可控硅工作原理
可控硅工作原理及作用
可控硅工作原理及作用
可控硅,也称为晶闸管,是一种半导体器件。
可控硅的主要作用是控制电流,是电子行业中最广泛应用的器件之一。
可控硅的工作原理可以简单概括为:通过控制晶体管的控制电流,从而控制晶体管的导电状态。
当控制电流为零时,晶体管无法导电。
当控制电流为正值时,晶体管处于导通状态,电流可以顺畅地通过晶体管。
当控制电流为负值时,晶体管处于截止状态,电流无法通过晶体管。
可控硅在电路中主要有以下两种作用:
1. 控制电压
可控硅通常用于控制电压达到特定的阈值。
通过控制可控硅的控制电流,可以使电路中的电压稳定在所需范围内。
2. 控制电流
可控硅还可以用于控制电流,特别是在高功率电子设备中,控制电流非常重要。
通过控制可控硅的导通和截止状态,调整电路中的电流值。
基于可控硅的电路有很多应用,包括变频器,逆变器和直流电源。
例如,
在变频器中,可控硅可以用来控制电机运行的速度,从而达到能耗节约的效果。
总之,可控硅是一种常见的半导体器件,可以用于控制电路中的电压和电流。
它在电子设备中的应用非常广泛,成为电子技术中不可或缺的一部分。
可控硅工作原理
可控硅工作原理
可控硅,即控制半導體管,被用于電路,讓參與著電路中的週期性電壓和電流信號的
比例和比例方向可以被精確的控制,讓大功率的類比放大器能夠根據積分元件的訊號輸出,來實現永久性的可調。
可控硅主要由兩個部分組成:晶體管和可控薄膜管,可控薄膜管中如何控制到控制信號,以及控制信號如何通過晶體管及其他元件以及工作裝置開啟或者斷開電路,是決定可
控硅性能的關鍵因素。
晶體管是可控硅的核心元件,它具有良好的電導性能和穩定性,可以提供快速且精確
的控制。
它是一種采用為架構的電子元件,其中由多個穿孔晶片組成了穿孔晶片的積累技術,可以把P級氮化鎵元件的電子定量洩漏的場的能量通過晶片積累來穿孔晶片上的層級。
晶體管的導通及開關模式取決于P級氮化鎵元件的電子洩漏程度,當P級氮化鎵電子的洩
漏程度極少時,即導通模式,當電子洩漏較多時,即開關方式。
此外,可控硅中還包含了許多其他元件,如可控薄膜管,可控薄膜管是一種含有層級
的薄膜管,它的控制原理是利用薄膜上的應力與溫度的變化來對晶片的層級洩漏進行控制,其性能對應於晶片的導通和開關模式,以滿足對電路的控制需求。
由于可控薄膜管所能夠
提供的傳遞量很大,能夠有效地將軟件(程序)到硬件(電路)的信號作詳細的控制。
(1)表明要控制的範圍;
(2)將控制信號傳遞到可控薄膜管上;
(3)在可控薄膜管上改變應力和溫度,以改變晶片的裝接方式;
(4)隨著晶片的裝接方式的改變,導通的模式和開關的模式發生了變化;
(5)藉由改變導通和斷開模式,實現對電路輸出信號大小和方向的控制。
可控硅的工作原理是啥
可控硅的工作原理是啥
可控硅(SCR)的工作原理是基于半导体材料的电子特性。
SCR是一种四层结构的PNPN型半导体器件,在无触发信号时处于阻断状态,不导通电流。
当施加一个正向的触发脉冲信号时,SCR会进入导通状态,允许电流流过。
SCR的工作原理如下:
1. 阻断状态:当没有施加触发信号时,SCR处于阻断状态。
在这种情况下,P1区和N区之间的结正向偏置,导致P1区和P2区之间的PN结反向偏置,从而阻止电流通过。
2. 触发信号:当施加一个正向的触发脉冲信号时,SCR会进入导通状态。
触发脉冲信号使得SCR中的P1区和P2区中的电子被注入,形成电子云,破坏PN结反向偏置。
这导致P1区和P2区之间的PN结变为正向偏置,开始导通电流。
3. 导通状态:一旦SCR进入导通状态,它将保持导通,直到通过其的电流降低到一个较低的水平(称为保持电流),或者施加一个正向的阻断信号。
4. 阻断状态复位:为了将SCR从导通状态转换为阻断状态,需要施加一个正向的阻断信号。
这个信号使得SCR中的电子被移除,使得P1区和P2区之间的PN结再次反向偏置,导致阻断电流流动。
通过适当的控制触发信号的时机和持续时间,可控硅可以实现
电流的精确控制和开关操作。
这使得它在电力电子和控制领域中得到广泛应用,例如变频器、交流电调速器、电源电路等。
可控硅工作原理
可控硅工作原理1. 引言可控硅(Silicon Controlled Rectifier,简称SCR)是一种非常常见且重要的半导体器件,广泛应用于电力控制、电机驱动、电炉加热等领域。
本文将介绍可控硅的工作原理,包括其基本结构、器件特性以及触发控制等方面的内容。
2. 可控硅的基本结构可控硅通常由四层半导体材料构成,其基本结构如图所示:可控硅基本结构可控硅基本结构从图中可看出,可控硅由三个 P-N 接面构成,两个外层为P 型半导体,中间为 N 型半导体。
第二外层 P 型半导体与 N型半导体之间的结部分称为控制极(G),两个外层 P 型半导体分别称为阳极(A)和阴极(K)。
在可控硅的结构中,G极是一个非常重要的部分,它决定了可控硅的触发方式和工作特性。
3. 可控硅的工作原理3.1 静态特性可控硅在正向电压施加时,其工作特性如图所示:可控硅静态特性可控硅静态特性从图中可见,当阳极对可控硅施加正向电压时,只有当阴极 K 极为负电压时,可控硅才能导通。
换句话说,只有当 A 极为正电压,G 极为负电压时,才能使可控硅导通。
这是由于在关闭状态时,G 极没有外界电流流过,能保持该状态的电压称为保持电压 UH。
3.2 动态特性可控硅在触发过程中,其工作特性如图所示:可控硅动态特性可控硅动态特性可控硅的触发是通过在控制极 G 上施加合适的触发信号来实现的。
一旦 G 极接收到触发脉冲,就会使可控硅进入导通状态,称为开通。
在开通状态下,即使去掉控制极上的触发信号,可控硅仍然保持导通状态,因此可控硅被称为双稳态元件。
当阳极 A 对可控硅施加正向电压时,通过给 G 极施加触发信号,可使可控硅导通,即可完成开关动作。
此时,可控硅的两个外层 P 型半导体分别形成了 P-N-P-N 的四层结构,内层 N 型半导体的电流将被大幅增加。
4. 可控硅的触发控制4.1 门电流触发门电流触发是最常见的可控硅触发方式之一,这种触发方式通过控制极 G 上的电流实现。
可控硅的工作原理与种类
可控硅的工作原理与种类可控硅(Silicon Controlled Rectifier,SCR)是一种用于控制大电流的半导体元件,广泛应用于电力电子领域。
其工作原理是基于PN结的特性,通过控制正向偏置电压和触发电流,实现对电流的控制。
可控硅由四个PN结组成,即两个正向接触的P区,中间夹着两个N区。
当P 区加上正向电压,N区加上反向电压时,PN结呈现出正向偏置特性,此时NPNPN结构的形成使电流能够通过。
但当P区加上负向电压,N区加上正向电压时,PN结的反向耐压特性生效,电流无法通过。
在可控硅导通之前,需要通过一个触发电流(Gate Current)来激活。
当触发电流Igt满足一定标准时,从低阻态(OFF态)向高阻态(ON态)切换,并开始导通电流,从而实现对电流的控制。
在可控硅中,还存在一个关键参数叫做触发电压(Gate Voltage)。
当触发电流通过后,正向电压达到一定值时,才能够激活并导通,这就是触发电压的作用。
触发电压的值取决于具体的可控硅型号与工作条件。
可控硅根据不同的工作状态和应用特性,可分为以下几种类型:1. 静态门极控制型可控硅(SGCR)静态门极控制型可控硅是最常见的一种可控硅类型。
当触发电流通过后,硅片的移动电荷会改变PN结的导电特性,从而实现硅片的导通。
通过改变触发信号来控制触发电流,可以实现对电流的调控。
2. 双向晶闸管(Thyristor)双向晶闸管是一种具有双向导通能力的可控硅。
与普通的单向可控硅不同,双向晶闸管可以实现两个方向上的导通和关断。
这种特性使其适用于交流电源的控制。
3. 光控硅(Light Controlled SCR,LSCR)光控硅是一种通过光控制触发电流的可控硅。
光控硅内部嵌入了一个光敏元件,当光敏元件受到光照时,产生电流以激活SCR。
通过改变光照强度和光敏元件的特性,可以实现对电流的控制。
4. 可控硅二极管(SCR-Diodes)可控硅二极管是一种由多个可控硅串联而成的电子元件。
可控硅整流器工作原理
可控硅整流器工作原理可控硅是一种多层PN结的半导体器件,具有三个电极:主极(Anode)、控制极(Gate)和触发极(Cathode)。
可控硅器件具有两种工作状态:导通状态和截止状态。
在可控硅整流器中,交流电源的正半周与负半周分别作用于主极和触发极,其工作原理如下:1.导通状态:当交流电源的电压正半周作用于主极时,主极变为正极,触发极变为负极。
此时,若控制极施加一个正电压,就可以激发PN结,使之进入导通状态。
2.截止状态:当交流电源的电压负半周作用于主极时,主极变为负极,触发极变为正极。
此时,无论控制极施加什么电压,都不能激发PN结,使之进入截止状态。
通过对控制极施加不同电压,可实现可控硅整流器的工作状态切换,从而实现电流的控制。
1.整流过程:在交流电源正半周的导通状态中,如果可控硅器件导通,则交流电源的正半周通过可控硅器件,输出为直流电流。
此时,输出电流的大小与控制极施加的电压有关,通过控制极电压的调节,可以控制输出电流的大小。
2.关断过程:当交流电源的电压负半周的时候,可控硅器件处于截止状态,电流无法通过。
这个过程中,交流电源的负半周电压通过一个旁路二极管(反向偏置)绕过可控硅器件,输出为直流电流。
通过控制极施加不同的电压,可实现整流和关断状态的切换,从而实现了可控硅整流器对交流电的转换。
需要注意的是,可控硅整流器由于具有导通状态和截止状态的非线性特性,会产生较大的谐波失真和功率消耗。
因此,在实际应用中,通常需要搭配滤波电路对输出进行滤波处理,以提高整流器的效率和输出电流质量。
总结起来,可控硅整流器工作原理是通过对控制极施加不同电压,控制可控硅器件的导通和截止状态,实现对交流电的整流和输出电流的控制。
可控硅工作原理及其应用新版
可控硅工作原理及其应用新版可控硅(scr: silicon controlled rectifier)是可控硅整流器的简称。
可控硅有单向、双向、可关断和光控几种型别它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。
单向可控硅的工作原理单向可控硅原理可控硅是p1n1p2n2四层三端结构元件,共有三个pn结,分析原理时,可以把它看作由一个pnp管和一个npn管所组成当阳极a加上正向电压时,bg1和bg2管均处于放大状态。
此时,如果从控制极g输入一个正向触发讯号,bg2便有基流ib2流过,经bg2放大,其集电极电流ic2=β2ib2。
因为bg2的集电极直接与bg1的基极相连,所以ib1=ic2。
此时,电流ic2再经bg1放大,于是bg1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到bg2的基极,表成正反馈,使ib2不断增大,如此正向馈迴圈的结果,两个管子的电流剧增,可控硅使饱和导通。
由于bg1和bg2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极g的电流消失了,可控硅仍然能够维持导通状态,由于触发讯号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。
以上两个条件必须同时具备,可控硅才会处于导通状态。
另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。
可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。
二、单向可控硅的引脚区分对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。
从外形无法判断的可控硅,可用万用表r×100或r×1k 挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的範围)时,黑表笔所接的是控制极g,红表笔所接的是阴极c,余下的一只管脚为阳极a。
可控硅工作原理
一种以硅单晶为基本材料的P1N1P2N2 四层三端器件,创制于1957 年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。
又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。
在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称“死硅”)更为可贵的可控性。
它惟独导通和关断两种状态。
可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。
可控硅的优点不少,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。
可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。
可控硅从外形上分类主要有:螺栓形、平板形和平底形。
1、可控硅元件的结构不管可控硅的外形如何,它们的管芯都是由P 型硅和N 型硅组成的四层P1N1P2N2 结构。
见图1。
它有三个PN 结(J1 、J2 、J3),从J1 结构的P1 层引出阳极A,从N2 层引出阴级K,从P2 层引出控制极G,所以它是一种四层三端的半导体器件。
2 、工作原理可控硅是P1N1P2N2 四层三端结构元件,共有三个PN 结,分析原理时,可以把它看做由一个PNP 管和一个NPN 管所组成,其等效图解如图1 所示当阳极A 加之正向电压时,BG1 和BG2 管均处于放大状态。
此时,如果从控制极G 输入一个正向触发信号,BG2 便有基流ib2 流过,经BG2 放大,其集电极电流ic2=β2ib2。
因为BG2 的集电极直接与BG1 的基极相连,所以ib1=ic2。
此时,电流ic2 再经BG1 放大,于是BG1 的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2 的基极,表成正反馈,使ib2 不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
可控硅的工作原理(带图)
可控硅的工作原理(带图)可控硅是可控硅整流器的简称。
它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。
图3-29是它的结构、外形和图形符号可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。
当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看岀PN结处于反向,具有类似二极管的反向特性。
当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。
但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。
加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。
此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。
可控硅一旦导通,控制极便失去其控制作用。
就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。
图3-30是可控硅的伏安特性曲线。
图中曲线I为正向阻断特性。
无控制极信号时,可控硅正向导通电压为正向转折电压(U BO);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。
当控制极电流大到一定程度时,就不再出现正向阻断状态了。
曲线H为导通工作特性。
可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。
若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。
曲线山为反向阻断特性。
当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。
只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。
正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。
可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。
可控硅的工作原理及基本特性
可控硅的工作原理及基本特性1、工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示图1 可控硅等效图解图当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流 ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1表1 可控硅导通和关断条件状态条件说明从关断到导通 1、阳极电位高于是阴极电位2、控制极有足够的正向电压和电流两者缺一不可维持导通 1、阳极电位高于阴极电位2、阳极电流大于维持电流两者缺一不可从导通到关断 1、阳极电位低于阴极电位2、阳极电流小于维持电流任一条件即可2、基本伏安特性可控硅的基本伏安特性见图2图2 可控硅基本伏安特性(1)反向特性当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。
此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。
此时,可控硅会发生永久性反向击穿。
图3 阳极加反向电压(2)正向特性当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压图4 阳极加正向电压由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。
可控硅的工作原理
可控硅的工作原理
可控硅(SCR)是一种半导体器件,它具有双向导通特性,可以实现电流的单
向控制。
可控硅的工作原理主要涉及到PN结、触发电压和关断条件等方面。
接下来,我们将详细介绍可控硅的工作原理。
首先,可控硅的基本结构是由P型半导体和N型半导体构成的PN结。
当PN
结处于正向偏置状态时,电子和空穴会在PN结内扩散,形成电流。
而当PN结处
于反向偏置状态时,电子和空穴的扩散会被阻止,电流几乎为零。
这种特性使得可控硅可以实现电流的控制。
其次,可控硅的触发电压是使其导通的最小电压。
当外加电压大于触发电压时,PN结内部会形成电子-空穴对,从而使得可控硅导通。
这也是可控硅的一个重要特性,它可以通过控制触发电压来实现电流的控制。
最后,可控硅的关断条件是指当电流小于保持电流时,可控硅将自动关断。
保
持电流是指在可控硅导通状态下,即使触发电压消失,它仍然可以继续导通的最小电流。
当电流小于保持电流时,可控硅将自动关断,从而实现电流的控制和保护电路的安全运行。
总的来说,可控硅的工作原理主要涉及到PN结、触发电压和关断条件。
通过
对这些原理的了解,我们可以更好地应用可控硅,实现电流的精确控制和保护电路的安全运行。
希望本文对您有所帮助,谢谢阅读!。
可控硅工作原理及参数详解
可控硅工作原理及参数详解可控硅(Silicon-Controlled Rectifier, SCR)是一种半导体器件,由四层P-N结构组成,具有三个电极:阳极(Anode)、阴极(Cathode)和门极(Gate)。
可控硅的工作原理如下:当阳极与阴极之间的电压达到一定的电压(称为激励电压),并且在门极上施加一个正脉冲电压时,P-N结上就会有电流通过,使得可控硅导通。
此时,可控硅的状态称为导通状态。
当阳极阴极之间的电压低于激励电压,或者在门极上施加的脉冲电压为零,或者阳极阴极之间的电流下降到可控硅的保持电流以下时,可控硅会进入截止状态。
可控硅具有以下几个重要的参数:1.阻断电压(VBO):阻断电压是指可控硅在截止状态下能够承受的最高电压。
超过这个电压,可控硅就会击穿,产生电弧。
2.保持电流(IH):保持电流是指可控硅在导通状态下必须保持的最小电流。
保持电流以下,可控硅会自动进入截止状态。
3.阻止电流(IDRM):阻止电流是指可控硅在截止状态下流过的最大电流。
超过这个电流,可控硅可能会被损坏。
4.导通电压降(VF):导通电压降是指当可控硅处于导通状态时,阳极与阴极之间的电压降低。
5.死区时间(tQ):死区时间是指可控硅在接收到门极脉冲后,需要经过的一段时间才能将晶体管从截止状态切换到导通状态。
6.触发电流(IGT):触发电流是指施加在门极上的脉冲电流,将可控硅从截止状态切换到导通状态的最小电流。
7.可控硅的响应时间:可控硅的响应时间是指从接收到触发信号到开始导通的时间。
可控硅的应用范围广泛,常见的应用包括交流电控制、瞬态电压抑制、开关电源和电机驱动等领域。
可控硅的工作原理
可控硅的工作原理可控硅(SCR,Silicon Controlled Rectifier)是一种半导体器件,可以实现电流的控制和方向的改变。
它是由四层或三层p-n-p-n的结构组成,主要由半导体材料硅制成。
触发:在不加电的情况下,可控硅的p-n-p-n结构处于正向阻断状态。
当加上一个相对较小的正向触发电压时,发射结损耗能量,电子流可以穿过去。
此时,管子由高阻态变为导通态。
导通:当触发电流正常流动时,当前向两个结都失去了控制,处于导通状态。
此时,可控硅呈现出非常低的电压降,电流通过它。
并且,一旦这个状态达到,即使撤销触发电流,可控硅还会一直保持导通状态。
关断:在导通期间,压降减少到一个较低的值,以使电流不再流过管子。
为了使可控硅返回高阻状态,并且不再传导电流,需要在阳极到触发电流的线路上加个负向电压。
这导致管子正常关断。
可控硅的触发有两种方式:正向触发和负向触发。
正向触发是指在阳极与控制极之间加上正向电压,将可控硅由高阻态变为导通态。
这种方式需要一个外部正向电源来提供触发电流。
负向触发是指在阳极与控制极之间加上负向电压,将可控硅由高阻态变为导通态。
这种方式不需要外部电源,可以由电荷存储装置提供负向电压刺激。
负向触发通常用于瞬态电压抑制和防止尖峰电压的干扰。
可控硅主要应用在交流电设备的控制电路中,特别适合用于高功率、高电流的场合。
它可以实现交流电的半波和全波控制,可以用于调光、调速、电动机控制、电焊设备、电炉控制等领域。
总之,可控硅通过触发、导通和关断过程来实现电流的控制和方向的改变。
它的工作原理相对简单,但却具有重要的应用价值,是电力控制领域中的重要器件之一。
可控硅的工作原理
可控硅的工作原理可控硅(Silicon-Controlled Rectifier,简称SCR)是一种半导体电器元件,通过控制门极电压来控制其导通和关断。
可控硅广泛应用于功率电子领域,如调压、控制电机、开关电源等。
其工作原理如下:可控硅由三个PN结组成,正向接入外电源,称为主电源。
其中,左边的PN结称为P结,右边的PN结称为N结,中间的PN结称为P结。
P结与N结之间的结点称为控制极,用来控制可控硅的导通和关断。
当可控硅的控制极未加电时,P结与N结之间的势垒阻隔着电流流动,可控硅处于关断状态。
此时无论主电源的极性如何,可控硅都无法导通。
当控制极加上正向的触发电压时,控制极与P结之间的PN结被击穿,形成一个电流通道,电流可以从主电源的正极流过P结,再通过可控硅流向主电源的负极。
可控硅此时处于导通状态。
当控制极加上负向的电压时,控制极与P结之间的PN结处于正向偏置,没有击穿现象。
此时可控硅仍处于关断状态。
可控硅的关断状态可以通过控制极上的负向电压来实现。
当控制极加上负向电压时,PN结中的载流子在外加电压作用下很快消失,PN结间的电流无法通过。
可控硅此时处于关断状态。
实际应用中,为了防止可控硅过热,需要加入一个热敏电阻来监测温度,并通过控制器对控制极施加适当的电压。
控制器根据热敏电阻的温度信息调整控制极的电压,以实现对可控硅的控制。
可控硅的主要特点是具有可控性良好以及功率损耗小的优点。
能够在低电压和小电流下工作,使其在各种控制电路中得到广泛应用。
同时,可控硅也有一些局限性,如在关断状态下需要消耗一定的维持电流,且关断时间较长等。
总结起来,可控硅的工作原理是通过控制极电压的变化来控制其导通和关断状态。
通过正向触发电压使得PN结被击穿形成导通通道,而逆向电压则使PN结处于正向偏置,无法形成导通通道。
通过适当的控制电压,可实现对可控硅的可控性。
可控硅模块工作原理
可控硅模块工作原理
可控硅模块是一种电子器件,它由可控硅和辅助元件组成。
可控硅是一种能够控制电流流动的半导体材料,具有双向导电能力。
当可控硅的控制电极施加正向电压时,可控硅会进入导通状态,电流可以通过可控硅流动;当控制电极施加反向电压时,可控硅会进入截止状态,电流无法通过。
可控硅模块的工作原理如下:
1. 触发:当控制电极施加一个大于触发电压的脉冲电压时,可控硅会进入导通状态。
触发电压一般较低,通常为几十伏特。
2. 导通:一旦可控硅进入导通状态,电流会从主回路的阳极流过可控硅,然后流向负极。
此时可控硅会保持导通状态,直到电流降至零或者外部控制信号改变。
3. 截止:当控制电极施加一个反向电压时,可控硅会进入截止状态,无法导通电流。
总的来说,可控硅模块的工作原理是通过控制电极施加适当的电压来控制可控硅的导通和截止状态,从而实现对电流的控制。
可控硅模块广泛应用于电力控制和调节领域,如调光、温度控制、电机控制等。
可控硅工作原理
可控硅工作原理
可控硅是一种电子器件,它可以控制和调节电流。
它由可控硅晶体管(SCR)组成,是一种半导体元件,由三极管结构组成。
它能够根据电源控制输入信号大小,从而控制系统中电流的大小和方向。
可控硅的工作原理是:当电源接在可控硅的两个极性之间时,产生的电流可以通过调节电源的大小来控制可控硅的电流。
当可控硅检测到可控电源的电压降低到一定程度时,可控硅会打开,电流就可以通过可控硅。
当可控电源的电压升高到一定程度时,可控硅就会关闭,电流就不能通过可控硅。
此外,可控硅还可以控制和调节电动机的转速,电热器的温度,电灯的亮度,电视节目的音量等等。
它还可以用来控制电源的开关,控制电源的输出功率,控制电源的效率,控制各种电子装置的输出功率,以及保护电子设备不受损害。
总之,可控硅的工作原理是通过调节电源的大小来控制可控硅的电流,从而控制和调节电流,电动机的转速,电热器的温度,电灯的亮度,电视节目的音量,电源的开关,电源的输出功率,电源的效率,以及保护电子设备不受损害。
可控硅是当今电子行业中经常使用的一种重要的半导体元件,它的工作原理对现代电子设备有着重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可控硅工作原理
一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。
又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。
在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称死硅)更为可贵的可控性。
它只有导通和关断两种状态。
可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。
可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。
可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。
可控硅从外形上分类主要有:螺栓形、平板形和平底形。
1、可控硅元件的结构
不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。
见图1。
它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。
2、工作原理
可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示
图1、可控硅结构示意图和符号图
当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。
这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。
由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。
由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1
可控硅的基本伏安特性见图2
图2可控硅基本伏安特性
(1)反向特性
当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。
此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫反向转折电压。
此时,可控硅会发生永久性反向
(2)正向特性
当控制极开路,阳极上加上正向电压时(见图4),J1、J3结正偏,但J2结反偏,这与普通PN结的反向特性相似,也只能流过很小电流,这叫正向阻断状态,当电压增加,图3的特性发生了弯曲,如特性OA段所示,弯曲处的是UBO叫:正向转折电压
图4阳极加正向电压
由于电压升高到J2结的雪崩击穿电压后,J2结发生雪崩倍增效应,在结区产生大量的电子和空穴,电子时入N1区,空穴时入P2区。
进入N1区的电子与由P1区通过J1结注入N1区的空穴复合,同样,进入P2区的空穴与由N2区通过J3结注入P2区的电子复合,雪崩击穿,进入N1区的电子与进入P2区的空穴各自不能全部复合掉,这样,在N1区就有电子积累,在P2区就有空穴积累,结果使P2区的电位升高,N1区的电位下降,J2结变成正偏,只要电流稍增加,电压便迅速下降,出现所谓负阻特性,见图3的虚线AB段。
这时J1、J2、J3三个结均处于正偏,可控硅便进入正向导电状态---通态,此时,它的特性与普通的PN结正向特性相似,见图2中的BC段
2、触发导通
图5阳极和控制极均加正向电压
3、可控硅在电路中的主要用途是什么?
普通可控硅最基本的用途就是可控整流。
大家熟悉的二极管整流电路属于不可控整流电路。
如果把二极管换成可控硅,就可以构成可控整流电路。
现在我画一个最简单的单相半波可控整流电路〔图4(a)〕。
在正弦交流电压U2的正半周期间,如果VS的控制极没有输入触发脉冲Ug,VS仍然不能导通,只有在U2处于正半周,在控制极外加触发脉冲Ug时,可控硅被触发导通。
现在,画出它的波形图〔图4(c)及(d)〕,可以看到,只有在触发脉冲Ug到来时,负载RL上才有电压UL输出(波形图上阴影部分)。
Ug到来得早,可控硅导通的时间就早;Ug到来得晚,可控硅导通的时间就晚。
通过改变控制极上触发脉冲Ug到来的时间,就可以调节负载上输出电压的平均值UL(阴影部分的面积大小)。
在电工技术中,常把交流电的半个周期定为180,称为电角度。
这样,在U2的每个正半周,从零值开始到触发脉冲到来瞬间所经历的电角度称为控制角α;在每个正半周内可控硅导通的电角度叫导通角θ。
很明显,α和θ都是用来表示可控硅在承受正向电压的半个周期的导通或阻断范围的。
通过改变控制角α或导通角θ,改变负载上脉冲直流电压的平均值UL,实现了可控整流。
4、在桥式整流电路中,把二极管都换成可控硅是不是就成了可控整流电路了呢?
在桥式整流电路中,只需要把两个二极管换成可控硅就能构成全波可控整流电路了。
现在画出电路图和波形图(图5),就能看明白了
5、可控硅控制极所需的触发脉冲是怎么产生的呢?
可控硅触发电路的形式很多,常用的有阻容移相桥触发电路、单结晶体管触发电路、晶体三极管触发电路、利用小可控硅触发大可控硅的触发电路,等等。
6、什么是单结晶体管?它有什么特殊性能呢?
单结晶体管又叫双基极二极管,是由一个PN结和三个电极构成的半导体器件(图6)。
我们先画出它的结构示意图〔图7(a)〕。
在一块N型硅片两端,制作两个电极,分别叫做第一基极B1和第二基极B2;硅片的另一侧靠近B2处制作了一个PN结,相当于一只二极管,在P区引出的电极叫发射极E。
为了分析方便,可以把B1、B2之间的N型区域等效为一个纯电阻RBB,称为基区电阻,并可看作是两个电阻RB2、RB1的串联〔图7(b)〕。
值得注意的是RB1的阻值会随发射极电流IE的变化而改变,具有可变电阻的特性。
如果在两个基极B2、B1之间加上一个直流电压UBB,则A点的电压UA为:若发射极电压UE<UA,二极管VD截止;当UE大于单结晶体管的峰点电压UP(UP=UD+UA)时,二极管VD导通,发射极电流IE注入RB1,使RB1的阻值急剧变小,E点电位UE随之下降,出现了IE增大UE反而降低的现象,称为负阻效应。
发射极电流IE继续增加,发射极电压UE不断下降,当UE下降到谷点电压UV以下时,单结晶体管就进入截止状态。
7、怎样利用单结晶体管组成可控硅触发电路呢?
我们单独画出单结晶体管张弛振荡器的电路(图8)。
它是由单结晶体管和RC充放电电路组成的。
合上电源开关S后,电源UBB经电位器RP向电容器C充电,电容器上的电压UC按指数规律上升。
当UC上升到单结晶体管的峰点电压UP时,单结晶体管突然导通,基区电阻RB1急剧减小,电容器C通过PN结向电阻R1迅速放电,使R1两端电压Ug发生一个正跳变,形成陡峭的脉冲前沿〔图8(b)〕。
随着电容器C的放电,UE按指数规律下降,直到低于谷点电压UV时单结晶体管截止。
这样,在R1两端输出的是尖顶触发脉冲。
此时,电
源UBB又开始给电容器C充电,进入第二个充放电过程。
这样周而复始,电路中进行着周期性的振荡。
调节RP可以改变振荡周期
8、在可控整流电路的波形图中,发现可控硅承受正向电压的每半个周期内,发出第一个触发脉冲的时刻都相同,也就是控制角α和导通角θ都相等,那么,单结晶体管张弛振荡器怎样才能与交流电源准确地配合以实现有效的控制呢?
为了实现整流电路输出电压可控,必须使可控硅承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电源同步。
怎样才能做到同步呢?大家再看调压器的电路图(图1)。
请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。
在可控硅没有导通时,张弛振荡器的电容器C被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。
当交流电压过零瞬间,可控硅VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。
这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。
调节RP的阻值,就可以改变电容器C的充电时间,也就改变了第一个Ug发出的时刻,相应地改变了可控硅的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。
双向可控硅的T1和T2不能互换。
否则会损坏管子和相关的控制电路。