二元一次方程销售利润问题知识点及典型题练习

合集下载

二元一次方程组的运用3(商品销售利润问题)

二元一次方程组的运用3(商品销售利润问题)

解得:
答:存教育储蓄的钱为1500元,存一年定期的钱为500元.
5、 某工厂去年的利润(总产值—总支出) 为200万元,今年总产值比去年增加了20%, 总支出比去年减少了10%,今年的利润为780 万元,去年的总产值、总支出各是多少万元?
思路点拨:设去年的总产值为x万元,总支出为y万元,则有
去年 今年
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元, 则列方程:
答:两件商品的进价分别为600元和400元。
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 思路点拨: 设教育储蓄存了x元,一年定期存了y元,我们可以根据题 意可列出表格:
二元一次方程组的应用
商品销售利润问题、
银行储蓄问题、增长率问题
例1、一件商品如果按定价打九折出售可以盈利20%;如果 打八折出售可以盈利10元,问此商品的定价是多少?
分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的 定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利 (0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元, 获利(0.8x-y)元,可得方程0.8x-y=10.

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

题型专题训练:7_2 二元一次方程组的应用——销售、利润问题

题型专题训练:7_2 二元一次方程组的应用——销售、利润问题

7.2 二元一次方程组的应用——销售、利润问题【题型销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元?【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元?【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?(解析版)【题型 销售、利润问题】【例】2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元? 【答案】1680元,480元.【分析】设小颖的票价为x 元,小明的票价为y 元,根据“小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.”找到等量关系,列出方程组,解方程组即可.【详解】设小颖的票价为x 元,小明的票价为y 元,根据题意得:{x −(1000+y )=20010y −x =3120解得:{x =1680y =480答:小颖和小明购买的演唱会门票分别为:1680元,480元.【点睛】本题考查二元一次方程组的应用,正确的找到等量关系是解答关键.【变式1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【答案】(1)每箱井冈蜜柚需要80元,每箱井冈板栗需要120元;(2)李先生比预计的付款少付了328元【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要200元,4箱井冈蜜柚和6箱井冈板栗需要1040元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论.【详解】解:(1)设每箱井冈蜜柚需要x 元,每箱井冈板栗需要y 元,依题意,得:{x +y =2004x +6y =1040, 解得:{x =80y =120. 答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m 元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元? 【答案】(1)玫瑰和百合单价分别是每支2.5元和每支9.5元(2)小瑞所带的钱还剩下31元【分析】(1)设每支玫瑰x 元,每支百合y 元,利用总价=单价×数量,结合小瑞带的钱数不变,即可得出关于x ,y 的二元一次方程,化简后可得出;(2)设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元,所以列方程{5x +3y =m −10①5x +5y =m +4②,用含m 的代数式解出x 和y ,又因为且一共只买8支玫瑰,所以剩下的钱为:m -8x 即可求解;(1)解:设玫瑰的单价是每支x 元,百合单价是每支y 元.由题意可得{5x +3y =51−10,3x +5y =51+4.解之得{x =2.5,y =9.5.答:玫瑰和百合单价分别是每支2.5元和每支9.5元.(2)解:设玫瑰的单价是每支x 元,百合单价是每支y 元,因为小瑞带的钱为m 元【变式3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B 类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?【答案】(1)一个A类足球需90元,一个B类足球需108元(2)3280(3)八折【分析】(1)设商家购进一个A类足球需x元,购进一个B类足球需y元,由题意:某商家第一次进了38个A类足球和20个B类足球进行出售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.列出二元一次方程组,解方程组即可;(2)设B类足球的售价为m元,由题意:一个A类足球的售价为110元,两类足球销售完毕,商家要获得1880元的利润,列出一元一次方程,解方程即可;(3)B类足球是打n折销售的,由题意:购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A 类足球按原售价销售,使得第二次销售获得利润1688元,列出一元一次方程,解方程即可.(1)解:设商家购进一个A 类足球需x 元,购进一个B 类足球需y 元,由题意得:{38x +20y =5580y =1.2x, 解得:{x =90y =108, 答:商家购进一个A 类足球需90元,购进一个B 类足球需108元;(2)解∶ 设B 类足球的售价为m 元,由题意得:(110-90)×38+(m -108)×20=1880,解得:m =164,则20×164=3280,答:B 类足球的总售价为3280元;(3)解∶设B 类足球是打n 折销售的,由题意得:(110-90)×38+(164×0.1n -108)×20×2=1688,解得:n =8,答:B 类足球是打八折销售的.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准等量关系,正确列出二元一次方程组和一元一次方程是解题的关键.。

10. 用二元一次方程组解决问题(2)利润问题

10. 用二元一次方程组解决问题(2)利润问题

强化训练之用二元一次方程组解决实际问题(2)1、某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)商品A B进价(元/件)12001000售价(元/件)13501200(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?【分析】(1)设第1次购进A商品x件,B商品y件,根据该商场第1次用39万元购进A、B两种商品且销售完后获得利润6万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设B商品打m折出售,根据总利润=单件利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(1200×﹣1000)=54000,解得:m=9.答:B种商品打9折销售的.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.2、(2019•西湖区校级模拟)某市火车站北广场将于2016年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600 棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【分析】(1)根据在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵可以列出相应的二元一次方程组,从而可以解答本题;(2)根据安排13人同时种植这两种花木,每人每天能种植A花木60棵或B花木40 棵,可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:(1)设A,B两种花木的数量分别是x棵、y棵,,解得,,即A,B两种花木的数量分别是4200棵、2400棵;(2)设安排种植A花木的m人,种植B花木的n人,,解得,,即安排种植A花木的7人,种植B花木的6人,可以确保同时完成各自的任务.【点评】本题考查二元一次方程组的应用,解题的关键是明确题意,列出相应的二元一次方程组.3、甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得,解得:.答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.【点评】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.4、(2018春•泗洪县期末)某校准备组织七年级400名学生参加北京夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若学校计划租用小客车x辆,大客车y辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金4000元,大客车每辆需租金7600元,请选出最省钱的租车方案,并求出最少租金.【分析】(1)每辆小客车能坐a名学生,每辆大客车能坐b名学生,根据用3辆小客车和1辆大客车每次可运送学生105人;用1辆小客车和2辆大客车每次可运送学生110人;列出方程组,再解即可;(2)①设租用小客车x辆,大客车y辆,由题意得:20×小客车的数量+45×大客车的数量=400人,根据等量关系列出方程,求出非负整数解即可;②分别计算出每种租车方案的钱数,进行比较即可.【解答】解:(1)设每辆小客车能坐a名学生,每辆大客车能坐b名学生根据题意,得解得答:每辆小客车能坐20名学生,每辆大客车能坐45名学生.(2)①根据题意,得20x+45y=400,∴y=,∵x、y均为非负数,∴,,∴租车方案有3种.方案1:小客车20辆,大客车0辆;方案2:小客车11辆,大客车4辆;方案3:小客车2辆,大客车8辆.②方案1租金:4000×20=80000(元)方案2租金:4000×11+7600×4=74400(元)方案3租金:4000×2+7600×8=68800(元)∵80000>74400>68800∴方案3租金最少,最少租金为68800元.【点评】此题主要考查了二元一次方程(组)的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。

二元一次方程利润问题学习资料

二元一次方程利润问题学习资料

精品文档二元一次方程利润应用题解答题1、基本知识点例1:单价为100的玩具赛车在儿童节一天销售500 个,请问童节赛车的总销售价是多少?【解题关键点】总售价=单价X销售量2、基本知识点例2: 现在有100台冰箱, 每台售价是1500元, 这样每一台冰箱可获得利润25%,问可获得的总利润是多少?【解题关键点】总利润=单件利润X销售量3、基本知识点例3:张老师向商店订购某种商品,共买60 件,定价100 元/ 件,张老师对经理说:“如果减价,每件减价1元,就多买3件。

”经理一算,如减价 4 元,由于张老师多买,仍可获得与原来一样多总利润,问这种商品的成本多少元?【解题关键点】总利润=总售价-总成本4、进价为100元,售价为300元的MP3,出售后的利润率是多少? 【解题关键点】利润率=利润/成本=(售价-成本)/成本=售价/成本-15、某商店购进360个玻璃制品, 运输时损坏了40个,剩下的按进价117%出售,问此商品可盈利百分之几?【解题关键点】求利润率6、某商品进价50 元,盈利25%,则出售该商品的利润和售价各为多少?精品文档6、一商店把某商品按标价的九折出售,仍可获得20%的利润. 若该商品的进价是每件30 元, 问该商品的标价是多少元?【解题关键点】售价=成本X (1+利润率), 成本=售价/ (1 +利润率)设该商品的标价是x7、混合商品的售价:有A、B两种商品,如果A的利润增长20%,B的利润减少10%,那么A、B两种商品的利润就相同了。

问原来A商品的利润是B商品利润的百分之几?&总利润=单件利润X销售量+单件利润X销售量某商店为了处理积压商品,实行亏本销售,已知购进甲乙两种商品原价之和共为880,甲种商品按原价的八折出售,乙种商品按原价的七五折出售,结果两种商品共亏 1 96元,求甲乙两种商品的原价分别是多少?9、甲、乙两种商品,如果购买甲3件、乙7 件共需27元,如果购买甲商品40件、乙商品50 件,则可以按批发价计算,共需付189 元,已知甲商品每件批发价比零售价低0.4元,乙商品每件批发价比零售价低0.5 元。

八年级二元一次方程组实际问题3 经济利润问题

八年级二元一次方程组实际问题3 经济利润问题

【板块三】经济利润问题方法技巧1.利润问题:利润=售价一进价=进价x利润率,利润率=(售价一进价)÷进价x100%,实际售价=标价x打折率。

2. 储蓄问题:利息=本全×利率×期数,利息税=利息×利息税率。

题型一利润率问题【例1】有甲、乙两件商品,甲商品的利润率为5%, 乙商品的利润率为4%, 共可获利46元,价格调整后,甲商品的利润率为4%, 乙商品的利润率为5%, 共可获利44元,则两件商品的进价分别是多少元?题型二存款利息问题【例2】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2. 25%的教育储蓄,另一种是年利率为2. 25%的一年定期存款(存款利息要交利息所得税),一年后可取出2042. 75元,问这两种储蓄各存了多少钱? (利息所得税=利息金额x20%, 教育储蓄没有利息所得税)题型三分段计费问题【例3】某超市在“五一”期间对顾客实行优惠,规定如下:一次性购物优惠方法少于200元不予优惠低于500元但不低于200元九折优惠500元或大于500元其中500元部分给予九折优惠,超过500部分给予八折优惠(1) 王老辆一次购物600元,他实际付款_元:(2) 若顾客在该超市一次性购物 元,当小于500元但不小于200元时,他实际付款元;当文大于或等于500元时,他实际付款元(用的代数式表示)。

(3) 如果王老师两次购物合计820元,他实际付款共计728元,且第一次购物的货款少于第二次购物的,求两次购物各多少元?针对练习31.某商店购进商品后,都加价40%作为销售价,元旦期间搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款399元,商场共赢利49元,甲、乙两种商品的进价分别为多少元!2.李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元,已知这两种储蓄的年利率的和为3. 24%, 问这两种储蓄的年利率各是多少?3. 某市的出租车是这样收费的:起步价所包含的路程为0~1. 5千米,超过1. 5千米的部分按每千米另收费。

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用——利润问题专项练习题(附答案)1.某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.经调查发现,每间客房每天的定价每涨10元,就会有5间客房空闲,如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用,若在尽可能节约资源的前提下,每天想获利8000元,每间客房应涨价多少元?2.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?3.金丰商场在服装销售旺季购进某服装1000件,以每件超出进价50元的价格出售,在一个月中销售此服装800件,之后由于进入淡季,每件降价20%,这样的售价比进价低10%,结果全部售出,请你帮助算一下,该商场在这一次买卖中共获利多少元?4.某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5.某商店如果将进货价8元的商品按每件10元出售,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨0.5元,其销售量就可以减少10件,问应将售价定为多少时,才能使所赚利润最大,并求出最大利润?6.某水果经销商销售一种新上市的水果,进货价为5元/千克,售价为10元/千克,月销售量为1000千克.(1)经销商降价促销,经过两次降价后售价定为8.1元/千克,请问平均每次降价的百分率是多少?(2)为增加销售量,经销商决定本月降价促销,经过市场调查,每降价0.1元,能多销售50千克,请问降价多少元才能使本月总利润达到6000元?7.高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.(1)设每个小家电定价增加x元,每售出一个小家电可获得的利润是多少元?(用含x的代数式表示)(2)当定价增加多少元时,商店获得利润6000元?8.广州塔是广州的新地标,旅行社为吸引游客推出了广州塔一日游,具体资费标准如下:如果人数不超过25人,人均消费180元;如果人数超过25人,每增加1人,则全体参加人员人均费用降低4元,但人均费用不得低于130元.某公司组织员工参加广州塔一日游,共支付旅行社一日游费用4800元,请问该公司这次共组织了多少员工参加广州塔一日游?9.秋末冬初,慈善人士李先生到某商场购买一批棉被准备送给偏远山区的孩子.该商场规定:如果购买棉被不超过60条,那么每条售价120元;如果购买棉被超过60条,那么每增加1条,所出售的这批棉被每条售价均降低0.5元,但每条棉被最低售价不得少于100元,最终李先生共支付棉被款8800元,请问李先生一共购买了多少条棉被?10.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

初中数学二元一次方程组的应用题型分类汇编——销售利润问题3(附答案)

初中数学二元一次方程组的应用题型分类汇编——销售利润问题3(附答案)

降价的钱数为( )A.5 元B.10 元C.0 元 D.36 元
7.已知甲、乙两种商品的进价和为 100 元,为了促销而打折销售,若甲商品打八折, 乙商品打六折,则可赚 50 元,若甲商品打六折,乙商品打八折,则可赚 30 元,甲、乙 两种商品的定价分别为( ) A.50 元、150 元 B.50 元、100 元 C.100 元、50 元 D.150 元、50 元 8.春节期间,家家乐商场购进一批糖果,加价 40%作为销售价.为了吸引顾客,决定 由顾客抽奖确定折扣.某顾客购买甲、乙两种糖果,分别抽到七折和九折,共付款 399 元,两种商品原售价之和为 490 元,甲、乙两种糖果的进价分别是( ) A.200 元,150 元 B.210 元,280 元 C.280 元,210 元 D.150 元,200 元 9.小林在某商店两次购买商品 A、B,购买商品 A、B 的数量和费用如下表:
【分析】
设打折前 A 商品价格为 x 元, B 商品为 y 元,根据题意列出关于 x 与 y 的方程组,求出方
程组的解即可得到结果. 【详解】
设打折前 A 商品价格为 x 元, B 商品为 y 元,
根据题意得:
40x
40x 30 0.8 600
y 30
y
0.9

x 150
A.30 元
B.32 元
C.31 元
D.34 元
4.某店在开学初用 880 元购进若干个学生专用科学计算器,按每个 50 元出售,很快就
销售一空,据了解学生还急需 3 倍数量这种计算器,由于量大,每个进价比上次优惠 1
元,该店又用 2580 元购进所需计算器,该店第一次购进计算器的单价为( )
A.20 元
初中数学二元一次方程组的应用题型分类汇编——销售利润问题 3(附答案) 1.打折前购买 A 商品 40 件与购买 B 商品 30 件所花的钱一样多,商家打折促销,A 商

初中数学二元一次方程组的应用题型分类汇编——销售利润问题2(附答案)

初中数学二元一次方程组的应用题型分类汇编——销售利润问题2(附答案)

(3)在销售时,该药店开始时将 B 型口罩提价 100%,当收回成本后,为了让利给消
费者,决定把 B 型口罩的售价调整为进价的 15%,求 B 型口罩降价的幅度.
13.某服装店用 4500 元购进 A,B 两种新式服装,按标价售出后可获得毛利润 2800 元
(毛利润=售价一进价),这两种服装的进价、标价如表所示
(1)求每只 A 型口罩和 B 型口罩的销售利润;
(2)该药店计划一次购进两种型号的口罩共 2000 只,其中 B 型口罩的进货量不超过 A
型口罩的 3 倍,设购进 A 型口罩 x 只,这 2000 只口罩的销售总利润为 y 元.
①求 y 关于 x 的函数关系式;
②该药店购进 A 型、B 型口罩各多少只,才能使销售总利润最大?
1商品标价为80商品标价为100种购买方案分别是商品12商品10商品15解析分析1可设元根据图表给的数量关系列出二元一次方程组解答即可2求出第三次商品如果按原价买的价钱再用实际购买费用相比即可3求出两种商品折扣价之后根据表中数量关系列出二元一次方程4860960化简后讨论各种可能性即可80100商品标价为80商品标价为100100152091215200660所以商场是打六折出售这两种商品商品折扣价为48商品标价为604860960皆为正整数可列表151012所以有点睛本题考查了二元一次方程组解决问题理解题意找到数量关系是解答关键水果25水果15水果15够获得最大利润最大利润为225解析分析1根据题意中的相等关系a种水果箱的批发价1200种水果赚的钱215元列方程组求解即可
价 40%,调价后两种商品的单价和比原来的单价和提高了 20%.若设甲.乙两种商品原 来的单价分别为 x 元.y 元,则可列方程组为_________________; 25.“五一”前夕,某服装专卖店按标价打折销售.小明去店里买了一套服装,衣服打五折, 裤子打七折,共计 260 元,付款后,收银员结算时不小心把衣服、裤子的标价计算反了, 多找给小明 40 元,则衣服裤子原标价分别是________. 26.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生 获得的奖品价值依次减少(奖品单价都是整数元),其中有 3 人获得一等奖,每人获得 的奖品价值 34 元,二等奖的奖品单价是 5 的倍数,获得三等奖的人数不超过 10 人,并 且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三 等奖的人数比去年分别增加了 1 人、2 人、3 人,购买对应奖品时发现单价分别上涨了 6 元、3 元、2 元.这样,今年购买奖品的总费用比去年增加了 159 元.那么去年购买奖品 一共花了__________元. 27.小明、小华和小芳三人到文具店购买同一种笔记本和钢笔,他们把各自购买的数量 和总价列成了如下的表格. 聪明的小明发现了其中有且只有一人把总价算错了,这个算 错的人是___________.

初一数学知识点精讲精练——二元一次方程组的实际应用之销售利润问题

初一数学知识点精讲精练——二元一次方程组的实际应用之销售利润问题

二元一次方程组的应用-销售利润问题【知识点】1. 列二元一次方程组解应用题的一般步骤(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设未知数:找出题中的两个关键的未知量,并用字母表示出来.(3)找:挖掘题目中的关系,找出两个等量关系;(4)列方程组:列出方程组.(5)求解.(6)检验作答:检验所求解是否符合实际意义,并作答.注意:设未知数的方法:直接设未知数与间接设未知数.当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设未知数.2. 用方程解决实际问题的几个注意事项(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得 的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。

3. 商品销售利润问题:(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 利润=售价-成本(进价) 售价-进价利润率进价=100%利润=成本(进价)×利润率 标价=成本(进价)×(1+利润率);实际售价=商品标价×打折率注意:折扣中打几折就是按标价的十分之几或百分之几十销售(例如八折就是按标价的十分之八即五分之四或者百分之八十)【典型例题】1. 某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为 .【考点】本题考查二元一次方程的应用,根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.【解答】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元;若售出甲x 件,则售出乙1.5x 件.0.4ax+0.6b×1.5x ax+1.5bx =0.5,解得a =1.5b ,∴售出的乙种商品的件数比甲种商品的件数少50%时,甲种商品的件数为y 时,乙种商品的件数为0.5y . 这个商人的总利润率为0.4ay+0.6b×0.5y ay+0.5by =0.4a+0.3b a+0.5b =0.9b 2b =45%.故答案为:45%.2.“重百”、“沃尔玛”两家超市出售 同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【考点】此题考查了二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.【解答】解:(1)设一个保温壶售价为x 元,一个水杯售价为y 元.由题意,得:{x +y =602x +3y =130. 解得:{x =50y =10. 答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【练习】1.华润苏果的账目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天以同样的价格卖出同样的52支牙刷和28盒牙膏,收入应该是元.2.2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.甲种商品与乙种商品的销售单价各多少元?3.某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料调价前每瓶各多少元?4. 某专卖店有A,B两种商品.已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?5. 某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八五折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?6. 某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?【练习解析】1. 解:设一支牙刷收入x 元,一盒牙膏收入y 元,由题意,得39x +21y =396,∴13x +7y =132,∴52x +28y =528,故答案为:528.2. 解:设甲种商品的销售单价为x 元/件,乙种商品的销售单价为y 元/件,根据题意得:{2x =3y 3x −2y =1500,解得:{x =900y =600. 答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.3. 解:设碳酸饮料在调价前每瓶的价格为x 元,果汁饮料调价前每瓶的价格为y 元,根据题意得:{x +y =73(1+10%)x +2(1−5%)y =17.5,解得:{x =3y =4. 答:调价前碳酸饮料每瓶的价格为3元,果汁饮料每瓶的价格为4元.4. 解:设打折前A 商品的单价为x 元/件、B 商品的单价为y 元/件,根据题意得:{60x +30y =108050x +10y =840,解得:{x =16y =4, 500×16+450×4=9800(元),9800−19609800=0.8.答:打了八折.5. 解:(1)设随身听和书包的单价分别为x 元,y 元.由题意可得{x +y =452x =4y −8,解得{x =360y =92. 答:随身听和书包的单价分别为360元,92元;(2)A 超市需要:452×0.85=384.2(元);B 超市需要:先购买随身听花费360元,返券90元,还需要92﹣90=2(元),共花费360+2=362(元). 因为384.2>362,所以在B 超市购买省钱.6. 解:(1)设A种服装购进x件,B种服装购进y件,由题意,得{60x+100y=600040x+60y=3800,解得:{x=50y=30.答:A种服装购进50件,B种服装购进30件;(2)由题意,得:3800﹣50(100×0.8﹣60)﹣30(160×0.7﹣100)=3800﹣1000﹣360=2440(元).答:服装店比按标价售出少收入2440元.。

二元一次方程利润问题学习资料

二元一次方程利润问题学习资料

二元一次方程利润应用题解答题1、基本知识点例1:单价为100的玩具赛车在儿童节一天销售500个,请问童节赛车的总销售价是多少?【解题关键点】总售价=单价×销售量2、基本知识点例2:现在有100台冰箱,每台售价是1500元,这样每一台冰箱可获得利润25%,问可获得的总利润是多少?【解题关键点】总利润=单件利润×销售量3、基本知识点例3:张老师向商店订购某种商品,共买60件,定价100元/件,张老师对经理说:“如果减价,每件减价1元,就多买3件。

”经理一算,如减价4元,由于张老师多买,仍可获得与原来一样多总利润,问这种商品的成本多少元?【解题关键点】总利润=总售价-总成本4、进价为100元,售价为300元的MP3,出售后的利润率是多少?【解题关键点】利润率=利润/成本=(售价-成本)/成本=售价/成本-15、某商店购进360个玻璃制品,运输时损坏了40个,剩下的按进价117%出售,问此商品可盈利百分之几?【解题关键点】求利润率6、某商品进价50元,盈利25%,则出售该商品的利润和售价各为多少?6、一商店把某商品按标价的九折出售,仍可获得20%的利润.若该商品的进价是每件30元,问该商品的标价是多少元?【解题关键点】售价=成本×(1+利润率), 成本=售价/ (1+利润率)设该商品的标价是x7、混合商品的售价: 有A、B两种商品,如果A的利润增长20%,B的利润减少10%,那么A、B两种商品的利润就相同了。

问原来A商品的利润是B商品利润的百分之几?8、总利润=单件利润×销售量+单件利润×销售量某商店为了处理积压商品,实行亏本销售,已知购进甲乙两种商品原价之和共为880,甲种商品按原价的八折出售,乙种商品按原价的七五折出售,结果两种商品共亏196元,求甲乙两种商品的原价分别是多少?9、甲、乙两种商品,如果购买甲3件、乙7件共需27元,如果购买甲商品40件、乙商品50件,则可以按批发价计算,共需付189元,已知甲商品每件批发价比零售价低0.4元,乙商品每件批发价比零售价低0.5元。

专题25 二元一次方程组的应用:销售利润问题(解析版)

专题25 二元一次方程组的应用:销售利润问题(解析版)

专题25 二元一次方程组的应用:销售利润问题一、单选题1.某人只带了2元和5元两种货币,他要买一件27元的商品,而商店不给找钱,则此人的付款方式有()A.1种B.2种C.3种D.4种【答案】C【分析】本题中只有一个等量关系,但有两个未知数,属于二元一次方程题,不妨设2元和5元的货币各是x和y 张,那么x张2元的+y张5元的=27元.【详解】解:设2元和5元的货币各是x和y张,则:2x+5y=27,∵x和y是货币张数,皆为整数,∴111xy=⎧⎨⎩=或63xy=⎧⎨⎩=或15xy=⎧⎨⎩=故此人有三种付款方式.故选C.【点睛】用方程解答实际问题时需要注意所求的解要符合实际意义,本题也可以根据不定方程的解法来解.2.麦当劳甜品站进行促销活动,同一种甜品第一件正价,第二件半价,现购买同一种甜品2件,相当于这两件甜品售价与原价相比共打了()A.5折B.5.5折C.7折D.7.5折【答案】D【分析】根据题意设第一件商品x元,买两件商品共打y折,利用价格列出方程即可求解.【详解】解:设第一件商品x元,买两件商品共打了y折,根据题意可得:x+0.5x=2x•y 10,解得:y=7.5,即相当于这两件商品共打了7.5折.故选:D.【点睛】此题考查了一元一次方程的应用,找到正确的等量关系是解题关键.3.某商店卖出两件衣服,每件600元,其中一件赚25%,另一件赔25%,那么这件衣服售出后商店是()A.赚80元B.亏80元C.不赚不亏D.以上答案都不对【答案】B【分析】先列方程分别求出两件衣服的进价,然后计算即可.【详解】设这两件衣服的进价分别是x元和y元,则列方程可得600=25%600=25%yx xy-⎧⎨--⎩,解得x=480,y=800,2×600-(480+800)=-80,因此商店亏了80元,故选:B.【点睛】本题考查了二元一次方程组的应用,根据题意找出等量关系是解题关键.4.元旦期间,灯塔市辽东商业城“女装部”推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动.某顾客在女装部购买了原价x元,在男装部购买了原价y元的服装各一套,优惠前需付700元,而她实际付款580元,根据题意列出的方程组是()A.5800.80.85700x yx y+=⎧⎨+=⎩B.7000.850.8580x yx y+=⎧⎨+=⎩C.7000.80.85700580x yx y+=⎧⎨+=-⎩D.7000.80.85580x yx y+=⎧⎨+=⎩【答案】D【分析】根据“优惠前需付700元,而她实际付款580元”,列出关于x,y的二元一次方程组,即可得到答案.【详解】根据题意得:7000.80.85580x y x y +=⎧⎨+=⎩, 故选D .【点睛】本题主要考查二元一次方程组的实际应用,掌握等量关系,列出方程组,是解题的关键.5.根据图中提供的信息,可知一个杯子的价格是( )A .6元B .8元C .10元D .12元【答案】B【分析】 设一盒杯子x 元,一个暖瓶y 元,根据图示可得:一个杯子+一个暖瓶=43元,3个杯子+2个暖瓶=94元,列方程组求解.【详解】设一盒杯子x 元,一个暖瓶y 元,由题意得,433294x y x y ++⎧⎨⎩==, 解得:835x y ⎧⎨⎩==, 即一个杯子为8元.故选:B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.6.某工厂现向银行申请了两种货款,共计35万元,每年需付利息2.25万元,甲种贷款每年的利率是7%,乙种贷款每年的利率是6%,求这两种贷款的数额各是多少元若设甲、乙两种贷款的数额分别为x 万元和y 万元,则( )A .15,x =20y =B .12,x =23y =C .20,x =15y =D .23,x =12y =【答案】A【分析】设甲、乙两种贷款的数额分别为x 万元和y 万元,根据题意列出二元一次方程组即可求解.【详解】 依题意,得357%6% 2.25x y x y +=⎧⎨+=⎩,解得1520x y =⎧⎨=⎩.故选A. 【点睛】此题主要考查二元一次方程组的应用,解题的关键根据题意找到等量关系列方程求解.7.甲、乙两店分别购进一批无线耳机, 每副耳机的进价甲店比乙店便宜10%,乙店的标价比甲店的标价高5.4元,这样甲乙两店的利润率分别为20%和17%,则乙店每副耳机的进价为( )A .56元B .60元C .72元D .80元【答案】B【分析】设乙店的耳机进价为x 元,标价为y 元,则根据题意列出二元一次方程组,解方程组,求出x 的值,即可得到答案.【详解】解:根据题意,设乙店的耳机进价为x 元,标价为y 元,则甲店的耳机进价为:(110%)0.9x x -=元;标价为:( 5.4)y -元;∵甲乙两店的利润率分别为20%和17%, ∵ 5.40.920%0.917%y x x y x x --⎧=⎪⎪⎨-⎪=⎪⎩, 解得:6070.2x y =⎧⎨=⎩, ∵乙店每副耳机的进价为60元;【点睛】本题考查了二元一次方程组的应用,解题的关键是熟读题目,找出题目中的关系,列出方程组,从而解方程组.8.某商店卖出一件上衣和一双皮鞋,共收款240 元,其中上衣盈利20%,皮鞋亏本20%,该商店卖出这两件商品,下列判断正确的是()A.赚10 元B.赔10元C.不赔不赚D.无法确定【答案】D【分析】设上衣的进价为x元,皮鞋的进价为y元,根据“共收款240元,其中上衣盈利20%,皮鞋亏本20%”,即可得出关于x(y)的二元一次方程,解之即可得出上衣与皮鞋的进价关系,用其相加−两件商品的售价和,即可找出结论.【详解】设上衣的进价为x元,皮鞋的进价为y元,根据题意得:(1+20%)x+(1−20%)y=240,解得:1.2x+0.8y=240,∵利润为240-(x+y)=1.2x+0.8y-(x+y)=0.2x-0.2y=0.2(x-y)∵进价x,y的大小关系不确定,故利润大小不确定,故选D.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9.为处理甲.乙两种积压服装,商场决定打折销售,已知甲.乙两种服装的原单价共为880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲.乙两种服装的原单价分别是()A.400元,480元B.480元,400元C.560元,320元D.320元,560元【答案】B【分析】设甲、乙两种服装的原单价分别是x元、y元,满足等量关系:∵甲、乙两种服装的原单价共为880元;∵打折后两种服装的单价共为684元,由此列出方程组求解.解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:8800.80.75684 x yx y⎨⎩++⎧==解得:480400 xy⎧⎨⎩==即:甲、乙两种服装的原单价分别是480元、400元.故选B.【点睛】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.10.某超市为促销,决定对A,B两种商品进行打折出售.打折前,买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元.打折后,买50件A商品和40件B商品仅需364元,则比打折前少花()A.56元B.116元C.420元D.480元【答案】B【分析】设打折前A商品的单价为x元,B商品的单价为y元,根据买6件A商品和3件B商品需要54元,买3件A商品和4件B商品需要32元列出方程组,求出x、y的值,然后再计算出打折前买50件A商品和40件B 商品共需要的钱数即可.【详解】设打折前A商品的单价为x元,B商品的单价为y元,根据题意得6354,3432,x yx y+=⎧⎨+=⎩解得8,2,xy=⎧⎨=⎩则508402364116⨯+⨯-=(元),所以比打折前少花116元.故选B.【点睛】本题考查了利用二元一次方程组解决现实生活中的问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.11.根据如图提供的信息,小红去商店买一只水瓶和一只杯子应付()A.30元B.32元C.31元D.34元【答案】C【解析】【分析】设购买一只水瓶需要x元,购买一只杯子需要y元,根据给定的两种购买方案可得出关于x、y的二元一次方程组,将方程∵∵相加,再除以3即可求出结论.【详解】设购买一只水瓶需要x元,购买一只杯子需要y元,根据题意得:237256x yx y+=⎧⎨+=⎩①②,(∵+∵)÷3,得:x+y=31.故选:C.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.甲、乙两种商品,若购买甲1件、乙2件共需130元,购甲2件、乙1件共需200元,则购甲、乙两种商品各一件共需()A.130元B.100元C.120元D.110元【答案】D【解析】【分析】设甲商品为x元/件,乙商品为y元/件,根据总价=单价×数量依据题意,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设甲商品为x 元/件,乙商品为y 元/件,根据题意得:21302200x y x y +⎧⎨+⎩==,解得:9020x y =⎧⎨=⎩,甲、乙两种商品各一件共需20+90=110元.故选:D .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.13.小明购买4种数学用品:计算器、圆规、三角板、量角器的件数和用钱总数见下表:则4种数学用品各买一件共需 元.( )A .38B .48C .58D .118 【答案】C【分析】设计算器、圆规、三角板、量角器的单价分别是a 元、b 元、c 元、d 元.根据表格中的信息列方程组,再进一步观察系数的关系,整体求解.【详解】解:设计算器、圆规、三角板、量角器的单价分别是a 元、b 元、c 元、d 元.根据题意,得 3457857998a b c d a b c d +++=⎧⎨+++=⎩①② , ∵减∵,得2b+3c+4d=20∵,∵减∵,得a+b+c+d=78-20=58.故答案为58.【点睛】本题考查多元一次方程组的应用,解题的关键是能够从表格中获得正确信息,根据信息列方程组,注意此题中的整体求解思想.14.小华和小红到同一家鲜花店购买百合花与玫瑰花,他们购买的数量如下表所示,小华一共花的钱比小红少8元,下列说法正确的是()A.2支百合花比2支玫瑰花多8元B.2支百合花比2支玫瑰花少8元C.14支百合花比8支玫瑰花多8元D.14支百合花比8支玫瑰花少8元【答案】A【解析】【分析】设每支百合花x元,每支玫瑰花y元,根据总价=单价×购买数量结合小华一共花的钱比小红少8元,即可得出关于x、y的二元一次方程,整理后即可得出结论.【详解】设每支百合花x元,每支玫瑰花y元,根据题意得:8x+3y﹣(6x+5y)=8,整理得:2x﹣2y=8,∵2支百合花比2支玫瑰花多8元.故选:A.【点睛】考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.已知甲、乙两种商品的进价和为100元,为了促销而打折销售,若甲商品打八折,乙商品打六折,则可赚50元,若甲商品打六折,乙商品打八折,则可赚30元,甲、乙两种商品的定价分别为()A.50元、150元B.50元、100元C.100元、50元D.150元、50元【答案】D【解析】【分析】∵∵∵∵∵∵∵∵∵x∵∵∵∵∵∵∵∵∵∵∵y∵∵∵∵“∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵50∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵30∵”∵∵∵∵∵x∵y∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵【详解】∵∵∵∵∵∵∵∵∵∵∵x∵∵∵∵∵∵∵∵∵∵∵y∵∵∵∵∵∵∵∵0.80.61500.60.8130x yx y+⎧⎨+⎩=,=∵∵∵15050 xy⎧⎨⎩==∵∵D∵【点睛】∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵∵16.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15【答案】C【解析】试题分析:要求出第三束气球的价格,根据第一、二束气球的价格列出方程组,应用整体思想求值:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得3x y14 {x3y18+=+=,两式相加,得,4x+4y=32,即2x+2y=16.故选C.17.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是A.100元B.105元C.108元D.118元【答案】A【解析】试题分析:根据题意,找出相等关系为:进价×(1+20%)=120,设未知数列方程求解.解:设这件服装的进价为x元,依题意得:(1+20%)x=120,解得:x=100,则这件服装的进价是100元.故选A.点评:此题考查的是一元一次方程的应用,解题的关键是找出相等关系,进价×(1+20%)=120.18.打折前购买A商品40件与购买B商品30件所花的钱一样多,商家打折促销,A商品打八折,B商品打九折,此时购买A商品40件比购买B商品30件少花600元,则打折前A商品和B商品每件的价格分别为( )A.75元,100元B.120元,160元C.150元,200元D.180元,240元【答案】C【分析】设打折前A商品价格为x元,B商品为y元,根据题意列出关于x与y的方程组,求出方程组的解即可得到结果.【详解】设打折前A商品价格为x元,B商品为y元,根据题意得∵4030400.8600300.9x yx y=⎧⎨⨯+=⨯⎩∵解得∵150200 xy=⎧⎨=⎩∵则打折前A商品价格为150元,B商品为200元.故选∵C.【点睛】此题考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系时解决问题的关键. 19.春节前夕,唐狮服装专卖店按标价打折销售.茗茗去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给茗茗40元,则这两件衣服的原标价各是A.100元,300元B.100元,200元C.200元,300元D.150元,200元【答案】A【解析】【分析】设这两件衣服的原标价各是x元,y元,根据题意可得:第一件打七折,第二件打五折,共计260元,第二件打七折,第一件打五折,共计260-40元,据此列方程组求解即可∵【详解】设这两件衣服的原标价各是x元,y元,由题意得,0.70.52600.50.726040x yx y+⎧⎨+-⎩==∵解得:300100 xy=⎧⎨=⎩∵即这两件衣服的原标价各是300元,100元,故选A∵【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.二、填空题20.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花__元.【答案】400【分析】设打折前A商品的单价为x元,B商品的单价为y元,根据“打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(500x+500y﹣9600)中即可求出结论.【详解】解:设打折前A商品的单价为x元,B商品的单价为y元,依题意,得:60301080 5010840x yx y+=⎧⎨+=⎩,解得:164xy=⎧⎨=⎩,∵500x+500y﹣9600=400.故答案为:400.【点睛】本题考查了打折问题,二元一次方程组的应用,根据题意正确布列方程组是解题的关键.21.我国过年历史悠久,在传承发展中己形成了一些较为固定的习俗,有许多还相传至今,如买年货、扫尘、贴对联、吃年夜饭、守岁、拜岁、拜年、舞龙舞狮、拜神祭祖、祈福攘灾、游神、押舟、庙会、游锣鼓、游标旗、上灯酒、赏花灯等.某商店新进一批“福”字贴画和数对灯笼(灯笼一对为2件),共超过250件但不超过300件,灯笼的对数正好是“福”字贴画数量的15,每张“福”字贴画进价是4元,每对灯笼的进价是50元(灯笼成对出售),商店将“福”字贴画以高出进价的34售出,将灯笼每对按高出进价的40%售出,最后留下了35件物品未卖出,并把这批物品免费送给了自己的亲戚朋友,最后商店经过计算总利润率为20%,则最初购进灯笼___________对.【答案】41【分析】设最初购进灯笼x对,则“福”字贴5x张,留下的35件有y对灯笼,(35﹣2y)张“福”字帖,由题意列出不等式求出x的取值范围,根据利润=总售价﹣总进价=总进价×利润率列出x、y的等量关系,用x表示y的关系式,进而求得y的取值范围,由x、y取整数可求得x、y的值,即可求解.【详解】解:设最初购进灯笼x对,则“福”字贴画5x张,留下的35件有y对灯笼,(35﹣2y)张“福”字帖画,根据题意,250≤2x+5x≤300,解得:250300 77x≤≤,∵x取整数,∵36≤x≤42,∵灯笼的售价为50×(1+40%)=70元,“福”字帖画的售价为4+4×34=7元,∵总进价为50x+4×5x=70x元,总售价为70×(x﹣y)+7×[5x﹣(35﹣2y)]=(105x﹣56y﹣245)元,由题意,105x﹣56y﹣245﹣70x=20%×70x,解得:x=83y+353,∵36≤x≤42,∵36≤83y+353≤42且35﹣2y≥0,解得:738≤y≤918,∵y为整数,∵ y的值为10或11,当y=10时,x=1153(不是整数,舍去),当y=11时,x=41,∵最初购进灯笼41对,故答案为:41.【点睛】本题考查一元一次不等式的应用、二元一次方程的应用,解答的关键是读懂题意,找寻等量关系,正确列出不等式及方程,注意x、y都取整数的条件.22.云南为了打赢脱贫攻坚战,近年来利用网络帮助花农打开销售渠道.一电商对玫瑰、康乃馨、茉莉花(分别记为A、B、C)进行搭配销售,推出甲、乙两种盒装花束.其中盒装花束的成本是盒中所有A、B、C花束的成本之和.每盒甲由3束A,1束B,1束C组成;每盒乙由2束A,4束B,4束C组成.每盒甲中所有A、B、C的成本之和是1束A成本的15倍,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%.该电商在双十一期间销售这两种盒装鲜花的总销售额为99200元,总利润率为24%,则销售甲盒装鲜花的总利润是__________元.【答案】3500【分析】设A的单价为x元,B的单价为y元,C的单价为z元,根据题意等量关系,列出甲成本与A的数量关系,得到y+z=12x,将其整体代入乙成本中,得到甲、乙成本之比,再设甲每盒成本m元,乙每盒成本103m元,由题意,分别计算甲、乙的单件售价,设销售甲的数量为a,销售乙的数量为b,根据两种盒装鲜花的总销售额为99200元,列方程、解方程即可.【详解】设A的单价为x元,B的单价为y元,C的单价为z元,由题意得,甲的成本:3x+y+z;乙的成本:2x+4y+4z,因为甲成本是1束A成本的15倍,即3x+y+z=15x,解得y+z=12x将y+z=12x代入乙成本:50x所以甲成本:乙成本=3:10设甲每盒成本m元,乙每盒成本103m元,根据题意得,乙每盒售价为10(120%)43m m+=,甲每盒售价为4010120%3mm=+设销售甲的数量为a,销售乙的数量为b,则10104(124%)() 33ma mb ma mb +=+⨯+解得10157 7575mb ma=15710b a ∴=由104992003ma mb+=得,10157499200310ma ma+⨯=解得=1500ma销售甲的总利润为107350033ma ma ma-==(元)故答案为:3500【点睛】本题考查一元一次方程的应用—利润问题、二元一次方程组的应用,其中涉及一元一次方程的解法,整体代入法等知识,是重要考点,难度一般,掌握相关知识是解题关键.23.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..【答案】31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元), 由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.24.端午节期间超市销售某品牌粽子,购买1袋大包装粽子和2袋小包装粽子共用 24元, 买2袋大包装粽子和3袋小包装粽子共用44元,小聪快速计算出1 袋小包装粽子_____元; 他想用不超过110元购买大包装粽子和小包装粽子共计20袋(两种都购买), 他可以有______种购买方案.【答案】4 2【分析】设大包装粽子每袋x元,小包装粽子每袋y元,根据题意得到方程2242344x yx y+=+=⎧⎨⎩,求解即可;设可以买大包装粽子a袋,小包装粽子(20-a)袋,根据题意列出不等式16a+4(20-a)≤110,求解即可.【详解】解:设大包装粽子每袋x元,小包装粽子每袋y元,依题意有:224 2344 x yx y+=+=⎧⎨⎩解得164xy==⎧⎨⎩,故1袋小包装粽子4元;设可以买大包装粽子a袋,小包装粽子(20-a)袋,依题意有:16a+4(20-a)≤110,整理得:12a≤30,即a≤52,∵a为正整数,即a=1时,则b=20-1=19,a=2时,即b=20-2=18,故有2种购买方案;故答案为:4;2.【点睛】本题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,根据题意列出式子是解题关键.25.小华在文具超市挑选了6支中性笔和5本笔记本.结账时,小华付款50元,营业店员找零4元,小华说:“阿姨您好,6支中性笔和5本笔记本一共42元,应该找零8元.”店员说:“啊…哦,我明白了,小朋友你真棒,我刚才把中性笔和笔记本的单价弄反了,对不起,再找给你4元”.根据两人的对话计算:若购买一支中性笔和一本笔记本一共需要付款______元.【答案】8【分析】设购买一支中性笔x元,购买一本笔记本y元,根据“6支中性笔和5本笔记本一共42元”,“5支中性笔和6本笔记本一共46元”列出方程组并解答.设购买一支中性笔x元,购买一本笔记本y元,则65504 6542y xx y+=-⎧⎨+=⎩①②,由∵+∵,得11(x+y)=88,所以x+y=8,即:购买一支中性笔和一本笔记本一共需要付款8元,故答案为:8.【点睛】本题考查二元一次方程组的应用,理解题意,正确列出二元一次方程组是解题的关键,解方程组时,注意观察方程组的特点,可进行简便运算.26.小慧带着妈妈给的现金去蛋糕店买蛋糕.他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元;若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元.若他只买8个桂圆蛋糕,则剩余的钱为________元.【答案】49【分析】设买一个巧克力x元,买一个蛋糕y元,根据已知条件可得到他妈妈给小慧的钱为5x+3y-16和3x+5y+10,由此建立关于x,y的方程,求出x-y的值,然后求出他买8个桂圆蛋糕的剩余的钱为5x+3y-16-8y,将其整理可求出结果.【详解】解:设买一个巧克力x元,买一个蛋糕y元,∵他若买5个巧克力蛋糕和3个桂圆蛋糕,则妈妈给的钱不够,还缺16元,∵他妈妈给小慧的钱为5x+3y-16;∵ 若买3个巧克力蛋糕和5个桂圆蛋糕,则妈妈给的钱还有剩余,还多10元,∵3x+5y+10∵5x+3y-16=3x+5y+10,解之:x-y=13.他买8个桂圆蛋糕的钱为8y,他剩余的钱为5x+3y-16-8y=5x-5y-16=5(x-y)-16=5×13-16=49元.故答案为:49.本题考查了二元一次方程的应用,以及整式的加减,根据题意找出等量关系是解决本题的关键.三、解答题27.经营户小熊在蔬菜批发市场上了解到以下信息内容:他共用116元钱从市场上批发了红辣椒和西红柿共44公斤到菜市场去卖,当天卖完.请你计算出小熊能赚多少钱?【答案】73元【分析】根据题意可知本题的等量关系有:西红柿的重量+辣椒的重量=44;1.6×西红柿的重量+4×辣椒的重量=116.根据这两个等量关系,可列出方程组,从而计算出当天能赚的钱数.【详解】解:设小熊在市场上批发了红辣椒x千克,西红柿y千克.根据题意得444 1.6116 x yx y+=⎧⎨+=⎩,解得:1925 xy=⎧⎨=⎩,25×3+19×6-116=73(元),∵当天卖完,小熊能赚73元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.28.某商场欲购进甲乙两种商品,若购进甲2件,乙3件,则共需成本1700元;若购进甲3件,乙1件,则共需成本1500元.(1)求甲乙两种商品成本分别为多少元?(2)该商场决定在成本不超过3万元的前提下购进甲、乙两种商品,若购进乙种商品的数量是甲种商品的3倍多10件,求最多购进甲种商品多少件?【答案】(1)甲种商品的成本为400元/件,乙种商品的成本为300元/件;(2)20件【分析】(1)设甲种商品的成本为x元/件,乙种商品的成本为y元/件,根据“购进甲2件,乙3件,共需成本1700元;购进甲3件,乙1件,共需成本1500元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设甲种商品购进m件,则乙种商品购进(3m+10)件,根据总价=单价×数量结合用不超过3万元购买甲、乙两种商品,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最大正整数即可得出结论.【详解】解:(1)设甲种商品的成本为x元/件,乙种商品的成本为y元/件,根据题意得:231700 31500x yx y+=⎧⎨+=⎩,解得:400300 xy=⎧⎨=⎩.答:甲种商品的成本为400元/件,乙种商品的成本为300元/件.(2)设甲种商品购进m件,则乙种商品购进(3m+10)件,根据题意得:400m+300(3m+10)≤30000,解得:m≤2010 13.∵m为正整数,∵m最大为20.答:最多购进甲种商品20件.【点睛】本题主要考查了二元一次方程组的应用和一元一次不等式的应用,准确计算是解题的关键.29.小圆玩具工厂生产男孩玩具和女孩玩具,若生产男孩玩具8件,女孩玩具5件,需要成本3600元;若生产男孩玩具12件,女孩玩具10件,需要成本6400元.(1)男孩玩具和女孩玩具每件成本多少元?(2)根据市场调查,销售一件男孩玩具可获利100元,销售1件女孩玩具可获利240元,小圆玩具工厂计划投入不超过21万资金生产两种玩具,且男孩玩具产量是女孩玩具产量的3倍,预计全部销售后利润不少于11万元,请通过计算说明有几种生产方案.【答案】(1)男孩玩具每件成本为200元,女孩玩具每件成本为400元;(2)7种【分析】(1)设男孩玩具每件成本为x 元,女孩玩具每件成本为y 元,根据“生产男孩玩具和女孩玩具,若生产男孩玩具8件,女孩玩具5件,需要成本3600元;若生产男孩玩具12件,女孩玩具10件,需要成本6400元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设女孩玩具产量为a 件,则男孩玩具产量为3a 件,根据小圆玩具工厂计划投入不超过21万资金生产两种玩具,且全部销售后利润不少于11万元,即可得出关于a 的一元一次不等式组,解之即可得出a 的取值范围,再根据a 为整数即可得出生产方案的种数.【详解】解:(1)设设男孩玩具每件成本为x 元,女孩玩具每件成本为y 元,根据题意得:85360012106400x y x y +=⎧⎨+=⎩,解得:200400x y =⎧⎨=⎩. 答:男孩玩具每件成本为200元,女孩玩具每件成本为400元.(2)设女孩玩具产量为a 件,则男孩玩具产量为3a 件,根据题意得:20034002100001003240110000a a a a ⨯+≤⎧⎨⨯+≥⎩,解得:550027≤a ≤210, 又∵a 为整数,∵204≤a ≤210.∵共有7种生产方案.【点睛】本题考查了一元一次不等式组的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组:(2)根据数量关系,正确列出一元一次不等式组.30.为保障学生在学校期间保持清洁卫生,学校准备购买甲、乙两种洗手液,已知购买2瓶甲洗手液和3瓶乙洗手液共需140元,购买1瓶乙洗手液比购买2瓶甲洗手液少用20元.(1)求购买甲、乙两种洗手液每瓶各需多少元?(2)若要购买甲、乙两种洗手液共20瓶,且总费用不超过546元,求至少要购进甲种洗手液多少瓶?。

2020初中数学二元一次方程组典例应用:利润问题

2020初中数学二元一次方程组典例应用:利润问题

2020初中数学二元一次方程组典例应用:利润问题
知识梳理:
商品利润=商品售价-商品进价;利润率=利润进价100%。

典型例题:
思路点拨:
本题有两个未知数,即商品本钱和预售总价,也有两个明显的等量关系,即两种打折出售的获利情况,根据售价-成本-存货费用=利润,可以列出方程组求解即可。

变式拓展:
思路点拨:
本题易知第一个等量关系为甲乙两种商品共50件,则有x+y=50。

根据甲乙商品的进价和利润率可知甲商品每件利润为350.2=7元,乙商品每件利润为200.15=3元,再由所获总利润得到第二个等量关系,组成方程组求解即可。

初中数学二元一次方程组的应用题型分类汇编——销售利润问题(附答案)

初中数学二元一次方程组的应用题型分类汇编——销售利润问题(附答案)

装购进数量不超过 28 件,并使这批服装全部销售完毕后的总获利不少于 699 元.设购 进 B 种服装 x 件,那么: ①请写出 A、B 两种服装全部销售完毕后的总获利 y 元与 x 件之间的函数关系式; ②请问该服装店有几种满足条件的进货方案?哪种方案获利最多? 5.某校为奖励该校在南山区第二届学生技能大赛中表现突出的 20 名同学,派李老师为 这些同学购买奖品,要求每人一件,李老师到文具店看了商品后,决定奖品在钢笔和笔 记本中选择.如果买 4 个笔记本和 2 支钢笔,则需 86 元;如果买 3 个笔记本和 1 支钢 笔,则需 57 元. (1)求笔记本和钢笔的单价分别为多少元? (2)售货员提示,购买笔记本没有优惠:买钢笔有优惠,具体方法是:如果买钢笔超 过 10 支,那么超出部分可以享受 8 折优惠,若买 x(x>10)支钢笔,所需费用为 y 元, 请你求出 y 与 x 之间的函数关系式; (3)在(2)的条件下,如果买同一种奖品,请你帮忙计算说明,买哪种奖品费用更低. 6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售 价多 15 元,健民体育活动中心从该网店购买了 2 筒甲种羽毛球和 3 筒乙种羽毛球,共 花费 255 元. (1)该网店甲、乙两种羽毛球每筒的售价各是多少元? (2)根据健民体育活动中心消费者的需求量,活动中心决定用不超过 2550 元钱购进甲、 乙两种羽毛球共 50 筒,那么最多可以购进多少筒甲种羽毛球?
7.某超市第一次用 5800 元购进甲、乙两种商品,其中甲商品件数的 2 倍比乙商品件数 的 3 倍多 20 件,甲、乙两种商品的进价和售价如下表(利润=售价-进价)


进价(元/件)
20
28
售价(元/件)
26

1.3.4-二元一次方程组的应用(销售利润问题)

1.3.4-二元一次方程组的应用(销售利润问题)
解:设此商品的定价是y元,进价是x元, 由题意得:
解方程组,得
答:此商品的定价是200元,进价是150元。
例3:某商场购进甲、乙两种商品后,甲商品加价 50%,乙商品加价40%作为标价,适逢元旦,商 场举办促销活动,甲商品打八折销售,乙商品打 八五折酬宾,某顾客购买甲、乙商品各1件,共付 款538元,已知商场共盈利88元,求甲、乙两种商 品的进价各是多少?
3千米后,每千米的车费多少元?
分析 本问题涉及的等量关系有:
总车费=0~3km的车费(起步价)+超过3km的车费
解:设出租车的起步价是x元,超过3km后每千米收费y元.
由题意得:
x
+(11-
3)y
=
17,
x
+(23
-
3)y
=
35.解Biblioteka 程组,得x=5,
y
=
1.5.
答:这种出租车的起步价是5元,超过3km后每千米收
费1.5元.
巩固练习: 1、某市为了鼓励居民节约用水,规定:若每月 用水不超 过10立方米,按每立方米a元收费, 若每月超过10立方米,则超过部分按每立方米b 元收费,如果小头儿子家去年11月份用水15吨收 费30元;12月份用水17吨缴水费36元,求a、b。
2、为了缓解用电紧张局面,某地出台峰谷 电收费方案:每天8:00至22:00叫峰电, 每度电0.56元,每晚22:00至次日8:00叫 谷电,每度电0.28元,八月份小头儿子家 总用电为125度,总电费为49元,请问小头 儿子家八月份峰电、谷电各多少度?
类型
A
B
进价(元/件)
60
100
标价(元/件)
100
160

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用,利润问题专项练习附答案

二元一次方程应用——利润问题专项练习题(附答案)1.某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.经调查发现,每间客房每天的定价每涨10元,就会有5间客房空闲,如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用,若在尽可能节约资源的前提下,每天想获利8000元,每间客房应涨价多少元?2.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?3.金丰商场在服装销售旺季购进某服装1000件,以每件超出进价50元的价格出售,在一个月中销售此服装800件,之后由于进入淡季,每件降价20%,这样的售价比进价低10%,结果全部售出,请你帮助算一下,该商场在这一次买卖中共获利多少元?4.某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5.某商店如果将进货价8元的商品按每件10元出售,每天可销售200件,现采用提高售价,减少进货量的方法增加利润,已知这种商品每涨0.5元,其销售量就可以减少10件,问应将售价定为多少时,才能使所赚利润最大,并求出最大利润?6.某水果经销商销售一种新上市的水果,进货价为5元/千克,售价为10元/千克,月销售量为1000千克.(1)经销商降价促销,经过两次降价后售价定为8.1元/千克,请问平均每次降价的百分率是多少?(2)为增加销售量,经销商决定本月降价促销,经过市场调查,每降价0.1元,能多销售50千克,请问降价多少元才能使本月总利润达到6000元?7.高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.(1)设每个小家电定价增加x元,每售出一个小家电可获得的利润是多少元?(用含x的代数式表示)(2)当定价增加多少元时,商店获得利润6000元?8.广州塔是广州的新地标,旅行社为吸引游客推出了广州塔一日游,具体资费标准如下:如果人数不超过25人,人均消费180元;如果人数超过25人,每增加1人,则全体参加人员人均费用降低4元,但人均费用不得低于130元.某公司组织员工参加广州塔一日游,共支付旅行社一日游费用4800元,请问该公司这次共组织了多少员工参加广州塔一日游?9.秋末冬初,慈善人士李先生到某商场购买一批棉被准备送给偏远山区的孩子.该商场规定:如果购买棉被不超过60条,那么每条售价120元;如果购买棉被超过60条,那么每增加1条,所出售的这批棉被每条售价均降低0.5元,但每条棉被最低售价不得少于100元,最终李先生共支付棉被款8800元,请问李先生一共购买了多少条棉被?10.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

二元一次方程销售利润问题知识点及典型题练习

二元一次方程销售利润问题知识点及典型题练习

销售问题基本关系:盈利:售价>进价 利润=售价-进价>0亏损:售价<进价 利润=售价-进价<0利润=售价-成本 亏损额=成本-售价、利润=成本×利润率 亏损额=成本×亏损率售价=标价×10折数 售价=进价×(1+利润率) 1、 如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付140元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付160元.这家文具店的A 、B•两种类型毛笔的零售价各是多少?2、小芳和小亮买学习用品,小芳用18元买1支笔和3本笔记本;小亮用31元买了一样的2支钢笔和笔记本5本,问题如下:(1)求每之钢笔和每本笔记本的价格。

(2)校运动会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件,要求笔记本数不少于钢笔笔数 。

3、打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?%100⨯=成本利润利润率%100⨯=成本亏损额亏损率4、商场按标价销售某商品,每件可获利45元,按标价的8.5折销售8件与将标价降价35元销售12件的利润相同。

求该商品的进价和标价各多少元?4、某商场购进商品后,均加价10%作为销售价。

现商场搞优惠促销活动,决定由顾客抽奖确定折扣。

某顾客购买甲、乙两种商品分别抽到7折和9折,共付款399无。

已知这两种商品原销价之各为490元。

问这两种商品的进价分别为多少元?5、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?5、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?6、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?。

二元一次方程利润问题

二元一次方程利润问题

二元一次方程利润应用题解答题1、基本知识点例1:单价为100的玩具赛车在儿童节一天销售500个,请问童节赛车的总销售价是多少?【解题关键点】总售价=单价×销售量2、基本知识点例2:现在有100台冰箱,每台售价是1500元,这样每一台冰箱可获得利润25%,问可获得的总利润是多少?【解题关键点】总利润=单件利润×销售量3、基本知识点例3:张老师向商店订购某种商品,共买60件,定价100元/件,张老师对经理说:“如果减价,每件减价1元,就多买3件。

”经理一算,如减价4元,由于张老师多买,仍可获得与原来一样多总利润,问这种商品的成本多少元?【解题关键点】总利润=总售价-总成本4、进价为100元,售价为300元的MP3,出售后的利润率是多少?【解题关键点】利润率=利润/成本=(售价-成本)/成本=售价/成本-15、某商店购进360个玻璃制品,运输时损坏了40个,剩下的按进价117%出售,问此商品可盈利百分之几?6、【解题关键点】求利润率6、某商品进价50元,盈利25%,则出售该商品的利润和售价各为多少?7、一商店把某商品按标价的九折出售,仍可获得20%的利润.若该商品的进8、价是每件30元,问该商品的标价是多少元?【解题关键点】售价=成本×(1+利润率), 成本=售价/ (1+利润率)设该商品的标价是x7、混合商品的售价: 有A、B两种商品,如果A的利润增长20%,B的利润减少10%,那么A、B两种商品的利润就相同了。

问原来A商品的利润是B商品利润的百分之几?8、总利润=单件利润×销售量+单件利润×销售量某商店为了处理积压商品,实行亏本销售,已知购进甲乙两种商品原价之和共为880,甲种商品按原价的八折出售,乙种商品按原价的七五折出售,结果两种商品共亏196元,求甲乙两种商品的原价分别是多少?9、甲、乙两种商品,如果购买甲3件、乙7件共需27元,如果购买甲商品40件、乙商品50件,则可以按批发价计算,共需付189元,已知甲商品每件批发价比零售价低0.4元,乙商品每件批发价比零售价低0.5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

销售问
题 基本关系:
盈利:售价>进价 利润=售价-进价>0
亏损:售价<进价 利润=售价-进价<0
利润=售价-成本 亏损额=成本-售价、
利润=成本×利润率 亏损额=成本×亏损率
售价=标价×10
折数 售价=进价×(1+利润率) 1、 如果全组共有20名同学,若每人各买1支A 型毛笔和2支B 型毛笔,共支付140元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付160元.这家文具店的A 、B•两种类型毛笔的零售价各是多少?
2、小芳和小亮买学习用品,小芳用18元买1支笔和3本笔记本;小亮用31元买了一样的2支钢笔和笔记本5本,问题如下:
(1)求每之钢笔和每本笔记本的价格。

(2)校运动会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件,要求笔记本数不少于钢笔笔数 。

3、打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?
4、 商场按标价销售某商品,每件可获利45元,按标价的8.5折销售8件与将标价降价35元销售12件的利润相同。

求该商品的进价和标价各多少元?
4、某商场购进商品后,均加价10%作为销售价。

现商场搞优惠促销活动,决定由顾客抽奖确定折扣。

某顾客购买甲、乙两种商品分别抽到7折和9折,共付款399无。

已知这两种商品原销价之各为490元。

问这两种商品
的进价分别为多少元?
5、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?
5、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润
率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?
6、已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两种商品的单价和比原单价和提高了2%,求甲、乙两种商品的原单价各是多少元?。

相关文档
最新文档