八年级数学尺规作图专题训练二(学生卷)
初中数学 圆及尺规作图专题训练【含详细答案】
圆及尺规作图专题训练一、填空题:(每题 3 分,共 36 分)1、已知⊙O的半径为 5cm,OA=4cm,则点A在____。
2、如果圆中一条弦长与半径相等,那么此弦所对圆心角为___度。
3、已知∠AOB=30°,⊙M的半径为 2cm,当OM=____时,OM与OA相切。
4、如图,AB是⊙O的直径,∠A=50°,则∠B=____。
5、已知,⊙O1与⊙O2外切,且O1O2=10cm,若⊙O1的半径为 3cm,则⊙O2的半径为___cm。
6、如图,半径为30cm的转轮转120°角时,传送带上的物体A平移的距离为____cm。
(保留π)7、在△ABC中,∠BAC=80°,I 是△ABC外接圆的圆心,则∠BIC=____。
8、如图,A、B、C是⊙O上三个点,当BC平分∠ABO时,能得出结论:___________。
(任写一个)第8题第9题第12题9、△ABC的周长为 10cm,面积为 4cm2,则△ABC内切圆半径为_____cm。
10、如图PA切⊙O于A点,PC经过圆心O,且PA=8,PB=4。
则⊙O的半径为_____。
11、半径是6,圆心角为120°的扇形是某圆锥的侧面展开图,这个圆锥的底面半径为____。
12、如图在Rt△ABC中,∠C=90°,CA=CB=2,分别以A、B、C为圆心,以AC 为半径画弧,三条弧与边AB所围成的阴影部分的面积是_____。
二、选择题:(每题 4 分,共 24 分)1、在⊙O中,若=2,则弦AB和CD的关系是()A、AB=2CDB、AB<2CDC、AB>2CDD、无法确定2、如图,等边三角形ABC内接于圆,D为上一点,则图中等于60°的角有()A、3个B、4个C、5个D、6个3、下列作图语言规范的是()A、过点P作线段AB的中垂线B、在线段AB的延长线上取一点C,使AB=ACC、过直线 a、直线 b 外一点 P 作直线MN,使MN∥a∥bD、过点 P 作直线 AB 的垂线4、已知△ABC中,AB<AC<BC。
八年级数学尺规作图同步检测试题
19.3尺规作图同步检测(A卷)(教材针对性训练题)一、选择题: (每题2分,共8分)1.用尺规作图,不能作出惟一三角形的( )A.已知两角和夹边;B.已知两边和其中一边的对角C.已知两边和夹角;D.已知两角和其中一角的对边2.用尺规作图,不能作出惟一直角三角形的是( )A.已知两条直角边B.已知两个锐角C.已知一直角边和一锐角D.已知斜边和一直角边3.只用无刻度直尺就能作出的是( )A.延长线段AB至C,使BC=AB;B.过直线L上一点A作L的垂线C.作已知角的平分线;D.从点O再经过点P作射线OP4.下列画图语言表述正确的是( )A.延长线段AB至点C,使AB=BC;B.以点O为圆心作弧C.以点O为圆心,以AC长为半径画弧;D.在射线OA上截取OB=a,BC=b,则有OC=a+b二、填空题:(每空0.5分,共20分)5.已知线段MN,画一条线段AC= MN 的步骤是: 第一步: _____________________________, 第二步:____________________________ __,AC就是所要画的线段.6.根据图形把下列画图语句补充完整.(1)如图1所示,在__________上截取_________=a.1()RM2()A B(2)如图2所示,以点______为圆心,以________为半径作弧,交_______于点____.7.已知∠AOB,画一个∠A′O′B′=∠AOB的步骤:第一步:____________________________________________;第二步:____________________________________________;第三步:___________________ __________________________; 第四步:____________________________________ __________; 第五步:______________________________________________. 所以∠A ′O ′B ′就是所画的角.8.请你根据图3所示的作图痕迹,填写画线段AB 的垂直平分线的步骤.第一步:分别以______、_______为圆心,以大于______一半的长度为半径画弧,两弧在AB 的两侧分别相交于点________和点_______;第二步:经过点_____和点_______画______;直线MN 就是线段AB 的垂直平分线. 9.过点C 画直线L 的垂线的思想方法是把这个问题转化为画_________ 的方法来解决. 10.作线段的垂直平分线的理论根据是____________和两点确定一条直线. 11.如图4所示,所画的是∠AOB 的平分线OP,根据图中的作图痕迹, 可知其画图的步骤是:第一步:以O 为圆心,以任意长为半径画弧,分别交______、______ 于______ 和______;第二步:分别以_______、_______为圆心,以大于CD 的一半长为半径画弧, 两弧在∠AOB 的内部相交于_________;第三步:___________,那么射线OP 就是∠AOB 的平分线,这是因为______、 ________、_______,所以_______≌________,所以∠________=∠_________.12.把∠O 四等分的步骤是:第一步:先把∠O_______等分;第二步:把得到的两个角分别再_______等分.三、判断题:(对打“∨”,错打“×”)(每题1分,共10分) 13.(1)过点A 作直线AB 的垂直平分线.( ) (2)过点C 作线段AB 的垂直平分线.( ) (3)在直线AB 上截取AC,使它等于射线OD.( ) (4)作直线OC 平分∠AOB.( ) (5)以点O 为圆心作弧.( ) (6)以OC 为半径画弧.( ) (7)在线段AB 上截取AC=a ( ) (8)作射线AC 的垂直平分线.( )(9)经过已知角的内部一点作角的平分线.( )P 4()C D BA O(10)线段的垂直平分线上的点到线段两端点的距离大于线段长的一半.( ) 四、解答题:(14-22每题6分,23题8分,共62分)14.如图所示,是过直线L 处一点C 画直线L 的垂线,请你根据作图痕迹, 叙述画图过程.l15.如图所示,请把线段AB 四等分,简述步骤.B16.如图所示,在图中作出点C,使得C 是∠MON 平分线上的点,且AC=OA, 并简述步骤.M17.如图所示,已知∠AOB 和两点M 、N 画一点P,使得点P 到∠AOB 的两边距离相等,且PM=PN,简述步骤.B18.如图所示,已知线段a,b,m,求作△ABC,使BC=a, CA=b,AB 边上的中线CD=m.mb a19.已知三个自然村A 、B 、C 的位置如图所示,现计划建一所小学,使其到A 、B 、C 三个自然村的距离相等,请你设计出学校所在的位置O,(不写画法,保留画图痕迹)B20.如图所示,已知AB .求证:(1)确定AB 的圆心O;(2)过点A 且与⊙O 相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求得保留作图痕迹)21.如图所示,已知B 、C 是⊙O 上的两点.求作⊙O 上一点P,使得PB=PC.(保留作图痕迹,不写作法和证明)22.如图所示,已知线段a,求作:(1)△ABC,使AB=BC=CA=a;(2)⊙O,使它内切于△ABC.(说明:要求写出作法)a23.如图所示,一块直角三角形形状的木板余料, 木匠师傅要在此余料上锯出一块圆形的木板制做凳面,要想使锯出的凳面的面积最大.(1)请你试着用直尺和圆规画出此圆(要求尺规作图,保留作图痕迹,不写作法和证明). (2)若此Rt △ABC 的两直角边分别为30cm 和40cm,试求此圆凳面的面积.CBAA卷答案一、1.B 2.B 3.D 4.C 二、5.作射线AP;在射线AP 上,以A 为圆心,以MN 为长为半径截取AC=MN.6.(1)射线OM;OA;(2)A;R;射线AB;M.7.画射线O ′A ′;以点O 为圆心,以适当长为半径画弧,交OA 于C,交OB 于D;以O ′为圆心,以OC 长为半径画弧,交O ′A ′于C ′;以点C ′为圆,以CD 长为半径画弧, 交前一条弧于D ′;经过点D ′画射线O ′B ′. 8.A;B;AB;M;N;M:N;MN. 9.线段的垂直平分线.10.到线段两端点距离相等的点,在这条线段的垂直平分线上.11.OB;OA;点C;点D;点C;点D;点P;画射线OP;OP=OP(公共边);OC=OD;PC=PD(同圆半径相等);△POC;△POD;POC;POD.12.二;二三、13.(1)×;(2)×;(3)×;(4)×;(5)×;(6)×;(7)∨;(8)×;(9)×;(10)×四、14.(1)以点C为圆心,以大于C点到直线L的距离为半径作弧交L于A、B两点(2)分别以A、B为圆心,以大于12AB长为半径作弧,两弧分别相交于M、N两点.(3)作直线MN,则直线MN即为所求.15.步骤:(1)作AB的垂直平分线MN,交AB于O1;(2)作O1A的垂直平分线EF交AB于O2;(3)作O1B的垂直平分线GH交AB于O3,则O1、O2、O3即为线段AB的四等分点.16.作法如下:(1)作∠MON的平分线OB;(2)以A点为圆心,以OA为半径画弧交OB于C,连结AC,则C点即为所求.17.作法如下:(1)作∠AOB的平分线OC;(2)连结MN,并作MN的垂直平分线EF,交OC于P,连结PM、PN,则P点即为所求.18.作法如下:(1)以CA=b,AE=a,CE=2m作△ACE;(2)过C点作AE的平行线CF;(3)取CE的中点D,连结AD并延长交CF于B.△ABC就是所求作的三角形.19.略20. 略.21. 略.22.解:作法如下:(1)①作线段BC=a;②分别以B、C为圆心,以a为半径作弧,两弧交于A点;③连结AB、AC,则△ABC即为所求.(2)①作∠ABC的平分线BM;②作∠ACB的平分线CN,BM与CN交于O;③过O 作OD ⊥BC,垂足为D:④以O 为圆心,以OD 为半径作⊙O,则⊙O 即为所示. 23.(1)略r E CD BAFO(2)解:如答图所示,连结OD 、OF,则四边形OFCD 为正方形,所以设CD=CF=OD=r,据切线长定理得AE=AD=40-r,BE=BF=30-r.在Rt △ABC 中即AE+BE=50. ∴(40-r)+(30-r)=50,∴r=10,则22210100()OS r cm πππ=⋅=⨯=.。
初二数学尺规作图试题
初二数学尺规作图试题1.(2014•安顺)用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.(SAS)B.(SSS)C.(ASA)D.(AAS)【答案】B【解析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:B.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.2.(2014•崇左)如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS【答案】C【解析】根据作图的过程知道:OE=OD,OC=OC,CE=CD,所以由全等三角形的判定定理SSS可以证得△EOC≌△DOC.解:如图,连接EC、DC.根据作图的过程知,在△EOC与△DOC中,,△EOC≌△DOC(SSS).故选:C.点评:本题考查了全等三角形的判定定理的应用,注意:三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.3.(2014•湖州)如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是()A.①②③B.①②④C.①③④D.②③④【答案】B【解析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.解:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确;∵∠ABC=90°,∴PD∥AB,∴E为AC的中点,∴EC=EA,∵EB=EC,∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,故正确的有①②④,故选:B.点评:本题考查了基本作图的知识,解题的关键是了解如何作已知线段的垂直平分线,难度中等.4.(2014•葫芦岛)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.PA=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ【答案】C【解析】根据角平分线的作法进行解答即可.解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,PA=PB,∴点A、B到PQ的距离相等,故C错误.故选C.点评:本题考查的是作图﹣基本作图,熟知角平分线的作法及性质是解答此题的关键.5.(2014•无锡)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条【解析】利用等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选:B.点评:此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.6.(2014•福田区模拟)用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.(AAS)B.(SAS)C.(ASA)D.(SSS)【答案】D【解析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.解:连接NC,MC,在△ONC和△OMC中,,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选D.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,题型较好,难度适中.7.(2014•石家庄二模)已知△ABC中,AB<AC<BC.求作:一个圆的圆心O,使得O在BC上,且圆O与AB、AC皆相切,下列作法正确的是()A.作BC的中点OB.作∠A的平分线交BC于O点C.作AC的中垂线,交BC于O点D.过A作AD⊥BC,交BC于O点【答案】B【解析】根据角平分线的性质,即角平分线上的点到角两边的距离相等,即可求解.解:根据角平分线上的点到角两边的距离相等,则要使圆O与AB、AC都相切,只需作∠A的平分线交BC于O点.故选B.点评:考查了作图﹣复杂作图,切线的性质.本题较简单,关键是熟悉角平分线的性质.8.(2014•路南区三模)如图,AD为⊙O直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断()A.甲对,乙不对B.甲不对,乙对C.两人都对D.两人都不对【答案】C【解析】甲的作法.连接DB、DC,由作图可知,DB=DO=DC,在⊙O中可知OB=OD=OC,故可得出△OBD和△OCD都是等边三角形,再根据=,=可知∠ODB=∠ACB=60°,∠ABC=∠ODC=60°,故可得出结论;乙的作法,连接OB、OC.根据AD为⊙O的直径,BC是半径OD的垂直平分线,由垂径定理可知=,=,OE=OD=OC,所以AB=AC.在Rt△OEC中由锐角三角函数的定义可得出cos∠EOC的值,进而可求出∠EOC的度数,进而可得出结论.解:甲的作法.如图2;证明:连接DB、DC.由作图可知:DB=DO=DC,在⊙O中,∴OB=OD=OC,∴△OBD和△OCD都是等边三角形,∴∠ODB=∠ODC=60°,∵=,=,∴∠ODB=∠ACB=60°,∠ABC=∠ODC=60°,∴△ABC是等边三角形.乙的作法如图1,证明:连接OB、OC.∵AD为⊙O的直径,BC是半径OD的垂直平分线,∴=,=,OE=OD=OC,∴AB=AC.在Rt△OEC中,∴cos∠EOC==,∴∠EOC=60°,∴∠BOC=120°.∴∠BAC=60°.∴△ABC是等边三角形.故选:C.点评:此题主要考查了复杂作图,关键是掌握垂径定理及圆周角定理,等边三角形的判定与性质等知识.9.(2014•涉县一模)如图,AD为⊙O直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别如下:对于甲乙两人的作法,可判断()甲:①以D为圆心,OD长为半径作圆弧,交⊙O于B.C两点.②连接AB,BC,CA.△ABC即为所求的三角形乙:①作OD的中垂线,交⊙O于B,C两点.②连接AB,BC.△ABC即为所求三角形.A.甲对,乙不对B.甲不对,乙对C.两人都对D.两人都不对【答案】C【解析】甲的作法.连接DB、DC,由作图可知,DB=DO=DC,在⊙O中可知OB=OD=OC,故可得出△OBD和△OCD都是等边三角形,再根据=,=可知∠ODB=∠ACB=60°,∠ABC=∠ODC=60°,故可得出结论;乙的作法,连接OB、OC.根据AD为⊙O的直径,BC是半径OD的垂直平分线,由垂径定理可知=,=,OE=OD=OC,所以AB=AC.在Rt△OEC中由锐角三角函数的定义可得出cos∠EOC的值,进而可求出∠EOC的度数,进而可得出结论.解:甲的作法.如图2;证明:连接DB、DC.由作图可知:DB=DO=DC,在⊙O中,∴OB=OD=OC,∴△OBD和△OCD都是等边三角形,∴∠ODB=∠ODC=60°,∵=,=,∴∠ODB=∠ACB=60°,∠ABC=∠ODC=60°,∴△ABC是等边三角形.乙的作法如图1,证明:连接OB、OC.∵AD为⊙O的直径,BC是半径OD的垂直平分线,∴=,=,OE=OD=OC,∴AB=AC.在Rt△OEC中,∴cos∠EOC==,∴∠EOC=60°,∴∠BOC=120°.∴∠BAC=60°.∴△ABC是等边三角形.故选:C.点评:此题主要考查了复杂作图,关键是掌握垂径定理及圆周角定理,等边三角形的判定与性质等知识.10.(2014•张家口二模)已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是()A.甲对,乙不对B.甲不对,乙对C.两人都对D.两人都不对【答案】C【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=OP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(2)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.证明:如图1连接OM,OA,∵连接OP,作OP的垂直平分线l,交OP于点A;∴OA=OP,∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=OP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°∴OM⊥MP,∴MP是⊙O的切线,(2)如图2∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确,故选:C.点评:本题主要考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.。
浙教版初中数学八年级上册【能力培优】1.6 尺规作图测试卷习题(含答案)
浙教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!浙教版初中数学和你一起共同进步学业有成!1.6 尺规作图专题一根据尺规作图计算1.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.2. 已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;(2)作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(3)连接DE,求证:△ADE≌△BDE.专题二利用尺规作图解决实际问题3. 某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示,请在原图上利用尺规作图作出音乐喷泉M的位置,(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)4. 电信部门要修建一座电视信号发射塔,如图,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应修建在什么位置?在图上标出它的位置.课时笔记【知识要点】1. 用没有刻度的直尺和圆规作图,简称尺规作图.2. 基本尺规作图作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线.3. 利用基本作图作三角形:①已知三边作三角形;②已知两边及其夹角作三角形;③已知两角及其夹边作三角形;④已知底边及底边上的高作等腰三角形【温馨提示】1. 尺规作图的直尺是没有刻度的直尺.平常所用的直尺都有刻度,只是用尺规作图就不能使用刻度.2. 作图的基本依据就是作全等三角形【方法技巧】1.作图时要注意保留作图痕迹.2.描述尺规作图作法的语言要规范.参考答案2. 解:(1)(2)如下图所示.3. 解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.1. 解:∵发射塔到两个城镇A、B的距离必须相等,∴发射塔一定在连结AB的线段的垂直平分线上.∵发射塔到两条高速公路m和n的距离也必须相等,∴发射塔一定在m和n夹角的角平分线上.所以作图如下. 发射塔应修建在P点.相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
尺规作图(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。
初二数学尺规作图练习题
初二数学尺规作图练习题尺规作图是数学中的重要内容,通过使用尺规来解决几何问题。
在初二数学中,尺规作图是一项基础技能,帮助学生理解几何概念并锻炼解决问题的能力。
本文将介绍一些初二数学尺规作图的练习题,并提供相应的解答。
【练习题一】已知正方形ABCD的边长为2cm,E为边AB上的一点,连接DE并延长至与边BC相交于点F,请使用尺规作图的方法求出DF的长度。
解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。
2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。
3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边DC相交于点H。
4. 连接DH,DH即为所求的DF的长度。
【练习题二】已知直角三角形ABC,其中∠ABC=90°,AB=3cm,BC=4cm,请使用尺规作图的方法求出三角形ABC的内切圆的半径。
解答:1. 作辅助线:连接AB和AC,延长AC至点D。
2. 以尺规的一点放在点A上,另一点固定在边AC上,画弧与边AB相交于点E。
3. 以尺规的一点放在点E上,另一点放在点C上,画弧与边BC相交于点F。
4. 连接AF,AF即为三角形ABC的内切圆的半径。
【练习题三】已知正方形ABCD的边长为6cm,E为边AB上的一点,连接DE 并延长至与边BC相交于点F,连接CF,请使用尺规作图的方法求出三角形CEF的周长。
解答:1. 作辅助线:过点D作DE的垂线,交边BC于点G。
2. 以尺规的一点放在点D上,另一点固定在边DE上,画弧与边BC相交于点G。
3. 以尺规的一点放在点G上,另一点放在点F上,画弧与边FC相交于点H。
4. 连接CF和FH,CHFH即为三角形CEF。
5. 使用尺规测量边CH、HF和FC的长度,计算出三角形CEF的周长。
通过以上三个练习题,我们了解了尺规作图的基本方法和步骤。
在实际操作中,我们需要准确使用尺规,并且要仔细观察图形的性质和特点,以便选择合适的作图方法。
第十二章 全等三角形——尺规作图专题训练(二) 人教版八年级数学上册
第十二章全等三角形——尺规作图专题训练(二)1.如图画一个等腰△ABC,使底边长BC=a,底边上的高为h(要求:用尺规作图,保留作图痕迹).2.如图:某地有两所大学和两条相交叉的公路(点M,N表示大学,AO,BO表示公路).现计划修建一座仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案(要求保留作图痕迹)3.作图.(1)已知△ABC,在△ABC内求作一点P,使点P到△ABC三条边的距离相等.(2)要在高速公路旁边修建一个飞机场,使飞机场到A、B两个城市的距离之和最小,请作出飞机场的位置.4.已知∠AOB,点P在OA上,请以P为顶点,PA为一边作∠APC=∠O(不写作法,但必须保留作图痕迹)问:(1)PC与OB一定平行吗?答:(2)简要说明理由:5.在如图所示的方格纸中,已知线段A日的端点A、B都在格点上,不用量角器与三角尺,仅用直尺,在方格纸中完成以下各题:(1)过点B画线段BC,使BC⊥AB,BC=2AB;(2)过点C画线段CD,使CD∥BA,CD=BA;(3)连接AD,你将得到一个形.6.如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)7.请把下面的直角进行三等分.(要求用尺规作图,不写作法,但要保留作图痕迹.)8.a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置,不写作法,保留作图痕迹.9.已知:∠MON、点A及线段a(如图).求作:点P,使得点P到OM和ON的距离相等,且PA=a.(要求尺规作图,保留作图痕迹,不必写作法和证明)10.如图,在△ABC中,∠BAC是钝角,按要求画图.(1)△ABC的角平分线AD;(2)AC边上的中线BE;(3)AC边上的高BF.11.已知∠ABC,求作∠A′B′C′,使∠A′B′C′=∠ABC.(要求保留痕迹,不写作法)12.如图,已知△ABC.(1)作边BC的垂直平分线;(2)作∠C的平分线.(要求:不写作法,保留作图痕迹)13.用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,“幸福”小区为了方便住在A区、B区、和C区的居民(A区、B区、和C区之间均有小路连接),要在小区内设立物业管理处P.如果想使这个物业管理处P到A区、B 区、和C区的距离相等,应将它建在什么位置?请在图中作出点P.14.如图所示,已知线段AB,∠α,∠β,分别过A、B作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)15.在如图所示的方格纸中,每个小正方形的边长为1,点A、B、C在方格纸中小正方形的顶点上.(1)按下列要求画图:①过点A画BC的平行线DF;②过点C画BC的垂线MN.(2)计算△ABC的面积.。
初中数学中考复习尺规作图题专项练习及答案解析(专题试卷50道)
初中数学中考复习作图题专项练习及答案解析(专题试卷50道)一、选择题1、数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.2、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是A.B.C.D.3、如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()4、下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.5、任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形6、用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形7、如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A. AG平分∠DABB. AD=DHC. DH=BCD. CH=DH8、如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA为半径画弧①;步骤2:以点B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.下列叙述正确的是:A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD二、填空题9、阅读下面材料:在数学课上,老师提出如下问题:所以PB和PC就是所求的切线.请回答:小涵的作图依据是.10、如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF 的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为°.11、如图,在△ABC中,∠C=90°,∠CAB=60°,按以下步骤作图:①分别以A,B为圆心,以大于AB的长为半径做弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE= .12、如图,在△ABC中,AB>AC.按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N;作直线MN交AB于点D;连结CD.若AB=6,AC=4,则△ACD的周长为.三、计算题13、如图,已知线段a和h.求作:△ABC,使得AB=AC,BC=a,且BC边上的高AD=h.要求:尺规作图,不写作法,保留作图痕迹.14、如图所示,点C、D是∠AOB内部的两点.(1)作∠AOB的平分线OE;(2)在射线OE上,求作一点P,使PC=PD.(要求用尺规作图,保留作图痕迹)四、解答题15、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.16、(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求点P到AB边的距离.17、已知△ABC,用直尺和圆规作△ABC的角平分线CD和高AE.(不写画法,保留作图痕迹)18、数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.根据以上情境,解决下列问题:(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.(2)小聪的作法正确吗?请说明理由.(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)19、如图,∠AOB=30°,OA表示草地边,OB表示河边,点P表示家且在∠AOB内.某人要从家里出发先到草地边给马喂草,然后到河边喂水,最后回到家里.(1)请用尺规在图上画出此人行走的最短路线图(保留作图痕迹,不写作法和理由).(2)若OP=30米,求此人行走的最短路线的长度.20、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.21、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请找出截面的圆心;(不写画法,保留作图痕迹.)(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.22、如图,已知△ABC,用直尺和圆规求作一直线AD,使直线过顶点A,且平分△ABC的面积(不需写作法,保留作图痕迹)23、高致病性禽流感是比SARS传染速度更快的传染病.为防止禽流感蔓延,政府规定:离疫点3km范围内为扑杀区;离疫点3km~5km范围内为免疫区,对扑杀区与免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,在扑杀区内公路CD长为4km.(1)请用直尺和圆规找出疫点O(不写作法,保留作图痕迹);(2)求这条公路在免疫区内有多少千米?24、作图题:如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标.25、如图,⊙O为△ABC的外接圆,直线l与⊙O相切与点P,且l∥BC.(1)请仅用无刻度的直尺,在⊙O中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法);(2)请写出证明△ABC被所作弦分成的两部分面积相等的思路.26、如图,107国道OA和302国道OB在甲市相交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且使PC=PD,试确定出点P的位置.(不写作法,保留作图痕迹,写出结论)27、用尺规作图从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大(保留作图痕迹,不要求写作法、证明)28、如图,已知△ABC,利用尺规完成下列作图(不写画法,保留作图痕迹).(1)作△ABC的外接圆;(2)若△ABC所在平面内有一点D,满足∠CAB=∠CDB,BC=BD,求作点D.29、如图,点A是半径为3的⊙O上的点,(1)尺规作图:作⊙O的内接正六边形ABCDEF;(2)求(1)中的长.30、已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,直线DE∥AB,且点E到B,D两点的距离相等.(1)用尺规作图作出点E;(不写作法,保留作图痕迹)(2)连接BE,求证:BD平分∠ABE.31、如图,BC是⊙O的一个内接正五边形的一边,请用等分圆周的方法,在⊙A中用尺规作图作出一个⊙A的内接正五边形(请保留作图痕迹).32、已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.33、如图,已知△ABC,用直尺(没有刻度)和圆规在平面上求作一个点P,使P到∠B两边的距离相等,且PA=PB.(不要求写作法,但要保留作图痕迹)34、如图,在△ABC中,AB=AC=8cm,∠BAC=120°.(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);(2)求它的外接圆半径.35、如图,已知等腰直角△ABC,∠A=90°.(1)利用尺规作∠ABC的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)若将(1)中的△ABD沿BD折叠,则点A正好落在BC边上的A1处,当AB=1时,求△A1DC的面积.36、如图,△ABC中,∠C=90°,小王同学想作一个圆经过A、C两点,并且该圆的圆心到AB、AC距离相等,请你利用尺规作图的办法帮助小王同学确定圆心D.(不写作法,保留作图痕迹).37、如图,将矩形ABCD沿对角线AC折叠,点B落在点E处,请用尺规作出点E.(不写画法,保留作图痕迹)38、如图,在等腰直角△ABC中,∠ACB=90°,AC=1.(1)作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法).(2)在(1)所作的圆中,求出劣弧BC的长.39、如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠CAB的平分线,交BC边于点D(用尺规作图,保留作图痕迹,不要求写作法和证明);(2)求S△ACD:S△ABC的值.40、如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)41、如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.42、▱ABCD中,点E在AD上,DE=CD,请仅用无刻度的直尺,按要求作图(保留作图痕迹,不写作法)(1)在图1中,画出∠C的角平分线;(2)在图2中,画出∠A的角平分线.43、如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)44、从△ABC(CB<CA)中裁出一个以AB为底边的等腰△ABD,并使得△ABD的面积尽可能大.(1)用尺规作图作出△ABD.(保留作图痕迹,不要求写作法、证明)(2)若AB=2m,∠CAB=30°,求裁出的△ABD的面积.45、如图,在中,.(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)①作的垂直平分线,交于点,交于点;②以为圆心,为半径作圆,交的延长线于点.⑵在⑴所作的图形中,解答下列问题.①点与的位置关系是_____________;(直接写出答案)②若,,求的半径.46、在数轴上作出表示的点(保留作图痕迹,不写作法).47、△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点C顺时针旋转90°得到△A2B2C.48、如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么(保留作图痕迹,不写作法和证明)理由是:.49、如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)50、如图,已知⊙O,用尺规作⊙O的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)参考答案1、A.2、D3、D4、B5、B.6、B7、D8、A9、直径所对的圆周角是直角.10、100.11、8.12、10.13、见解析14、见解析15、(1)详见解析;(2).16、(1)、答案见解析;(2)、5.17、答案见解析18、(1)SSS;(2)、理由见解析;(3)、答案见解析19、(1)、答案见解析;(2)、30m.20、(1)、答案见解析;(2)、r=8cm 21、(1)见试题解析;(2)这个圆形截面的半径是10cm.22、答案见解析23、(1)作图详见解析;(2)(﹣4)千米.24、(1)图形详见解析;(2) B′(﹣6,2),C′(﹣4,﹣2).25、26、作图详见解析.27、28、(1)作图见解析(2)作图见解析29、(1)见试题解析;(2)2π.30~33、详见解析.34、(1)、答案见解析;(2)、r=8cm35、(1)、答案见解析;(2)、36、作图参见解析.37、作图参见解析.38、(1)作图参见解析;(2)π.39、(1)作图见解析(2)1:340、答案见解析41、(1)作图见解解析;(2)AB=AD=BC.42、作图参见解析.43、44、(1)如图;(2)m245、(1)作图见解析;(2)①点B在⊙O上;②5.46、47、见解析48、见解析49、见解析50、答案见解析.答案详细解析【解析】1、试题分析:A、根据作法无法判定PQ⊥l;B、以P为圆心大于P到直线l的距离为半径画弧,交直线l,于两点,再以两点为圆心,大于它们的长为半径画弧,得出其交点,进而作出判断;C、根据直径所对的圆周角等于90°作出判断;D、根据全等三角形的判定和性质即可作出判断.故选:A.考点:作图—基本作图.2、试题分析:由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.故选D.考点:作图—复杂作图3、试题分析:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.考点:基本作图4、试题分析:过点A作BC的垂线,垂足为D,故选B.考点:作图—基本作图.5、试题分析:根据线段垂直平分线的性质可得EG=EH=FH=GF,由此可得选项A正确,选项B错误,选项C、正确,选项D正确.故答案选B.考点:线段垂直平分线的性质.6、试题分析:根据作图的痕迹以及菱形的判定方法解答.解:由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.故选B.7、试题分析:由角平分线的作法,依题意可知AG平分∠DAB,A正确;∠DAH=∠BAH,又AB∥DC,所以∠BAH=∠ADH,所以,∠DAH=∠ADH,所以,AD=DH,又AD=BC,所以,DH =BC,B、C正确,故答案选D.考点:平行四边形的性质;平行线的性质.8、试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.9、试题分析:∵OP是⊙A的直径,∴∠PBO=∠PCO=90°,∴OB⊥PB,OC⊥PC,∵OB、OC是⊙O的半径,∴PB、PC是⊙O的切线;则小涵的作图依据是:直径所对的圆周角是直角.故答案为:直径所对的圆周角是直角.【考点】切线的判定;作图—复杂作图.10、试题解析:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠ACB=80°,∠ABC=60°,∴∠CAB=40°,∴∠BAD=20°;在△ADC中,∠B=60°,∠CAD=20°,∴∠ADB=100°,考点:作图—基本作图.11、试题解析:由题意可得出:PQ是AB的垂直平分线,∴AE=BE,∵在△ABC中,∠C=90°,∠CAB=60°,∴∠CBA=30°,∴∠EAB=∠CAE=30°,∴CE=AE=4,∴AE=8.考点:1.作图—复杂作图;2.线段垂直平分线的性质;3.含30度角的直角三角形.12、试题分析:∵分别以点B和点C为圆心,以大于BC一半的长为半径画弧,两弧相交于点M和N,作直线MN.直线MN交AB于点D,连结CD,∴直线MN是线段BC的垂直平分线,∴BD=CD,∴BD+AD=CD+AD=AB,∵AB=6,AC=4,∴△ADC的周长=(CD+AD)+AC=AB+AC=6+4=10.故答案为:10.考点:线段垂直平分线的性质.13、解:如图所示.△ABC就是所求的三角形.14、试题分析:(1)根据赔付风险的画法画出图形即可.(2)画出作线段CD的垂直平分线MN,即可解决问题.解:(1)∠AOB的平分想如图所示,(2)作线段CD的垂直平分线MN与射线OE交于点P.点P就是所求的点.15、试题分析:(1)利用尺规作出∠ABC的平分线BD即可.(2)首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)∠ABC的平分线BD,交AC于点D,如图所示,(2)在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC是等腰直角三角形,∴.考点:翻折变换(折叠问题);作图—基本作图.16、试题分析:(1)、做出线段AB的中垂线得出答案;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,然后根据Rt△ACP的勾股定理得出答案.试题解析:(1)、如图,点P为所作;(2)、设BP=x,则AP=x,CP=BC﹣PB=8﹣x,在Rt△ACP中,∵PC2+AC2=AP2,∴(8﹣x)2+42=x2,解得x=5,即BP的长为5.考点:勾股定理17、试题分析:根据角平分线的作法以及过直线外一点向直线最垂线的作法得出即可.试题解析:如图所示:CD,AE即为所求.考点:作图—复杂作图.18、试题分析:(1)、本题都是作线段相等,则根据SSS来判定三角形全等;(2)、根据垂直得出∠OMP=∠ONP=90°,然后结合OP=OP,OM=ON得出直角三角形全等;(3)、根据三角形全等的性质得出角平分线.试题解析:(1)、SSS(2)、小聪的作法正确理由:∵PM⊥OM , PN⊥ON ∴∠OMP=∠ONP=90°在Rt△OMP和Rt△ONP中∵OP="OP" ,OM=ON∴Rt△OMP≌Rt△ONP(HL)∴∠MOP=∠NOP ∴OP平分∠AOB(3)、如图所示.步骤:①利用刻度尺在OA、OB上分别截取OG=OH. ②连结GH,利用刻度尺找出GH的中点Q.③作射线OQ.则OQ为∠AOB的平分线.考点:角平分线的做法.19、试题分析:(1)、利用轴对称最短路线求法得出P点关于OA,OB的对称点,进而得出行走路线;(2)、利用等边三角形的判定方法以及其性质得出此人行走的最短路线长为P′P″进而得出答案.试题解析:(1)、如图所示:此人行走的最短路线为:PC→CD→DP;(2)、连接OP′,OP″,由题意可得:OP′=OP″,∠P′OP″=60°,则△P′OP″是等边三角形,∵OP=30米,∴PC+CD+DP=P′P″=30(m),考点:(1)、作图—应用与设计作图;(2)、轴对称-最短路线问题.20、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质21、试题分析:(1)根据尺规作图的步骤和方法做出图即可;(2)先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.试题解析:(1)如图所示;(2)如图,OE⊥AB交AB于点D,则DE=4cm,AB=16cm,AD=8cm,设半径为Rcm,则OD=OE﹣DE=R﹣4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R﹣4)2,解得R=10.故这个圆形截面的半径是10cm.【考点】作图—应用与设计作图;垂径定理的应用.22、试题分析:首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD即可.试题解析:如图所示:,直线AD即为所求.考点:作图—复杂作图.23、试题分析:(1)在内圆(或外圆)任意作出两条弦,分别作出者两条弦的垂直平分线,它们的交点就是疫点(即圆心O);(2)利用垂径定理求出AB、CD的长度,问题解决.试题解析:(1)作图如下:(2)如图:连接OA、OC,过点O作OE⊥AB于点E,∴CE=CD=2km,AE=AB,在Rt△OCE中,OE==km,在Rt△OAE中,AE==km,∴AB=2AE=km,因此AC+BD=AB﹣CD=﹣4(km).答:这条公路在免疫区内有(﹣4)千米.考点:作图—应用与设计作图.24、试题分析:(1)延长BO到B′,使OB′=2OB,则B′就是B的对应点,同样可以作出C的对称点,则对应的三角形即可得到;(2)根据(1)的作图即可得到B′、C′的坐标.试题解析:(1)△OB′C′是所求的三角形;(2)B′的坐标是(﹣6,2),C′的坐标是(﹣4,﹣2).考点:作图-位似变换.25、试题分析:(1)连结PO并延长交BC于E,过点A、E作弦AD即可;(2)由于直线l与⊙O相切于点P,根据切线的性质得OP⊥l,而l∥BC,则PE⊥BC,根据垂径定理得BE=CE,所以弦AE将△ABC分成面积相等的两部分.试题解析:(1)如图所示:(2)∵直线l与⊙O相切与点P,∴OP⊥l,∵l∥BC,∴PE⊥BC,∴BE=CE,∴弦AE将△ABC分成面积相等的两部分.【考点】作图—复杂作图;三角形的外接圆与外心.26、试题分析:作∠AOB的平分线与线段CD的垂直平分线,两线相交于点P,点P即为所求.试题解析:点P即为所求.考点:作图——应用与设计作图.27、试题分析:利用△ABD是以AB为底边的等腰三角形,则点D在AB的垂直平分线上,于是作AB的垂直平分线交AC于D,则△ABD满足条件.试题解析:如图,△ABD为所作.考点:作图﹣复杂作图.28、试题分析:(1)作出BD、BC的垂直平分线,两线的交点就是⊙O的圆心O的位置,然后以O为圆心AO长为半径画圆即可;(2)以B为圆心,BC长为半径化弧,交⊙O于点D,再连接BD,CD即可.试题解析:(1)如图所示:⊙O即为所求;(2)如图所示:点D即为所求.考点:1、作图—复杂作图;2、圆周角定理;3、三角形的外接圆与外心29、试题分析:(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)由(1)可求得∠AOC=120°,继而求得(1)中的长.试题解析:(1)首先连接OA,然后以A为圆心,OA长为半径画弧,交⊙O于B,F,再分别以B,F为圆心,OA长为半径画弧,交⊙O于点E,C,在以C为圆心,OA长为半径画弧,交⊙O于点D,则正六边形ABCDEF即为所求;(2)∵正六边形ABCDEF是⊙O的内接正六边形∴∠AOC=120°,∵⊙O的半径为3,∴的长为:=2π.【考点】正多边形和圆;弧长的计算;作图—复杂作图.30、试题分析:(1)、直接利用作一角等于已知角的作法结合线段垂直平分线的作法得出符合题意的图形;(2)、直接利用平行线的性质以及结合线段垂直平分线的性质得出答案.试题解析:(1)、如图所示:点E即为所求;(2)、∵DE∥AB,∴∠ABD=∠BDE,又∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=∠EBD,即BD平分∠ABE.考点:(1)、作图—复杂作图;(2)、平行线的性质;(3)、线段垂直平分线的性质.31、试题分析:如图,①作∠EAF=∠BOA.②在⊙A上截取,则五边形EFGHL即为所求.试题解析:如图,①作∠EAF=∠BOA.②在⊙A上截取.五边形EFGHL即为所求.考点:1、作图—复杂作图;2、正多边形和圆32、试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;作出线段AB垂直平分线交AB于点E,点E是线段AB的中点.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).考点:作图—复杂作图;全等三角形的判定.33、试题分析:分别作∠B的平分线BE和线段AB的垂直平分线MN,利用角平分线的性质以及线段垂直平分线的性质得出即可.试题解析:如图,点P即为所求点.考点:作图——基本作图;角平分线的性质.34、试题分析:(1)、分别作AB和AC的中垂线,他们的交点就是圆心;(1)、连接AO、BO,根据∠BAC的度数以及等腰三角形的性质得出△ABO为等边三角形,然后求出半径. 试题解析:(1)、如图所示:⊙O即为所求的△ABC的外接圆;(2)、连接AO,BO,∵AB=AC=8cm,∠BAC=120°,∴∠BAO=∠CAO=60°,∵AO=BO,∴△ABO是等边三角形,∴AO=AB=8cm,即它的外接圆半径为8cm.考点:(1)、三角形外接圆的作法;(2)、等边三角形的判定与性质35、试题分析:(1)、利用尺规作出∠ABC的平分线BD即可;(2)、首先利用勾股定理求出BC,再求出A1C,根据△A1DC的面积=•A1C•A1D计算即可.试题解析:(1)、∠ABC的平分线BD,交AC于点D,如图所示,(2)、在RT△ABC中,∵∠A=90°,AC=BC=1,∴BC=,∵AB=A1B=AC=1,∴A1C=-1,∵∠C=45°,∠DA1C=90°,∴∠C=∠A1DC=45°∴△A1DC 是等腰直角三角形,∴S=.考点:(1)、翻折变换(折叠问题);(2)、作图—基本作图.36、试题分析:根据角平分线的性质定理和线段垂直平分线的性质定理,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,则点D满足条件.试题解析:如图,先作∠BAC的平分线AE,再作AC的垂直平分线m交AE于点D,点D为所作.考点:作图—复杂作图.37、试题分析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,两弧相交于点E.试题解析:以点A为圆心以AB长为半径作弧,以C为圆心以BC长为半径作弧,如图所示:两弧相交于点E.则点E即为所求.考点:1.翻折变换(折叠问题);2.矩形的性质.38、试题分析:(1)先找到圆心,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆即可;(2)先利用等腰直角三角形的性质求出AB的长,那么OB=OA=AB,又∠BOC=90°,将它们代入弧长公式计算即可.试题解析:(1)如图,作线段AB的垂直平分线交AB于O点,然后以O为圆心,OA为半径画圆,⊙O即为所作;(2)∵在等腰直角△ABC中,∠ACB=90°,AC=1,∴AB=AC=,∵线段AB的垂直平分线交AB于O点,∴∠BOC=90°,OB=OA=AB=,∴劣弧BC的长=π.考点:1.弧长的计算;2.作图—复杂作图.39、试题分析:(1)根据角平分线的基本作图画图即可;(2)根据角平分线的性质的到边之间的关系,然后根据三角形的面积公式计算即可.试题解析:(1)如图所示,AD为所求的角平分线;(2)∵∠C=90°,∠B=30°,∴∠CAB =60°,∵AD平分∠CAB,∴∠CAD ="∠DAB" =30°,∵∠ACD=90°,∴AD=2CD,∵∠B=30°,∴∠B=∠DAB,∴AD= BD,∴BD=2CD,∴BC=3CD,∵,,∴.考点:角平分线40、试题分析:作∠AOB的角平分线和线段MN的中垂线,两条直线的交点就是点P的位置.试题解析:如图所示:点P就是所求的点.考点:(1)、角平分线的作法;(2)、线段的中垂线的作法41、试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.42、试题分析:(1)连结CE,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD;(2)连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.试题解析:(1)如图1,由DE=DC得到∠DEC=∠DCE,由AD∥BC得∠DEC=∠BCE,则∠DCE=∠BCE,即CE平分∠BCD.CE为所求作;(2)如图2,连结AC、BD,它们相交于点O,延长EO交BC于F,则AF为所作.因为三角形BOF和三角形DOE全等,导出BF=DE=AB=CD,从而得出∠BAF=∠BFA=∠FAD,则AF是所求作的角平分线.考点:1.基本作图;2.三角形全等的判定与性质;3.平行四边形的性质.43、试题分析:根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P1都是所求的点.点评:此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.44、试题分析:(1)直接利用线段垂直平分线的性质作出AB的垂直平分线,交AC于点D,进而得出△ABD;(2)利用锐角三角形关系得出DE的长,进而利用三角形面积求法得出答案.试题解析:(1)如图所示:△ABD即为所求;(2)∵MN垂直平分AB,AB=2m,∠CAB=30°,∴AE=1m,则tan30°=,解得:DE=.故裁出的△ABD的面积为:×2×=(m2).考点:作图—复杂作图.45、试题分析:(1)先作AC的垂直平分线,然后作⊙O;(2)①通过证明OB=OA来判断点在⊙O上;②设⊙O的半径为r,在Rt△AOD中利用勾股定理得到r2=42+(r-2)2,然后解方程求出r 即可.试题解析:(1)如图所示;。
尺规作图(八年级数学)
b a尺规作图一、尺规作图的定义1.在几何里把限定用和作图,称为尺规作图.2.最基本的、最常用的尺规作图,称基本作图.温馨提示:尺规作图不能利用....直尺的刻度.三角板现有的角度及量角器.3.五种基本作图:(1)作一条等于已知线段;(2)作一个等于已知角;(3)平分已知角(作线);(4)作线段的线;(5)经过一点作已知直线的线.二、尺规作图训练(不写作法,保留作图痕迹)1. 如图,作△ABC,使得BC=a、AC=b、AB=c.2.如图,已知△ABC,(1)作角平分线;AD(2) 作中线AD;(3) 作高AD.(1) (2) (3) 3.如图,已知△ABC,求作点P,(1)使点P到三边AB、BC、CA的距离相等;(2) 使点P到三个顶点A、B、C的距离相等.(1) (2)4. 如图,某地由于居民增多,要在公路边增加一个公共汽车站,A、B是路边两个新建小区,这个公共汽车站建在什么位置,能使两个小区到车站的路程一样长?5.如图,△ABC与△A′B′C′关于某条直线对称,请作出对称轴.6.电线部门要修建一座电视信号发射塔P. 如图,按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔P应建在什么地方?点P在直线l上M NBA′B′C′CBA1c7.如图,已知◊ABCD.(1)作图:延长BC,并在BC的延长线上截取线段CE,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE,交CD于点F,求证:△AFD≌△EFC.8.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC 的位置关系.9.如图,已知△ABC中,D为AB的中点. (1)请用尺规作图法作边AC的中点E,并连接DE(保留作图痕迹,不要求写作法);(2)在(1)条件下,若DE=4,求BC的长.2。
青岛版初中数学八年级上册《尺规作图》同步测试练习题卷练习题2
青岛版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!青岛版初中数学和你一起共同进步学业有成!1.3 尺规作图1.选择题(1)用尺规作图,下列条件中可能作出两个三角形的是( )A .已知两边和夹角B .已知两边及其一边的对角C .已知两角和夹边D .已知三条边(2)如图,在中BC 边上的高是( )ABC ∆ A .CE B .CF C .AD D .AC2.作出下列三角形(1)中,;ABC ∆cm 6,cm 5,cm 4===BC AC AB (2)中,cm ;ABC ∆3,30,120=︒=∠︒=∠AB B A (3)中,;ABC ∆︒=∠==50,cm 7,cm 4A AC AB (4)中, cm .ABC ∆3,45,45=︒=∠︒=∠BC B A 3.已知:两条直角边分别为a 、c ,求作一个直角三角形(保留作图痕迹)4.已知线段a 、b ,求作,使得ABC ∆a AC b BC a AB ===,,25.作出下列三角形(1)中,;ABC ∆︒=∠==30,cm 3,cm 5B AC AB (2)中,边上的高.ABC ∆BC B ,30︒=∠cm 7,cm 4==AC h 6.亮亮书上的三角形被墨迹污染了一部分,他想在作业本上画一个与书上完全一样的三角形,他该怎么办?你能帮助他画出来吗?参考答案1.(1)B (2)C2.略3.∴Rt 即为所求作三角形 ABC ∆ 4.∴即为所求作三角形ABC ∆5.(1)提示:先作,在BF 上截取cm ,以A 为圆心,︒=∠30EBF 5=AB 以3cm 为半径画弧交的对于C 、点,连结AC 、就得到所求作三角A ∠C 'C A '形.(2)提示:先作一条直线,在直线上任取一点作这条直线的垂线段等于4cm ,这就是这个三角形的高.6.则与书上三角形完全一样ABC ∆相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
八年级(上)数学作图专题训练
8. 如图,△ABC的三个顶点的坐标分别为A(-2,3),B(-3,1),C(-1,2),分别作出与△ABC关于y轴和x轴对称的图形,并标出各对称点的坐标.9. 如图,△ABC的三个顶点的坐标分别为A(-2,3),B(-3,1),C(-1,2),分别作出与△ABC关于直线m(直线x=1)和直线n(直线y=-1)轴对称的图形,并标出各对称点的坐标. 二、尺规作图定义:在几何里把限定用直尺和圆规作图,称为尺规作图(不能利用....直尺的刻度、三角板现有的角度及量角器).最基本的、最常用的尺规作图,称基本作图五种基本作图:①作一条线段等于已知线段;②作一个角等于已知角;③平分已知角(作角平分线);④作线段的垂直平分线;⑤经过一点作已知直线的垂线.点P在直线l上llPP10. 如图,作△ABC ,使得BC =a 、AC =b 、AB =c .11. 如图,作△ABC ,使得BC =a 、AC =b 、∠C=∠1.12. 如图,作△ABC ,使得BC =a 、 ∠B =∠1、∠C =∠2.13. 如图,画一个等腰△ABC ,使得底边BC =a ,它的高AD =h .14.如图,已知△ABC ,作角平分线AD .15. 如图,已知△ABC ,作中线AD .16. 如图,已知△ABC ,作高AD .17. 如图,已知△ABC ,求作点P ,使点P 到三边AB 、BC 、CA 的距离相等.18. 如图,已知△ABC ,求作点P ,使点P 到三个顶点A 、B 、C 的距离相等.c b a a b a B C B B B B a h19. 如图,某地由于居民增多,要在公路边增加一个公共汽车站,A 、B 是路边两个新建小区,这个公共汽车站建在什么位置,能使两个小区到车站的路程一样长?20. 如图,△ABC 与△A ′B ′C ′关于某条直线对称,请作出对称轴.21. 如图,有分别过A 、B 两个加油站的公路1l 、2l 相交于点O ,现准备在∠AOB 内建一个油库,要求油库的位置点P 满足到A 、B 两个加油站的距离相等,而且P 到两条公路1l 、2l 的距离也相等.22. 电线部门要修建一座电视信号发射塔P . 如图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 和n 的距离也必须相等.发射塔P 应建在什么地方?23. 如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A 、B 、C 且凉亭用两两连通. 如果凉亭A 、B 的位置已经选定,那么凉亭C 建在什么位置,才能使工程造价最低?要求用尺规.....作图...如图,在一条河的同岸有两个村庄A 、B ,两村要在河上合修一座桥到对岸去,桥修在什么地方,可以使两个村间的距离最短 .A河. BM N BA′B′C′CBAl。
八上第二章尺规作图专题训练(有答案)
尺规作图班级姓名得分一、选择题1.如图,已知线段AB,分别以A、B为圆心,大于1AB为半径作弧,连接弧的交点得2到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A. B. C. D.2.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A. B.C. D.3.用直尺和圆规画出一个角等于已知角,是运用全等三角形来解决的,其中判定全等的方法是()A. SSSB. SASC. ASAD. HL4.下列作图属于尺规作图的是()A. 用量角器画出∠AOB的平分线OCB. 借助直尺和圆规作∠AOB,使∠AOB=2∠αC. 画线段AB=3cmD. 用三角尺过点P作AB的垂线5.下列尺规作图的语句正确的是()A. 延长射线AB到DB. 以点D为圆心,任意长为半径画弧C. 作直线AB=3cmD. 延长线段AB至C,使AC=BC6.下列尺规作图,能判断AD是△ABC边上的高是()A. B.C. D.7.已知:直线AB和AB外一点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK长为半径作弧,交AB于点D和E.DE的长为半径作弧,(3)分别以D和E为圆心,大于12两弧交于点F.(4)作直线CF,直线CF就是所求的垂线.这个作图是()A. 平分已知角B. 作一个角等于已知角C. 过直线上一点作此直线的垂线D. 过直线外一点作此直线的垂线二、填空题8.如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10cm,则DE=______cm.9.如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,BC)为半径作弧,两弧相交于点D,连接以相同长(大于12AD,BD,CD.若∠MBD=40°,则∠NCD的度数为______.10.小为同学和小辰同学研究一个数学问题:尺规作图:作三角形的高线.已知:△ABC.尺规作图:作BC边上的高AD.他们的作法如下:BE长为半径画弧,两弧交于点F.①分别以B,E为圆心,大于12②连接AF,与BC交于点D,则线段AD即为所求.③以A为圈心,AB为半径画弧,与BC交于点E.老师说:“你们的作法思路正确,但作图顺序不对.”请回答:其中顺序正确的作图步骤是(填写序号)______.判断线段AD为BC边上的高的作图依据是______.11.如图,以点O为圆心,任意长为半径画弧,与射线OP交于点A,再以点A为圆心,OA长为半径画弧,两弧交于点B,画射线OB,则∠AOB=_________°.12.如图,在△ABC中,∠C=90°,分别以点A,B为圆心,大于1AB长为半径作弧,两2弧分别交于M,N两点,过M,N两点的直线交BC于点D,若AC=2,∠B=15°,则BD的长______.13.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上,分别取______,再分别过点M,N作OA、OB的垂线,交点为P,画射线OP,可利用______(填写判定方法)证明△POM≌△PON,然后根据______得∠POM=∠PON,则OP平分∠AOB.14.如图,画线段PQ的垂直平分线.PQ长为半径画弧,两弧分解:(1)分别以点_________和点_________为圆心,大于12别交于点________和点________;(2)过点________和点________作直线,则直线________就是线段PQ的垂直平分线.15.如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;EF的长为半径画弧,两②分别以点E、F为圆心,大于12弧相交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为______.三、解答题16.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.17.如图,已知∠AOB及点C、D,求作一点P,使PC=PD,并且使点P到OA、OB的距离相等.(尺规作图)18.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.19.如图,已知在△ABC中,BC=4,AC=8.(1)作边AB的垂直平分线MN,交AC于点D,连接BD(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,求△BCD的周长.20.如图,在△ABC中,AB=AC,∠BAC=120°.(1)尺规作图:作线段AB的垂直平分线DE,交BC于点D,交AB于点E(保留作图痕迹,不写作法);DC.(2)求证:BD=1221.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.答案和解析1.【答案】B【解析】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选:B.根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.2.【答案】B【解析】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.DE的长为半径作弧,两(3)分别以D和E为圆心,大于12弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.根据过直线外一点向直线作垂线即可.此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.3.【答案】A【解析】解:用直尺和圆规画出一个角等于已知角,是运用了SSS定理来判定全等的,故选:A.根据作一个角等于已知角的做法可得答案.此题主要考查了全等三角形的判定,以及作一个角等于已知角的做法,关键是熟练掌握作一个角等于已知角的做法.4.【答案】B【解析】解:根据尺规作图的定义可知:助直尺和圆规作∠AOB,使∠AOB=2∠α属于尺规作图,故选:B.根据尺规作图的定义即可判定.本题考查尺规作图的定义,解题的关键是理解尺规作图的定义,属于中考基础题.5.【答案】B【解析】解:A.根据射线AB是从A向B无限延伸,故延长射线AB到D是错误的;B.根据圆心和半径长即可确定弧线的形状,故以点D为圆心,任意长为半径画弧是正确的;C.根据直线的长度无法测量,故作直线AB=3cm是错误的;D.延长线段AB至C,则AC>BC,故使AC=BC是错误的;故选:B.根据线段、射线以及直线的概念,利用尺规作图的方法进行判断即可得出正确的结论.本题主要考查了尺规作图的定义的运用,解题时注意:尺规作图是指用没有刻度的直尺和圆规作图,只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.6.【答案】B【解析】解:过点A作BC的垂线,垂足为D,故选:B.过点A作BC的垂线,垂足为D,则AD即为所求.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图7.【答案】D【解析】解:利用作法得CF⊥AB,所以这个作图为过直线外一点作此直线的垂线.故选:D.利用基本作图(过一点作直线的垂线)进行判断.本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.8.【答案】5【解析】【分析】此题主要考查了基本作图以及线段垂直平分线的性质,三角形的中位线的性质,正确得出DE是△ABC的中位线是解题关键.直接利用线段垂直平分线的性质得出DE是△ABC的中位线,进而得出答案.【解答】解:∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=1BC=5cm.2故答案为5.9.【答案】40°【解析】解:∵AB=AC,DB=DC,∴∠ABC=∠ACB,∠DBC=∠DCB,∴∠ABD=∠ACD,∴∠MBD=∠NCD=40°,故答案为:40°根据等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,然后根据邻补角得出∠MBD=∠NCD.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.【答案】③①②到线段两点的距离相等的点在线段的垂直平分线上【解析】解:作法如下:先以A为圈心,AB为半径画弧,与BC交于点E,再分别以B,BE长为半径画弧,两弧交于点F,然后连接AF,与BC交于点D,因E为圆心,大于12为根据到线段两点的距离相等的点在线段的垂直平分线上,所以线段AD⊥BC,即AD 为高.故答案为③①②;到线段两点的距离相等的点在线段的垂直平分线上.利用基本作图(作已知线段的垂直平分线)可得到正确的作图步骤,然后根据线段垂直平分线的性质定理的逆定理可判断AD⊥BC.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).11.【答案】60【解析】【分析】本题考查了尺规作图和等边三角的判断,解题的关键是能根据尺规作图得到相等的线段.由尺规作图可知AO=BO=AB,由此可得△AOB是等边三角形,得出∠AOB的度数.【解答】解:由作图可得:AO=BO=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为60.12.【答案】4【解析】解:连接AD,如图,由作法得MN垂直平分AB,则DA=DB,∴∠B=∠BAD=15°,∴∠ADC=∠B+∠BAD=30°,在Rt△ADC中,AD=2AC=4,∴BD=DA=4.故答案为4.连接AD,如图,由作法得MN垂直平分AB,则DA=DB,根据等腰三角形性质和三角形外角性质得到∠ADC=30°,所以AD=2AC=4,从而得到BD的长.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.13.【答案】OM=ON;HL;全等三角形的对应角相等【解析】解:在已知的∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA、OB的垂线,交点为P,画射线OP,可利用HL(填写判定方法)证明△POM≌△PON,然后根据全等三角形的对应角相等得∠POM=∠PON,则OP平分∠AOB.故答案为:OM=ON,HL,全等三角形的对应角相等.根据作图的作法得到OM=ON,根据全等三角形的判定定理得到HL,根据全等三角形的性质得到结论.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定方法.14.【答案】(1)P;Q;M;N;(2)M;N;MN.【解析】【分析】本题主要考查线段的垂直平分线的画法,需熟练掌握作图语言才能解决问题.通过观察可发现是作线段PQ的垂直平分线.【解答】解:通过观察可发现是作线段PQ的垂直平分线,根据线段的垂直平分线的画法,PQ的长为半径作弧,两弧分别交于点M和点所以分别以点P和点Q为圆心,以大于12N,再过点M和点N作直线,则直线MN就是线段PQ的垂直平分线.故答案为(1)P;Q;M;N;(2)M;N;MN.15.【答案】65°【解析】解:解法一:连接EF.∵点E、F是以点A为圆心,小于AC的长为半径画弧,分别与AB、AC的交点,∴AF=AE;∴△AEF是等腰三角形;EF的长为半径画弧,两弧相交于点G;又∵分别以点E、F为圆心,大于12∴AG是线段EF的垂直平分线,∴AG平分∠CAB,∵∠ABC=40°∴∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.本题综合考查了作图--复杂作图,直角三角形的性质.根据作图过程推知AG是∠CAB 平分线是解答此题的关键.16.【答案】解:(1)如图所示;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∴∠AEC=∠EAB+∠B=100°.【解析】(1)根据题意作出图形即可;(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到∠EAB=∠B=50°,由三角形的外角的性质即可得到结论.本题考查了作图-基本作图,线段垂直平分线的性质,三角形的外角的性质,等腰三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.17.【答案】解:(1)以O为圆心,以任意长为半径画弧,交OA、OB于M、N两点,MN长为半径画弧,两弧交于K点,(2)再以M、N为圆心,大于12(3)作射线OK,(4)分别以C、D为圆心画弧,两弧分别交于H、T两点,连接HT,(5)CD的垂直平分线与∠AOB的角平分线交点即为P点【解析】本题考查了尺规作图的一般作法.解答本题的关键在于知道怎么作出线段CD的垂直平分线及∠AOB的角平分线,通过两条直线的交点即为我们所要求的P点.18.【答案】(1)解:射线BD即为所求;(2)∵∠A=90°,∠C=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∠ABC=30°,∴∠CBD=12∴∠C=∠CBD=30°,∴DC=DB.【解析】(1)根据角平分线的作法求出角平分线BD;(2)想办法证明∠C=∠CBD即可;本题考查作图-基本作图,等腰三角形的判断等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.19.【答案】解:(1)(2):∵MN 是AB 的垂直平分线.∴AD =BD∴△BCD 的周长=BD +CD +BC=AD +CD +BC=AC +BC =8+4=12【解析】此题主要考查了基本作图,关键是掌握线段垂直平分线的作法和性质.垂直平分线上任意一点,到线段两端点的距离相等.(1)根据线段垂直平分线的作法作图即可;(2)根据线段垂直平分线的性质可得“DB =DC ,进而得到AD +DC =AD +BD =5cm ,然后可得周长.20.【答案】(1)解:如图,DE 为所作;(2)证明:连接AD ,如图,∵AB =AC ,∴∠B =∠C =12(180°-∠BAC )=12(180°-120°)=30°, ∵DE 垂直平分AB ,∴DA =DB ,∴∠DAB =∠B =30°,∴∠CAD =120°-30°=90°,在Rt △ADC 中,AD =12CD ,∴BD =12CD .【解析】(1)利用基本作图(作已知线段的垂直平分线)作出DE 垂直平分AB ; (2)连接AD ,如图,先利用等腰三角形的性质和三角形内角和计算出∠B =∠C =30°,再根据线段垂直平分线的性质得DA =DB ,则∠DAB =∠B =30°,接着计算出∠CAD =90°,利用含30度的直角三角形三边的关系得到AD =12CD ,从而得到结论.∴BD =12CD .本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.【答案】解:(1)如图,DE为所作;(2)∵DE垂直平分AC,∴EA=EC,AD=CD=5,∴AC=10,∵△ABC的周长=AB+BC+AC=27,∴AB+BC=27-10=17,∴△AEC的周长=BE+EC+BC=BE+AE+BC=AB+BC=17.【解析】(1)利用基本作图作DE垂直平分AC;(2)根据线段垂直平分线的性质得到EA=EC,AD=CD=5,则利用△ABC的周长得到AB+BC=17,然后根据等线段代换可求出△AEC的周长.本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).。
2022-2023学年人教版八年级数学上册尺规作图专题练习
尺规作图汇总一、(作一个角等于已知角)1.已知AOB ∠,利用尺规作A O B '''∠,使A O B AOB '''∠=∠.(不写作法,保留作图痕迹)2.在△ABC 中,在边AC 上找一点D ,使得∠CBD =∠A .请用尺规作图的方法找出点D 的位置(要求:不写作图过程,保留作图痕迹).3.作图题.已知,α∠,∠β,且α∠大于∠β,求作AOB αβ∠=∠-∠(不写作法,保留作图痕迹,不在原图上作图)4.尺规作图:以点B 为顶点,射线BC 为一边,作EBC ∠,使∠EBC =∠A (不写作法,只保留作图痕迹).5.如图,AD是一条公路桥梁,现要在上游B处再建一座与AD平行的大桥BE,请用尺规作出BE的方向.(不写作法,保留作图痕迹)二、(作一个角的角平分线)6.尺规作图:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,这个集贸市场应建于何处?(不写作法,保留作图痕迹)7.如图,已知△ABC,利用直尺和圆规作图.(保留作图痕迹,不写作法)(1)作△ABC的角平分线AD;(2)在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,直接写出CD和AB的关系.8.如图,已知△ABC,利用尺规在BC上找一点D,使得∠BAD=∠CAD.(保留作图痕迹,不写作法)9.如图,已知ABC V ,请利用尺规作图法在AC 上求作一点P ,使得BP 平分.(ABC 保留作图痕迹,不写作法)10.在△ABC 内找一点P ,使它到各边距离相等.11.如图,已知MN P BC .求作:在MN 上确定一点P ,使点P 到AB ,BC 的距离相等.12.已知:如图公路AE 、AF 、BC 两两相交.求作:加油站O ,使得O 到三条公路的距离相等.(尺规作图,保留作图痕迹,不写作法)三、(作垂线)13.如图,过直线m 外的一点P ,画出直线m 的垂线段PC .14.如图,已知△ABC ,试用直尺和圆规作出△ABC 的角平分线CE 、高AD .(尺规作图,保留痕迹,不写作法)15.如图,在Rt ABC V 中,90ACB ∠=︒.(1)用直尺和圆规作斜边AB 的垂直平分线,交BC 于点P (不写作法,保留作图痕迹)(2)写出PC ,PA ,BC 之间的数量关系并加以证明.16.尺规作图(不写作法,保留作图痕迹)如图,已知ABC V ,求作ABC V 的高AD .17.如图,已知△ABC .(1)作中线AD ;(2)尺规作出角平分线BE ;(3)作BC 边的高线.18.尺规作图:如图,在两条公路OA和OB之间,要建一个加油站P,使加油站P到两村庄M、N的距离相等,且到两条公路的距离相等.保留作图痕迹,不写作图步骤.19.尺规作图(不写作法,但要保留作图痕迹)∠的对称轴AM.(1)如图,作BAC∠边AC上一点,在AM上找一点F,使F点到点A、E距离相等.(2)点E为BAC20.如图,已知ABC△.(1)画中线AD;(2)画ABD△的高BE及ACD△的角平分线CF.参考答案:1.见解析【分析】根据尺规作图的步骤逐步完成即可求解:①画射线O B '',②以O 为圆心,任意长为半径作弧交OA 于C ,交OB 于D ,③以O '为圆心,以同样长(OC 长)为半径作弧,交O B ''于D ',④以D '为圆心,CD 长为半径作弧交前弧于C ',⑤过C '作射线O A '',则A O B '''∠即为所求.【详解】解:如图所示,A O B '''∠即为所求.【点睛】本题考查了尺规作图,解题的关键是熟练掌握作一个角等于已知角的步骤.2.见解析【分析】根据作一角等于已知角的方法作图即可.【详解】解:如图,点D 即为所求.【点睛】此题考查了作图—作一角等于已知角,熟练掌握作图方法是解题的关键.3.见解析【分析】在射线OC 的同侧作∠AOC =α∠,∠BOC =∠β,即可解决问题.【详解】解∶如图,∠AOB 即为所求.【点睛】本题考查作图——基本作图,解题的关键是熟练掌握五种基本作图,属于常考题型.4.图见解析【分析】分①EBC ∠在射线BC 的上方和②EBC ∠在射线BC 的下方两种情况,根据作一个角等于已知角的尺规作图方法即可得.【详解】解:由题意,分以下两种情况:①当EBC ∠在射线BC 的上方时,如图,EBC ∠即为所作.②当EBC ∠在射线BC 的下方时,如图,EBC ∠即为所作.【点睛】本题考查了作一个角等于已知角的尺规作图,熟练掌握尺规作图,并分两种情况是解题关键.5.见解析【分析】根据同位角相等,两直线平行画出内错角相等即可.【详解】解:如图所示,BE 即为所求作:【点睛】本题考查作图-应用与设计作图,平行线的判定的应用,主要考查学生的动手操作能力和理解能力.6.(1)画图见解析(2)画图见解析,,,AB CD AB CD =∥ 证明见解析【分析】(1)以A 为圆心,任意长为半径画弧,交AB ,AC 于两点,再分别以这两个交点为圆心,大于这两个交点间距离的一半为半径画弧得到两弧的交点,过三角形的顶点A 与两弧交点作射线,于BC 交于点D ,则线段AD 即为所求;(2)先以C 为圆心,任意长为半径画弧,得到两弧与CA ,CB 的交点G ,H ,再以A 为圆心,CG 为半径画弧,与AC 的交点为J ,再以J 为圆心,GH 为半径画弧,两弧的交点I ,再以A 为端点,过I 画射线AE ,再在射线AE 上截取AD =BC ,连接CD ,再证明即可.(1)解:线段AD 即为所求作的ABC V 的角平分线,(2)如图,画图如下:由作图可得:,,AD BC ACB CAE =∠=∠ 而,AC CA =∴,ACB CAD V V ≌∴,,AB CD CAB ACD =∠=∠∴.AB CD ∥∴,AB CD 的关系是,.AB CD AB CD =∥【点睛】本题考查的是作三角形的角平分线,作一个角等于已知角,全等三角形的判定与性质,熟练的掌握作图的基本方法是解本题的关键.7.图见解析,这个集贸市场应建于何处公路、铁路的角平分线上.【分析】利用角的平分线上的点到角的两边的距离相等可知集贸市场在公路、铁路相交的角平分线上.【详解】解:如图所示:答:这个集贸市场应建于何处公路、铁路的角平分线上.【点睛】此题考查了作图与应用设计,解题的关键是掌握角平分线上的点到角两边的距离相等.8.见解析【分析】作∠BAC的平分线即可.【详解】解:如图,点D为所作.【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.9.见解析【分析】根据要求作出图形即可.【详解】解:如图,点P即为所求.【点睛】本题考查作图-基本作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.10.见解析【分析】根据角平分线上的点到角的两边距离相等解答即可.【详解】解:∵点P到△ABC的三边的距离相等,∴点P应是△ABC三条内角平分线的交点.如图:【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解答本题的关键.11.见解析【分析】作出∠ABC的角平分线,与MN的交点即为点P.【详解】解:如图所示:P 点即为所求.【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线上的点到两边的距离相等的性质是解题的关键.12.作图见解析【分析】根据角平分线的性质及作法,即可作得.【详解】解:作法如下:1.尺规作出∠A 、∠EBC 、∠BCF 中任意两个角的角平分线,交点即为1O 点;2.尺规作出∠A 、∠ABC 、∠ACB 中任意两个角的角平分线,交点即为2O 点.证明: 点1O 是∠A 与∠BCF 平分线的交点,∴点1O 到公路AE 、AF 、BC 的距离相等;点2O 是∠A 与∠ABC 平分线的交点,∴点2O 到公路AE 、AF 、BC 的距离相等;∴点1O 、点2O 即为所求作的点【点睛】本题考查了尺规作图—角平分线,角平分线的性质,熟练掌握和运用角平分线的作法及性质是解决本题的关键.13.见解析【分析】过P 点作m 的垂线即可.【详解】如图,垂线段PC 即为所求.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.14.见解析【分析】利用基本作图(过一点作直线的垂线),过点A作AD⊥BC于D得到高AD,利用作已知角的平分线作CE平分∠ACB.【详解】解:如图,CE和AD为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.(1)见解析(2)BC PC PA=+,理由见解析【分析】(1)利用基本作图,作AB的垂直平分线即可;(2)根据线段垂直平分线的性质得到PA PB=,则BC PC PA=+.(1)解:如图,点P为所作,;(2)解:BC PC PA=+.理由:∵点P为AB的垂直平分线与BC的交点,∴PA PB=,∴PC PA PC PB BC+=+=.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段的垂直平分线的性质.16.见解析【分析】以点A为圆心,任意长为半径画圆,交BC于点E,F,再作线段EF的垂直平分线即可.【详解】解:如图,AD即为所求..【点睛】本题考查了尺规作图之过直线外一点作已知直线的垂线,熟知过直线外一点作直线垂线的作法是解答此题的关键.17.(1)答案见解析(2)答案见解析(3)答案见解析【分析】(1)作线段BC的垂直平分线可得BC的中点D,连接AD即可.(2)根据角平分线的作图步骤作图即可.(3)根据高线的作图步骤作图即可.(1)解:如图,AD即为所求.(2)解:如图,BE即为所求.(3)解:如图,AF即为所求.【点睛】本题考查作图-复杂作图、三角形的角平分线、中线和高,熟练掌握角平分线、中线和高线的作图步骤是解答本题的关键.18.见解析【分析】作∠AOB的平分线,再作线段MN的垂直平分线,两线的交点P就是所求点.【详解】解:如图所示:点P即为所求.【点睛】此题主要考查了角平分线的性质、线段垂直平分线的性质的应用以及作法,关键是熟练掌握角平分线、线段垂直平分线的基本作图方法.19.(1)见解析(2)见解析【分析】(1)作出∠BAC的角平分线即可;(2)作线段AE的垂直平分线,与AM的交点即为点F.(1)解:如图:AM即为所求.(2)解:如图:点F即为所求.【点睛】本题主要考查了角平分线的作法、垂直平分线的作法等知识,角的对称轴为其角平分线,到线段两端点距离相等的点在线段的垂直平分线上.20.(1)见详解(2)见详解【分析】(1)作BC的垂直平分线交BC于点D,即D为BC中点,连接AD,AD即ABC△为中线;(2)以B为圆心,BD为半径画弧交AD的延长线于点G,再分别为D、G为圆心,以大于DG一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交AD的延长线于点E,该直线经过B点,BE即为所求;以C为圆心,以任意长度画弧,交AC、CD于点M、N,再分别以M、N为圆心,以大于MN一半的长度为半径画弧,两弧交于一点,将该点与C点连接,交AD于点F,则角平分线AD即为所求.(1)分别为B、C为圆心,以大于BC一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交BC于点D,连接AD,作图如下:即中线AD即为所求;(2)以B为圆心,BD为半径画弧交AD的延长线于点G,再分别为D、G为圆心,以大于DG 一半的长度为半径画弧,两弧分别交于两个点,连接这两个交点的直线交AD的延长线于点E,即该直线是DG的垂直平分线,根据作图可知B点在DG的垂直平分线,即该直线经过B 点,作图如下:即高线BE即为所求;以C为圆心,以任意长度画弧,交AC、CD于点M、N,再分别以M、N为圆心,以大于MN 一半的长度为半径画弧,两弧交于一点,将该点与C点连接,交AD于点F,连接CF,作图如下:即角平分线CF即为所求.【点睛】本题主要考查了基本作图,掌握垂直平分线和角平分线的尺规作图法是解答本题的关键.。
八上第二章尺规作图专项训练(有答案)
尺规作图专项训练班级姓名得分一、选择题1.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A. SSSB. SASC. ASAD. AAS2.如图,已知∠AOB,按照以下步骤画图:(1)以O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.MN的长为半径画弧,两弧在∠AOB内部相交(2)分别以点M、N为圆心,大于12于点C.(3)作射线OC.则判断△OMC≌△ONC的依据是()A. SSSB. SASC. ASAD. AAS3.用直尺和圆规作一个角等于已知角.如图,能得出∠A'O'B'=∠AOB的依据是A. SASB. SSSC. AASD. ASA4.下列说法正确的是A. 用直尺和圆规作一个角等于已知角的过程,是用“边角边”构造了全等三角形B. 用直尺和圆规作一个角的平分线的过程,是用“边边边”构造了全等三角形C. 到三角形三个顶点的距离相等的点是三角形三条角平分线的交点D. 到三角形三边的距离相等的点是三角形三边的垂直平分线的交点5.如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两①分别以B,C为圆心,以大于12弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A. B. C. D.6.如图,在△ABC中,过点A作BC边上的高,正确的作法是( )A. B.C. D.7.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分BD的长为半径作弧,别以点B和点D为圆心,大于12两弧相交于点E,作射线CE交AB于点F,则AF的长为()A. 5B. 6C. 7D. 8AB长为半径8.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以大于12作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则BE等于A. 32B. 94C. 154D. 258AB 9.根据下列操作回答后面的问题:(1)分别以线段AB的端点A、B为圆心,以大于12长为半径作圆弧相交点P、M;(2)作直线PM交AB于点C.则下列有关的说法不一定正确的是()A. PM是线段AB的垂直平分线;B. PA=PB;C. 作线段垂直平分线的实质是作平角的平分线;D. AP⊥BP.10.经过已知直线外一点,用尺规作这条直线的垂线,下列作法正确的是().A. B.C. D.二、填空题11.如图,在RtΔABC中,∠C=90∘,以顶点A为圆心,适当长为半径画弧,分别交AC,ABMN的长为半径画弧,两弧交于某点,过点A及于点M,N,再分别以M,N为圆心,大于12该交点作射线AP交边BC于点D.若CD=2,AB=6,则ΔABD的面积是________.12.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离相等,请你作出灯柱的位置P.(不写作图过程,保留作图痕迹)13.如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α=______°14.如图,在△ABC中,按以下步骤作图:①分别以A、B为AB的长为半径画弧,两弧相交于点M、N;圆心,大于12②作直线MN交AC于点D,连接BD.若CD=CB,∠A=35°,则∠C= .15.如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分AB的长为半径画弧,别以点A、B为圆心,大于12两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是______.16.已知ΔABC如图:(1)分别过定点A画ΔABC的角平分线AD和BC边上的高AE(在图中做出标注,不写画法);(2)若∠ACB=20∘,∠ABC=130∘.则∠DAE=__________.17.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的做法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是____________________________________________________________.18.如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交AB,AC于点M和N,再分别以点M,N为圆心,大于MN长的一半为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列说法中,正确的有_______.(填写序号)①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC:S△ABC=1:3.19.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小红的作法如下:AB的长为半径作弧,两弧相交于点C;如图,①分别以点A和点B为圆心,大于12AB的长为半径(不同于①中的半径)作弧,②再分别以点A和点B为圆心,大于12两弧相交于点D,使点D与点C在直线AB的同侧;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是______.20.如图,在△ABC中,AB=5,AC=4,BC=3.按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AC于点M,N;MN的长为半径作弧,两弧相交于点E;②分别以M,N为圆心,以大于12③作射线AE;④以同样的方法作射线BF.AE交BF于点O,连接OC,则OC=______.三、解答题(本大题共4小题,共32.0分)21.如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.22.如图,已知,在RtΔABC中,∠ABC=90 ∘, AB=BC=2.(1)用尺规作∠A的平分线AD.(2)角平分线AD交BC于点D,求BD的长.23.如图,在△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连接AP,当∠B为______度时,AP平分∠BAC;(3)在(2)的条件下,若AC=2,求BC的长.24.如图所示,△ABC中,点D在BC边上,且BD=AD=AC.(1)用尺规作图作出线段DC的垂直平分线AE,交DC于E点.(保留作图痕迹不要求写出作法和证明)(2)若∠CAE=16°,求∠B的度数.答案和解析1.【答案】A【解析】【分析】由作法可知,两三角形的三条边对应相等,所以利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.本题考查了全等三角形“边边边”的判定以及全等三角形的对应角相等这个知识点;由作法找准已知条件是正确解答本题的关键.【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.2.【答案】A【解析】【分析】本题考查了全等三角形的判定,熟悉角平分线的作法,找出相等的条件是解题的关键.根据角平分线的作图方法解答.【解答】解:根据角平分线的作法可知,OM=ON,CM=CN,又∵OC是公共边,∴△OMC≌△ONC的根据是“SSS”.故选A.3.【答案】B【解析】【分析】本题考查了尺规作图作一个角等于已知角,全等三角形的判定方法:边边边”以及全等三角形的对应角相等这个知识点,利用SSS可证得△OCD≌△O′C′D′,那么∠A′O′B′=∠AOB.【解答】解:易得OC=0′C',OD=O′D',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选B.4.【答案】B【解析】【分析】本题考查的是基本作图及全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.【解答】解:A.用直尺和圆规作一个角等于已知角的过程,是用“边边边”构造了全等三角形,故错误;B.用直尺和圆规作一个角的平分线的过程,是用“边边边”构造了全等三角形,正确;C.到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点,故错误;D.到三角形三边的距离相等的点是三角形三条角平分线的交点,故错误.故选B.5.【答案】D【解析】解:∵CD =AC ,∠A =50°,∴∠ADC =∠A =50°,根据题意得:MN 是BC 的垂直平分线,∴CD =BD ,∴∠BCD =∠B , ∴∠B =12∠ADC =25°,∴∠ACB =180°-∠A -∠B =105°.故选:D .由CD =AC ,∠A =50°,根据等腰三角形的性质,可求得∠ADC 的度数,又由题意可得:MN 是BC 的垂直平分线,根据线段垂直平分线的性质可得:CD =BD ,则可求得∠B 的度数,继而求得答案.此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.6.【答案】D【解析】【分析】本题主要考查了学生利用三角板和直尺画三角形的高的作图能力.从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.【解答】解:在△ABC 中,过点A 作BC 边上的高,如图:故选D .7.【答案】B【解析】解:连接CD ,∵在△ABC 中,∠ACB =90°,∠A =30°,BC =4,∴AB =2BC =8.∵作法可知BC =CD =4,CE 是线段BD 的垂直平分线,∴CD 是斜边AB 的中线,∴BD =AD =4,∴BF =DF =2,∴AF =AD +DF =4+2=6.故选:B .连接CD ,根据在△ABC 中,∠ACB =90°,∠A =30°,BC =4可知AB =2BC =8,再由作法可知BC =CD =4,CE 是线段BD 的垂直平分线,故CD 是斜边AB 的中线,据此可得出BD 的长,进而可得出结论.本题考查的是作图-基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.8.【答案】D【解析】【分析】本题主要考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接AE ,根据勾股定理求出AB ,根据线段垂直平分线的性质得到AE =BE ,在Rt △ACE 中,根据勾股定理求出AE ,即可求出BE .【解答】解:连接AE ,∵∠ACB =90°,∴AB =√AC 2+BC 2=5,由题意得,MN 是线段AB 的垂直平分线,∴AE=BE,在Rt△ACE中,AE2=AC2+CE2,即AE2=32+(4-AE)2,,解得,AE=258∴BE=25,8故选D.9.【答案】D【解析】【分析】本题考查了作图-基本作图:掌握基本作图(作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).利用基本作图可对A进行判断;利用PM垂直平分AB可对A、B、D进行判断.【解答】解:由作法得PM垂直平分AB,所以A、C选项正确;因为CD垂直平分AB,所以PA=PB,因为AP不一定垂直BP,所以D选项错误.故选D.10.【答案】B【解析】【分析】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.根据过直线外一点向直线作垂线即可.【解答】解:已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁;(2)以C为圆心,CK的长为半径作弧,交AB于点D和E;(3)分别以D 和E 为圆心,大于12DE 的长为半径作弧,两弧交于点F ; (4)作直线CF .直线CF 就是所求的垂线. 故选B . 11.【答案】6【解析】【分析】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.根据角平分线的性质得到DE =DC =4,根据三角形的面积公式计算即可.解:作DE ⊥AB 于E ,由基本尺规作图可知,AD 是△ABC 的角平分线, ∵∠C =90°,DE ⊥AB , ∴DE =DC =2,∴△ABD 的面积=12×AB ×DE =6, 故答案为6.12.【答案】解:如图,点p 为所作.CD 的垂直平分线和∠AOB 的角平分线【解析】本题考查了对角平分线及线段垂直平分线的理解. 13.【答案】75【解析】解:∵∠B =35°,∠BCA =75°, ∴∠BAC =70°,∵由作法可知,AD 是∠BAC 的平分线,∴∠CAD =12∠BAC =35°,∵由作法可知,EF 是线段BC 的垂直平分线, ∴∠BCF =∠B =35°,∵∠ACF =∠ACB -∠BCF =40°, ∴∠α=∠CAD +∠ACF =75°, 故答案为:75.先根据三角形的内角和得出∠BAC =70°,由角平分线的定义求出∠EAC 的度数,再由EF 是线段AC 的垂直平分线得出∠ABC =∠BCF 的度数,根据三角形内角和定理得出∠α的度数,进而可得出结论.本题考查的是作图-基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.14.【答案】40°【解析】【分析】本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.首先根据作图过程得到MN 垂直平分AB ,然后利用中垂线的性质得到∠A =∠ABD ,然后利用三角形外角的性质求得∠CDB 的度数,从而可以求得∠C 的度数. 【解答】解:∵根据作图过程和痕迹发现MN 垂直平分AB , ∴DA =DB ,∴∠DBA =∠A =35°, ∵CD =BC ,∴∠CDB =∠CBD =2∠A =70°, ∴∠C =40°, 故答案为40°.本题考查了基本作图中作已知线段的垂直平分线及线段的垂直平分线的性质,解题的关键是能利用垂直平分线的性质及外角的性质进行角之间的计算,难度不大.15.【答案】85【解析】解:连接AD .∵PQ 垂直平分线段AB , ∴DA =DB ,设DA =DB =x , 在Rt △ACD 中,∠C =90°,AD 2=AC 2+CD 2, ∴x 2=32+(5-x )2,解得x =175,∴CD =BC -DB =5-175=85,故答案为85.连接AD 由PQ 垂直平分线段AB ,推出DA =DB ,设DA =DB =x ,在Rt △ACD 中,∠C =90°,根据AD 2=AC 2+CD 2构建方程即可解决问题;本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. 16.【答案】解:(1)如图所示 (2)55°【解析】【分析】本题考查了角平分线和垂线的尺规作图,以及求角问题. 【解答】解:(1)利用尺规作图中角平分线的画法即可,用三角尺由顶点向底边延长线上作垂线即可;(2)∵三角形内角和为180°, ∴∠CAB =180°-∠ACB -∠ABC =30°, 又∵AD 为∠CAB 的平分线, ∴∠DAB =15°,∠ABE =180°-∠ABC =50°, 又∵△ABE 为直角三角形, ∴∠BAE =90°-∠ABE =40°,∴∠DAE =∠DAB +∠BAE =15°+40°=55°.17.【答案】到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线 .【解析】【分析】本题考查的是线段垂直平分线的性质,直线的性质有关知识,利用线段垂直平分线的性质,直线的性质进行解答即可. 【解答】解:小艾这样作图的依据是:到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线 .故答案为:到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线 .18.【答案】① ② ③ ④【解析】【分析】本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键. ①连接NP ,MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC =60°③根据∠1=∠B 可知AD =BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD =12AD ,再由三角形的面积公式即可得出结论. 【解答】①证明:连接NP ,MP , 在△ANP 与△AMP 中, ∵{AN =AM NP =MP AP =AP, ∴△ANP ≌△AMP , 则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确; ②证明:∵在△ABC 中,∠C =90°,∠B =30°, ∴∠CAB =60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°-∠2=60°,∠ADC =60°,故此选项正确;③证明:∵∠1=∠B =30°, ∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确; ④证明:∵在Rt △ACD 中,∠2=30°,∴CD =12AD ,∴BC =BD +CD =AD +12AD =32AD , S △DAC =12AC •CD =14AC •AD ,∴S △ABC =12AC •BC =12AC •32AD =34AC •AD , ∴S △DAC :S △ABC =1:3,故此选项正确; 故答案为①②③④.19.【答案】到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线【解析】解:如图,∵由作图可知,AC =BC =AD =BD , ∴直线CD 就是线段AB 的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.根据线段垂直平分线的作法即可得出结论. 本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键. 20.【答案】√2【解析】解:过点O 作OD ⊥BC ,OG ⊥AC ,垂足分别为:D ,G , 由题意可得:O 是△ACB 的内心,∵AB =5,AC =4,BC =3, ∴BC 2+AC 2=AB 2, ∴△ABC 是直角三角形, ∴∠ACB =90°, ∴四边形OGCD 是正方形,∴DO =OG =3+4−52=1, ∴CO =√2.故答案为:√2.直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.此题主要考查了基本作图以及三角形的内心,正确得出OD 的长是解题关键.21.【答案】(1)解:如图所示:(2)解:△BCD 是等腰三角形. 理由如下:∵AB =AC ,∠A =36°, ∴∠ABC =∠C =72°, ∵BD 平分∠ABC ,∴∠DBC =12∠ABC =36°, ∴∠BDC =∠C =72°,∴BC=BD,∴△BCD是等腰三角形.【解析】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,角平分线的性质,作图与基本作图等知识点,解此题的关键是能正确画图和求出∠C、∠BDC的度数.(1)以B为圆心,以任意长为半径画弧交AB、AC于两点,再以这两点为圆心,以大于这两点的距离的一半为半径画弧,交于一点,过这点和B作直线即可;(2)由∠A=36°,求出∠C、∠ABC的度数,能求出∠ABD和∠CBD的度数,即可求出∠BDC,根据等角对等边即可推出答案.22.【答案】解:(1)如图,AD为所求;(2)作DE⊥AC于E,如图,∵∠ABC=90°,AB=BC=2.∴△ABC为等腰直角三角形,∴∠C=45°,∴△CDE为等腰直角三角形,∴CD=√2DE,∵AD为角平分线,DB⊥AB,DE⊥AC,∴BD=DE,设BD=x,则CD=√2x,∴x+√2x=2,∴x=1+√2=√2)(1+√2)(1−√2)=2−2√2−1=2√2−2,即BD的长为2√2−2.【解析】(1)利用基本作图(作已知角的平分线)作AD平分∠BAC;(2)作DE⊥AC于E,如图,先判断△ABC为等腰直角三角形得到∠C=45°,则可判断△CDE 为等腰直角三角形,则CD=√2DE,再根据角平分线的性质得到BD=BE,设BD=x,则CD=√2x,然后利用BC=2列方程x+√2x=2,再解方程即可.本题考查了基本作图:熟练掌握5个基本作图;掌握角平分线的性质定理和等腰直角三角形的判定与性质是解决(2)小题的关键.23.【答案】解:(1)如图所示,P为所求的点(2)30(3)∵AP是∠BAC的平分线,∴∠DAP=∠CAP,∵∠ADP=∠C,AP=AP,∴△ADP≌△ACP(AAS),∴AD=AC=2,∴AB=2AD=4,在Rt△ABC中,∠C=90°,根据勾股定理,得BC=√AB2−AC2=√42−22=√12=2√3.【解析】【分析】本题主要考查了基本作图,角平分线的知识,解题的关键是熟记作图的方法及等边对等角的知识.(1)运用基本作图方法,中垂线的作法作图;(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B;(3)根据AP是∠BAC的平分线,可知∠DAP=∠CAP,进一步得△ADP≌△ACP,AD=AC=2,AB=2AD=4,利用勾股定理进行求解即可.【解答】解:(1)见答案;(2)如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为30;(3)见答案.24.【答案】(1)如图所示,线段AE即为所求.作图方法不唯一,正确即可.(2)∵AD=AC,AE⊥CD,点E是CD中点,∴∠C=90°-∠CAE=74°.∵AD=AC,∴∠ADC=∠C=74°.∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°.【解析】本题考查的是作图-基本作图以及线段垂直平分线的性质和等腰三角形的性质,熟知线段垂直平分线的作法是解答此题的关键.(1)根据线段垂直平分线的画法解决此题;(2)利用等腰三角形的性质解决此题;。
初二数学尺规作图练习题
初二数学尺规作图练习题数学尺规作图让初二学生在几何学中学习和应用基本的几何概念和技能。
通过练习尺规作图,学生可以加深对几何形状的理解,培养几何思维和空间想象能力。
本文将为您呈现一系列的初二数学尺规作图练习题,以帮助学生巩固知识和提升技能。
1. 作图一个边长为5cm的正方形。
2. 作图一个直径为8cm的圆。
3. 在直线上用尺规作图,将一段长为6cm的线段等分为三等分。
4. 作图一个边长为3cm的等边三角形。
5. 作图一个边长为4cm的正五边形。
6. 作图一个半径为5cm的正圆。
7. 在一个已知角度的线段上,用尺规作图,将这个角度等分为4等分。
8. 已知直线段AB和点C,用尺规作图,将直线段AB的长度放大3倍。
9. 作图一个半径为6cm的正方形。
10. 在一个已知角度的线段上,用尺规作图,将这个角度等分为5等分。
11. 已知直线段EF和点G,用尺规作图,将直线段EF的长度缩小一半。
12. 作图一个半径为7cm的正五边形。
通过以上的练习题,学生可以灵活运用尺规作图的基本技能。
在解答练习题时,学生需要明确每道题的要求并合理规划作图步骤。
首先,根据题目要求确定作图所需要的基本图形,如正方形、圆形等。
其次,根据已知条件使用尺规进行测量和划线,确保图形的准确性。
最后,检查作图结果是否满足题目要求,如线段长度、角度等。
在尺规作图的过程中,学生应该注意以下几点:1. 尺规的正确使用:学生应熟练掌握尺规的使用方法,确保测量和画线的准确性。
2. 作图步骤的合理性:学生应根据题目要求和已知条件合理规划作图步骤,避免不必要的重复或遗漏。
3. 图形的准确性:学生在作图过程中应注意保持图形的准确性,如边长、角度等,避免误差的出现。
4. 用尺规作图后,用铅笔将直线粗化,圆心、交点等标记清晰,使图形更加美观。
通过反复练习尺规作图,初二学生可以提升几何思维和空间想象能力,培养几何学习的兴趣。
同时,尺规作图也是培养学生解决问题能力和推理能力的有效方法之一。
尺规作图练习题及答案初二
尺规作图练习题及答案初二尺规作图是几何学中的重要概念,它是通过直尺和圆规进行的一种绘图方式。
尺规作图在初中数学学习中占据着重要地位,它可以帮助学生锻炼观察、分析和解决问题的能力。
下面是一些初二尺规作图练习题及答案,帮助学生更好地理解和掌握这一知识点。
1. 绘制一个直角三角形ABC,已知∠B=90°,AB=5cm,BC=7cm。
求AC的长度。
解答:根据勾股定理,直角边的平方之和等于斜边的平方。
所以我们可以利用这个定理来求解AC的长度。
首先,使用尺规测量出AB的长度,在纸上画出点A和点B,将尺子的一边放在点A上,然后利用圆规画一个半径为5cm的圆,记为⊙A。
接着,将尺子的一边放在点B 上,利用圆规画一个半径为7cm的圆,在圆⊙A上与弧交于点C。
然后,连接AC。
测量AC的长度为8cm,所以AC的长度为8cm。
2. 绘制一个等边三角形ABC,给出三角形的边长为6cm。
解答:要绘制一个等边三角形ABC,我们可以利用圆规和尺子来进行绘制。
首先,在纸上画出一个点A,然后使用尺子来测量出线段AB的长度为6cm。
将圆规的一只脚放在点A上,调整另一只脚的距离为6cm。
然后,固定住圆规的一只脚,以A为圆心,利用圆规画一个弧,与扇形交于点B。
接着,固定住另一只脚,以点B为圆心,利用圆规再次画一个弧,与第一个弧交于点C。
最后,连接线段AC和线段CB,得到一个等边三角形ABC。
3. 绘制一个四边形ABCD,已知AB=3cm,BC=4cm,CD=5cm,∠B=90°,∠C=120°。
解答:根据题目描述,我们可以绘制出一个四边形ABCD。
首先,在纸上画出点A,然后使用尺子测量出线段AB的长度为3cm,画出线段AB。
接下来,将尺子的一只脚放在点B上,固定住另一只脚,以B 为圆心,利用圆规画一个半径为4cm的圆,在圆上分别标记出点C和D。
然后,连接线段CD和线段AD,得到四边形ABCD。
由于∠B=90°,∠C=120°,我们可以利用尺规作图的方法,将∠B平分为两个角,然后将∠C平分为三个角,最后连接线段AC和线段BD,得到所需的四边形ABCD。
八年级数学上册专题复习二尺规作图试题
8年级数学〔上〕专题复习二本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
——尺规作图一、关于尺规作图在几何中,通常用和准确地按要求来画图,这种画图的方法叫做尺规作图。
特别注意:要求用尺规作图的题不能利用直尺的刻度、三角板现有的角度及量角器来画。
二、五种根本作图1.作线段等于线段:线段a,求作:线段AB,使AB=a作法: (1)作射线AC,(2)在射线AC上截取AB=a.那么线段AB就是所要求作的线段.2.作角等于角:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)作射线O′A′.(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D.(3)以点O′为圆心,以OC长为半径画弧,交O′A′于点C′.(4)以点C′为圆心,以CD长为半径画弧,交前面的弧于点D′.(5)过点D′作射线O′B′.∠A′O′B′就是所求作的角.3.作角的平分线:∠AOB,求作:∠AOB内部射线OC,使:∠AOC=∠BOC,作法:(1)在OA和OB上,分别截取OD、OE,使OD=OE.(2)分别以D、E为圆心,大于DE21的长为半径作弧,在∠AOB内,两弧交于点C. (3)作射线OC. OC就是所求作的射线.4.作线段的垂直平分线〔中垂线〕或者中点:线段AB求作:线段AB的垂直平分线作法:oBA图2oBA图3(1)分别以A、B为圆心,以大于AB的一半为半径在AB两侧画弧,分别相交于E、F两点(2)经过E、F,作直线EF〔作直线EF交AB于点O〕直线EF就是所求作的垂直平分线〔点O就是所求作的中点〕5.过直线外一点作直线的垂线.点在直线外:直线a、及直线a外一点A.(画出直线a、点A)求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以点A为圆心,以适当长为半径画弧,交直线a于点C、D.(2)以点C为圆心,以AD长为半径在直线另一侧画弧.(3)以点D为圆心,以AD长为半径在直线另一侧画弧,交前一条弧于点B.(4)经过点A、B作直线AB.直线AB就是所画的垂线b.(如图)点在直线上:直线a、及直线a上一点A.求作:直线a的垂线直线b,使得直线b经过点A.作法:(1)以A为圆心,任一线段的长为半径画弧,交a于C、B两点(2)点C为圆心,以大于CB一半的长为半径画弧;(3)以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N(4)经过M、N,作直线MN直线MN就是所求作的垂线b三、常用作图语言:〔1〕过点×、×作线段或者射线、直线;〔2〕连结两点××;〔3〕在线段××或者射线××上截取××=××;〔4〕以点×为圆心,以××的长为半径作圆〔或者画弧〕,交××于点×;〔5〕分别以点×,点×为圆心,以×,×的长为半径作弧,两弧相交于点×;〔6〕延长××到点×,使××=××。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学尺规作图专题训练二
评卷人得分
一、选择题(题型注释)
1.尺规作图是指()
A.用量角器和刻度尺作图
B.用圆规和有刻度的直尺作图
C.用圆规和无刻度的直尺作图
D.用量角器和无刻度的直尺作图
2.用尺规作图,已知三边作三角形,用到的基本作图是()
A.作一个角等于已知角
B.作已知直线的垂线
C.作一条线段等于已知线段
D.作角的平分线
3.(2011•沙县质检)右图的尺规作图是作()
A.线段的垂直平分线
B.一个半径为定值的圆
C.一条直线的平行线
D.一个角等于已知角
第II卷(非选择题)请点击修改第II卷的文字说明
评卷人得分
二、填空题(题型注释)
4.如图,作一个角等于已知角,其尺规作图的原理是______(填SAS ,ASA,AAS,SSS).
评卷人得分
三、计算题(题型注释)
评卷人得分
四、解答题(题型注释)
5.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如
下:
小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.
根据以上情境,解决下列问题:
①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________.
②小聪的作法正确吗?请说明理由.
③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)
6.如图,已知△ABC,∠B=90°,按下列要求作图(尺规作图,不写作图步骤保留作图痕迹)
(1)作∠C的角平分线与AB相交于D;在AC边上取一点E,使CE=CB,连接DE.
(2)根据所作图形写出一对相等的线段和一对相等的锐角(不包括CE=CB,∠ECD=∠BCD).
7.已知:如图,△ABC中,请你按下列要求读句画图: (“作图”不要求写作法,但要保留作图痕迹并写
出结论).
C
B
A
⑴用尺规作图作∠BAC的角平分线AD交边BC于D点;
⑵作线段AD的垂直平分线EF,交AD于E点,交BC的延长线于F点;
⑶根据⑴,⑵作图, 连结AF, 若∠B=40°,请求出∠CAF的度数.
8.如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、
D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)
9.(2011•潼南县)画△ABC,使其两边为已知线段a、b,夹角为β.(要求:用尺规作图,写出已知、
求作;保留作图痕迹;不在已知的线、角上作图;不写作法).
已知:
求作:
10.(6分)如图,在△ABC中, ∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)
C
B
A
①用尺规
..作∠BAC的角平分线AE.
②用三角板
...作AC边上的高BD.
③用尺规
..作AC边上的垂直平分线MN.
11.如图所示,在△ABC中,∠ABC=∠ACB.
(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)
(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.
12.作图题:(3分)
如图,一块大的三角板ABC,D是AB上一点,现要求过点D割出一块小的角板ADE,使∠ADE=∠ABC,
请用尺规作出∠ADE.(不写作法,
.....保.留作图痕迹,要
.......写.结论
..)
13.已知一个三角形的两条边长分别是1cm和2cm,一个内角为40o.
(1)请你借助图1画出一个满足题设条件的三角形;
(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由.
(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm ,一个内角为40o”,那么满足这一条件,且彼此不全等的三角形共有个.
友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.
14.△ABC是等腰三角形,AB=AC,∠A=36°
(1)利用尺规作B的角平分线BD,交AC于点D;(保留作图痕迹,不写作法)
(2)判断△ABC是否为等腰三角形,并说明理由.
15.如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心P恰好在∠AOB的角平分线上.(尺规作图,保留痕迹)
(本题满分6分)
如图,一块三角形模具的阴影部分已破损.
16.(1)如果不带残留的模具片到店铺加工一块与原来的模具△ABC的形状和大小完全相同的模具△A B C
''',需要从残留的模具片中度量出哪些边、角?请简要说明理由.
17.(2)作出模具A B C
'''
△的图形(要求:尺规作图,保留作图痕迹,不写作法和证明).
评卷人得分
五、判断题(题型注释)
•
C B
A
O
图1。