中考作图题专题训练

合集下载

中考数学作图题60例

中考数学作图题60例

中考数学作图题60例一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.10.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.11.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.12.在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.13.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).14.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)15.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.16.如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.17.下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.23.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C (1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作∠A的平分线交CD于E;(2)过B作CD的垂线,垂足为F;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.25.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).26.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.27.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.28.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.29.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)30.如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.31.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C (﹣2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.32.如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD 是菱形.33.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.34.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.35.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.36.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°37.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.38.在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).39.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽.∴,即DH2=AD×DE.又∵DE=DC∴DH2=,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).40.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.41.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.42.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.43.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.44.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.45.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).46.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.47.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C (﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.48.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.49.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径50.如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)51.如图,将线段AB放在边长为1的小正方形网格,点A点B均落在格点上,请用无刻度直尺在线段AB上画出点P,使AP=,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)52.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.53.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).54.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)55.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以56.将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:①可以拼成等腰直角三角形;②可以拼成对角互补的四边形;③可以拼成五边形;④可以拼成六边形.其中所有正确结论的序号是.57.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.58.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.59.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种60.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.2015年全国中考数学作图题60例参考答案与试题解析一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.考点:作图—复杂作图;平行四边形的性质.专题:作图题.分析:(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.解答:解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.点评:考查了作图﹣复杂作图,关键是作一个角的角平分线,同时考查了平行四边形的性质,角平分线的性质,平行线的性质和等腰三角形的性质的知识点.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.考点:正多边形和圆;圆锥的计算;作图—复杂作图.专题:作图题.分析:(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.解答:(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.点评:本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是等腰直角三角形.考点:作图-位似变换.专题:作图题.分析:(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.解答:解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.点评:本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.考点:作图-旋转变换;弧长的计算;作图-平移变换.专题:作图题.分析:(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出△ABC绕点O旋转180°后得到的△A2B2C2;(3)根据弧长的计算公式列式即可求解.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示:(3)∵OA=4,∠AOA2=180°,∴点A绕着点O旋转到点A2所经过的路径长为=4π.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.也考查了弧长的计算.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.专题:作图题.分析:(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.点评:此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.考点:作图—复杂作图;勾股定理;垂径定理的应用.专题:作图题.分析:(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD中利用勾股定理得到r2=(r﹣20)2+402,然后解方程即可.解答:解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+BD2,∴r2=(r﹣20)2+402,解得r=50,即所在圆的半径是50m.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了勾股定理和垂径定理.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)考点:作图—应用与设计作图.专题:作图题.分析:(1)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.解答:解:(1)如图所示,a=4,b=4,S=4+×4﹣1=5;(2)因为S=,b=3,所以a=3,如图所示,点评:本题考查了应用与设计作图,关键是理解皮克公式,根据题意求出a、b的值.8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.考点:作图—复杂作图;切线的性质;弧长的计算.专题:作图题.分析:(1)过点C作AB的垂线,垂足为点D,然后以C点为圆心,CD为半径作圆即可;(2)先根据切线的性质得∠ADC=90°,则利用互余可计算出∠DCE=90°﹣∠A=60°,∠BCD=90°﹣∠ACD=30°,再在Rt△BCD中利用∠BCD的余弦可计算出CD=,然后根据弧长公式求解.解答:解:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=,∴CD=3cos30°=,∴的长==π.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质和弧长公式.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.。

中考物理作图专题《电学作图》专项训练(解析版)

中考物理作图专题《电学作图》专项训练(解析版)

《电学作图》一、作图题1.请在虚线框中画出图所示电路的电路图.2.试根据实物图画出它的电路图,并在图上标出S1、S2、S3、L1、L2。

3.根据图甲所示的电路图,用笔画线代替导线,连接实物电路(要求导线不能交叉)。

4.根据电路实物图画出电路图.5.请在方框内画出如图所示的实物电路的电路图.6.按照图1所示的电路图,将图2中各元件连接起来。

【用笔画线表示导线,导线不许交叉】7.如图中用笔画线代替导线,把灯L1、L2组成并联电路,要求开关S能同时控制灯L1和灯L2,用电流表测通过L2的电流。

8.如图是用滑动变阻器改变电流大小的电路图及有关元件示意图,用笔画线代替导线,按电路图连接对应的实物图.9.在图中,要求用电流表测量灯泡中的电流,电压表测量灯泡的电压,、并联,变阻器调节的亮度,开关控制整个电路,将符合要求的电路图画在虚线框内,并将实物连接起来。

10.根据实物图画出电路图.11.请在图2方框内画出图1所示的电路图.12.在图所示的电路中,有一根导线尚未连接,请用笔线代替导线补上.补上后要求:闭合电键S后,灯L1、L2均能发光.13.按要求完成如图的实物图连接.要求:两灯串联,电压表测量L1两端的电压,电流表测量电路总电流.14.如图所示的实验器材,现用电流表、电压表分别测出通过灯泡的电流和灯泡两端的电压,电路中电流约为0.5A,并用变阻器改变通过小灯泡的电流,要求滑片向右滑动时灯泡变亮.按要求连接实物图并画出相应的电路图.15.请用铅笔代替导线,按图甲所示电路图连接图乙的实物电路.16.用笔画代替导线完成图中电路的实物连接.要求:两灯并联,开关控制整个电路,电流表测量通过L1、L2的总电流,导线不能交叉.17.请按照图1中的电路图将图2中的实物连成电路。

18.请根据图中所示的实物图,在方框内画出对应的电路图。

19.用笔画线代替导线,将图中元件连接成电路,要求:向右移动滑片,灯泡变亮。

20.请在虚线框中画出图所示电路的电路图。

中考作图题专项训练

中考作图题专项训练

作图题专项训练一 光学 反射1请在图5中画出物体AB 在平面镜中所成的像A`B`。

2如图甲所示,一束光射到平面镜上发生光的反射,请画出入射光线AO 的反射光线(要求画出法线). 3 A 、B 是两块互相垂直放置的平面镜,有一条光线按图中所示的方向射向A 镜,请在图中完成光路图。

4如图14所示,在练功房里,小红同学利用平面镜来帮助矫正舞蹈姿势。

画出她的脚上B 点的光线经过平面镜后进入人眼A 点的光路图。

折射1在图中完成透镜的光路图;2如图5所示,AO 表示从空气射向玻璃的一束光,请画出折射光线的光路图。

3如图6所示,OB 是一束光由水中射入到空气中的折射光线,请画出在水中对应的入射光线AO 的大致方向.4如下图A 所示,一束光射向一块玻璃砖。

画出这束光进入玻璃和离开玻璃后的径迹(注意标出法线)。

5如图(b)所示,请画出光从空气射入玻璃再从玻璃到空气的光路图.6如图(1)所示,在南美原始森林的河流里有一种射水鱼,它在水中看到水面上方的树枝上停留的昆虫等猎物后,便向猎物射水,使猎物落在水面上后进行捕杀,喷射出的水在空中呈抛物线形状。

关于这个情景,请你在图(2)中作出光路图表示:猎物P 反射的光线是如何进入鱼的眼睛E 的。

B水空气 O甲光的直线传播1如图所示,潜水员眼睛在水下A 点处,B 点有条小鱼,C 点有只小鸟,请作出潜水员观察鱼、鸟的光路图.2小明同学根据课本中的“试一试”用易拉罐做小孔成像实验。

请在图中画出蜡烛AB 的像A'B'。

二 力学 力的示意图 1如图6所示,是向斜上方抛出的铅球,请在图中画出铅球的的受力示意图(不计空气阻力) 2 2008年8月18日,俄罗斯撑竿跳“女皇”伊辛巴耶娃随着鸟巢9万名观众的热情掌声成功地跃过了5.05米的新高度。

伊辛巴耶娃在跳起的过程中,受到两个力的作用,一个是重力,一个是弯曲的撑竿对她的弹力,设她的体重为600N ,弹力的作用点可以认为通过人的重心,方向是斜向上45O,大小为900N ,请你画出伊辛巴耶娃在如图所示位置时受到的重力和弹力的示意图。

(完整版)初三物理中考复习作图题专项训练

(完整版)初三物理中考复习作图题专项训练

初三物理中考复习作图题专项训练一、光学作图题:1.画出图中的入射或反射光线并标出前两个图中的反射角的大小.2.一束太阳光与水平地面成30°夹角,现欲使这束太阳光竖直的射向井底,请在图中准确画出这平面镜的位置。

(要求标明法线以及平面镜与水平地面的夹角)3。

画出下图中的反射、折射光路.4.完成下图中光线通过各玻璃砖的光路。

5.完成图中光线通过各透镜前或后的光路。

6。

在下图的方框内填入恰当的透镜.7.根据平面镜成像的特点,画出下列物体在平面镜中的像。

8。

如图,有一光源S放在平面镜前,经平面镜得到两条反射光线,请用作图法找出光源S的位置,并作出它的像S′.9.如下图一,发光点S射向平面镜的光线中有两条光线的反射光线是AB和CD,请在图中画出平面镜的位置。

10。

如上图二,S为平面镜MN前的一个点光源,请画出通过A点的反射光线。

11.如上图三,S是一发光点,S′是它在平面镜中的像,SA是S发出的一条光线,请画出平面镜,并作出SA 经平面镜的反射光线.12。

如图,AB物体在平面镜中成像后,眼位于镜前E处,作图说明要使眼睛看不到平面镜中的像,应该把镜的哪一部分挡住.二、作力的图示:1.如图,拉力F=15N,画出物体A受到的重力G的图示。

(滑轮重及摩擦不计)2。

小车重6N,受到跟水平方向成30°角斜向右上方的拉力F=4N的作用,画出此二力的图示。

3。

一个重为20N的气球,在空中匀速下降。

请在图中画出气球所受重力的图示。

4。

在水中上浮的小球重为10N,受到的浮力为15N,在图中用力的图示法把这两个力都表示出来。

5.物体A重20N,静止放在斜面上,它对斜面的压力为15N。

用力的图示法把物体的重力和物体对斜面的压力表示出来。

6.在图中用力的图示法画出在斜面上滚动的重为5N的小球受到的重力。

7. 用力的图示法作出重为10N的物体放在水平桌面上的受力图.8.重为10N的物体在大小为20N的力F作用下,紧贴在竖直的墙壁上不动。

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案

中考专题复习《尺规作图》巩固练习(真题)含答案一、单选题1、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段2、下列画图语句中,正确的是()A、画射线OP=3cmB、连接A , B两点C、画出A , B两点的中点D、画出A , B两点的距离3、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个30°的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段4、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b5、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图6、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm7、按下列条件画三角形,能唯一确定三角形形状和大小的是()A、三角形的一个内角为60°,一条边长为3cmB、三角形的两个内角为30°和70°C、三角形的两条边长分别为3cm和5cmD、三角形的三条边长分别为4cm、5cm和8cm8、下列属于尺规作图的是()A、用刻度尺和圆规作△ABCB、用量角器画一个300的角C、用圆规画半径2cm的圆D、作一条线段等于已知线段9、下列关于几何画图的语句正确的是()A、延长射线AB到点C ,使BC=2ABB、点P在线段AB上,点Q在直线AB的反向延长线上C、将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D、已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b10、尺规作图是指()A、用量角器和刻度尺作图B、用圆规和有刻度的直尺作图C、用圆规和无刻度的直尺作图D、用量角器和无刻度的直尺作图11、下列有关作图的叙述中,正确的是()A、延长直线ABB、延长射线OMC、延长线段AB到C ,使BC=ABD、画直线AB=3cm12、下列作图语句中,不准确的是()A、过点A、B作直线ABB、以O为圆心作弧C、在射线AM上截取AB=aD、延长线段AB到D ,使DB=AB二、填空题13、所谓尺规作图中的尺规是指:________.14、尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法________15、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P ,连接AP并延长交BC于点D ,则∠ADB=________°.17、如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N ,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P ,连结AP并延长交BC于点D ,则下列说法①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;正确的个数是________个三、作图题18、已知:如图△ABC .求作:①AC边上的高BD;②△ABC的角平分线CE .19、如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF20、(2016•兰州)如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)四、解答题21、已知直线l和l上一点P ,用尺规作l的垂线,使它经过点P .你能明白小明的作法吗?你是怎样作的?22、如图,已知△ABC和直线m ,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)答案解析部分一、单选题1、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.【分析】根据尺规作图的定义分别分析2、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.射线没有长度,错误;B.连接A , B两点是作出线段AB ,正确;C.画出A , B两点的线段,量出中点,错误;D.量出A , B两点的距离,错误选B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论3、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析4、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案5、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析7、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.三角形的一个内角为60°,一条边长为3cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm ,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm ,能唯一确定三角形形状和大小,符合题意选:D.【分析】根据基本作图的方法,及唯一确定三角形形状和大小的条件可知8、【答案】D【考点】作图—尺规作图的定义【解析】【解答】A.用刻度尺和圆规作△ABC ,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.【分析】根据尺规作图的定义分别分析9、【答案】C【考点】作图—尺规作图的定义【解析】【解答】A.延长射线AB到点C ,使BC=2AB ,说法错误,不能延长射线;B.点P在线段AB 上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a , b满足2a>b>0,在同一直线上作线段AB=2a , BC=b ,那么线段AC=2a-b ,说法错误,AC也可能为2a+b选:C.【分析】根据射线、直线、以及角的定义可判断出正确答案10、【答案】C【考点】作图—尺规作图的定义【解析】【解答】尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C .【解析】【解答】A.直线本身是向两方无限延伸的,故不能延长直线AB ,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM ,可以反向延长,故此选项错误;C.延长线段AB到C ,使BC=AB ,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C【分析】根据直线、射线和线段的特点分别进行分析12、【答案】B【考点】作图—尺规作图的定义【解析】【解答】A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.【分析】根据基本作图的方法,逐项分析,从而得出正确的结论二、填空题13、【答案】没有刻度的直尺和圆规【考点】作图—尺规作图的定义【解析】【解答】由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规【分析】本题考的是尺规作图的基本概念14、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS ,即边边边公理【分析】通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理15、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等16、【答案】125【考点】作图—基本作图【解析】【解答】由题意可得:AD平分∠CAB ,∵∠C=90°,∠B=20°,∴∠CAB=70°,∴∠CAD=∠BAD=35°,∴∠ADB=180°-20°-35°=125°【分析】根据角平分线的作法可得AD平分∠CAB ,再根据三角形内角和定理可得∠ADB的度数17、【答案】3【考点】作图—基本作图【解析】【解答】①AD是∠BAC的平分线,说法正确;②∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD平分∠CAB ,∴∠DAB=30°,∴∠ADC=30°+30°=60°,因此∠ADC=60°正确;③∵∠DAB=30°,∠B=30°,∴AD=BD【分析】根据角平分线的作法可得①正确,再根据三角形内角和定理和外角与内角的关系可得∠ADC=60°,再根据线段垂直平分线的性质逆定理可得③正确三、作图题18、【答案】解: 如图所示:【考点】作图—基本作图【解析】【分析】①以点B为圆心,较大的长为半径画弧,交直线AC于两点,分别以这两点为圆心,大于这两点的距离的一半为半径画弧,两弧相交于一点,过点B和这点作射线,交直线AC于点D , BD就是所求的AC边上的高;②以点C为圆心,任意长为半径画弧,交CA , CB于两点,分别以这两点为圆心,以大于这两点的距离的一半为半径画弧,两弧相交于一点,做过点C和这点的射线交AB于点E , CE即为所求的角平分线19、【答案】解答:如图所示:【考点】作图—复杂作图【解析】【分析】(1)首先找出BC的中点,然后画线段AD即可;(2)利用量角器量出∠BCA的度数,再除以2,算出度数,然后画出线段CE即可;(3)利用直角三角板,一个直角边与AC重合,令一条直角边过点B ,画线段BF即可20、【答案】解:如图所示,四边形ABCD即为所求:【考点】正多边形和圆,作图—复杂作图【解析】【分析】画圆的一条直径AC,作这条直径的中垂线交⊙O于点BD,连结ABCD就是圆内接正四边形ABCD.本题考查的是复杂作图和正多边形和圆的知识,掌握中心角相等且都相等90°的四边形是正四边形以及线段垂直平分线的作法是解题的关键.四、解答题21、【答案】解:明白.作法:①以点P为圆心,以任意长为半径画圆,与直线l相交于点A , B;②分别以AB为圆心,以任意长为半径画圆,两圆相交于点MN ,连接MN即可得出直线l的垂线【考点】作图—复杂作图【解析】【分析】根据线段垂直平分线的作法即可得出结论.22、【答案】【解答】如图所示,△A′B′C′即为△ABC关于直线m对称的图形.【考点】作图—尺规作图的定义,作图—基本作图,作图—复杂作图,轴对称图形【解析】【分析】找出点A、B、C关于直线m的对称点的位置,然后顺次连接即可.。

中考物理作图题专题训练汇总及答案解析

中考物理作图题专题训练汇总及答案解析

中考物理作图题专题训练汇总及答案解析中考物理复作图题一、作图题1、A、B为某一发光点S发出的光线经平面镜MN反射后的两条反射光线,如图所示,试做出这两条反射光线的入射光线,并确定发光点的位置.2、如图所示的AB、CD是同一发光点S发出的光经平面镜反射后的两条反射光线,试根据光的反射定律用作图方法确定发光点S的位置.3、如图所示,光射在水面上,在图中画出反射光线.4、如图所示,S′为发光点S在平面镜MN中的像,若S 发出的一条光线SO经平面镜反射后过P点,请在图中找出发光点S的位置,并完成光路.5、根据平面镜成像特点,画出图中物体AB在平面镜中所成的像.(保留作图辅助线)6、画出下图中从A点出发,经平面镜反射后经过B的光线.7、如图所示,一束光从空气斜射向水面,请你在图中画出光的实际传播路径.8、作图题:一条光芒照射到水面产生反射和折射,这条光芒经水面折射后的光芒如图所示,请在图中画出它的入射光线和反射光线的大致方向.9、根据入射光线和折射光线,在图中的虚线框内画出适当的类型的透镜.10、如图所示,已知凸透镜的一条折射光线和一条入射光线,请你对应画出它们的入射光线和折射光芒.11、如图所示,一个凸透镜的主光轴与平静水面重合,F 为凸透镜的焦点.请画出图中光线在凸透镜左边的入射光芒以及图中光芒进入水中的折射光芒.12、如图所示,a、b分别为一束入射光线和一束出射光线.请画出a经过凹透镜后的折射光线和与b对应的入射光线.13、请在图中画出经过透镜折射后的光芒.14、如图所示,F为凸透镜L的焦点,OO′为凸透镜的主光轴,AB为射向凸透镜且过焦点的光芒,在凸透镜的右侧有一平面镜MN和主光轴OO′成45°,请画出经凸透镜折射后和经平面镜反射后的完整光路图.15、画出图中静止在斜面上的物体A所受的重力G和它对斜面的压力F的示意图.16、图12甲所示是一吊灯吊挂在天花板上,其中O点为灯的重心,请画出吊灯所受的拉力和重力的示意图。

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题(含简单答案)

2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。

中考图像 作图题专题基础训练(附录答案)

中考图像 作图题专题基础训练(附录答案)

图 2图1图4中考图像 作图题专题基础训练图像题专题训练(一)热学1、如图1所示为两种不同物质熔化时的温度-时间图像,其中 为非晶体的熔化曲线.另一种物质的熔点为______℃,8min 时刻,该物质处于 状态.2、用稳定的热源给一个物体均匀加热,物体吸收的热量与加热时间成正比,其温度随时间变化的曲线如图2所示,则该物体固态时的比热容与液态时的比热容之比为 .(二)电学3、如图3所示,电阻R 1、R 2的阻值关系为:R 1 R 2.4、在某一温度下,通过电路元件A 、B 的电流与其两端电压的关系如图4所示. (1)由图可知,通过元件______的电流与其两端电压的关系遵循欧姆定律.(2)将A 和B 并联后接在电压为1V 的电源两端,元件A 的电功率P A = W ,干路电流I= A .5、如图5所示电路,滑动变阻器上标有“2A 20Ω”字样.以下四个图像中,能正确表示当开关S 闭合后,通过小灯泡L 的电流I 与滑动变阻器连入电路的电阻R 的关系的是( )图3图5 Ω6、如图6甲所示电路中,不断改变Rx 的阻值,同时调节滑动变阻器使电压表示数保持不变,并根据实验数据描出了如图6乙所示的I-R X 关系图像.由图像可以得出的结论为 ;此次实验中,电压表的示数始终保持_____V .(三)力学7、广州快速公交(BRT)在2010年3月底开通运行.某时刻一辆快速公交车甲和一辆普通公交车乙从同一路口同时向东匀速行驶,它们的路程随时间变化的图像如图7所示,则运行2min 后,甲车相对于乙车向_________行驶,两车相距__________ m .8、如图8甲所示,长1.6m 的均匀金属杆可以绕O 点在竖直平面内自由转动,一拉力—距离传感器竖直作用在金属杆上,并能使金属杆始终保持水平平衡.该传感器显示其拉力F 的大小与作用点到O 点距离x 的变化关系如图8乙所示.由此可知金属杆的重量为 N .9、A 、B 两种液体的压强与深度关系如图9所示,则A 、B 液体的密度之比ρA :ρB = . 10、甲、乙物质的质量与体积关系如图10所示,A 实心球由甲物质制成,体积为3cm 3,B 实心球由乙物质制成,将两球投入水中,两球静止时所受浮力相等,则B 实心球的体积为 cm 3.图6I/AR X /Ω图7乙 甲 3图2图1v作图题专题训练(一)力学1、力的示意图(1)如图1所示,各小球重量均为10N,画出小球所受重力G的力的示意图.(2)如图2所示,各图中物体质量均为2kg,分别画出甲图物体受到拉力F拉的示意图,乙图物体对水平桌面的压力F压的示意图,丙图物体静止时受到的摩擦力f的示意图.(3)如图3所示,用F=250N的力竖直向上提起一个重量G=200N的水桶,画出水桶的受力示意图.(4)如图4所示,一热气球正在加速上升,画出气球所受重力G和浮力F浮的示意图.(O点为重力G、浮力F浮的共同作用点)(5)如图5所示,一木块在外力作用下沿水平桌面向右匀速运动,用力的示意图表示木块所受牵引力F、摩擦力f和重力G.(O点为三力的共同作用点)(6)如图6甲所示,物体A静止在斜面上,画出物体A的受力示意图.如图6乙所示,重量G=4N 的小球正在下沉,画出小球在竖直方向上的受力示意图.(7)如图7所示,物体M静止在向右匀速行驶的车厢内,画出物体M的受力示意图.图3 图4图10图13AB F图112、力臂(1)如图8所示,画出力F的力臂L.(2)如图9所示,杠杆OA能绕O点转动,画出两力F1、F2的力臂L1和L2.(3)如图10所示,在钓鱼杆上的A、B、C画出阻力F2的示意图和阻力臂L2.(4)如图11所示,画出绳子AB对杆拉力F的力臂L.(5)如图12所示,画出作用在A点使杠杆平衡的最小的力F的示意图.(6)如图13所示,画出力F2的力臂L2及力F1的示意图.3、滑轮绕法(1)如图14所示,人站在岸上,借助一个树桩、一个滑轮和一些绳子,要把船拉上河滩且能省力.在图中画出滑轮应安装的位置及绳子绕法的示意图.(2)如图15所示,画出将陷在泥中的汽车拉出来的最省力的绕绳方法.(3)如图16所示,画出站在地面上的人将重物G拉起的最省力的绕绳方法.图14树桩图15图6图174、压强与浮力(1)如图17所示,画出水从容器侧壁小孔处喷出的大致情形.(2)如图18所示,将一根一端绕有适量铁丝的均匀细木棍分别放入水和酒精中.根据木棍在水中的位置,大致画出木棍在酒精中的位置. (二)光学 1、光的直线传播如图19所示,画出物体AB 通过小孔在光屏上成像的光路图.2、光的反射(1)如图20所示,画出反射光线并标出反射角的大小. (2)如图21所示,画出入射光线并标出入射角的大小.(3)如图22所示,小明通过一平面镜看到桌子下面的小球.标出光的传插方向并画出平面镜.(4)如图23所示,画出AB 在平面镜中的像A /B /.(5)如图24所示,画出发光点S 发出的光线经平面镜反射后经过P 点的光路图.图22图19图18图303、光的折射(1)如图25所示,一束光线从空气斜射到水面上,画出这束光线的反射光线(标出反射角的大小)和折射光线的大致方向.(2)如图26所示,从S 点发出的一束光线折射入水中后经过P 点,画出入射点的大致位置并完成折射光路图.(3)如图27所示,画出光线两次折射的大致光路. (4)如图28所示,画出光线两次折射的大致光路. 4、透镜(1)如图29所示,完成光路图.(2)如图30所示,在虚线框内画出矫正对应视力问题的透镜.图29图24图23图26图25空气 水图27 图28图33 (3)如图31所示,画出物体AB 的像A′B′的大概位置.(要求正确反映像的大小、正倒和虚实,不要求画出成像光路.)(三)电学1、如图32所示,在虚线框内画出对应的电路图.2、如图33所示,用笔画线代替导线完成实物电路的连接.3、如图34所示,在电路中的“ο”内填上相应的电表并标出电表的正、负接线柱.4、如图35所示,按要求将设计好的电路图画在虚线框内并用笔画线代替导线完成实物电路的连接.灯泡L 1、L 2串联,电流表测量通过灯泡L 1的电流(约为0.4A),电压表测量灯泡L 2两端的电压,开关控制整个电路.图31图32图40图38图395、如图36所示,用笔画线代替导线完成家庭电路的连接.6、如图37所示,完成楼道声控(声控开关无声断开、有声闭合)、光控(光控开关白天断开、晚上闭合)照明电路的连接. (四)磁学1、如图38所示,标出条形磁体的N 、S 极.2、如图39所示,标出条形磁体的N 、S 极及磁感线的方向.3、如图40所示,完成电磁继电器电路的连接.要求开关S 闭合时灯泡L 2亮,开关S 断开时灯泡L 1亮.图35图34图36图37图像 作图题专题训练参考答案图像题专题训练1、 B 80 固、液共存2、1:43、<4、(1)A (2)0.2 0.35、D6、导体两端的电压一定时,通过导体的电流跟导体的电阻成反比 2.57、东 6008、 109、3:2 10、4.5作图题专题训练图1图2 图6图7图3 图4 图5图8 图9 图10图11ABF图12图13图14 图15 图16图17图22图21图20图23 图24空气水图30 图29 图3513图36 图37 图38 图39 图40。

中考复习:作图专题

中考复习:作图专题

一、平移、旋转、对称、位似1.在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.2.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.3.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.4.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,2),C(﹣2,2).(1)平移△ABC,使点B移动到点B1(1,1),画出平移后的△A1B1C1,并写出点A1,C1的坐标.(2)画出△ABC关于原点O对称的△A2B2C2.(3)线段AA1的长度为.5.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A'B'C',并直接写出△A'B'C'各顶点的坐标.(2)求点B旋转到点B'的路径长(结果保留π).6.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.6.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.7.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.8.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.9.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1、B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.10.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P 点的坐标.11.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.12.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.13.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.14.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O 均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.15.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).16.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).17.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.18.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).19.如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.20.如图,已知A(﹣4,2),B(﹣2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1.画出平移后的图形,并写出点A的对应点A1的坐标;(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.21.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(画出图形)(3)△A2B2C2的面积是平方单位.23.如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3)、B(﹣3,2)、C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:;(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?二、垂直平分线、角平分线:1.已知直线l及其两侧两点A、B,如图.(1)在直线l上求一点P,使PA=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)2.如图,已知直线l及其两侧两点A、B.(1)在直线l上求一点O,使到A、B两点距离之和最短;(2)在直线l上求一点P,使PA=PB;(3)在直线l上求一点Q,使l平分∠AQB.3.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?4.已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.(1)作出边AC的垂直平分线DE;(2)当AE=BC时,求∠A的度数.5.如图,在直线l上找一点,使PA=PB.6.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.7.作图题:(要求保留作图痕迹,不写作法)(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);(2)连结BE,若AC=10,AB=6,求△ABE的周长.8.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.9.小河的同旁有甲、乙两个村庄(如图),现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题.(1)如果要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处?(2)如果要求建造水泵站使用建材最省,水泵站M又应建在河岸AB上的何处?10.如图,在6×6的正方形网格中,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到直线的距离,线段的长度是点C 到直线OB的距离;(4)线段PC、PH、OC这三条线段大小关系是.(用“<”号连接)11.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)12.作图题(不写作法,保留作图痕迹):如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,且到∠AOB的两边的距离相等.13.画图(不用写作法,要保留作图痕迹)尺规作图:求作∠AOB的角平分线OC.14.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠A的平分线.(要求:不写作法,保留作图痕迹)15.如图,已知点M,N和∠AOB,求作一点P,使P到M,N的距离相等,且到∠AOB的两边的距离相等.(要求尺规作图,并保留作图痕迹)16.作图题(不写作图步骤,保留作图痕迹).已知:如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.17.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)18.如图,在三角形ABC中,先按要求画图,再回答问题:(1)过点A画∠BAC的平分线交BC于点D;过点D画AC的平行线交AB于点E;过点D画AB的垂线,垂足为F.(2)度量AE、ED的长度,它们有怎样的数量关系?(3)比较DF、DE的大小,并说明理由.19.如图,已知△ABC.(1)请用尺规作图法作出BC的垂直平分线DE,垂足为D,交AC于点E(保留作图痕迹,不写作法);(2)请用尺规作图法作出∠C的角平分线CF,交AB于点F(保留作图痕迹,不写作法);(3)请用尺规作图法在BC上找出一点P,使△PEF的周长最小(保留作图痕迹,不写作法).20.已知△ABC中,∠C=90°,按下列语句作图.(尺规作图,保留作图痕迹,不必写作法)(1)作AB边的垂直平分线,交AC于点E,交AB于点F;(2)连接CF.(3)作∠BFC的平分线,交BC于G.21.已知:△ABC(如图),(1)求作:作△ABC的内切圆⊙I.(要求:用尺规作图,保留作图痕迹,不写作法,不要求证明).(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.22、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.23、如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.24、如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的圆中,求出劣弧的长25、如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).26、已知△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)(2)求证:BC是(1)中所作⊙O的切线.27、如图,在Rt△ABC中,∠ACB=90°.(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.28.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求BP的长.29、如图,在△ABC中,AD⊥BC,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O,作直径AE,连接BE;(2)若AB=8,AC=6,AD=5,求直径AE的长.(证明△ABE∽△ADC)30、如图,已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(不必证明).。

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)

初中数学中考复习作图题专项练习及答案解析(专题试卷50道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7、如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:所以PB和PC就是所求的切线.请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)41、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、▱ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线,交于点,交于点;②以为圆心,为半径作圆,交的延长线于点.⑵在⑴所作的图形中,解答下列问题.①点与的位置关系是_____________;(直接写出答案)②若,,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、44、(1)如图;(2)m245、(1)作图见解析;(2)①点B在⊙O上;②5.46、47、见解析48、见解析49、见解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH =BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,考点:作图—基本作图.11、试题解析:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.12、试题分析:∵分别以点B和点C为圆心,以大于BC一半的长为半径画弧,两弧相交于点M和N,作直线MN.直线MN交AB于点D,连结CD,∴直线MN是线段BC的垂直平分线,∴BD=CD,∴BD+AD=CD+AD=AB,∵AB=6,AC=4,∴△ADC的周长=(CD+AD)+AC=AB+AC=6+4=10.故答案为:10.考点:线段垂直平分线的性质.13、解:如图所示.△ABC就是所求的三角形.14、试题分析:(1)根据赔付风险的画法画出图形即可.(2)画出作线段CD的垂直平分线MN,即可解决问题.解:(1)∠AOB的平分想如图所示,(2)作线段CD的垂直平分线MN与射线OE交于点P.点P就是所求的点.15、试题分析:(1)利用尺规作出∠ABC的平分线BD即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)∠ABC的平分线BD,交AC于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴.考点:翻折变换(折叠问题);作图—基本作图.16、试题分析:(1)、做出线段AB的中垂线得出答案;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后根据Rt△ACP的勾股定理得出答案.试题解析:(1)、如图,点P为所作;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.考点:勾股定理17、试题分析:根据角平分线的作法以及过直线外一点向直线最垂线的作法得出即可.试题解析:如图所示:CD,AE即为所求.考点:作图—复杂作图.18、试题分析:(1)、本题都是作线段相等,则根据SSS来判定三角形全等;(2)、根据垂直得出∠OMP=∠ONP=90°,然后结合OP=OP,OM=ON得出直角三角形全等;(3)、根据三角形全等的性质得出角平分线.试题解析:(1)、SSS(2)、小聪的作法正确理由:∵PM⊥OM , PN⊥ON ∴∠OMP=∠ONP=90°在Rt△OMP和Rt△ONP中∵OP="OP" ,OM=ON∴Rt△OMP≌Rt△ONP(HL)∴∠MOP=∠NOP ∴OP平分∠AOB(3)、如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH. ②连结GH,利用刻度尺找出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.考点:角平分线的做法.19、试题分析:(1)、利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP;(2)、连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),考点:(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.20、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质21、试题分析:(1)根据尺规作图的步骤和方法做出图即可;(2)先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.试题解析:(1)如图所示;(2)如图,OE⊥AB交AB于点D,则DE=4cm,AB=16cm,AD=8cm,设半径为Rcm,则OD=OE﹣DE=R﹣4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R﹣4)2,解得R=10.故这个圆形截面的半径是10cm.【考点】作图—应用与设计作图;垂径定理的应用.22、试题分析:首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD即可.试题解析:如图所示:,直线AD即为所求.考点:作图—复杂作图.23、试题分析:(1)在内圆(或外圆)任意作出两条弦,分别作出者两条弦的垂直平分线,它们的交点就是疫点(即圆心O);(2)利用垂径定理求出AB、CD的长度,问题解决.试题解析:(1)作图如下:(2)如图:连接OA、OC,过点O作OE⊥AB于点E,∴CE=CD=2km,AE=AB,在Rt△OCE中,OE==km,在Rt△OAE中,AE==km,∴AB=2AE=km,因此AC+BD=AB﹣CD=﹣4(km).答:这条公路在免疫区内有(﹣4)千米.考点:作图—应用与设计作图.24、试题分析:(1)延长BO到B′,使OB′=2OB,则B′就是B的对应点,同样可以作出C的对称点,则对应的三角形即可得到;(2)根据(1)的作图即可得到B′、C′的坐标.试题解析:(1)△OB′C′是所求的三角形;(2)B′的坐标是(﹣6,2),C′的坐标是(﹣4,﹣2).考点:作图-位似变换.25、试题分析:(1)连结PO并延长交BC于E,过点A、E作弦AD即可;(2)由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图所示:(2)∵直线l与⊙O相切与点P,∴OP⊥l,∵l∥BC,∴PE⊥BC,∴BE=CE,∴弦AE将△ABC分成面积相等的两部分.【考点】作图—复杂作图;三角形的外接圆与外心.26、试题分析:作∠AOB的平分线与线段CD的垂直平分线,两线相交于点P,点P即为所求.试题解析:点P即为所求.考点:作图——应用与设计作图.27、试题分析:利用△ABD是以AB为底边的等腰三角形,则点D在AB的垂直平分线上,于是作AB的垂直平分线交AC于D,则△ABD满足条件.试题解析:如图,△ABD为所作.考点:作图﹣复杂作图.28、试题分析:(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.试题解析:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.考点:1、作图—复杂作图;2、圆周角定理;3、三角形的外接圆与外心29、试题分析:(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)由(1)可求得∠AOC=120°,继而求得(1)中的长.试题解析:(1)首先连接OA,然后以A为圆心,OA长为半径画弧,交⊙O于B,F,再分别以B,F为圆心,OA长为半径画弧,交⊙O于点E,C,在以C为圆心,OA长为半径画弧,交⊙O于点D,则正六边形ABCDEF即为所求;(2)∵正六边形ABCDEF是⊙O的内接正六边形∴∠AOC=120°,∵⊙O的半径为3,∴的长为:=2π.【考点】正多边形和圆;弧长的计算;作图—复杂作图.30、试题分析:(1)、直接利用作一角等于已知角的作法结合线段垂直平分线的作法得出符合题意的图形;(2)、直接利用平行线的性质以及结合线段垂直平分线的性质得出答案.试题解析:(1)、如图所示:点E即为所求;(2)、∵DE∥AB,∴∠ABD=∠BDE,又∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=∠EBD,即BD平分∠ABE.考点:(1)、作图—复杂作图;(2)、平行线的性质;(3)、线段垂直平分线的性质.31、试题分析:如图,①作∠EAF=∠BOA.②在⊙A上截取,则五边形EFGHL即为所求.试题解析:如图,①作∠EAF=∠BOA.②在⊙A上截取.五边形EFGHL即为所求.考点:1、作图—复杂作图;2、正多边形和圆32、试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;作出线段AB垂直平分线交AB于点E,点E是线段AB的中点.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).考点:作图—复杂作图;全等三角形的判定.33、试题分析:分别作∠B的平分线BE和线段AB的垂直平分线MN,利用角平分线的性质以及线段垂直平分线的性质得出即可.试题解析:如图,点P即为所求点.考点:作图——基本作图;角平分线的性质.34、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质35、试题分析:(1)、利用尺规作出∠ABC的平分线BD即可;(2)、首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)、∠ABC的平分线BD,交AC于点D,如图所示,(2)、在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=-1,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC 是等腰直角三角形,∴S=.考点:(1)、翻折变换(折叠问题);(2)、作图—基本作图.36、试题分析:根据角平分线的性质定理和线段垂直平分线的性质定理,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,则点D满足条件.试题解析:如图,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,点D为所作.考点:作图—复杂作图.37、试题分析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,两弧相交于点E.试题解析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,如图所示:两弧相交于点E.则点E即为所求.考点:1.翻折变换(折叠问题);2.矩形的性质.38、试题分析:(1)先找到圆心,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.试题解析:(1)如图,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆,⊙O即为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧BC的长=π.考点:1.弧长的计算;2.作图—复杂作图.39、试题分析:(1)根据角平分线的基本作图画图即可;(2)根据角平分线的性质的到边之间的关系,然后根据三角形的面积公式计算即可.试题解析:(1)如图所示,AD为所求的角平分线;(2)∵∠C=90°,∠B=30°,∴∠CAB =60°,∵AD平分∠CAB,∴∠CAD ="∠DAB" =30°,∵∠ACD=90°,∴AD=2CD,∵∠B=30°,∴∠B=∠DAB,∴AD= BD,∴BD=2CD,∴BC=3CD,∵,,∴.考点:角平分线40、试题分析:作∠AOB的角平分线和线段MN的中垂线,两条直线的交点就是点P的位置.试题解析:如图所示:点P就是所求的点.考点:(1)、角平分线的作法;(2)、线段的中垂线的作法41、试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.42、试题分析:(1)连结CE,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD;(2)连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.试题解析:(1)如图1,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD.CE为所求作;(2)如图2,连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.因为三角形BOF和三角形DOE全等,导出BF=DE=AB=CD,从而得出∠BAF=∠BFA=∠FAD,则AF是所求作的角平分线.考点:1.基本作图;2.三角形全等的判定与性质;3.平行四边形的性质.43、试题分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.44、试题分析:(1)直接利用线段垂直平分线的性质作出AB的垂直平分线,交AC于点D,进而得出△ABD;(2)利用锐角三角形关系得出DE的长,进而利用三角形面积求法得出答案.试题解析:(1)如图所示:△ABD即为所求;(2)∵MN垂直平分AB,AB=2m,∠CAB=30°,∴AE=1m,则tan30°=,解得:DE=.故裁出的△ABD的面积为:×2×=(m2).考点:作图—复杂作图.45、试题分析:(1)先作AC的垂直平分线,然后作⊙O;(2)①通过证明OB=OA来判断点在⊙O上;②设⊙O的半径为r,在Rt△AOD中利用勾股定理得到r2=42+(r-2)2,然后解方程求出r 即可.试题解析:(1)如图所示;。

中考物理作图题微专题复习电学综合作图强化训练题含解析试题

中考物理作图题微专题复习电学综合作图强化训练题含解析试题

?电学综图?一、作图题1.在图中有灯泡、电源和开关,请用笔画线表示导线把它们连起来,使得门铃可以正常工作,并画出相应的电路图。

2.3.按照图甲的电路图,把图乙中所示的实物连接起来。

4.5.如下图的电路中,有几根导线尚未连接,请用笔划线代替导线补上。

补上后要求:6.两灯泡并联;7.电流表测灯的电流;8.闭合开关后,向A端挪动滑动变阻器的滑片P,两灯均变暗。

9.根据如下图的实物图,在虚线框内画出对应的电路图。

10.11.如图,根据实物连接图,在方框中画出对应的电路图。

12.13.如图,使用笔画线代替导线完成电路。

要求:两灯并联,开关控制干路,电流表测量干路电流,导线不能穿插。

14.15.16.根据实物连接图画出电路图。

17.18.请根据图中所示的实物图,在虚线框中画出对应的电路图。

19.20.如图是某种手电筒的剖面图,请按照实物剖面图,在虚线框中画出这种手电筒的电路图。

21.22.如下图是楼梯照明灯的模拟电路。

要求是,在楼梯的上下两端都能对灯进展控制。

请在图上补画连接导线,使之符合这一要求。

23.24.25.如下图的电路中,有一根导线尚未连接,请用笔画线代替导线补上。

补上后要求:闭合电键S,向右挪动滑动变阻器的滑片P,电流表示数变小。

26.27.28.29.30.根据实际连接的电路,在右边空白处画出电路图.31.请根据下表中给出的信息,用笔画线代替导线将图中实物图补充连接成完好电路.32.开关状态灯泡发光情况闭合S,断开、、均不发光闭合S、,断开发光、不发光闭合S、,断开不发光、发光断开S,闭合、、均不发光33.根据如下图的实物连线图,画出对应的电路图。

要求连线要横平竖直,尽量使电路图简洁美观。

34.35.根据下面的实物图画出与之对应的电路图。

36.在如图的电路中,有两根导线尚未连接,请用笔画线代替导线补上。

要求当滑片P向左挪动时,灯L亮度不变且电流表示数变小。

37.38.按要求设计并连接电路。

要求:两灯并联;电流表测灯的电流;变阻器用来改变灯的电流且其滑片向左挪动时,灯变亮。

中考数学作图题---精选

中考数学作图题---精选

1、作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.2、如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)3、有一块三角形的土地,现要平均分给四个农户种植.请给出两种分法.(在下列所给的图形上画图,不要求写作法,保留作图痕迹且要有简要分法的说明)4、画图题.如图:求作一点P,使PC=PD,并且P到∠AOB两边的距离相等.(不写作法,保留作图痕迹.)5、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等.(要求用尺规画图,保留作图痕迹)6、如图,AC 、BD 为正方形ABCD 对角线,相交于点O,点D 为BC 边的中点,正方形边长为2cm,在BD 上找点P ,使DP+CP 之和最小,且最小值为________。

7、如图,点P 在∠AOB 内部,问如何在射线OA 、OB 上分别找点C 、D ,使PC+CD+DP 之和最小?请简要说明。

8、如图,P 是∠AOB 内任一点,分别在OA 、OB 上,求作两点P 1,P 2,使△PP 1P 2的周长最小(简要说明作法).9、如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.A B C D D O P 0P BA。

中考数学复习《几何作图》真题练习题含答案

中考数学复习《几何作图》真题练习题含答案

中考数学复习 几何作图一、选择题1.(2017·宜昌)如图,在△AEF 中,尺规作图如下:分别以点E ,点F 为圆心,大于12EF的长为半径作弧,两弧相交于G ,H 两点,作直线GH ,交EF 于点O ,连接AO ,则下列结论正确的是( C )A .AO 平分∠EAFB .AO 垂直平分EFC .GH 垂直平分EFD .GH 平分AF,第1题图) ,第2题图)2.(2017·南宁)如图,△ABC 中,AB >A C ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( D )A .∠DAE =∠B B .∠EAC =∠C C.AE ∥BCD .∠DAE =∠EAC3.(2017·襄阳)如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( B )A .5B .6C .7D .8,第3题图) ,第4题图)4.(2017·东营)如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E.若BF =8,AB =5,则AE 的长为( B )A .5B .6C .8D .125.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法中正确的个数是( D )①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △ABC =1∶3A .1个B .2个C .3个D .4个 二、填空题6.(2017·北京)图①是“作已知直角三角形的外接圆”的尺规作图过程. 已知:Rt △ABC ,∠C =90°,求作Rt △ABC 的外接圆. 作法:如图②.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O.⊙O 即为所求作的圆.请回答:该尺规作图的依据是__到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线__90°的圆周角所对的弦是直径;圆的定义__.7.(2017·邵阳)如图,已知∠AOB =40°,现按照以下步骤作图: ①在OA ,OB 上分别截取线段OD ,OE ,使OD =OE ;②分别以D ,E 为圆心,以大于12DE 的长为半径画弧,在∠AOB 内两弧交于点C ;③作射线OC.则∠AOC 的大小为__20°__.8.(2017·绍兴)以Rt △A BC 的锐角顶点A 为圆心,适当长为半径作弧,与边AB ,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A 作直线,与边BC 交于点D.若∠ADB =60°,点D 到AC 的距离为2,则AB 的长为__23__.9.(2017·济宁)如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限内交于点P(a ,b ),则a 与b 的数量关系是__a +b =0__.,第9题图) ,第10题图)10.(2017·成都)如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作射线AP ,交边CD 于点Q ,若DQ =2QC ,BC =3,则平行四边形ABCD 周长为__15__.三、解答题11.(2017·青岛)已知:四边形ABCD.求作:点P ,使∠PCB =∠B ,且点P 到边AD 和CD 的距离相等.解:作法:①作∠ADC的平分线DE,②过C作CP1∥AB,交DE于点P1,③以C为角的顶点作∠P2CB=∠P1CB,则点P1和P2就是所求作的点12.(2017·自贡)如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形.解:如图所示:所画正方形即为所求13.(2017·贵港)尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.解:(1)点P即为所求作(2)OC即为所求作(3)MD即为所求作14.(2017·温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.(1)在图①中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;(2)在图②中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)(不合题意,舍去),△PAB如图1所示(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0),△PAB 如图2所示。

力学作图中考专题训练

力学作图中考专题训练

力学作图中考专题训练1.在图中画出绳子对小车的拉力F的示意图,拉力大小为100N.2.在图中画出手指对图钉压力100N的示意图。

3.弹簧所受竖直向下的拉力是25N,用力的示意图表示弹簧受的拉力;4.用150N的力向上提起一桶水;5.如图,小邦用30N的力沿水平方向推木箱,请画出木箱受到的推力。

6.小球静止在水平地面上,在图中画出地面对小球的支持力F支。

7.请画出“冰墩墩”受到的重力示意图(O为重心)。

8.如图所示,商场的电梯匀速斜向上运动,画出站在电梯上相对电梯静止的人受力示意图。

9.请在图中画出在空中飞行的足球所受重力的示意图;10.照片中的旋转飞椅是常见的游乐设施,请在简化图中画出飞椅受到的重力和拉力的示意图。

11.如图是小刚同学用一根细线栓一块橡皮,使橡皮在水平面上绕手做匀速圆周运动时的情景,请在图中画出橡皮受到的重力和拉力的示意图。

12.将一个重力为G的小球从空中某点静止释放,落在竖直放置的轻弹簧上,压缩到最低点后,再被弹起。

画出小球在最低点时的受力示意图。

13.在图中,弹簧在水平拉力作用下静止,请画出手受到弹簧的拉力的示意图。

14.请用力的示意图作出铅笔所受的弹力。

15、高颜值、高速度的中国高铁是中国制造迈向中国创造的重要标志,其以快速、平稳、舒适为世界所称道,如图,在水平行驶的高铁上,一枚硬币稳稳的立在窗台上。

请做出硬币竖直方向受力的示意图(O为重心)。

16 用力踢出的足球,在草地上运动,如图乙所示,请画出运动的足球受到的弹力和摩擦力的示意图。

17.如图,悬挂在天花板下的电灯处于静止状态。

画出电灯的受力示意图。

18.小球在竖直平面内摆动,请画出小球摆动到A时所受重力的示意图。

19.如图是小明起跑时的背景,请画出小明所受重力(点O为重心)和右脚所受摩擦力的示意图。

20.如图所示,压缩的弹簧将小球弹起,请作出小球离开弹簧后所受力的示意图(O为小球的重心,空气对小球的作用力忽略不计)。

21.如图甲所示,一摞棋子中的一颗棋子A被用力打出。

初中物理初三中考作图题专题训练(附答案)

初中物理初三中考作图题专题训练(附答案)

初三物理作图题专题训练一、光学作图1、光的直线传播(1)如图,路灯下站着小明、小芳、小刚三人,请根据小芳和小刚的影长(粗实线为影子),标出图中路灯灯泡S的位置.(2)用光路图作出物体AB经小孔O在屏幕M上所成的像A′B′2、平面镜成像(1)画虚像作出图中物体AB在平面镜MN中所成的像A′B′(保留作图痕迹)。

(2)画光路图竖起的墙面上有一块平面镜MN,小女孩站在平面镜前,她的脚前有一枚硬币(如图中点A 所示),请你利用平面镜成像的特点画出小女孩看到硬币的像的光路图。

3、光的反射(1)画出图中入射光线AO的反射光线并标出反射角的大小.(法线一般用虚线表示)(2)如图所示,A、B是镜前一点光源S发出的光线经平面镜M反射后的两条反射光线,请在图中标出点光源S和像点S′的位置,并完成反射光路图.(3)如图所示,护林员利用一块平面镜使此时的太阳光水平射向山洞中P点,请你通过作图画出平面镜的位置,并标出反射角的度数。

4、光的折射(1)如图所示,一束水平光线从空气进入玻璃,在交界处同时发生反射和折射现象,在图上作出反射光线和折射光线。

(2)如图所示,一束光射向玻璃三棱镜并穿过三棱镜,请画出这束光进入三棱镜和离开三棱镜后的光线(画出法线)。

(3)如图所示,光源S发出的一条光线射向水面,在水面处发生反射和折射,反射光线经过点A,折射光线经过点P,请你作出入射光线、反射光和折射光线。

(4)如图所示一束激光α斜射向半圆形玻璃砖圆心O,结果在屏幕MN上出现两个光斑,请画出形成两个光斑的光路图。

5、透镜(1)请画出入射光线通过透镜后的折射光线。

(2)如图所示,请在图中作出两条入射光线经凹透镜折射后的折射光线。

(3)在图所示的光路图中,分别填入合适的透镜.二、力学作图1、画指定力的示意图(1)如图所示,请画出所受的重力G和球对墙面的压力F的示意图.(2)如图所示,小蛮用绳子拉木箱,请画出:①木箱受到的重力示意图;②木箱受到的拉力示意图.2、画受力分析图(1)请画出木块在斜面上匀速下滑时的受力示意图。

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题

中考数学专题复习之尺规作图精选训练题一.选择题(共10小题)1.利用直角三角板,作△ABC 的高,下列作法正确的是( )A .B .C .D .2.已知线段AB ,按如下步骤作图: ①取线段AB 中点C ; ②过点C 作直线l ,使l ⊥AB ;③以点C 为圆心,AB 长为半径作弧,交l 于点D ;④作∠DAC 的平分线,交l 于点E .则tan ∠DAE 的值为( )A .12B .2√55C .√5+12D .√5−123.阅读以下作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ;③作射线OM ,连接CM ,DM ,如图所示. 根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DM B.∠1=∠3且CM=DMC.∠1=∠2且OD=DM D.∠2=∠3且OD=DM4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据是()A.SAS B.ASA C.AAS D.SSS5.如图,在△ABC中,∠B=42°,∠C=48°,DI是AB的垂直平分线,连接AD.以A为圆心,任意长为半径画弧,分别交AD,AC于点E,F,分别以E,F为圆心,以大于1EF长为半径画弧,两圆弧交于G点,作射线AG交BC于点H,则∠DAH的度数为()2A.36°B.25°C.24°D.21°6.如图,用直尺和圆规作∠MAN的角平分线,根据作图痕迹,下列结论不一定正确的是()A.AD=AE B.AD=DF C.DF=EF D.AF⊥DE7.如图,在Rt △ABC 中,以点A 为圆心,适当长为半径作弧,交AB 于点F ,交AC 于点E ,分别以点E ,F 为圆心,大于12EF 长为半径作弧,两弧在∠BAC 的内部交于点G ,作射线AG 交BC 于点D .若AC =3,BC =4,则CD 的长为( )A .78B .1C .32D .28.如图,在▱ABCD 中,分别以B ,D 为圆心,大于12BD 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线交BD 于点O ,交AD ,BC 于点E ,F ,下列结论不正确的是( )A .AE =CFB .DE =BFC .OE =OFD .DE =DC9.如图,Rt △ABC 中,∠C =90°,∠B =30°,要求用圆规和直尺作图,把它分成两个三角形,其中一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .10.如图所示,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .若∠ACD =110°,则∠AMC 的度数为( )A .70°B .35°C .30°D .45°二.填空题(共10小题)11.如图,在△ABC 中,∠B =30°,∠C =50°,通过观察尺规作图的痕迹,∠DEA 的度数是 .12.如图,在△ABC 中,∠A =45°,∠B =30°,尺规作图作出BC 的垂直平分线与AB 交于点D ,则∠ACD 的度数为 .13.如图.△ABC 中,∠B =32°,∠BCA =78°,请依据尺规作图的作图痕迹,计算∠α= .14.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是 .15.如图,在平行四边形ABCD (AB <AD )中,按如下步骤作图:①以点A 为圆心,以适当长为半径画弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在∠BAD 内交于点P ;③作射线AP 交BC 于点E .若∠B =120°,则∠EAD 为 °.16.如图,在△ABC 中,∠A =90°,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若线段AE =5,AC =12,则BE 长为 .17.如图,在Rt △ABC 中,∠B =90°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若BG =1,AC =4,则△ACG 的面积为 .18.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .若∠B =24°,则∠CDA 的度数为 .19.如图,在矩形ABCD 中,连接AC ,以点A 为圆心,小于AD 的长为半径画弧,分别交AD ,AC 于点E ,F ,分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧在∠DAC内交于点G ,作射线AG ,交DC 于点H .若AD =6,AB =8,则△AHC 的面积为 .20.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧,与OA 、OB 分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M作MN ∥OA ,与OB 相交于点N ,∠MNB =50°,则∠AOM = .三.解答题(共5小题)21.如图,AB =AE ,BC =ED ,∠B =∠E . (1)求证:AC =AD .(2)用直尺和圆规作图:过点A 作AF ⊥CD ,垂足为F .(不写作法,保留作图痕迹)22.如图,AC 是菱形ABCD 的对角线.(1)作边AB 的垂直平分线,分别与AB ,AC 交于点E ,F (尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,连接FB ,若∠D =140°,求∠CBF 的度数.23.如图,点A 、B 、C 在⊙O 上且AB =AC ,AB ⊥AC ,请你利用直尺和圆规,用三种不同的方法,找到圆心O .(保留作图痕迹)24.如图,已知△ABC,P为边AB上一点,请用尺规作图的方法在边AC上求作一点E,使AE+EP=AC.(保留作图痕迹,不写作法)25.如图,网格中每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)画出以AB为底的等腰直角△ABC(点C在小正方形的顶点上);(2)画出以AB为一边且面积为20的平行四边形ABDE,(点D、E都在小正方形的顶点上),连接CE,请直接写出线段CE的长.。

中考物理专题训练作图题(简单)

中考物理专题训练作图题(简单)

中考物理专题训练作图题一、光学部分(25分)1.物体AB 放在平面镜前,AB 的像.2.请在图中画出入射光线或折射光线。

3.在“观察凸透镜所成的像”的实验中,保持凸透镜的位置不变,先后把烛焰放在.a 、b 、c 、d 和e 点,如图所示,同时调整光屏的位置,那么(1)把烛焰放在______点,图上出现的像最小;(2)把烛焰放在______点,屏上出现的像最大;(3)把烛焰放在______点,屏上不出现烛焰的像;(4)如果把烛焰从a 点移到d 点,像到凸透镜的距离______,像的大小______.(填“变大”“变小”或“不变”)二、力学部分(35分)4.沿斜面用50 N 的力拉重为100 N 的小车,用力的图示法表示所受的拉力和重力.5.重15 N 的小球,用细绳拴在墙上,已知球对墙面的压力为6 N ,用力的图示法画出小球受到的重力和墙受的压力.6.要想用一个最小的力,推着一个圆筒越过障碍物,试在图上画出此力的作用点和方向.7.在杠杆上的A 点挂一重物,在C 点对杠杆施加一个最小的力,使杠杆平衡在图中所示的位置.试画出这个力的示意图和力臂.第19题图三、电学部分(电和磁、家用电路设计题)8.请在图中标出条形磁体的两极.9.图中小磁针静止在通电螺线管旁,请你在图上标明:(1)电源的正负极;(2)通电螺线管的N、S极;(3)磁感线的方向.10.把螺口灯泡、开关和保险丝正确地接入家庭电路中去.11.下图是伏安法测电阻的实验电路图,根据电路图,以笔画线代替导线,将实物图连成实验电路.(电源电压为12伏特,被测电阻约为10欧姆,滑动变阻器最大阻止10欧姆) 甲表是()表乙表是()表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考作图题专题复习
一、力的和示意图作图
1、重20N的小球正从斜面上加速滚下,在图1
中用画出小球受到的重力G
和对斜面的压力F。

2、如下图2所示,工人用水平推力推水平地面上的货箱而未推动,
推力已画出,请画出货箱所受其它力的示意图。

3、站在滑板上的甲、乙两位同学相对而立,如图3所示,甲同学
用60N的力推乙同学,画出甲对乙推力的示意图。

4、请你在图4中画出足球被运动员踢出后受力的示意图(不计空气阻力)
5、重为4N的小球悬浮在盛水的杯中,用力的示意图表示小球受到的重
力与浮力。

6、如图5物体A与弹簧相连,放在水平地面上,弹簧处于压缩状态,
而物A静止不动,试画出该物体的受力示意图。

7、地面上滚动的小球,其速度越来越慢,作出小球所受各力的示意图。

二、作力臂
1、在图6中,画出作用在“开瓶起子”上动力F1的力臂和阻力F2的示意图.
2、"不倒翁"玩具被扳倒后会自动立起来。

请在图7中画出此时"不倒翁"所受受重力G的示意图及其重力对支点C点的力臂l。

(黑点O表示"不倒翁"的重心)
3、如图8,在杠杆AB上挂了一个重为G 的物体。

为使杠杆在图中的位置静止.请
在杠杆上画出最小的动力F 和它的方向。

4、如图9所示是一侧带有书柜的办公桌,现在要用一个最小的力将其一端稍抬
图1 图2 图3
图4
图5
F1
离地面。

请画出这个力的方向和这个力的力臂,并用“O”标明这个“杠杆”的支点
5
、如图
10有一动滑轮提升重物,要求在图中标明支点
o
,画出F1 F2的力臂L1 L2。

图6 图7 图8 图9
三、滑轮组绕线
1、利用图10的滑轮组,用300N向下的拉力将重为900N的物体匀速提升到高处(绳、滑轮的自重及摩擦不计),请画出滑轮组上绳的绕法
2、用如图11所示的滑轮组成滑轮组提升木桶有两种绕绳方法,请画出最省力的一种。

3、某同学的最大拉力是400N,他想站在地上提起重900N的物体,请你在图12选择一套合适
图11 图12 图13
四、光学作图
1、完成下列图中的光路图。

2、如图14,AB表示平面镜前的物体。

请根据平面镜成像特点,画出物体AB经平面镜所成的像
3、如图15示,一束光射向三棱镜,画出这束光两次折射的大致光路
4、如图16示,电视遥控器对着天棚也能遥控电视机。

图中从A点发出的光经天棚MN反射后射入电视机的接收窗口B,试画出其光路图。

5、如图17光源S 发出的光经透镜折射后,其中的两条折射光线,试用作图的方法.确定点光
图14 图15 图16 图17
光线及其相应的反射光线和折射光线.
7、如图19,由发光点S发出的光射到水面上,同时发生反射和折射,反射光线经过A点,试在图中画出入射光线、反射光线和折射光线
8、丁俊晖在某次比赛中(图20),母球遇到障碍球的直线阻挡,而不能直接击中目标球(A是母球,B是障碍球,C是目标球)。

丁击出的母球不能击中目标球,造成失分。

请你利用平面镜成像和光反射的物理规律告诉他知识的用处:母球借助球桌边缘(相当于镜面)的一次反弹,躲
图18 图19 图20
9、A′B′是物体AB经过凸透镜所成的像,CC′是主光轴,在下图中大致的位置上画出透镜和焦点
五、磁及右手螺旋定则结合的作图题
1、图中一个通电螺线管T旁边有一个小磁针,其稳定指向如图所示。

试在图中画出螺线管的绕线方向。

2、在图8中标出电源正、负极和螺线管的N, S极
图21 图22 图23
六、简单电路的设计或连线作图
1、图24是我们日常生活中,拿在手上的随身电风扇的模拟实物图。

它是由一个基本电路、外壳及辅助材料组成,请在方框内画出它基本电路的电路图。

图24 图25
2、小雨想在卧室安装一个照明电灯和电源插座。

并要求照明电灯由开关控制。

请你在图25中帮他画好电路图。

3、汽车钥匙插入仪表板上的钥匙孔,转动钥匙相当于闭合开关,汽车启动。

请在下图25中连接好控制汽车启动的电路图。

4、如图26所示是小明设计的温度自动报警器原理图.在水银温度计里封入一段金属丝,当在正常工作的温度范围内时,绿灯亮;当温度升高达到金属丝下端所指示的温度时,红灯亮,发出报警信号.请按照题意要求,在图中连接好电路.
图25 图26
七、家庭电路连接问题作图
1、将图中各元件正确接入电路,其中开关只控制电灯,三孔插座带保险盒。

2、为家庭电路示意图,请根据安全用电原则将该电路连接完成.。

相关文档
最新文档