可控硅工作原理及参数详解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由地盘之争引发的血案就此完结!
但是还有下文哦!
如果在 A、K 之间充分导通后,我们拿掉电压 VGK 企图让灯泡熄灭,如下所示:
7
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
很遗憾,没有成功,灯泡还是一往 无前地发射出嘲笑我们的刺眼光芒 ,因为这个时候 VGK 已经没有利用价值了,尽管没有 VGK,可控硅内部还是会有三极管电流正反馈维持可控 硅的继续导通。
可控硅完全导通后,流过 A、K 两极的电流即为通态电流 IT(On‐State Current),实际应 用时,VAK 通常是交流电压(如 220VAC),因此常将此参数标记为通态平均电流 IT(RMS),指 可控硅元件可以连续通过的工频正弦半波电流(在一个周期内)的平均值,而此时流过 G、 K 两极的电流即为门极电流 IG(Gate Current),这个门极控制电流不应超过门极最大峰值电 流 IGM(Forward Peak Gate Voltage)
Author: Jackie Long
三极管 Q1 放大后的集电极电流 IC1 无处可逃,只好往 Q2 的基极去钻(不会跑到电阻 R1 这边来,因为电压 VGK 肯定比 VBE2 要高,水往低处走),IC1 就变成了 IB2,三极管 Q2 的基极 电流 IB2 被替换成了(IB2×β2×β1),比原来增加了(β2×β1)倍。
所谓人多好办事,这个更大的基极电流 IB2 第二次被三极管 Q2 放大,此时的 IC2 就是(IB2 ×β2×β1×β2),然后又重复被两个三极管交互进行正反馈放大,周而复始。
在这个过程中,三极管 Q2 的集电极‐发射极压降越来越小,阳极电流 IAA 的电流也越来越 大,最终 Q2 饱和了(Q1 也不甘示弱,节奏妥妥地跟上),最后就成为下图所示的:
当 G、K 两极没有加正向电压时,A、K 之间相当于是断开的,灯泡不亮
6
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
当 G、K 加上正向电压后,A、K 之间相当于短路,所以 VAK 电压全部加在电灯泡上使其 发光。
其原理图符号如下图所示:
从可控硅的电路符号可以看到,它和二极管一样是一种单方向导电的器件,只是多了一 个控制极 G,正是它使得可控硅具有与二极管完全不同的工作特性。可控硅是可以处理耐高 压、大电流的大功率器件,随着设计技术和制造技术的进步,越来越大容量化 。
可控硅的基本结构如下图所示:
三个 PN 结(J1、J2、J3)组成 4 层 P1‐N1‐P2‐N2 结构的半导体器件对外有三个电极, 由最外层 P 型半导体材料引出的电极作为阳极 A,由中间的 P 型半导体材料引出的电极称为 控制极 G,由最外层的 N 型半导体材料引出的电极称为阴极 K,它可以等效成如图所示的两 只三极管电路。
那么有什么办法让电灯泡灭呢?
有一种办法很明显,就是使电流 IA 下降到不足以维持内部正反馈过程,可控硅自然就 阻断了,灯泡也会随之熄灭,也就是把 VAK 电压降下来。这个地球人都知道,你 VAK 虽然是 大 BOSS,但让我为你开路总得留下点买路钱吧!只要降低电压 VAK 让 IA 小于 IH,那么可控 硅就断开了(或在 A、K 两极加反向电压,其实这与降低电压 VAK 是一个道理)。
如果在可控硅阳极 A 与阴极 K 间加上反向电压时,开始可控硅处于反向阻断状态,只 有很小的反向漏电流流过。当反向电压增大到某一数值时,反向漏电流急剧增大,这时,所 对应的电压称为反向不重复峰值电压 VRSM(Peak Non百度文库Repetitive Surge Voltage)。
上面我们只是把 R2(与 R1)作为象征性的限流电阻,其实 R2 完全可以是负载,如电 灯泡,如下图所示:
导演,我没看懂这两者有什么区别!其实这与数字电路中的电平是相似的,如下图所示:
8
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
如果一个低电平要让另一方认为是高电平,那必须要超过 VOH(上图的 4.5V),一旦这 个低电平变成了高电平,继续让另一方认为是高电平,只需要不低于 VIH(上图的 3.5V)即 可,维持这个高电平的代价显示更低一些。
9
All rights reserved, NO Spreading without Authorization
行分析一下。
Author: Jackie Long
下图的典型可控硅应用电路,可以用来调节灯泡的亮度。电路输入的 220V 交流电 压经桥式整流后得到脉冲直流电压 VP,此时可控硅 VT 为阻断状态,电路是不导通的;
此时 VAK 电压全部施加到 A、K 两极之间,这个允许施加的最大电压 VAK 即断态重复峰值 电压 VDRM(Peak Repetitive Off‐State Voltage),相应的有断态重复峰值电流 IDRM(Peak Repetitive Off‐State Current)
如下图所示,电压 VGK 施加到 G、K 两极后,Q2 的发射结因正向偏置而使其导通,从而 产生了基极电流 IB2,此时 Q2 尚处于截止状态,可控硅阳极电流 IA 为 0,Q1 的基极电流 IB1 也为 0,电阻 R2 上也没有压降,因此 Q2 的集电极‐发射电压 VCE2 为 VAK,这个电压值通常远 大于 VBE2,即使是在测试数据手册中的参数时,VAK 也至少有 6V,实际应用时 VAK 会有几百 伏,因此,三极管 Q2 的发射结正偏、集电结反偏,开始处于放大状态。
处于微导通状态的三极管 Q2 形成的回路使三极管 Q1 基极所欠缺的电压一步到位,时 机终于成熟了,三极管 Q1 也因此刚刚进入放大状态(微导通)!由于 IB1 与 IC2 是相同的,IB1 经 Q1 放大后,其集电极电流 IC1=(IB2×β2×β1),这个电流值又比 IC2 增大了β1 倍。
4
All rights reserved, NO Spreading without Authorization
刚刚进入放大状态(微导通)的三极管 Q2 将基极电流 IB2 进行放大,相应集电极的电流 为 IC2,其值为(IB2×β2),尽管放大了β2 倍,但此时的 IC2 还比较小,因此 IA 与 IB1 也比较 小(但是已经不为 0 了),电阻 R2 中也有微小电流,可以看成一个完整的电流回路,但此 时的 Q2 的集电极‐发射极压降仍然很大。
但问题是,大多数时候 VAK 的电压不会那么容易(主动)下降,我帮主当得好好的,凭 什么让我下台?老子有的是钱!
狡兔死,走狗烹,电压 VGK 深谙其中道理,也早早从“门极关断可控硅”手中重金买下 简单的办法让灯泡熄灭。你丫的,我给你立下汗马功劳不让我当帮主,只有拆你的台了。如 下图所示:
将电压 VGK 反向接入 G、K 两极后,想让三极管 Q2 截止继而让可控硅进入阻断状态, 但还是无法成功,因为可控硅导通后处于深度饱和状态,就算加反向电压也是无效的。
调节可调电位器 RP1 即可控制电容 C1 的充电速度(充电常数越大充电速度越慢),这 样施加在灯泡上的交流电压的平均值就可以随之调整,从而调节电灯泡的高度。
更多精彩文章可关注《电子制作站中国》微信号 dzzzzcn
11
All rights reserved, NO Spreading without Authorization
在门极 G 开路时,要保持可控硅能处于导通状态所必须的最小正向电流,称为维持电 流 IH(Holding current)。还有一个擎住电流 IL(Latch current),是可控硅刚从断态转入通态 并移除 G 极触发信号后,能维持导通所需的最小电流。对于同一可控硅,通常 IL 约为 IH 的 数倍 。
3
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
与此同时,三极管 Q1 的发射极一直是 VA(K 最高电压),集电极一直是较低的电压(VBE2), 只要基极设置合适的电压,就可以进入放大状态,所以一直卧薪尝胆、蛰伏待机。Q2 集电 极电流 IC2 的出现,使得三极管 Q1 有机可乘。
2
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
只有在 G、K 加上正向电压后,才可以触发可控硅的导通,这个触发电压的最小值称为 门极触发电压 VGT(Gate Trigger Voltage),这个值就是一个 PN 结的结电压(不是电池电压 VGK),此时流过控制极的电流称为门极触发电流 IGT(Gate Trigger Voltage)
随着脉冲直流电压 VP 通过可调电阻 RP1、R1 对电容 C1 进行充电,当电容 C1 上的 电压足以触发可控硅 VT 时,可控硅导通后负载回路畅通,从而使电灯泡点亮,如下图 所示:
10
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
当 Q1 与 Q2 充分导通后(可控硅导通),A、K 两极之间的压降很小,其实就是 Q1 发射
结电压 + VBE2 Q2 集电极‐发射极饱和电压 VCE1,这个电压称为正向通态电压 VTM(Forward
On‐State Voltage)
可以看到,VAK 的电压值最终全部加到电阻 R2 上面,整个过程就是由电压 VGK 引发的“血 案”,原来 R2 电阻上没有任何压降,VGK 电压触发可控硅后,VAK 电压就全部加在电阻 R2 上 面了。
5
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
这两个值与之前介绍的 IDRM、VDRM 是一样的,只不过 IDRM、VDRM 是在控制 G 极断开、可 控硅阻断状态下测量的,而 IRRM、VRRM 是在可控硅 A、K 极接反向电压下测量的。
Author: Jackie Long
可控硅参数详解
可控硅全称“可控硅整流元件”(Silicon Controlled Rectifier),简写为 SCR,别名晶体闸 流管(Thyristor),是一种具有三个 PN 结、四层结构的大功率半导体器件。可控硅体积小、 结构简单、功能强,可起到变频、整流、逆变、无触点开关等多种作用,因此现已被广泛应 用于各种电子产品中,如调光灯、摄像机、无线电遥控、组合音响等。
当 VAK 是交流电源的负半周时,可控硅因为 A、K 两极加反向电压而阻断,此时允许施 加的最大电压称为反向重复峰值电压 VRRM(Peak Repetitive Reverse Blocking Voltage),由于 可控硅阻断时的电阻不是无穷大,此时的电流称之为反向重复峰值电流 IRRMM(Peak Repetitive Reverse Blocking Current)。
如果反向电压增大到某一数值时,反向漏电流急剧增大,此时所对应的电压称为反向门 极峰值电压 IGM(Reverse Peak Gate Voltage),使用时不应超过此值。
上面我们讨论的是常用的 P 型门极、阴极端受控的可控硅,还有一种不常用的 N 型门 极、阳极端受控的可控硅,其原理图符号如下图所示,两者的原理是完全一样的,读者可自
下面我们来看看可控硅的工作原理: 如下图所示,初始状态下,电压 VAK 施加到可控硅的 A、K 两个端,此时三极管 Q1 与 Q2 都处于截止状态,两者地盘互不侵犯。
1
All rights reserved, NO Spreading without Authorization
Author: Jackie Long
相关文档
最新文档