常用弹塑性材料模型

合集下载

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程

岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。

关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。

即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。

尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。

第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。

岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。

岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。

正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。

归纳起来,岩土材料有3点基本特性:1.摩擦特性。

2.多相特性。

3.双强度特性。

另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。

4.土体的塑性变形依赖于应力路径。

对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。

固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。

弹塑性本构关系简介

弹塑性本构关系简介

松比)。
塑性材料受外部作用的反应和变形的历史有关(可称为历 史相关性或路径相关性),本构关系应写成增量关系。
应力空间表述的弹塑性本构关系
韧性(塑性)金属材料单向拉伸试验曲线如下 图示意
强度极限
b
屈服上限
L y
U y
e
屈服下限
弹性极限
强化段
软化段 卸载
残余变形
弹性变形
y
y
卸载、反向加载 包辛格效应
屈服面随内变量改变的规律称强化规律。由 材料试验的资料可建立各种强化模型,目前广 泛采用的有:等向强化;随动强化两种模型。
等 向 强
初始屈服面
2
B
f 0(ij ) 0 B
2
C A o1

o A 1
o
1
C
D

弹性

f 0 (ij ) 0
强 化
后继屈服面
f
( ij
,
p ij
,
k)
0
等向强化认为屈服面形状不变,只是作均匀
称后继屈服面,f
(
ij
,
p ij
,
k
)
0

如果一点应力的 f (ij ,ipj,,则k)此 点0 处于弹性状态,如

f (,ij则,处ipj ,于k)塑 0性状态。
式变张中形量的为i量j间应。存ip力j在张如和ip量j 下k,关统系称为ipj为塑内性变应量ip力j 。张其D量i中j,klkkp与l为塑标ipj 性志应永变久
d ij
Dt ijkl
d
kl
式中 Ditjk为l 切线弹性张量,形式上仍可表为
Dt ijkl

第四讲流体弹塑性模型

第四讲流体弹塑性模型
物质相态的改变
❖ 改变的条件 压强或温度。
❖ 相变类型 第一类相变:伴随着相变潜热和体积跃变。如:固固相变、固 夜相变、以及一般的气液相变等。 第二类相变:没有相变潜热和体积跃变,但是有比热等的变化。 如:铁磁体转变为顺磁体,二元合金中的有序无序转变,金属 转变为超导态,液态氦转变为超流态等。
1. 流体弹塑性基本概念(续)
2. 状态方程导引
状态方程的概念
通常是指物体的 PVT关系,即压强P、体积V、温 度T之间的函数关系。有时除上述关系外,还将内能函 数E(V、T)包括在内。
状态方程的建立
理论模型--通过量子力学和统计物理的概念和方 法从原子、分子运动角度建立模型。
工程理论--在部分理论模型的基础上确定状态方 程的基本形式,通过实验研究确定参数。
屈服函数
f ( ij , eij ) C
f (I1, I2 , I3) C
3.弹塑性应力应变关系(续)
❖ 初始屈服准则 (续)
应力偏量张量 sij ij p ij
应变偏离张量
应力偏离形式屈服准则(不计静水压效应)
ij
eij
3
ij
f (J2,2
s22 s33
2. 状态方程导引(续)
c) 高温低密度
密度:稍大于常密度至远小于常密度
温度:几个105K至107K 物质状态:由于系统密度较低,温度较高,点阵结 构不存在,分子的离解及原子中电子的电离现象十分显 著。系统中粒子差不多都是带电粒子,需考虑粒子间静 电相互作用。
采用的模型:
用离解电离平衡方程描述分子离解和电离过程。
用Debye-Huckel理论描述静电相互作用
2. 状态方程导引(续)
d) 过渡区(a、b区之间过渡区)

第5章 弹塑性本构模型理论

第5章 弹塑性本构模型理论
?r3321??????232221??????op表示p点应力矢量的大小p为应力空间上一点代表某一应力状态过p点作与等倾线相垂直的面即为平面???32131???????oq??321321313?????????????rr由mioqr?331????平面上法向应力即为令????m3?????23212322212231??????????????oqoppq??????2222323122132231qj??????????????平面上的剪应力为令???qj3222??应力洛德角1?2?3?p?qr洛德参数313122???????????毕肖甫常数3132???????b洛德角??312332tan31312???????b????????洛德角与偏应力不变量之间的关系23232333sinjj????应变与应变增量ji??333231232221131211??????????????????zzyzxyzyyxxzxyx??????????????????212121212121??????????321??????应变状态体积应变增量321???????????v偏差应变增量????????3vijijijee?????应变张量不变量3211???????i偏差应变不变量3231212??????????i3211?????i01??j??232221121eeej??????????1233123213222271?????????????????j体积应变321???????v广义剪应变????????2123223122132?????????????应变洛德角??3131232tan???????????2增量弹塑性理论?弹性增量理论?以弹性模型与泊桑比表达????????????????????????????????????????????????????????????????????????????????????????zxyzxyzyxzxyzxyzyxvvvvvvvvvvvvvvvvvvvvve????????????????????????1221000000122100000012210000001110001110001112111?以剪切模型与体积模量表达?????????????????????????????????????????????????????????

[工学]第五章 弹塑性模型理论

[工学]第五章 弹塑性模型理论

第五章 弹塑性模型理论5.1 概述弹塑性理论可以分为两种,塑性增量理论和塑性全量理论。

塑性增量理论又称塑性流动理论,塑性全量理论又称塑性形变理论。

在塑性增量理论中,将物体在弹塑性变形阶段的应变ij ε分为两部分:弹性应变e ij ε和塑性应变p ij ε。

塑性应变增量ij d ε的表达式为e p ij ij ij d d d εεε=+ (5.1.1)式中,弹性应变增量d e ij ε可以用广义虎克定律计算,塑性应变增量d p ij ε可以根据塑性增量理论计算。

塑性增量理论主要包括三部分:(1) 屈服面理论;(2) 流动规则理论;(3) 加工硬化(或软化)理论。

在塑性形变理论中是按全量来分析问题的。

它在盈利状态和相应的应变状态之间建立一一对应的关系。

塑性形变理论实质上是把弹塑性变形过程看成是非线性弹性变形过程。

严格说,在弹塑性变形理论的应用是有条件的。

严格讲,只有在等比例加载条件下,应用塑性变形理论可以得到精确解。

所谓等比例加载是指在加载过程中,各应力分量是按同一比例增加的。

严格的等比例加载是很难满足的,在土工问题中可以说是不可能的。

在简单加载条件下应用塑性形变理论分析有时也可以取得较好效果。

近些年来建立的土体弹塑性模型大部分是根据塑性增量理论建立的。

本章主要介绍塑性增量理论,在最后一节简要介绍塑性形变理论。

5.2 屈服面得概念首先讨论理想弹塑性材料。

理想弹塑性材料受力到什么程度才开始发生塑性变形呢?在简单拉伸时,问题是很明显的。

当应力等于屈服应力σs 时,塑性变形开始产生。

σs 值是可以在拉伸试验应力-应变曲线上找到的。

然而在复杂应力状态时,问题就不是这样简单了。

一点的应力状态由六个应力分量确定。

在复杂应力状态下,显然不能任意选取某一个应力分量的数值作为判断材料是否进入塑性状态的标准。

因此需要在应力空间或应变空间来考虑这一问题。

在土塑性力学中,常用的应力空间有三维主应力空间、p 、q (或σm ,σ1-σ3)应力平面、以及132σσ+,132σσ-应力平面等。

弹塑性本构模型理论课件

弹塑性本构模型理论课件


材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模

金属材料的力学行为模型

金属材料的力学行为模型

金属材料的力学行为模型引言:金属材料在人类社会中扮演着重要的角色,广泛应用于建筑、交通、电子等领域。

研究金属材料的力学行为模型对于优化设计、材料选择和结构安全具有重要意义。

本文将探讨金属材料的力学行为模型,并介绍常用的弹性、塑性和粘弹性模型。

第一部分:弹性模型弹性模型用于描述金属材料在受力后恢复原状的能力。

最简单的弹性模型是胡克定律,它表明应力与应变成正比。

然而,金属材料的力学行为往往不符合线性弹性假设。

因此,工程领域常采用线性弹性模型、非线性弹性模型和弹塑性模型等。

线性弹性模型假设应力与应变呈线性关系,其中应力是单位面积上的力,应变是单位长度上的形变。

最常用的线性弹性模型是胡克-杨模型,它描述了金属材料的正弹性行为。

然而,在高应力下,金属材料的力学行为不再符合线性弹性假设。

第二部分:塑性模型塑性模型用于描述金属材料在超过弹性极限后的可塑性变形。

金属材料在受力时会出现塑性变形,即无法完全恢复原状。

晶体塑性理论是研究金属材料塑性变形的重要方法。

它基于晶体的滑移理论和晶体微弱滑移的条件。

其中,最常用的塑性模型是von Mises模型,它假设金属材料在达到屈服点后会开始塑性变形。

该模型描述了材料的屈服条件,并引入了流动准则来确定塑性变形发生的条件。

第三部分:粘弹性模型粘弹性是介于弹性和塑性之间的力学特性,用于描述金属材料在应力施加后的时间依赖性。

与弹性相比,粘弹性模型考虑了材料的时间依赖性。

常见的粘弹性模型包括粘弹性弹簧模型和粘弹性体模型。

粘弹性模型的研究包括应力松弛实验和应变迟滞实验。

这些实验揭示了金属材料在受力后的时间依赖性行为,为粘弹性模型的建立提供了实验基础和理论依据。

结论:金属材料的力学行为模型对于优化设计和结构安全具有重要意义。

本文介绍了金属材料的弹性、塑性和粘弹性模型,并讨论了它们的适用范围和应用。

在工程实践中,根据材料的具体情况选择适当的模型进行分析和设计是至关重要的。

希望本文的探讨能够为金属材料力学行为模型的应用提供一定的指导和启示。

弹塑性本构关系简介

弹塑性本构关系简介

2) 势能原理的数学表达
应变能
总势能
Ve=Vε+VP =1/2∫VσijεijdV 外力势能
-∫VFbiuidV- ∫SσFsiuidS = min
2 虚力原理
1)虚力原理的表述
给定位移状态协调的充分必要条件为:对 一切自平衡的虚应力,恒有如下虚功方程成 立(矩阵)
∫V[ε]Tδ[σ]dV=∫Su([L]δ[σ])T [u ]0dS
收敛准则
1、位移模式必须包含单元的刚体位移
2、位移模式必须能包含单元的常应变
3、位移模式在单元内要连续、并使相邻单元间的位移必须协调
满足条件1、2的单元为完备单元
满足条件3的单元为协调单元 多项式位移模式阶次的选择——按照帕斯卡三角形选
几何各向同性:位移模式应与局部坐标系的方位无关
多项式应有偏惠的坐标方向,多项式项数等于单元边界结点的自由度总
变间关系为 octσoct
GKtt
oct 3K s oct oct Gs oct
并有
Gs G
1
a
oct
B c
m
KGss
εoct
oct
K G e s
s (c oct ) p
KG
其中G、K分别为初始切线剪切和体积模量,
B c
为混凝土单轴抗压强度,a、m、c和p为由试验
确定的常数。
POCT
弹性张量Dijkl
ij
Dijkl kl
( 2G 1 2
ij kl
2Giklj ) kl
i 1, j 2, k 1,l 2
12
D1212 12
( 2G 1 2
1212
2G1122 )12
11 1 12 0 22 1

土的弹塑性模型

土的弹塑性模型

土的弹塑性模型近年来,根据弹塑性理论建立的土的弹塑性模型发展很快,各国学者提出的弹塑性本构模型很多。

下面几节分别介绍剑桥模型,修正剑桥模型,Lade-Duncan 模型,以及清华模型的基本概念。

一.剑桥模型英国剑桥大学Roscoc 和他的同事(1958~1963)在正常固结粘土和超固结粘土试样的排水和不排水三轴试验的基础上,发展了Rendulic (1937)提出的饱和粘土有效应力和孔隙比成唯一关系的概念,提出完全状态边界面的思想。

他们假定土体是加工硬化材料,服从相关联流动规则,根据能量方程,建立剑桥模型。

剑桥模型从理论上阐明了土体弹塑性的变形特性,标志着土的本构理论发展新阶段的开始。

1.临界状态线和Roscoe 面各向等压固结过程中,孔隙比e 或比容()1e υυ=+与有效应力的关系可用下式表示:ln N p υλ'=-(1)式中N ——当 1.0p '=时的比容。

因此exp N p υλ-⎛⎫'= ⎪⎝⎭(2)(a),p q ''平面(b),ln p υ'平面图1临界状态线正常固结粘土排水和不排水三轴试验表明:它们有条共同的破坏轨迹,与排水条件无关。

破坏轨迹在,p q ''平面上是一条过原点的直线,在,ln p υ'平面上也是直线,目与正常固结线平行,分别如图(a)和(b〕所示。

破坏轨迹线可用下式表示:cs csq Mp '=(3)ln cs cs p υλ'=Γ-(4)式中CS ——表示临界状态;M——,p q''平面上临界状态线斜率;p'=时土体的比容;Γ—— 1.0csυ'平面上临界状态线斜率。

λ——,ln p一旦土体的应力路径到达这条线,土体就会发生塑性流动。

这时土体被认为处于临界状态,破坏轨迹被称为临界状态线。

临界状态线在,,''空间为一条空间曲线,如下图2所示。

常用弹塑性材料模型

常用弹塑性材料模型

常用弹塑性材料模型7.2.1.1各向同性弹性模型各向同性弹性模型。

使用MP命令输入所需参数:MP,DENS—密度MP,EX—弹性模量MP,NUXY—泊松比此部分例题参看B.2.1,Isotropic Elastic Example:High Carbon Steel。

B.2.1. Isotropic Elastic Example: High Carbon SteelMP,ex,1,210e9 ! PaMP,nuxy,1,.29 ! No unitsMP,dens,1,7850 ! kg/m37.2.3.1 双线性各向同性模型使用两种斜率(弹性和塑性)来表示材料应力应变行为的经典双线性各向同性硬化模型(与应变率无关)。

仅可在一个温度条件下定义应力应变特性。

(也有温度相关的本构模型;参看Temperature Dependent Bilinear Isotropic Model)。

用MP命令输入弹性模量(Exx),泊松比(NUXY)和密度(DENS),程序用EX和NUXY值计算体积模量(K)。

用TB和TBDATA 命令的1和2项输入屈服强度和切线模量:TB,BISOTBDATA,1,(屈服应力)TBDATA,2,(切线模量)例题参看B.2.7,Bilinear Isotropic Plasticity Example:Nickel Alloy。

B.2.7. Bilinear Isotropic Plasticity Example: Nickel AlloyMP,ex,1,180e9 ! PaMP,nuxy,1,.31 ! No unitsMP,dens,1,8490 ! kg/m3TB,BISO,1TBDA TA,1,900e6 ! Yield stress (Pa)TBDA TA,2,445e6 ! Tangent modulus (Pa)7.2.3.5双线性随动模型(与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹性和塑性)来表示材料的应力应变特性。

塑性力学的假设、模型和计算方法(下)

塑性力学的假设、模型和计算方法(下)

塑性力学的假设、模型和计算方法
(下)
模型:在塑性力学中,首先要建立一个塑性变形的数学模型。

模型的基本思想是建立一种确定的函数,使得该函数的参数能够根据实验或理论分析而确定。

常用的塑性变形模型包括菲涅尔模型、弹塑性模型和等强度模型等。

计算方法:塑性力学的计算方法可以分为解析法和数值法。

解析法是通过对塑性变形模型的有限元分析,将塑性变形问题转化为解一系列线性或非线性方程组,然后解出材料在特定条件下的变形量。

而数值法则是通过一步步迭代的方法,求解塑性变形的物理场方程,从而求解出材料在特定条件下的变形量。

材料模型手册笔记

材料模型手册笔记

8材料模型手册笔记1 、概述1.1 不同模型的选用Mohr-Coulomb 模型(MC),弹塑性Mohr-Coulomb 模型包括五个输入参数,即:表示土体弹性的E 和ν,表示土体塑性的ϕ和c,以及剪胀角ψ。

通过选择适当的K0值,可以生成初始水平土应力。

节理岩石模型(JR),节理模型是一种各向异性的弹塑性模型,特别适用于模拟包括层理尤其是断层方向在内的岩层行为等。

Hardening-Soil 模型(HS),是一种改进了的模拟岩土行为的模型,适用于所有的土,但是它不能用来解释粘性效应,即蠕变和应力松弛。

对比Mohr-Coulomb 模型,Hardening-Soil 模型还可以用来解决模量依赖于应力的情况。

这意味着所有的刚度随着压力的增加而增加。

因此,输入的三个刚度值(三轴加载刚度E50、三轴卸载刚度Eur 和固结仪加载刚度E oed)与一个参考应力有关,这个参考应力值通常取为100kPa (1 bar)。

软土蠕变模型(SSC),是一个新近开发的应用于地基和路基等的沉陷问题的模型。

软土模型(SS),适用于接近正常固结的粘性土的主压缩。

改进的Cam-Clay 模型(MCC),主要用于模拟接近正常固结的粘性土。

不同模型的分析对考虑的问题进行一个简单迅速的初步分析使用Mohr-Coulomb 模型。

软土蠕变模型可以用于分析蠕变(即:极软土的次压缩)。

1.2 局限性HS 模型:不能用来说明由于岩土剪胀和崩解效应带来的软化性质,不能用来模拟滞后或者反复循环加载情形,常需要较长的计算时间。

SSC 模型,通常会过高地预计弹性岩土的行为范围。

特别是在包括隧道修建在内的开挖问题上。

SS 模型,同样的局限性(包括HS 模型和SSC 模型的)存在于SS 模型中。

在开挖问题上不推荐使用这种模型。

界面:界面单元通常用双线性的Mohr-Coulomb 模型模拟。

2 材料模拟初步2.1 应力的一般定义由于水不能承受任何剪应力,故有效剪应力与总剪应力相等。

弹塑性本构模型理论

弹塑性本构模型理论
加工硬化
当材料中的应力状态处于某一个屈服面上时,如果因加荷 使它发生超越这个屈服面的应力变化,就会在材料中同时 引起新的弹性与塑性变形,形成新的屈服面。加荷使屈服 面膨胀、移动或改变形式,这些改变取决于材料的应力历 史与应力水平,这种现象称为加工硬化(软化)
等向硬化:屈服面大小不同
运动硬化:屈服面位置发生移动

剑桥模型
物态边界面
正常固结的饱和重塑黏土的孔隙比e和它所受的 力p与q之间存在一种固定关系,这一关系反映在 e-p-q空间中就形成了物态边界面
原始各向等压固结线AC(VICL)
在p
1
2


条件下的
3
e

p曲线
VICL表达式: e ea0 ln p
VICL回弹曲线:
Mises破坏条件
f
*

J2

k2 f
Mohr-Coulomb 破坏条件

cn
tan
f Drucker-Prager *
破坏条件
I1
J2 kf
屈服面:
定义:
特征
理想简单塑性材料:材料进入屈服状态,就可以认为材料 破坏了,屈服面与破坏面重合
加工硬化材料:屈服应力随荷载的提高与变形的增大而提 高,因此屈服面不同于破坏面,不是一种固定的面

1 2

3
应力不变量
3 I12 I2 I3 0 I1 1 2 3 I2 1 2 2 3 31
I3 1 2 3
偏差应力
sij ij ij (I1 / 3)
偏差应力不变量
E-V弹性模型 K-G弹性模型 南京水科所模型 剑桥模型 KW模型 LD模型 罗威剪胀模型

《弹塑性分析》课件

《弹塑性分析》课件
未来研究将更加关注多物理场耦合的弹塑性分析,如结构-流体-热等多物理场的相互作用 ,需要发展更为复杂和高效的数值方法。
新材料和新工艺的弹塑性分析
随着新材料和新工艺的出现,对新材料和新工艺的弹塑性分析将成为未来的重要研究方向 ,包括对超弹性、粘弹性、粘塑性等方面的研究。
人工智能在弹塑性分析中的应用
人工智能技术在许多领域都取得了显著的成果,未来可以将人工智能技术应用于弹塑性分 析中,如利用机器学习算法进行模型预测和优化等。
03
建立每个单元的平衡方程,通过求解这些方程得到整个系统的
近似解。
弹塑性分析的有限元模型
材料属性
考虑材料的弹性模量、泊松比、屈服强度等 参数。
初始条件
设定模型在分析开始时的状态,如初始应变 、初始应力等。
边界条件
根据实际情况设定模型的边界条件,如固定 、自由、受压等。
载荷
根据实际情况施加适当的载荷,如集中力、 分布力等。
在建立弹塑性本构模型时,还需要考虑材料的 硬化或软化行为,以及温度、应变速率等对材 料力学行为的影响。
Hale Waihona Puke 03弹塑性分析的有限元方法
有限元方法的基本原理
离散化
01
将连续的物理系统离散成有限个小的单元,每个单元具有特定
的形状和大小。
近似解
02
用数学模型描述每个单元的行为,并使用近似解代替精确解。
平衡方程
弹塑性分析
目 录
• 弹塑性分析概述 • 弹塑性本构模型 • 弹塑性分析的有限元方法 • 弹塑性分析的实例 • 弹塑性分析的展望与挑战
01
弹塑性分析概述
弹塑性材料的定义与特性
弹塑性材料
弹性
塑性
弹塑性材料的特性

08 混凝土的弹塑性本构模型2013

08 混凝土的弹塑性本构模型2013

31
32
8.2.3 强化法则 强化模型分类
1.
8.2.3 强化法则 强化模型分类
F (σ ij , K ) = F [σ ij − K (ε )] = 0
p ij
等向强化
1. 2.
作功强化 应变强化
K = H ( ∫ dw p ) = H ( ∫ σ ij dε ijp )
K = H ( ∫ dw p ) = H ( ∫ dε ijp dε ijp )
T ∂F ∂F De De ∂ ∂ σ σ dε dσ = De − T ∂F ∂F + A D ∂σ e ∂σ
37
38
8.2.5 弹塑性矩阵的一般表达形式


c0 = 9
rbc
ε
ε
rbc a0 − 3 + rbc
(
(
3 − a0 + a0 − 3 / 2
) ( ) (2
σ 2
) (
)
3 − 4 a0
)
39
dσ H '= dε p
10
0 -40 -30 -20 -10 -10 0 10
ε pl 为双轴受压和单轴受压时 ε 11 的比值,一般为 1.28 rbc
1 1 ∂I1 1 = ∂σ 0 0 0
Sx S y 1 Sz ∂σ e = ∂σ 2 J 2 2τ xy 2τ yz 2τ zx
J3 2 S y S z − τ yz + 3 J 2 S z S x − τ zx + 3 3 ∂J 3 = S S −τ 2 + J 3 x y xy ∂σ 3 2(τ τ − S τ ) yz zx z xy 2(τ xyτ zx − S xτ yz ) 2(τ τ − S τ ) y zx xy yz

粒状材料的一个实用弹塑性模型

粒状材料的一个实用弹塑性模型

1 粒 状材料 的实用弹塑 性模型 的条件
剑 桥 模 型 已 为广 大岩 土 工 程 学 者 和 工 程 师 们 所 接 受 ,用适 当的方法( 如 0 ) 法 【 、变 换 应 力 方 方 ¨ 法 ) 虑 三 维 应 力 影 响 的 剑 桥 模 型 可 有 足 够 的 精 考
变换 应力方法【 。 6 —1 作为工程实用模型 ,可采用第 l 方法 。 类

度 特 性 的影 响 。 图 l表 示 国 内 某 土 石 坝 坝 料 的模 拟 试 料 ( 大 粒 径 为 2 c 的 常 规 中 型 三 轴 ( 样 直 径 最 m) 试 l m, 2 m) 验 结 果 ( 料 来 自河 海 大 学 19 0c 高 0c 试 资 91
年 的科 研 报 告 “ 布 沟 电站 土 石 坝 心 墙 料 和 石 碴 料 瀑
维普资讯
第 2 卷 1
第 8期
........
. . . . . . . . . . . . . . . . .
— — — —
岩 石 力 学 与 工 程 学 报
Chi ese J urna n o lfR c Me h nc n n ie r g o o k c a is dE gn ei a n
可 分 成 3类 :
第 2类 模 型 具 有 双 屈 服 面 和 对 应 的 2个 硬 化 参 数【 1 ,这 类 模 型 比单 屈 服 面 模 型 复 杂 。
第 3 类 模 型 具 有 1 个 屈 服 面 和 2 个 硬 化 参 数【 1 ,这 类 模 型 也 可 以表 现 软化 现 象 ,但 确 定 2
关 键词 分 类号
粒状 材 料 ,弹 塑性 模 型 ,变 形 ,强度 0 4 . 3 43 文献标 识码 A 文章编 号 10 .9 2 0 )8 1 .6 06 (0 20 . 170 0 1 5 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用弹塑性材料模型下表列出了ANSYS/LS-DYNA材料模型以及相应的LS-DYNA命令
ANSYS Material
Model LS-DYNA Command LS-DYNA
MAT #
Example
Isotropic Elastic*MAT_ELASTIC1Yes
Bilinear Isotropic
Plasticity
*MAT_PLASTIC_KINEMATIC 3 Yes
Bilinear Kinematic *MAT_PLASTIC_KINEMATIC 3 Yes
Plastic Kinematic *MAT_PLASTIC_KINEMATIC 3 Yes
Piecewise Linear
Plasticity
*MAT_PIECEWISE_LINEAR_PLASTICITY24 Yes
Rigid *MAT_RIGID
20
Yes 7.2.1.1各向同性弹性模型
各向同性弹性模型。

使用MP命令输入所需参数:
MP,DENS—密度
MP,EX—弹性模量
MP,NUXY—泊松比
此部分例题参看B.2.1,Isotropic Elastic Example:High Carbon Steel。

B.2.1. Isotropic Elastic Example: High Carbon Steel
MP,ex,1,210e9 ! Pa
MP,nuxy,1,.29 ! No units
MP,dens,1,7850 ! kg/m3
7.2.3.1 双线性各向同性模型
使用两种斜率(弹性和塑性)来表示材料应力应变行为的经典双线性各向同性硬化模型
(与应变率无关)。

仅可在一个温度条件下定义应力应变特性。

(也有温度相关的本构模型;
参看Temperature Dependent Bilinear Isotropic Model)。

用MP命令输入弹性模量(Exx),
泊松比(NUXY)和密度(DENS),程序用EX和NUXY值计算体积模量(K)。

用TB和TBDATA
命令的1和2项输入屈服强度和切线模量:
TB,BISO
TBDATA,1,
Y
σ(屈服应力)
TBDATA,2,
tan
E(切线模量)
例题参看B.2.7,Bilinear Isotropic Plasticity Example:Nickel Alloy。

B.2.7. Bilinear Isotropic Plasticity Example: Nickel Alloy
Pa
MP,ex,1,180e9 !
MP,nuxy,1,.31 ! No units
MP,dens,1,8490 ! kg/m3
TB,BISO,1
TBDATA,1,900e6 ! Yield stress (Pa)
TBDATA,2,445e6 ! Tangent modulus (Pa)
7.2.3.5双线性随动模型
(与应变率无关)经典的双线性随动硬化模型,用两个斜率(弹性和塑性)来表示材料的应力应变特性。

用MP命令输入弹性模量(Exx),密度(DENS)和泊松比(NUXY)。

可以用TB,BKIN和TBDATA命令中的1-2项输入屈服强度和切线模量:
TB,BKIN
σ(屈服应力)
TBDATA,1,
Y
E(切线模量)
TBDATA,2,
tan
例题参看B.2.10,Bilinear Kinematic Plasticity Example :Titanium Alloy。

B.2.10. Bilinear Kinematic Plasticity Example: Titanium Alloy
Pa
MP,ex,1,100e9 !
MP,nuxy,1,.36 ! No units
MP,dens,1,4650 ! kg/m3
TB,BKIN,1
TBDATA,1,70e6 ! Yield stress (Pa)
TBDATA,2,112e6 ! Tangent modulus (Pa)
B.2.11. Plastic Kinematic Example: 1018 Steel
Pa
MP,ex,1,200e9 !
MP,nuxy,1,.27 ! No units
MP,dens,1,7865 ! kg/m3
TB,PLAW,,,,1
TBDATA,1,310e6 ! Yield stress (Pa)
TBDATA,2,763e6 ! Tangent modulus (Pa)
TBDATA,4,40.0 ! C (s-1)
TBDATA,5,5.0 !
P
TBDATA,6,.75 ! Failure strain
7.2.3.13分段线性塑性模型
多线性弹塑性材料模型,可输入与应变率相关的应力应变曲线。

它是一个很常用的塑性准则,特别用于钢。

采用这个材料模型,也可根据塑性应变定义失效。

采用Cowper-Symbols
模型考虑应变率的影响,它与屈服应力的关系为:
B.2.16. Piecewise Linear Plasticity Example: High Carbon Steel
MP,ex,1,207e9 !
Pa
MP,nuxy,1,.30 ! No units
MP,dens,1,7830 ! kg/m3
TB,PLAW,,,,8
TBDATA,1,207e6 ! Yield stress (Pa)
TBDATA,3,.75 ! Failure strain
TBDATA,4,40.0 ! C (strain rate parameter)
TBDATA,5,5.0 ! P (strain rate parameter)
TBDATA,6,1! LCID for true stress vs. true strain (see EDCURVE below) *DIM,TruStran,,5
*DIM,TruStres,,5
TruStran(1)=0,.08,.16,.4,.75
TruStres(1)=207e6,250e6,275e6,290e6,3000e6
EDCURVE,ADD,1,TruStran (1),TruStres(1)
7.2.8.1刚性体模型
用EDMP命令定义刚性体,例如,定义材料2为刚性体,执行:EDMP,RIGIS,2。

用指定材料号定义的所有单元都认为是刚性体的一部分。

材料号以及单元的单元类型和实常数类型号用来定义刚体的PART ID。

这些 PART ID用于定义刚性体的载荷和约束(如第4章所述,Loading)。

刚体内的单元不必用连接性网格连接。

因此,为了在模型中表示多个独立的刚性体。

必须定义多个刚体类型。

但是,两个独立刚体不能共同使用一个节点。

使用EDMP命令的同时,必须用MP命令定义刚体材料类型的杨氏模量(Ex),泊松比(NUXY)和密度(DENS)。

必须指定实际的材料特性值,从而使程序能计算接触表面的刚度。

基于此原因,在显动态分析中,刚性体不要用不切实际的杨氏模量或密度,刚体不能再变硬因为它已是完全刚硬的。

因为刚性体的质量中心的运动传递到节点上,所以不能用D命令在刚体上施加约束。

刚体的一个节点上的约束和初始速度将转换到物体的质心。

但是,如果约束了多个节点,就很难确定使用哪种约束。

要正确在刚体上施加约束,使用EDMP命令的平移(VAL1)和转动(VAL2)约束参数域,表示如下:
VAL1-平移约束参数(相对于整体笛卡尔坐标系)
0 没有约束(缺省)
1 约束X方向的位移
2 约束Y方向的位移
3 约束Z方向的位移
4 约束X和Y方向的位移
5 约束Y和Z方向的位移
6 约束Z和X方向的位移
7 约束X,Y,Z方向的位移
VAL2-转动约束参数(相对于整体笛卡尔坐标系)
0没有约束(缺省)
1约束X方向的旋转
2约束Y方向的旋转
3约束Z方向的旋转
4约束X,Y方向的旋转
5约束Y和Z方向的旋转
6约束Z和X方向的旋转
7约束X,Y和Z方向的旋转
例如,命令EDMP,IGID,2,7,7将约束材料的刚体单元的所有自由度。

在定义刚体之后,可以用EDIPART命令指定惯性特性、质量和初始速度矢量。

如果没有定义刚性体的惯性特性,程序将会依据有限元模型计算它们。

例题参看B.2.25,Rigid Material Example:Steel。

B.2.25. Rigid Material Example: Steel
Pa
MP,ex,1,207e9 !
MP,nuxy,1,.3 ! No units MP,dens,1,7580 ! kg/m3 EDMP,rigid,1,7,7。

相关文档
最新文档