆柱度、表面粗糙度等
3
概述
三坐标测量机
组成系统
测量不确定度—21项误差 误差的检定方法
状态监控 测量过程的管理 参数的管理与初始化 通讯功能
63
CNC型控制系统—光栅
64
CNC型控制系统—细分器
65
CNC型控制系统—电机、驱动器
电机
直流电机/测速机伺服机组 起动扭矩大,起动电压低,时间响应快。
驱动器
PWM (Pulse-Width Modulation)
调速比高、响应速度快、起动性能好 过压、过流、过速、过热等多种保护手段
48
坐标测量机—探测系统
测头回转体 测头 附件
探测系统的主要组成部分
49
探测系统—附件
测头附件是指那些与测头相连接、扩大其功能的
零部件。
对于接触式测头来说,测端与探针为直接对被测 工件进行探测的部件。对于不同尺寸、不同形状 的工件需要采用不同的测端与探针。
50
探测系统—测端
51
探测系统—测端
较强。
28
坐标测量机—主机系统
绝对光栅&相对光栅
绝对光栅:读数头在光栅的任一位置,其读数均是固定的。
相对光栅(增量式光栅):读数头在任一位置的读数并不一 定,和所设的零点位置或预置点的读数有关,任一位置的
读数皆是从所设点(零点或预置数)按增减脉冲的计数来显
示位置,测量机大多用增量式光栅,而且大多数测量机开 机后要回家,以设置光栅零点(亦就是机器坐标零点)。
针直径太小,会影响刚度,在测量中应根据需 要合理选择。
52
探测系统—探针
增加探针长度对增强测量能
力有好处,但会使探针刚度 急剧下降。 探针直径必须比测球直径
小,在不发生干涉的条件
下,应尽量增大探针直径。 需要长探针时,常采用硬质合金探针,以提高刚度。 对于特别长的探针,应使用质量轻的陶瓷探针。
53
接收器件所接收的光是由尺面反射而来,由于组合在读数头 中的发射及接收器件均在光栅一侧,而且新型光栅的尺身与
读数头间隙比较大(LIDA 181 可以达到 0.8 毫米),因此安装
方便,多数测量机采用了反射式光栅。
26
坐标测量机—主机系统
闭式光栅&开式光栅
闭式光栅:为了防尘,把光栅及读数头组合并封闭在 铝长盒内;优点是可以整体安装,不需要进行读数头
将被测零件放入坐标测量机的测量空间,精确 地测出被测零件表面的点在空间三个坐标位置
的数值,然后将这些点的坐标数值经过计算机
数据处理,拟合形成测量元素,如圆、球、圆 柱、圆锥、曲面等,经过数学计算的方法得出 其形状、位置公差及其他几何量数据。
7
坐标测量技术的发展
8
坐标测量技术的发展
DEA(Digital Electronic Automation)
DSP(Digital Signal Processor,即数字信号 处理器)代替以前的 CPU,DSP 所具有的高
速运算功能,使得控制周期缩短,大大提高
了系统的轨迹控制能力,测量机动作更快, 测量效率更高。
62
CNC型控制系统—控制器
精确、实时地读取空间坐标值
控 制 器 的 功 能
运动轨迹的控制
66
CNC系统的结构—上下位机式
上位机—PC
测量软件对进行 分析、计算并给 出测量结果 理论位置、运 动及触测指令 回复机器实际位 置及触测结果
下位机—控制卡
68
三坐标测量机四大系统
1
主机系统
2
3 4
探测系统
控制系统 软件系统
69
坐标测量机—软件系统
准确、稳定、可靠、精度高,速度快、功能强、
龙门式坐标测量机
17
坐标测量机的主要结构形式
水平悬臂式坐标测量机
18
概述
三坐标测量机
组成系统
测量不确定度—21项误差 误差的检定方法
测量数据处理实例
19
三坐标测量机组成系统
1
主机系统 探测系统
2
3
控制系统 软件系统
20
4
坐标测量机—主机系统
框架 标尺系统 导轨 驱动装置 平衡部件
21
坐标测量机—主机系统
测量数据处理实例
4
概述
1
坐标测量技术的发展 坐标测量机的组成部分 坐标测量机的主要结构形式
2
3
5
坐标测量技术的发展
坐标测量技术的基本原理
任何形状都是由空间点组成的,所有
的几何量测量都可以归结为空间点的测量,
因此精确进行空间点坐标的采集,是评定 任何几何形状的基础。
6
坐标测量技术的发展
坐标测量机的基本原理
电压输出:读数头输出的信号为电压信号;它又可以分为
正弦电压输出与方波电压输出两种,正弦电压输出的标准
电压为 1V 峰峰值,后面直接连接电压放大器。方波电压 输出 TTL 为电平,可以直接连到计数器,这类的后置电
路简单,抗干扰能力也较强,但分辨力不是太高。
电流输出:要用电阻转换为电压输出,优点是抗干扰能力
长接近,主要用于光谱分析,测量机上不用。
计量光栅:是指几何量测量中应用的光栅,它的刻线距 离比光波波长大很多,一般从 4 微米到 100 微米(每毫 米 250 条刻线到 10 条刻线),测量机均应用此类光栅。 计量光栅从形状上可分为长光栅及圆光栅,两者原理相 同,只是形状不同;长光栅一般用于线位移测量,是坐 标测量机的长度基准。
操作方便,是对测量机总体性能的要求。测量
机本体(包括测头)只是提取零件表面空间坐标 点的工具,过去,人们一直认为精度高,速度 快,完全由测量机的硬件部分决定(测量机机械 结构,控制系统,测头),实际上,由于误差补
偿技术的发展,算法及控制软件的改进,测量
机精度在很大程度上依赖于软件。测量机软件 成为决定测量机性能的主要因素,这一点巳普 遍被人们所认识。
机械式测头
光学式测头
电气式测头
42
探测系统—测头
触发测头(Trigger Probe)
测头的主要任务是探测零件并发出锁存信号,实时的锁存
被测表面坐标点的三维坐标值。 触发测头一般发出的为跳变的方波电信号,利用电信 号的前沿跳变作为锁存信号,由于前沿信号很陡,一 般在微秒级,因此保证了锁存坐标值的实时性。
72
软件系统—探针校正
补偿测端球径与探针挠曲变形误差
测量的时候测量力会使探针有变形,尽管接触式探针的测量力不
是很大,但对于高精度的三坐标测量来说,测量力使得测杆挠曲 变形带来的误差是不容忽视的。理论和实践都表明,一根普通的
44
探测系统—测头
触发测头的基本结构
45
探测系统—测头
触发测头工作时的基本动作
46
探测系统—测头
发测头工作时的电气原理
47
探测系统—测头
表示测头每次在同一点触发 的性能
重复性 预行程 反向误差
触发测头的重要性能要素
从探针接触零件到测头发出触 发信号这段时间,反映在测头 处探针的变形量
由于改变了探测方向而产生 的误差
转动范围为0°~150°,共15个位
置。由于在绕水平轴转角为0°时, 绕垂直轴转动不改变测端的位置, 所以测端在空间一共有 48X14+1=673个位置。
39
探测系统—回转体
40
探测系统—测头
测头回转体 测头 附件
探测系统的主要组成部分
41
探测系统—测头
测头
测量方法
结构原理
接触式测头非接触式测头
探测系统—探针与测端的选择
尽量选用短探针
尽量减少接头
选用的测球直径要尽量大
54
探测系统—加长杆
55
三坐标测量机四大系统
1
主机系统
2
3 4
探测系统
控制系统 软件系统
56
坐标测量机—控制系统
控制系统是三坐标测量机的四大组成部分之一。
其主要功能是:读取空间坐标值,对测头信号
进行实时响应与处理,控制机械系统实现测量 所必需的运动,实时监测坐标测量机的状态以 保证整个系统的安全性与可靠性,有的还包括 对坐标测量机进行几何误差与温度误差补偿以
43
探测系统—测头
扫描测头(Scanning Probe)
扫描测头具有三个相互垂直的距离传感器,可以感觉到与 零件接触的程度和矢量方向,这些数据作为测量机的控制 分量,控制测量机的运动轨迹。扫描测头在与零件表面接 触、运动过程中定时发出信号,采集光栅数据。由于取点 时没有测量机的机械往复运动,因此采点率大大提高。由 于探针的三维运动可以确定该点所在表面的法矢方向,因 此更适于曲面的测量。
34
坐标测量机—主机系统
平衡部件
35
三坐标测量机四大系统
1 2 3
主机系统 探测系统 控制系统
4
软件系统
36
坐标测量机—探测系统
三坐标测量机的探测系统是由回转体、测头及其附件组成 的系统,测头是测量机探测时发送信号的装置,它可以输 出开关信号,亦可以输出与探针偏转角度成正比的比例信 号,它是坐标测量机的关键部件,测头精度的高低很大程 度决定了测量机的测量重复性及精度;不同零件需要选择 不同功能的测头进行测量。
标尺系统
22
坐标测量机—主机系统
光栅
23
坐标测量机—主机系统
光栅分类
原理