正确计算第二宇宙速度
第四章第三节 人造卫星 宇宙速度
第三节 人造卫星 宇宙速度1.第一宇宙速度(环绕速度)(1)数值 v 1=7.9 km/s ,是人造卫星的最小发射速度,也是人造卫星最大的环绕速度. (2)第一宇宙速度的计算方法 ①由G Mm R 2=m v 2R 得v = GM R. ②由mg =m v 2R得v =gR . 2.第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度.3.第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度.发射卫星,要有足够大的速度才行,请思考:(1)不同星球的第一宇宙速度是否相同?如何计算第一宇宙速度?(2)把卫星发射到更高的轨道上需要的发射速度越大还是越小?宇宙速度的理解与计算[重难提炼]1.第一宇宙速度的推导法一:由G Mm R 2=m v 21R 得v 1=GM R=7.9×103 m/s. 法二:由mg =m v 21R得v 1=gR =7.9×103 m/s. 第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πR g=5 075 s ≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球做匀速圆周运动.(2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳做椭圆运动.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.[典题例析](2018·南平质检)某星球直径为d ,宇航员在该星球表面以初速度v 0竖直上抛一个物体,物体上升的最大高度为h ,若物体只受该星球引力作用,则该星球的第一宇宙速度为( )A.v 02 B .2v 0d h C .v 02h d D .v 02d h[跟踪训练] (多选)如图所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q 点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )A .该卫星在P 点的速度大于7.9 km/s ,小于11.2 km/sB .卫星在同步轨道Ⅱ上的运行速度大于7.9 km/sC .在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度D .卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ近地卫星、赤道上的物体及同步卫星的运行规律[重难提炼]三种匀速圆周运动的参量比较近地卫星(r 1、ω1、v 1、a 1) 同步卫星(r 2、ω2、v 2、a 2) 赤道上随地球自转的物体(r 3、ω3、v 3、a 3) 向心力 万有引力万有引力的一个分力 线速度 由GMm r 2=m v 2r得 v =GM r,故v 1>v 2 由v =rω得v 2>v 3 v 1>v 2>v 3向心加速度 由GMm r 2=ma 得a =GM r2, 故a 1>a 2由a =ω2r 得a 2>a 3 a 1>a 2>a 3轨道半径r 2>r 3=r 1 角速度 由GMm r 2=mω2r 得ω=GM r 3,故ω1>ω2 同步卫星的角速度与地球自转角速度相同,故ω2=ω3ω1>ω2=ω3 [典题例析](2018·沧州第一中学高三月考)有a 、b 、c 、d 四颗地球卫星,a 还未发射,在赤道表面上随地球一起转动;b 是近地轨道地球卫星;c 是地球的同步卫星;d 是高空探测卫星;它们均做匀速圆周运动,各卫星排列位置如图所示,则( )A .a 的向心加速度等于重力加速度gB .b 在相同时间内转过的弧长最长C .c 在4 h 内转过的圆心角是π6D .d 的运动周期可能是20 h[跟踪训练] (2018·内蒙古集宁一中高三月考)如图所示,a 为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b 为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径等于地球半径),c 为地球的同步卫星,以下关于a 、b 、c 的说法中正确的是( )A. a 、b 、c 的向心加速度大小关系为a b >a c >a aB. a 、b 、c 的角速度大小关系为ωa >ωb >ωcC. a 、b 、c 的线速度大小关系为v a =v b >v cD. a 、b 、c 的周期关系为T a >T c >T b卫星的变轨问题[重难提炼]人造地球卫星的发射过程要经过多次变轨,如图所示,我们从以下几个方面讨论.1.变轨原理及过程(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道Ⅰ上.(2)在A 点点火加速,由于速度变大,万有引力不足以提供在轨道Ⅰ上做圆周运动的向心力,卫星做离心运动进入椭圆轨道Ⅱ.(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅲ.2.一些物理量的定性分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v 1、v 3,在轨道Ⅱ上过A 点和B 点时速率分别为v A 、v B .因在A 点加速,则v A >v 1,因在B 点加速,则v 3>v B ,又因v 1>v 3,故有v A >v 1>v 3>v B .(2)加速度:因为在A 点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过A 点,卫星的加速度都相同,同理,从轨道Ⅱ和轨道Ⅲ上经过B 点时加速度也相同.(3)周期:设卫星在Ⅰ、Ⅱ、Ⅲ轨道上运行周期分别为T 1、T 2、T 3,轨道半径分别为r 1、r 2(半长轴)、r 3,由开普勒第三定律a 3T2=k 可知T 1<T 2<T 3. (4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒,若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E 1、E 2、E 3,则E 1<E 2<E 3.3.卫星变轨的两种方式一是改变提供的向心力(一般不常用这种方式);二是改变需要的向心力(通常使用这种方式).[典题例析](2016·高考北京卷)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P点变轨后进入轨道2做匀速圆周运动.下列说法正确的是()A.不论在轨道1还是轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量[跟踪训练](多选) (2019·贵阳花溪清华中学高三模拟)“嫦娥一号”探月卫星沿地月转移轨道到达月球附近,在距月球表面200 km的P点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道Ⅰ绕月飞行,如图所示.之后,卫星在P点经过几次“刹车制动”,最终在距月球表面200 km的圆形轨道Ⅲ上绕月球做匀速圆周运动.用T1、T2、T3分别表示卫星在椭圆轨道Ⅰ、Ⅱ和圆形轨道Ⅲ上运动的周期,用a1、a2、a3分别表示卫星沿三个轨道运动到P点的加速度,用v1、v2、v3分别表示卫星沿三个轨道运动到P点的速度,用F1、F2、F3分别表示卫星沿三个轨道运动到P点时受到的万有引力,则下面关系式中正确的是()A.a1=a2=a3B.v1<v2<v3C.T1>T2>T3D.F1=F2=F3卫星的追及、相遇问题[重难提炼]某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上,由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们初始位置在同一直线上,实际上内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻.[跟踪训练](2017·河南洛阳尖子生联考)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上,这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”,假设地球公转轨道半径为R,“金星凌日”每隔t0年出现一次,则金星的公转轨道半径为()A .t 01+t 0R B . 2⎝⎛⎭⎫t 01+t 03 C .R 3⎝⎛⎭⎫1+t 0t 02 D .R 3⎝⎛⎭⎫t 01+t 02一、单项选择题1.如图所示,a 是地球赤道上的一点,t =0时刻在a 的正上空有b 、c 、d 三颗轨道均位于赤道平面的地球卫星,这些卫星绕地球做匀速圆周运动的运行方向均与地球自转方向(顺时针方向)相同,其中c 是地球同步卫星.设卫星b 绕地球运行的周期为T ,则在t =14T 时刻这些卫星相对a 的位置最接近实际的是( )2.(2018·辽宁鞍山一中等六校联考)如图所示,质量相同的三颗卫星a 、b 、c 绕地球做匀速圆周运动,其中b 、c 在地球的同步轨道上,a 距离地球表面的高度为R ,此时a 、b 恰好相距最近.已知地球质量为M 、半径为R 、地球自转的角速度为ω,万有引力常量为G ,则( )A .发射卫星b 时速度要大于11.2 km/sB .卫星a 的机械能大于卫星b 的机械能C .若要卫星c 与b 实现对接,可让卫星c 加速D .卫星a 和b 下次相距最近还需经过t =2πGM 8R 3-ω3.2016年2月11日,美国自然科学基金召开新闻发布会宣布,人类首次探测到了引力波.2月16日,中国科学院公布了一项新的探测引力波的“空间太极计划”.由中山大学发起的空间引力波探测工程“天琴计划”于2015年7月正式启动.计划从2016年到2035年分四阶段进行,将向太空发射三颗卫星探测引力波.在目前讨论的初步概念中,天琴将采用三颗相同的卫星(SC1、SC2、SC3)构成一个等边三角形阵列,地球恰处于三角形中心,卫星将在以地球为中心、高度约10万公里的轨道上运行,针对确定的引力波源进行探测,这三颗卫星在太空中的分列图类似乐器竖琴,故命名为“天琴计划”.则下列有关三颗卫星的运动描述正确的是()A.三颗卫星一定是地球同步卫星B.三颗卫星具有相同大小的加速度C.三颗卫星的线速度比月球绕地球运动的线速度大且大于第一宇宙速度D.若知道引力常量G及三颗卫星绕地球运转周期T可估算出地球的密度4.(2017·浙江名校协作体高三联考)我国首颗量子科学实验卫星“墨子”已于酒泉成功发射,将在世界上首次实现卫星和地面之间的量子通信.“墨子”将由火箭发射至高度为500千米的预定圆形轨道.此前6月在西昌卫星发射中心成功发射了第二十三颗北斗导航卫星G7.G7属地球静止轨道卫星(高度约为36 000千米),它将使北斗系统的可靠性进一步提高.关于卫星以下说法中正确的是()A.这两颗卫星的运行速度可能大于7.9 km/sB.通过地面控制可以将北斗G7定点于西昌正上方C.量子科学实验卫星“墨子”的周期比北斗G7小D.量子科学实验卫星“墨子”的向心加速度比北斗G7小5.(2018·衡阳第八中学高三月考)a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星,其中a、c的轨道相交于P,b、d均为同步卫星,b、c轨道在同一平面上,某时刻四颗卫星的运行方向以及位置如图所示,下列说法中正确的是()A.a、c的加速度大小相等,且小于b的加速度B.a、c的线速度大小相等,且大于第一宇宙速度C.b、d的角速度大小相等,且小于a的角速度D.a、c存在在P点相撞的危险6.2016年9月15日22时04分,举世瞩目的“天宫二号”空间实验室在酒泉卫星发射中心成功发射,并于16日成功实施了两次轨道控制,顺利进入在轨测试轨道.如图所示是“天宫二号”空间实验室轨道控制时在近地点(Q点)200千米、远地点(P点)394千米的椭圆轨道运行,已知地球半径取6 400 km,M、N为短轴与椭圆轨道的交点,对于“天宫二号”空间实验室在椭圆轨道上的运行,下列说法正确的是()A .“天宫二号”空间实验室在P 点时的加速度一定比Q 点小,速度可能比Q 点大B .“天宫二号”空间实验室从N 点经P 点运动到M 点的时间可能小于“天宫二号”空间实验室从M 点经Q 点运动到N 点的时间C .“天宫二号”空间实验室在远地点(P 点)所受地球的万有引力大约是在近地点(Q 点)的14D .“天宫二号”空间实验室从P 点经M 点运动到Q 点的过程中万有引力做正功,从Q 点经N 点运动到P 点的过程中要克服万有引力做功二、多项选择题7.(2015·高考天津卷)P 1、P 2为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星s 1、s 2做匀速圆周运动.图中纵坐标表示行星对周围空间各处物体的引力产生的加速度a ,横坐标表示物体到行星中心的距离r 的平方,两条曲线分别表示P 1、P 2周围的a 与r 2的反比关系,它们左端点横坐标相同.则( )A .P 1的平均密度比P 2的大B .P 1的“第一宇宙速度”比P 2的小C .s 1的向心加速度比s 2的大D .s 1的公转周期比s 2的大8.(2018·江西六校高三联考)我国首个空间实验室“天宫一号”发射轨道为一椭圆,如图甲所示,地球的球心位于该椭圆的一个焦点上,A 、B 两点分别是卫星运行轨道上的近地点和远地点.若A 点在地面附近,且卫星所受阻力可以忽略不计.之后“天宫一号”和“神舟八号”对接,如图乙所示,A 代表“天宫一号”,B 代表“神舟八号”,虚线为各自的轨道.由以上信息,可以判定( )A .图甲中卫星运动到A 点时其速率一定大于7.9 km/sB .图甲中若要卫星在B 点所在的高度做匀速圆周运动,需在B 点加速C .图乙中“天宫一号”的向心加速度大于“神舟八号”的向心加速度D .图乙中“神舟八号”加速有可能与“天宫一号”实现对接9.关于人造卫星和宇宙飞船,下列说法正确的是( )A .如果知道人造卫星的轨道半径和它的周期,再利用万有引力常量,就可以算出地球质量B .两颗人造卫星,不管它们的质量、形状差别有多大,只要它们的运行速度相等,它们的周期就相等C .原来在同一轨道上沿同一方向运转的人造卫星一前一后,若要后一个卫星追上前一个卫星并发生碰撞,只要将后面一个卫星速率增大一些即可D .一艘绕地球运转的宇宙飞船,宇航员从舱内慢慢走出,并离开飞船,飞船因质量减小,所受到的万有引力减小,飞船将做离心运动偏离原轨道10.(2017·牡丹江市第一高级中学高三月考) 如图“嫦娥二号”卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入半径为100 km、周期为118 min的工作轨道Ⅲ,开始对月球进行探测,则下列说法正确的是()A.卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小B.卫星在轨道Ⅲ上经过P点的速度比在轨道Ⅰ上经过P点时大C.卫星在轨道Ⅲ上运动的周期比在轨道Ⅰ上短D.卫星在轨道Ⅰ上的机械能比在轨道Ⅱ上小。
航天器制导与控制课后题答案(西电)
航天器制导与控制课后题答案(西电)1.3 航天器的基本系统组成及各部分作用?航天器基本系统一般分为有效载荷和保障系统两大类。
有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。
保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正常工作。
1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么?概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。
内容:轨道控制包括轨道确定和轨道控制两方面的内容。
轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。
姿态控制包括姿态确定和姿态控制两方面内容。
姿态确定是研究航天器相对于某个基准的确定姿态方法。
姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。
姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。
关系:轨道控制与姿态控制密切相关。
为实现轨道控制, 航天器姿态必须符合要求。
也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。
在某些具体情况或某些飞行过程中,可以把姿态控制和轨道控制分开来考虑。
某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。
1.5 阐述姿态稳定的各种方式, 比较其异同。
姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天器姿态运动的形式可大致分为两类。
自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。
自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。
三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在某一参考空间的方向。
正确计算第二宇宙速度论文:正确计算第二宇宙速度
正确计算第二宇宙速度论文:正确计算第二宇宙速度
在天体运动规律的教学中,宇宙速度是个非常重要的物理量。
在现行的人教社高一物理教材中给出了三个宇宙速度的定义和数值:第一宇宙速度相对简单,且给出了简单的计算,但是对于第二和第三宇宙速度,教材中仅仅给出了其定义和数值。
学生常常问:这两个宇宙速度到底是怎么计算出来的呢?能够掌握第二宇宙速度的计算对于学生正确理解宇宙速度的本质有很大的帮助。
根据第二宇宙速度的定义:地面上发射的航天器能够脱离地球的引力,不再绕地球运行的最小速度叫做第二宇宙速度(人民教育出版社全日制普通高级中学教科书必修第103页)。
由于物体在离开地球引力场的过程中,所受的引力是在不断变化的,如果直接从动力学的角度分析,高中学生由于数学知识不足的原因在理解上有一定的难度。
如果利用功能关系进行推导,就显得简单易行。
这样,要计算第二宇宙速度,就必须求出在地球引力场中,移动物体时克服引力所做的功。
很显然,物体上升得越高,需要做的功也就越多。
本文正是从第二宇宙速度的定义出发,从便于学生理解的角度,利用功能关系对其大小进行了推导。
详细推导过程如下:
如图所示,设物体m从地球e的引力场中从p0处移动到p1处。
因各处的引力不等,我们可把p0,pn间的距离分
成许多极小的等分δx(此处包含有微分的思想)。
p0,p1,p2,…pn-1,pn和地球中心的距离分别为r0,r1,r2,rn-1,rn;先求出每一等分中的平均引力,然后求出通过每一等分时物体克服地球引力所做的功,这些功的总和,就是物体从p0移动到pn克服地球引力所做的功。
第二宇宙速度的计算
关于第二宇宙速度的计算一、第二宇宙速度定义第二宇宙速度(也称为逃逸速度)是一个航天器或卫星需要达到的最小速度,以便完全逃离地球引力的束缚,进入宇宙空间。
这个速度使得物体能够摆脱地球的引力,进入太阳系的其他部分或更远的宇宙。
二、第二宇宙速度的计算公式第二宇宙速度(V₂)的计算公式为:V₂ = √(2gR)其中:•V₂是第二宇宙速度•g 是地球表面的重力加速度,约为 9.81 m/s²•R 是地球的半径,约为 6371 km将上述数值代入公式,我们可以得到:V₂≈√(2 × 9.81 × 6371000) ≈ 11.2 km/s这意味着,为了逃离地球,一个物体需要以大约11.2公里每秒的速度飞行。
三、第二宇宙速度的意义第二宇宙速度在航天学中具有重要意义。
它决定了发射卫星或进行深空探测所需的最小能量。
如果一个航天器的速度低于第二宇宙速度,它将无法逃离地球引力并最终返回地球。
四、影响第二宇宙速度的因素1.地球质量:地球的质量越大,其引力越强,因此需要的逃逸速度也越大。
2.地球半径:地球的半径越大,物体需要克服的引力距离越长,因此逃逸速度也越大。
3.重力加速度:重力加速度越大,地球对物体的引力作用越强,因此逃逸速度也越大。
五、实际应用在实际应用中,火箭和航天器必须以足够的速度才能逃离地球。
例如,阿波罗任务中的土星五号火箭就需要达到第二宇宙速度,以便将宇航员送到月球。
六、研究展望随着航天技术的不断发展,对第二宇宙速度的研究也在不断深入。
未来的研究可能包括如何更有效地达到或超过第二宇宙速度,以及如何利用这一速度进行更远的太空探索。
第二宇宙速度的推导
第二宇宙速度的推导在地面上发射一个航天器,使之能脱离地球的引力场所需要的最小发射速度,称为第二宇宙速度。
一个航天器在它的燃料烧完后脱离地球的过程中,该系统符合机械能守恒的条件。
由此即可推得第二宇宙速度v2。
要计算第二宇宙速度,必须求出在地球引力场中,移动物体时克服引力所做的功。
很显然,物体上升的越高,需要做的功也就越多。
但同一物体在不同高度处所受地球引力并不相等,随着物体高度的增加,地球引力将逐渐减弱。
当物体与地球的距离趋于无穷大时,地球对它的引力也就趋于零,这时物体就脱离了地球的引力场。
因此,物体由地球表面上升到无限远处克服地球引力所做的功为一定值。
这一数值可用下面的方法进行推算。
如图所示,设立物体m从地球e的引力场中从p0处为移动至pn处为。
因各处的引力左右,我们可以把p0pn的一段距离分为许多极小的等分δx。
p0、p1、p2、……pn和地球中心的距离分别为r0、r1、r2、……rn;先求出来每一等分中的平均值引力,然后谋出来通过每一等分时物体消除地球引力所搞的功,这些功的总和,就是物体从p0移动至pn消除地球引力所搞的功。
如果物体靠消耗自身的动能去顺利完成它所aes的功,那么它从p0移动至pn消除地球引力所搞的功,就等同于它动能的增加。
根据万有引力定律,如果用g表示万有引力恒量,m表示地球的质量。
物体在p0处所受的引力为f0=gmmmmf=g;物体在p处所受的引力为。
11r02r12因为p0和p1距离极近,物体在p0、p1间难以承受万有引力的平均值可以对数地等同于两处引力的比例中项,即为:f1=gmm;r0r1同理,物体在p1、p2间所受的平均引力为f2=gmm;r1r2…………………………………………………………物体在pn-1、pn间所受的平均引力为fn=gmm。
rn-1rn物体从p0移动至p1的过程中消除万有引力所搞的功为:w1=(p0、p1间物体受到的平均引力)×(p0、p1间的距离)即w1=g⎛11⎛m m;(r1-r0)=gmm-⎛⎛r0r1⎛r0r1⎛物体从p1移动到p2时克服万有引力所做的功为:⎛11⎛w2=gmmr-r⎛⎛;⎛12⎛………………………………………………………同理,物体从pn-1移动至pn时消除万有引力搞的功为:⎛11⎛wn=gmm-⎛⎛rr⎛n-1n⎛把以上各式相乘,获得物体从p0移动至pn整个过程中消除万有引力所搞的功为:w=w1+w2+……wn=gmm⎛11⎛。
物理-人造卫星宇宙速度
人造卫星 宇宙速度物理考点 1.会比较卫星运动的各物理量之间的关系.2.理解三种宇宙速度,并会求解第一宇宙速度的大小.3.会分析天体的“追及”问题.考点一 卫星运行参量的分析基础回扣1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供.2.基本公式:(1)线速度:G =m ⇒v =Mmr 2v 2r GM r (2)角速度:G =mω2r ⇒ω=Mmr 2GMr 3(3)周期:G =m 2r ⇒T =2πMmr 2(2πT )r 3GM(4)向心加速度:G =ma ⇒a =Mmr 2GMr 2结论:r 越大,v 、ω、a 越小,T 越大.技巧点拨1.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .2.近地卫星和同步卫星卫星运动的轨道平面一定通过地心,一般分为赤道轨道、极地轨道和其他轨道,同步卫星的轨道是赤道轨道.(1)近地卫星:轨道在地球表面附近的卫星,其轨道半径r =R (地球半径),运行速度等于第一宇宙速度v =7.9 km/s(人造地球卫星的最大运行速度),T =85 min(人造地球卫星的最小周期).(2)同步卫星①轨道平面与赤道平面共面.②周期与地球自转周期相等,T =24 h.③高度固定不变,h =3.6×107 m.④运行速率均为v =3.1×103 m/s. 卫星运行参量与轨道半径的关系例1 (2020·浙江7月选考·7)火星探测任务“天问一号”的标识如图1所示.若火星和地球绕太阳的运动均可视为匀速圆周运动,火星公转轨道半径与地球公转轨道半径之比为3∶2,则火星与地球绕太阳运动的( )图1A .轨道周长之比为2∶3B .线速度大小之比为∶32C .角速度大小之比为2∶323D .向心加速度大小之比为9∶4答案 C解析 轨道周长C =2πr ,与半径成正比,故轨道周长之比为3∶2,故A 错误;根据万有引力提供向心力有=m ,得v =,得==,故B 错误;由万有引力提供GMmr 2v 2r GMr v 火v 地r 地r 火23向心力有=mω2r ,得ω=,得==,故C 正确;由=ma ,得GMm r 2GMr 3ω火ω地r 地3r 火32233GMmr 2a =,得==,故D 错误.GMr 2a 火a 地r 地2r 火249 同步卫星、近地卫星及赤道上物体的比较例2 (2019·青海西宁市三校联考)如图2所示,a 为放在赤道上相对地球静止的物体,随地球自转做匀速圆周运动,b 为沿地球表面附近做匀速圆周运动的人造卫星(轨道半径约等于地球半径),c 为地球的同步卫星.下列关于a 、b 、c 的说法中正确的是( )图2A .b 卫星转动线速度大于7.9 km/sB .a 、b 、c 做匀速圆周运动的向心加速度大小关系为a a >a b >a cC .a 、b 、c 做匀速圆周运动的周期关系为T a =T c <T bD .在b 、c 中,b 的线速度大答案 D解析 b 为沿地球表面附近做匀速圆周运动的人造卫星,根据万有引力定律有G =m ,MmR 2v 2R 解得v =,又=mg ,可得v =,与第一宇宙速度大小相同,即v =7.9 km/s ,故GMR GMmR 2gR A 错误;地球赤道上的物体与同步卫星具有相同的角速度,所以ωa =ωc ,根据a =rω2知,c 的向心加速度大于a 的向心加速度,根据a =得b 的向心加速度大于c 的向心加速度,GMr 2即a b >a c >a a ,故B 错误;卫星c 为地球同步卫星,所以T a =T c ,根据T =2π得c 的周r 3GM 期大于b 的周期,即T a =T c >T b ,故C 错误;在b 、c中,根据v =,可知b 的线速度GMr 比c 的线速度大,故D 正确.1.(卫星运行参量的比较)(2020·浙江1月选考·9)如图3所示,卫星a 、b 、c 沿圆形轨道绕地球运行.a 是极地轨道卫星,在地球两极上空约1 000 km 处运行;b 是低轨道卫星,距地球表面高度与a 相等;c 是地球同步卫星,则( )图3A .a 、b 的周期比c 大B .a 、b 的向心力一定相等C .a 、b 的速度大小相等D .a 、b 的向心加速度比c 小答案 C解析 根据万有引力提供向心力有=m =mω2r =m r =ma ,可知v =,ω=GMmr 2v 2r 4π2T 2GM r,T =,a =,由此可知,半径越大,线速度、角速度、向心加速度越小,周GM r 32πr 3GM GMr 2期越长,因为a 、b 卫星的半径相等,且比c 小,因此a 、b 卫星的线速度大小相等,向心加速度比c 大,周期小于卫星c 的周期,选项C 正确,A 、D 错误;由于不知道三颗卫星的质量关系,因此不清楚向心力的关系,选项B 错误.2.(同步卫星)关于我国发射的“亚洲一号”地球同步通信卫星的说法,正确的是( )A .若其质量加倍,则轨道半径也要加倍B .它在北京上空运行,故可用于我国的电视广播C .它以第一宇宙速度运行D .它运行的角速度与地球自转角速度相同答案 D解析 由G =m 得r =,可知轨道半径与卫星质量无关,A 错误;同步卫星的轨道Mmr 2v 2r GMv 2平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B 错误;第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C 错误;所谓“同步”就是卫星保持与赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D 正确.3.(卫星运动分析)(2016·全国卷Ⅰ·17)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 hB .4 h C .8 h D .16 h 答案 B解析 地球自转周期变小,卫星要与地球保持同步,则卫星的公转周期也应随之变小,由开普勒第三定律=k 可知卫星离地球的高度应变小,要实现三颗卫星覆盖全球的目的,则卫r 3T 2星周期最小时,由数学几何关系可作出卫星间的位置关系如图所示.卫星的轨道半径为r ==2R Rsin 30°由=得r 13T 12r 23T 22=(6.6R )3242(2R )3T 22解得T 2≈4 h .考点二 宇宙速度的理解和计算基础回扣第一宇宙速度(环绕速度)v 1=7.9 km/s ,是物体在地面附近绕地球做匀速圆周运动的最大环绕速度,也是人造地球卫星的最小发射速度第二宇宙速度(脱离速度)v 2=11.2 km/s ,是物体挣脱地球引力束缚的最小发射速度第三宇宙速度(逃逸速度)v 3=16.7 km/s ,是物体挣脱太阳引力束缚的最小发射速度技巧点拨1.第一宇宙速度的推导方法一:由G =m ,得v 1== m/s ≈7.9×103MmR 2v 12R GMR 6.67×10-11×5.98×10246.4×106m/s.方法二:由mg =m 得v 1== m/s ≈7.9×103 m/s.v 12R gR 9.8×6.4×106第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2π=5 078 s ≈85 min.Rg 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动.(2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆.(3)11.2 km/s ≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.例3 (2020·北京卷·5)我国首次火星探测任务被命名为“天问一号”.已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是( )A .火星探测器的发射速度应大于地球的第二宇宙速度B .火星探测器的发射速度应介于地球的第一和第二宇宙速度之间C .火星的第一宇宙速度大于地球的第一宇宙速度D .火星表面的重力加速度大于地球表面的重力加速度答案 A解析 火星探测器需要脱离地球的束缚,故其发射速度应大于地球的第二宇宙速度,故A正确,B 错误;由G =m 得,v 火===v 地,故火星的第一宇宙速MmR 2v 2R GM 火R 火0.1M 地G0.5R 地55度小于地球的第一宇宙速度,故C 错误;由=mg 得,g 火=G =G =0.4gGMmR 2M 火R 火20.1M 地(0.5R 地)2地,故火星表面的重力加速度小于地球表面的重力加速度,故D 错误.4.(第一宇宙速度的计算)地球的近地卫星线速度大小约为8 km/s ,已知月球质量约为地球质量的,地球半径约为月球半径的4倍,下列说法正确的是( )181A .在月球上发射卫星的最小速度约为8 km/s B .月球卫星的环绕速度可能达到4 km/s C .月球的第一宇宙速度约为1.8 km/sD .“近月卫星”的速度比“近地卫星”的速度大答案 C解析 根据第一宇宙速度v =,月球与地球的第一宇宙速度之比为GMR ===,月球的第一宇宙速度约为v 2=v 1=×8 km/s ≈1.8 km/s ,在月球上v 2v 1M 2R 1M 1R 2481292929发射卫星的最小速度约为1.8 km/s ,月球卫星的环绕速度小于或等于1.8 km/s ,“近月卫星”的速度为1.8 km/s ,小于“近地卫星”的速度,故C 正确.5.(宇宙速度的理解和计算)宇航员在一行星上以速度v 0竖直上抛一质量为m 的物体,不计空气阻力,经2t 后落回手中,已知该星球半径为R .求:(1)该星球的第一宇宙速度的大小;(2)该星球的第二宇宙速度的大小.已知取无穷远处引力势能为零,物体距星球球心距离为r 时的引力势能E p =-G .(G 为万有引力常量)mMr 答案 (1) (2)v 0Rt 2v 0R t解析 (1)由题意可知星球表面重力加速度为g =v 0t由万有引力定律知mg =m v 12R解得v 1==.gR v 0Rt (2)由星球表面万有引力等于物体重力知=mgGMmR 2又E p =-G mMR解得E p =-m v 0Rt 由机械能守恒有m v 22-=012m v 0R t 解得v 2=.2v 0Rt 考点三 天体的“追及”问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA -ωB )t =2n π(n =1,2,3…).2.相距最远当两卫星位于和中心连线的半径上两侧时,两卫星相距最远,从运动关系上,两卫星运动关系应满足(ωA -ωB )t ′=(2n -1)π(n =1,2,3…).例4 当地球位于太阳和木星之间且三者几乎排成一条直线时,称之为“木星冲日”,2016年3月8日出现了一次“木星冲日”.已知木星与地球几乎在同一平面内沿同一方向绕太阳近似做匀速圆周运动,木星到太阳的距离大约是地球到太阳距离的5倍.则下列说法正确的是( )A .下一次的“木星冲日”时间肯定在2018年B .下一次的“木星冲日”时间肯定在2017年C .木星运行的加速度比地球的大D .木星运行的周期比地球的小答案 B解析 地球公转周期T 1=1年,由T =2π可知,土星公转周期T 2=T 1≈11.18r 3GM 125年.设经时间t ,再次出现“木星冲日”,则有ω1t -ω2t =2π,其中ω1=,ω2=,解得2πT 12πT 2t ≈1.1年,因此下一次“木星冲日”发生在2017年,故A 错误,B 正确;设太阳质量为M ,行星质量为m ,轨道半径为r ,周期为T ,加速度为a .对行星由牛顿第二定律可得G =ma =m r ,解得a =,T =2π,由于木星到太阳的距离大约是地球到太阳Mmr 24π2T 2GMr 2r 3GM 距离的5倍,因此,木星运行的加速度比地球的小,木星运行的周期比地球的大,故C 、D 错误.6.(天体的“追及”问题)(多选)(2020·山西太原市质检)如图4,在万有引力作用下,a 、b 两卫星在同一平面内绕某一行星c 沿逆时针方向做匀速圆周运动,已知轨道半径之比为r a ∶r b =1∶4,则下列说法中正确的有( )图4A .a 、b 运动的周期之比为T a ∶T b =1∶8B .a 、b 运动的周期之比为T a ∶T b =1∶4C .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线12次D .从图示位置开始,在b 转动一周的过程中,a 、b 、c 共线14次答案 AD解析 根据开普勒第三定律:半径的三次方与周期的二次方成正比,则a 、b 运动的周期之比为1∶8,A 对,B 错;设图示位置ac 连线与bc 连线的夹角为θ<,b 转动一周(圆心角为π22π)的时间为T b ,则a 、b 相距最远时:T b -T b =(π-θ)+n ·2π(n =0,1,2,3…),可知2πTa 2πTb n <6.75,n 可取7个值;a 、b 相距最近时:T b -T b =(2π-θ)+m ·2π(m =0,1,2,3…),可2πTa 2πTb 知m <6.25,m 可取7个值,故在b 转动一周的过程中,a 、b 、c 共线14次,C 错,D 对.课时精练1.(2020·天津卷·2)北斗问天,国之夙愿.如图1所示,我国北斗三号系统的收官之星是地球静止轨道卫星,其轨道半径约为地球半径的7倍.与近地轨道卫星相比,地球静止轨道卫星( )图1A.周期大B.线速度大C.角速度大D.加速度大答案 A解析 根据万有引力提供向心力有G=m()2r、G=m、G=mω2r、G=maMmr22πTMmr2v2rMmr2Mmr2可知T=2π、v=、ω=、a=,因为地球静止轨道卫星的轨道半径大于近r3GMGMrGMr3GMr2地轨道卫星的轨道半径,所以地球静止轨道卫星的周期大、线速度小、角速度小、向心加速度小,故选项A正确.2.(2020·四川泸州市质量检测)我国实施空间科学战略性先导科技专项计划,已经发射了“悟空”“墨子”“慧眼”等系列的科技研究卫星,2019年8月31日又成功发射一颗微重力技术实验卫星.若微重力技术实验卫星和地球同步卫星均绕地球做匀速圆周运动时,微重力技术实验卫星的轨道高度比地球同步卫星低,下列说法中正确的是( )A.该实验卫星的周期大于地球同步卫星的周期B.该实验卫星的向心加速度大于地球同步卫星的向心加速度C.该实验卫星的线速度小于地球同步卫星的线速度D.该实验卫星的角速度小于地球同步卫星的角速度答案 B解析 万有引力提供向心力,由G=m2r=m=mω2r=ma,解得:v=,T=2πMmr2(2πT)v2rGMr ,ω=,a=.实验卫星的轨道半径小于地球同步卫星的轨道半径,可知该实验r3GMGMr3GMr2卫星周期比地球同步卫星的小,向心加速度、线速度、角速度均比地球同步卫星的大,故选项B 正确,A 、C 、D 错误.3.(2019·天津卷·1)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”,如图2.已知月球的质量为M 、半径为R .探测器的质量为m ,引力常量为G ,嫦娥四号探测器围绕月球做半径为r 的匀速圆周运动时,探测器的( )图2A .周期为B .动能为4π2r 3GM GMm2RC .角速度为D .向心加速度为Gmr 3GMR 2答案 A解析 嫦娥四号探测器环绕月球做匀速圆周运动时,万有引力提供其做匀速圆周运动的向心力,由=mω2r =m =m r =ma ,解得ω=、v =、T =、a =,GMmr 2v 2r 4π2T 2GMr 3GMr 4π2r 3GM GMr 2则嫦娥四号探测器的动能为E k =m v 2=,由以上可知A 正确,B 、C 、D 错误.12GMm2r 4.(2019·北京卷·18)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星).该卫星( )A .入轨后可以位于北京正上方B .入轨后的速度大于第一宇宙速度C .发射速度大于第二宇宙速度D .若发射到近地圆轨道所需能量较少答案 D解析 同步卫星只能位于赤道正上方,A 项错误;由=知,卫星的轨道半径越大,GMmr 2m v 2r 卫星做匀速圆周运动的线速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 项错误;同步卫星的发射速度大于第一宇宙速度,小于第二宇宙速度,C 项错误;若发射到近地圆轨道,所需发射速度较小,所需能量较少,D 正确.5.(多选)(2020·江苏卷·7改编)甲、乙两颗人造卫星质量相等,均绕地球做圆周运动,甲的轨道半径是乙的2倍.下列应用公式进行的推论正确的有( )A .由v =可知,甲的速度是乙的倍gr 2B .由a =ω2r 可知,甲的向心加速度是乙的2倍C .由F =G 可知,甲的向心力是乙的Mm r 214D .由=k 可知,甲的周期是乙的2倍r 3T 22答案 CD解析 人造卫星绕地球做圆周运动时有G =m ,即v =,因此甲的速度是乙的Mmr 2v 2r GMr 倍,故A 错误;由G =ma 得a =,故甲的向心加速度是乙的,故B 错误;由22Mmr 2GMr 214F =G 知甲的向心力是乙的,故C 正确;由开普勒第三定律=k ,绕同一天体运动,k Mmr 214r 3T 2值不变,可知甲的周期是乙的2倍,故D 正确.26.(2020·全国卷Ⅲ·16)“嫦娥四号”探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍.已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g .则“嫦娥四号”绕月球做圆周运动的速率为( )A. B. C. D.RKg QP RPKgQ RQgKP RPgQK答案 D解析 在地球表面有G =mg ,“嫦娥四号”绕月球做匀速圆周运动时有M 地mR 2G =m ′,根据已知条件有R =PR 月,M 地=QM 月,联立以上各式解得v =M 月m ′(KR 月)2v 2KR 月,故选D.RPgQK 7.如图3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )图3A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大答案 A8.星球上的物体脱离星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=v 1.已知某星球的半径为r ,它表面的重力加速度为地2球表面重力加速度g 的.不计其他星球的影响.则该星球的第二宇宙速度为( )16A. B.gr 3gr 6C. D.gr 3gr 答案 A解析 该星球的第一宇宙速度满足:G =m ,在该星球表面处万有引力等于重力:G Mmr 2v 12r =m ,由以上两式得v 1=,则第二宇宙速度v 2=×=,故A 正确.Mmr 2g6gr62gr6gr39.(2019·安徽宣城市第二次模拟)有a 、b 、c 、d 四颗地球卫星,卫星a 还未发射,在地球赤道上随地球表面一起转动,卫星b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4,则有( )图4A .a 的向心加速度等于重力加速度gB .b 在相同时间内转过的弧长最长C .c 在4 h 内转过的圆心角是π6D .d 的运动周期有可能是20 h 答案 B解析 同步卫星的周期、角速度与地球自转周期、角速度相同,则知a 与c 的角速度相同,根据a =ω2r 知,c 的向心加速度大于a 的向心加速度.由G =mg ,解得:g =,卫星Mmr 2GMr 2的轨道半径越大,向心加速度越小,则c 的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,则a 的向心加速度小于重力加速度g ,故A 错误;由G =m ,解得:v =Mmr 2v 2r ,卫星的半径r 越大,速度v 越小,所以b 的速度最大,在相同时间内转过的弧长最长,GMr故B 正确;c 是地球同步卫星,周期是24 h ,则c 在4 h 内转过的圆心角是×4=,故C 2π24π3错误;由开普勒第三定律=k 可知:卫星的半径r 越大,周期T 越大,所以d 的运动周期r 3T 2大于c 的周期24 h ,即不可能是20 h ,故D 错误.10.(多选)(2019·贵州毕节市适应性监测(三))其实地月系统是双星模型,为了寻找航天器相对地球和月球不动的位置,科学家们作出了不懈努力.如图5所示,1767年欧拉推导出L 1、L 2、L 3三个位置,1772年拉格朗日又推导出L 4、L 5两个位置.现在科学家把L 1、L 2、L 3、L 4、L 5统称地月系中的拉格朗日点.中国“嫦娥四号”探测器成功登陆月球背面,并通过处于拉格朗日区的“嫦娥四号”中继卫星“鹊桥”把信息返回地球,引起众多师生对拉格朗日点的热议.下列说法正确的是( )图5A .在拉格朗日点航天器的受力不再遵循万有引力定律B .在不同的拉格朗日点航天器随地月系统运动的周期均相同C .“嫦娥四号”中继卫星“鹊桥”应选择L 1点开展工程任务实验D .“嫦娥四号”中继卫星“鹊桥”应选择L 2点开展工程任务实验答案 BD解析 在拉格朗日点的航天器仍然受万有引力,在地球和月球的万有引力作用下绕地月双星系统的中心做匀速圆周运动,A 错误;因在拉格朗日点的航天器相对地球和月球的位置不变,说明它们的角速度一样,因此周期也一样,B 正确;“嫦娥四号”探测器登陆的是月球的背面,“鹊桥”要把探测器在月球背面采集的信息传回地球,L 2在月球的背面,因此应选在L 2点开展工程任务实验,所以C 错误,D 正确.11.经长期观测发现,A 行星运行轨道的半径近似为R 0,周期为T 0,其实际运行的轨道与圆轨道存在一些偏离,且周期性地每隔t 0(t 0>T 0)发生一次最大的偏离,如图6所示,天文学家认为形成这种现象的原因可能是A 行星外侧还存在着一颗未知行星B ,已知行星B 与行星A 同向转动,则行星B 的运行轨道(可认为是圆轨道)半径近似为( )图6A .R =R 0B .R =R 03t 02(t 0-T 0)2t 0t 0-T 0C .R =R 0D .R =R 0t 03(t 0-T 0)3t 0t 0-T 0答案 A解析 A 行星运行的轨道发生最大偏离,一定是B 对A 的引力引起的,且B 行星在此时刻对A 有最大的引力,故此时A 、B 行星与恒星在同一直线上且位于恒星的同一侧,设B 行星的运行周期为T ,运行的轨道半径为R ,根据题意有t 0-t 0=2π,所以T =,由开2πT 02πT t 0T 0t 0-T 0普勒第三定律可得=,联立解得R =R 0,故A 正确,B 、C 、D 错误.R 03T 02R 3T 23t 02(t 0-T 0)212.(2019·河南郑州市第一次模拟)“玉兔号”月球车与月球表面的第一次接触实现了中国人“奔月”的伟大梦想.“玉兔号”月球车在月球表面做了一个自由下落实验,测得物体从静止自由下落h 高度的时间为t ,已知月球半径为R ,自转周期为T ,引力常量为G .求:(1)月球表面重力加速度的大小;(2)月球的质量和月球的第一宇宙速度的大小;(3)月球同步卫星离月球表面高度.答案 (1) (2) (3)-R2ht 22R 2hGt 22hRt 23T 2R 2h2π2t 2解析 (1)由自由落体运动规律有:h =gt 2,所以有:g =.122ht 2(2)月球的第一宇宙速度为近月卫星的运行速度,根据重力提供向心力mg =m ,v 12R 所以:v 1==gR 2hRt 2在月球表面的物体受到的重力等于万有引力,则有:mg =GMm R 2所以M =.2R 2hGt 2(3)月球同步卫星绕月球做匀速圆周运动,根据万有引力提供向心力有:=m (R +h ′)GMm(R +h ′)24π2T 2解得h ′=-R .3T 2R 2h2π2t 213.(多选)(2019·全国卷Ⅰ·21)在星球M 上将一轻弹簧竖直固定在水平桌面上,把物体P 轻放在弹簧上端,P 由静止向下运动,物体的加速度a 与弹簧的压缩量x 间的关系如图7中实线所示.在另一星球N上用完全相同的弹簧,改用物体Q 完成同样的过程,其a -x 关系如图中虚线所示.假设两星球均为质量均匀分布的球体.已知星球M 的半径是星球N 的3倍,则( )图7A .M 与N 的密度相等B .Q 的质量是P 的3倍C .Q 下落过程中的最大动能是P 的4倍D .Q 下落过程中弹簧的最大压缩量是P 的4倍答案 AC解析 设物体P 、Q 的质量分别为m P 、m Q ;星球M 、N 的质量分别为M 1、M 2,半径分别为R 1、R 2,密度分别为ρ1、ρ2;M 、N 表面的重力加速度分别为g 1、g 2.在星球M 上,弹簧压缩量为0时有m P g 1=3m P a 0,所以g 1=3a 0=G ,密度ρ1==;在星球N 上,M 1R 12M 143πR 139a 04πGR 1弹簧压缩量为0时有m Q g 2=m Q a 0,所以g 2=a 0=G ,密度ρ2==;因为M 2R 22M 243πR 233a 04πGR 2R 1=3R 2,所以ρ1=ρ2,选项A 正确;当物体的加速度为0时有m P g 1=3m P a 0=kx 0,m Q g 2=m Q a 0=2kx 0,解得m Q =6m P ,选项B 错误;根据a -x 图线与x轴围成图形的面积和质量的乘积表示合外力做的功可知,E km P =m P a 0x 0,E km Q =m Q a 0x 0,所32以E km Q =4E km P ,选项C 正确;根据运动的对称性可知,Q 下落时弹簧的最大压缩量为4x 0,P 下落时弹簧的最大压缩量为2x 0,选项D 错误.。
(教学指导) 宇宙速度与航天Word版含解析
第四节宇宙速度与航天学习目标:1.[物理观念]知道什么是第一宇宙速度、第二宇宙速度和第三宇宙速度。
2.[科学思维]会计算人造地球卫星的第一宇宙速度,理解卫星的运行规律及同步卫星的特点。
3.[科学态度与责任]了解人类遨游太空的历史。
一、宇宙速度1.第一宇宙速度(1)意义:航天器在地面附近绕地球做匀速圆周运动的速度,也叫环绕速度。
(2)数值单位:7.9 km/s。
2.第二宇宙速度(1)意义:航天器挣脱地球的引力,不再绕地球运行,而是绕太阳运动或飞向其他行星的发射速度,又叫逃逸速度。
(2)数值单位:11.2km/s。
3.第三宇宙速度(1)意义:航天器挣脱太阳的引力,飞出太阳系的发射速度。
(2)数值单位:16.7km/s。
二、人造卫星1.意义:人造卫星是指环绕地球在宇宙空间轨道上运行的无人航天器。
2.同步卫星是指与地球相对静止的卫星,它的轨道平面与赤道平面重合,并且位于赤道上空一定的高度上。
三、遨游太空人类航天之旅如下表所示时间国家活动内容1957年10月苏联发射第一颗人造地球卫星1961年4月苏联第一艘载人宇宙飞船“东方1号”发射成功,苏联宇航员加加林第一次实现了人类遨游太空的梦想1969年7月美国“阿波罗11号”登上月球,将两名宇航员送上了月球,实现了人类在月球上漫步的梦想(1)在地面上发射人造卫星的最小速度是7.9 km/s 。
(√)(2)如果在地面发射卫星的速度大于11.2 km/s ,卫星会永远离开地球。
(√) (3)要发射一颗人造月球卫星,在地面的发射速度应大于16.7 km/s 。
(×) (4)使火箭向前射出的力是它利用火药燃烧向后急速喷出的气体产生的作用力。
(√)2.某位同学设想了人造地球卫星轨道(卫星发动机关闭),其中不可能的是( )A B C DD [人造地球卫星靠万有引力提供向心力,做匀速圆周运动,万有引力的方向指向地心,所以圆周运动的圆心是地心。
故A 、B 、C 正确,D 错误。
第二宇宙速度计算公式
《第二宇宙速度计算公式》是由美国物理学家威廉·梅登提出的一种用于计算物体运动的速度的重要公式。
它是探索宇宙中物体运动轨迹的科学研究基础,也是宇宙航行技术的基础。
第一段:《第二宇宙速度计算公式》是美国物理学家威廉·梅登提出的一种用于计算物体运动的速度的重要公式,它是探索宇宙中物体运动轨迹的科学研究基础,也是宇宙航行技术的基础。
第二段:第二宇宙速度计算公式由以下公式构成:V = √2GM/r,其中G为万有引力常数,M为物体的质量,r为物体到宇宙中心的距离。
第三段:根据这个公式,物体的速度与它到宇宙中心的距离成反比,而它的质量对速度的影响则是直接比例的。
因此,通过改变物体的质量和位置,可以计算出物体的速度和轨迹。
第四段:第二宇宙速度计算公式可以用于多种情况,如地心引力和太阳系内双星运动。
它也可以用于计算太阳系外行星的轨道,以及探索太阳系外宇宙尘埃等宇宙物质运动轨迹的研究。
第五段:由于第二宇宙速度计算公式的重要性,它在宇宙航行技术的发展中发挥了重要作用。
它是研究宇宙物理现象的重要基础,也是宇宙航行技术的基础。
5-4计算环绕天体的三度一周期
第四讲 计算环绕天体的“三度一周期”一、计算卫星(环绕天体)的“三度一周期”由万有引力提供卫星做匀速圆周运动的向心力得:22222()n GMm v m m r m r ma r r Tπω==== 解得: v= , ω= , T= , a n = . 结合2GM g R =得: v= , ω= , T= , a n = . 1.四个参量都是r 的函数,r 一定,四个参量大小不变。
2.四个参量中“三度”(线速度v 、角速度ω、加速度a )随着r 的增加而减小,只有T 随着r 的增加而增加。
3.任何地球卫星的环绕速度不大于7.9km/s ,运动周期不小于84.4min 。
4.上述公式适合卫星(环绕天体)在圆轨道上运行。
1、已知引力常量G .月球中心到地球中心的距离R 和月球绕地球运行的周期T 。
仅利用这三个数据,可以估算出的物理量有( )A .月球的质量B .地球的密度C .地球的半径D .月球绕地球运行速度的大小2、如图所示,有三颗绕地球作匀速圆周运动的人造卫星a 、b 、c ,它们的轨道半径之间的关系是r a =r b <r c ,它们的质量关系是m c =m b <m a .则下列说法中正确的是( )A.它们的线速度大小关系是v a =v b <v cB.它们所受到的向心力大小关系是F c <F b <F aC.它们的周期大小关系是T a <T b <T cD.它们的角速度大小关系是ωc >ωa =ωb3、假如一颗做匀速圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做匀速圆周运动,则A .根据公式v=ωr,可知卫星运动的线速度将增大到原来的2倍B .根据公式F=mv 2/r 可知卫星所需的向心力将减少到原来的1/2C .根据公式F=GMm/r 2可知地球提供的向心力将减少到原来的1/4D .根据上述(B )和(C )给出的公式,可右卫星运动的线速度将减少到原来的2/24、两颗行星A 和B 各有一颗卫星a 和b ,卫星轨道接近各自行星的表面,如果两行星的质量之比为M A /M B =P ,两行星半径之比为R A /R B =q ,则两个卫星的周期之比T a /T b 为( )A .PqB .p qC .p q P /D .P q q /5、设地球半径为R ,地球表面的重力加速度为g ,则在距离地面高度H =R 的地方,下列说法正确的是( )A .质量为m 的物体在该处的重力大小为½mgB .通过该处绕地球做匀速圆周运动的人造卫星的运动的角速度为2Rg C .通过该处绕地球做匀速圆周运动的人造卫星的运动的线速度为2gR D .通过该处绕地球做匀速圆周运动的人造卫星的运动的周期为2πg 2R6、(卫星的追及相遇问题)(2006江苏第14题)如右图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内,离地面高度为 h.已知地球半径为 R,地球自转角速度为ω0,地球表面的重力加速度为 g,O 为地球中心.(1)求卫星B 的运行周期.(2)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,他们再一次相距最近?1、(2012安徽卷).我国发射的“天宫一号”和“神州八号”在对接前,“天宫一号”的运行轨道高度为350km,“神州八号”的运行轨道高度为343km.它们的运行轨道均视为圆周,则 ( )A .“天宫一号”比“神州八号”速度大B .“天宫一号”比“神州八号”周期长C .“天宫一号”比“神州八号”角速度大D .“天宫一号”比“神州八号”加速度大2、(2012广东卷).如图6所示,飞船从轨道1变轨至轨道2。
三个宇宙速度的推导
第二宇宙速度是航天器脱离地球引力的关键,只有达到或超过 这个速度,航天器才能摆脱地球的束缚,飞向太阳系外。
第三宇宙速度
定义
第三宇宙速度是指航天器摆 脱太阳系引力束缚所需的最 小速度,也被称为逃逸速度
。
计算公式
第三宇宙速度的计算公式为 v3=√(2GM/r),其中 G 是万 有引力常数,M 是太阳质量, r 是航天器与太阳中心的距离。
地球观测卫星
第一宇宙速度有助于地球观测卫 星获取高精度的地理信息和气象 数据,因为低轨道卫星具有更高 的分辨率和更快的图像更新频率。
04
三个宇宙速度的物理意 义
第二宇宙速度的物理意义
1 2
第二宇宙速度(逃逸速度)
指航天器能够完全摆脱地球引力束缚,飞离地球 所需的最小初始速度。
计算公式
第二宇宙速度 = sqrt(2 * 地球质量 * 地球半径 * 重力加速度常数)
3
物理意义
第二宇宙速度是航天器离开地球引力场,进入更 广阔宇宙空间的重要条件。
第三宇宙速度的物理意义
01
第三宇宙速度(逃 逸速度)
指航天器能够完全摆脱太阳系引 力束缚,飞出太阳系所需的最小 初始速度。
计算公式
02
03
物理意义
第三宇宙速度 = sqrt(2 * 太阳质 量 * 地球公转半径 * 重力加速度 常数)
第一宇宙速度推导
总结词
第一宇宙速度是物体绕地球做匀速圆周运动 所需的最小速度,其推导基于牛顿第二定律 、万有引力定律和向心力公式。
详细描述
第一宇宙速度,也称为环绕速度,是物体绕 地球做匀速圆周运动所需的最小速度。根据 牛顿第二定律、万有引力定律和向心力公式, 当物体以一定的初速度v0在平行于地心方向 上持续加速时,其受到的地球引力将提供物 体做匀速圆周运动的向心力,直到达到环绕 速度v环绕时,物体将保持匀速圆周运动。环 绕速度v环绕可以通过以下公式计算:v环绕 = sqrt(GM/r),其中G为万有引力常数,M为
三种宇宙速度 物理探究性学习
——课题: 三种宇宙速度的通俗理解一、课题名称:三种宇宙速度的通俗理解活动报告组长: 杨帆课题组成员:课题所属学科: 物理班级:高一十二班课题背景:随着物理学习的不断深入,我们对物理方面有了进一步的发现, 而对于天体运动的好奇从小陪盼着我们,看看天空就可以知道,太阳的周日运动,恒星的周日运动,四季星空的变化,月相的周期变化。
而这些已是儿时的记忆了,现在我们讨论更多的话题是“神舟”系列飞船的神武霸气,天体外表的好奇,宇宙尽头的追溯和如何飞出地球飞出太阳系!任务分工:杨帆责活动记录、资料保管、陈述报告。
负责上网及图书管查资料、实验、整理。
负责各部分协调、做好相关记录。
二、探究性学习活动报告内容1、什么是宇宙速度?宇宙速度是物体从地球出发,在天体的重力场中运动,四个较有代表性的初始速度的统称。
航天器按其任务的不同,需要达到这四个宇宙速度的其中一个。
人类航天活动,并不单单是一味地要逃离地球。
特别是应用航天器,需要绕地球飞行,即让航天器作圆周运动。
众所周知,必须始终有一个力作用在航天器上。
其大小等于该航天器运行线速度的平方乘以其质量再除以公转半径,即F=mv^2/R.在这里,正好可以利用地球的引力。
因为地球对物体的引力,正好与物体作曲线运动的离心力方向相反。
2、什么是第一宇宙速度?英文名称:first cosmic velocity定义:地球表面处的环绕速度,其值约为7.9km/s。
应用学科:天文学(一级学科);天体力学(二级学科)航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。
第一宇宙速度两个别称:航天器最小发射速度、航天器最大运行速度。
在一些问题中说,当某航天器以第一宇宙速度运行,则说明该航天器是沿着地球表面运行的。
按照力学理论可以计算出V1=7.9公里/秒。
物体在地面附近绕地球做匀速圆周运动的速度叫做第一宇宙速度。
航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。
第一宇宙速度两个别称:航天器最小发射速度、航天器最大运行速度。
航天与星体问题专题(有答案)
航天与星体问题专题一.要点归纳1.天体运动的两个基本规律 (1)万有引力提供向心力行星卫星模型:F =G Mm r 2=m v 2r =mrω2=m 4π2T2r双星模型:G m 1m 2L2=m 1ω2r 1=m 2ω2(L -r 1)其中,G =6.67×10-11 N·m 2/kg 2 2.万有引力等于重力 G MmR 2=mg (物体在地球表面且忽略地球自转效应); G Mm (R +h )2=mg ′(在离地面高h 处,忽略地球自转效应完全相等,g ′为该处的重力加速度)2.人造卫星的加速度、线速度、角速度、周期跟轨道半径的关系F 万=G Mmr2=F 向=⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1rmω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3.3.宇宙速度(1)第一宇宙速度(环绕速度):v =gR =7.9_km/s ,是卫星发射的最小速度,也是卫星环绕地球运行的最大速度.(2)第二宇宙速度:v =11.2 km/s (3)第三宇宙速度:v =16.7 km/s注意:①三个宇宙速度的大小都是取地球中心为参照系; ②以上数据是地球上的宇宙速度,其他星球上都有各自的宇宙速度,计算方法与地球相同.4.关于地球同步卫星地球同步卫星是指与地球自转同步的卫星,它相对于地球表面是静止的,广泛应用于通信领域,又叫做同步通信卫星.其特点可概括为六个“一定”:(1)位置一定(必须位于地球赤道的上空)地球同步卫星绕地球旋转的轨道平面一定与地球的赤道面重合.假设同步卫星的轨道平面与赤道平面不重合,而与某一纬线所在的平面重合,如图3-4所示.同步卫星由于受到地球指向地心的万有引力F 的作用,绕地轴做圆周运动,F 的一个分力F 1提供向心力,而另一个分力F 2将使同步卫星不断地移向赤道面,最终直至与赤道面重合为止(此时万有引力F 全部提供向心力).图3-4(2)周期(T )一定①同步卫星的运行方向与地球自转的方向一致.②同步卫星的运转周期与地球的自转周期相同,即T =24 h . (3)角速度(ω)一定由公式ω=φt 知,地球同步卫星的角速度ω=2πT,因为T 恒定,π为常数,故ω也一定.(4)向心加速度(a )的大小一定地球同步卫星的向心加速度为a ,则由牛顿第二定律和万有引力定律得: G Mm (R +h )2=ma ,a =GM (R +h )2. (5)距离地球表面的高度(h )一定由于万有引力提供向心力,则在ω一定的条件下,同步卫星的高度不具有任意性,而是唯一确定的.根据G Mm (R +h )2=mω2(R +h )得: h =3GM ω2-R =3GM(2πT)2-R ≈36000 km . (6)环绕速率(v )一定在轨道半径一定的条件下,同步卫星的环绕速率也一定,且为v =GMr=R 2gR +h=3.08 km/s .因此,所有同步卫星的线速度大小、角速度大小及周期、半径都相等. 由此可知要发射同步卫星必须同时满足三个条件: ①卫星运行周期和地球自转周期相同; ②卫星的运行轨道在地球的赤道平面内; ③卫星距地面高度有确定值.二、天体质量、密度及表面重力加速度的计算1.星体表面的重力加速度:g =G MR22.天体质量常用的计算公式:M =r v 2G =4π2r 3GT2●例1 假设某个国家发射了一颗绕火星做圆周运动的卫星.已知该卫星贴着火星表面运动,把火星视为均匀球体,如果知道该卫星的运行周期为T ,引力常量为G ,那么( )A .可以计算火星的质量B .可以计算火星表面的引力加速度C .可以计算火星的密度D .可以计算火星的半径【解析】卫星绕火星做圆周运动的向心力由万有引力提供,则有:G Mm r 2=m 4π2T2r而火星的质量M =ρ43πr 3联立解得:火星的密度ρ=3πGT2由M =4π2r 3GT 2,g =G M r 2=4π2T2r 知,不能确定火星的质量、半径和其的表面引力加速度,所以C 正确.[答案] C 【点评】历年的高考中都常见到关于星体质量(或密度)、重力加速度的计算试题,如2009年高考全国理综卷Ⅰ第19题,江苏物理卷第3题,2008年高考上海物理卷1(A)等. ★同类拓展1 我国探月的嫦娥工程已启动,在不久的将来,我国宇航员将登上月球.假如宇航员在月球上测得摆长为l 的单摆做小振幅振动的周期为T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为( )A .3πGT 2B .3πl GrT 2C .16πl 3GrT 2D .3πl 16GrT 2 【解析】设月球表面附近的重力加速度为g 0.有:T =2πlg 0又由g 0=G M r 2,ρ=3M4πr 3可解得ρ=3πlGrT 2.[答案] B三、行星、卫星的动力学问题不同轨道的行星(卫星)的速度、周期、角速度的关系在“要点归纳”中已有总结,关于这类问题还需特别注意分析清楚卫星的变轨过程及变轨前后的速度、周期及向心加速度的关系.●例2 2008年9月25日到28日,我国成功发射了神舟七号载人航天飞行并实现了航天员首次出舱.飞船先沿椭圆轨道飞行,后在远地点343千米处点火加速,由椭圆轨道变成高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟.下列判断正确的是[2009年高考·山东理综卷]( )A .飞船变轨前后的机械能相等B .飞船在圆轨道上时航天员出舱前后都处于失重状态C .飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D .飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度 【解析】飞船点火变轨,反冲力对飞船做正功,飞船的机械能不守恒,A 错误.飞船在圆形轨道上绕行时,航天员(包括飞船及其他物品)受到的万有引力恰好提供所需的向心力,处于完全失重状态,B 正确.神舟七号的运行高度远低于同步卫星,由ω2∝1r3知,C 正确.由牛顿第二定律a =F 引m =G Mr2知,变轨前后过同一点的加速度相等.[答案] BC【点评】对于这类卫星变轨的问题,特别要注意比较加速度时不能根据运动学公式a =v 2r =ω2r ,因为变轨前后卫星在同一点的速度、轨道半径均变化,一般要通过决定式a =F m 来比较.★同类拓展1 为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的嫦娥一号卫星绕月球经过一年多的运行,完成了既定任务,于2009年3月1日16日13分成功撞月.图示为嫦娥一号卫星撞月的模拟图,卫星在控制点1开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R ,周期为T ,引力常量为G .根据题中信息( )A .可以求出月球的质量B .可以求出月球对嫦娥一号卫星的引力C .可知嫦娥一号卫星在控制点1处应减速D .可知嫦娥一号在地面的发射速度大于11.2 km/s【解析】由G Mm R 2=m 4π2T 2R 可得月球的质量M =4π2R 3GT 2,A 正确.由于不知嫦娥一号的质量,无法求得引力,B 错误.卫星在控制点1开始做近月运动,知在该点万有引力要大于所需的向心力,故知在控制点1应减速,C 正确.嫦娥一号进入绕月轨道后,同时还与月球一起绕地球运行,并未脱离地球,故知发射速度小于11.2 km/s ,D 错误.[答案] AC四、星体、航天问题中涉及的一些功能关系1.质量相同的绕地做圆周运动的卫星,在越高的轨道动能E k =12m v 2=G Mm2r越小,引力势能越大,总机械能越大.2.若假设距某星球无穷远的引力势能为零,则距它r 处卫星的引力势能E p =-G Mmr(不需推导和记忆).在星球表面处发射物体能逃逸的初动能为E k ≥|E p |=G MmR.●例3 2008年12月,天文学家们通过观测的数据确认了银河系中央的黑洞“人马座A *”的质量与太阳质量的倍数关系.研究发现,有一星体S2绕人马座A *做椭圆运动,其轨道半长轴为9.50×102天文单位(地球公转轨道的半径为一个天文单位),人马座A *就处在该椭圆的一个焦点上.观测得到S2星的运动周期为15.2年.(1)若将S2星的运行轨道视为半径r =9.50×102天文单位的圆轨道,试估算人马座A *的质量M A 是太阳质量M S 的多少倍.(结果保留一位有效数字)(2)黑洞的第二宇宙速度极大,处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚.由于引力的作用,黑洞表面处质量为m 的粒子具有的势能为E p =-G MmR(设粒子在离黑洞无限远处的势能为零),式中M 、R 分别表示黑洞的质量和半径.已知引力常量G =6.7×10-11 N·m 2 /kg 2,光速c =3.0×108 m/s ,太阳质量M S =2.0×1030 kg ,太阳半径R S =7.0×108 m ,不考虑相对论效应,利用上问结果,在经典力学范围内求人马座A *的半径R A 与太阳半径R S 之比应小于多少.(结果按四舍五入保留整数)[2009年高考·天津理综卷] 【解析】(1)S2星绕人马座A *做圆周运动的向心力由人马座A *对S2星的万有引力提供,设S2星的质量为m S2,角速度为ω,周期为T ,则有:G M A m S2r 2=m S2ω2rω=2πT设地球质量为m E ,公转轨道半径为r E ,周期为T E ,则: G M S m E r E 2=m E (2πT E)2r E 综合上述三式得:M A M S =(r r E )3(T ET)2上式中T E =1年,r E =1天文单位代入数据可得:M AM S=4×106.(2)引力对粒子作用不到的地方即为无限远处,此时粒子的势能为零.“处于黑洞表面的粒子即使以光速运动,其具有的动能也不足以克服黑洞对它的引力束缚”,说明了黑洞表面处以光速运动的粒子在远离黑洞的过程中克服引力做功,粒子在到达无限远之前,其动能便减小为零,此时势能仍为负值,则其能量总和小于零.根据能量守恒定律可知,粒子在黑洞表面处的能量也小于零,则有:12mc 2-G Mm R<0 依题意可知:R =R A ,M =M A可得:R A <2GM Ac2代入数据得:R A <1.2×1010 m 故R AR S<17. [答案] (1)4×106 (2)R AR S<17【点评】①“黑洞”问题在高考中时有出现,关键要理解好其“不能逃逸”的动能定理方程:12mc 2-G Mm R<0.②E p =-G MmR是假定离星球无穷远的物体与星球共有的引力势能为零时,物体在其他位置(与星球共有)的引力势能,同样有引力做的功等于引力势能的减少.★同类拓展2 2005年10月12日,神舟六号飞船顺利升空后,在离地面340 km 的圆轨道上运行了73圈.运行中需要多次进行轨道维持.所谓“轨道维持”就是通过控制飞船上发动机的点火时间、推力的大小和方向,使飞船能保持在预定轨道上稳定运行.如果不进行轨道维持,由于飞船在轨道上运动受摩擦阻力的作用,轨道高度会逐渐缓慢降低,在这种情况下,下列说法正确的是( )A .飞船受到的万有引力逐渐增大、线速度逐渐减小B .飞船的向心加速度逐渐增大、周期逐渐减小、线速度和角速度都逐渐增大C .飞船的动能、重力势能和机械能都逐渐减小D .重力势能逐渐减小,动能逐渐增大,机械能逐渐减小【解析】飞船的轨道高度缓慢降低,由万有引力定律知其受到的万有引力逐渐增大,向心加速度逐渐增大,又由于轨道变化的缓慢性,即在很短时间可当做匀速圆周运动,由G Mmr2=m v 2r =mω2r =m 4π2T2r 知,其线速度逐渐增大,动能增大,由此可知飞船动能逐渐增大,重力势能逐渐减小,由空气阻力做负功知机械能逐渐减少.[答案] BD五、双星问题●例4 天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )[2008年高考·宁夏理综卷]【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2.根据题意有:ω1=ω2 r 1+r 2=r根据万有引力定律和牛顿定律,有:G m 1m 2r 2=m 1r 1ω12 G m 1m 2r 2=m 2r 2ω22 联立解得:r 1=m 2rm 1+m 2根据角速度与周期的关系知ω1=ω2=2πT联立解得:m 1+m 2=4π2r3T 2G.[答案] 4π2r3T 2G【点评】在双星系统中,当其中一星体质量远远大于另一星体时,它们的共同圆心就在大质量星球内部且趋近于球心.1.天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运行的周期约为1.4小时,引力常量G =6.67×10-11N·m 2/kg 2,由此估算该行星的平均密度约为[2009年高考·全国理综卷Ⅰ]( )A .1.8×103 kg/m 3B .5.6×103 kg/m 3C .1.1×104 kg/m 3D .2.9×104 kg/m 3【解析】由G Mm R 2=m 4π2T 2R ,ρ=3M 4πR 3可得,地球密度ρ=3πGT 2,再由质量和体积关系得该行星的密度ρ′=2.9×104 kg/m 3.[答案] D练习1.2009年2月11日,俄罗斯的“宇宙-2251”卫星和美国的“铱-33”卫星在西伯利亚上空约805 km 处发生碰撞.这是历史上首次发生的完整在轨卫星碰撞事件.碰撞过程中产生的大量碎片可能会影响太空环境.假定有甲、乙两块碎片,绕地球运行的轨道都是圆,甲的运行速率比乙的大,则下列说法中正确的是[2009年高考·安徽理综卷Ⅰ]( )A .甲的运行周期一定比乙的长B .甲距地面的高度一定比乙的高C .甲的向心力一定比乙的小D .甲的加速度一定比乙的大【解析】由v =GMr可知,甲碎片的速率大,轨道半径小,故B 错误;由公式T =2πR 3GM可知,甲的周期小,故A 错误;由于未知两碎片的质量,无法判断向心力的大小,故C 错误;碎片的加速度是指引力加速度,由G Mm R 2=ma ,可得a =GMR2,甲的加速度比乙大,D 正确.[答案] D2.1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km 的高空,使得人类对宇宙中星体的观测与研究有了极大的进展.假设哈勃望远镜沿圆轨道绕地球运行.已知地球半径为6.4×106 m ,利用地球同步卫星与地球表面的距离为3.6×107m 这一事实可得到哈勃望远镜绕地球运行的周期.以下数据中,最接近其运行周期的是[2008年高考·四川理综卷]( )A .0.6小时B .1.6小时C .4.0小时D .24小时【解析】由开普勒行星运动定律可知,R 3T 2=恒量,所以(r +h 1)3t 12=(r +h 2)3t 22,其中r 为地球的半径,h 1,t 1,h 2,t 2分别表示望远镜到地表的距离、望远镜的周期、同步卫星距地表的距离、同步卫星的周期(24 h),代入解得:t 1=1.6 h .[答案] B【点评】高考对星体航天问题的考查以圆周运动的动力学方程为主,具体常涉及求密度值、同步卫星的参量、变轨的能量变化等.在具体解题时要注意运用好几个常用的代换.3.我国发射的嫦娥一号探月卫星沿近似于圆形的轨道绕月飞行.为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化,卫星将获得的信息持续用微波信号发回地球.设地球和月球的质量分别为M 和m ,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T .假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间.(用M 、m 、R 、R 1、r 、r 1和T 表示,忽略月球绕地球转动对遮挡时间的影响).[2008年高考·全国理综卷Ⅱ]【解析】如图所示,设O 和O ′分别表示地球和月球的中心.在卫星轨道平面上,A 是地月连心线OO ′与地月球表面的公切线ACD 的交点,D 、C 和B 分别是该公切线与地球表面、月球表面和卫星轨道的交点.过A 点在另一侧作地月球面的公切线,交卫星轨道于E 点.卫星在圆弧BE 上运动时发出的信号被遮挡.设探月卫星的质量为m 0,引力常量为G ,根据万有引力定律有: G Mm r 2=m (2πT )2r G mm 0r 12=m 0(2πT 1)2r 1(其中T 1表示探月卫星绕月球转动的周期) 由以上两式可得:(T 1T )2=M m (r 1r)3设卫星的微波信号被遮挡的时间为t ,则由于卫星绕月球做匀速圆周运动,有: t T 1=α-βπ,其中α=∠CO ′A ,β=∠CO ′B 由几何关系得:r cos α=R -R 1,r 1cos β=R 1联立解得:t =T πMr 13mr 3(arccos R -R 1r -arccos R 1r 1). [答案] T πMr 13mr 3(arccos R -R 1r -arccos R 1r 1) 【点评】航体星体问题有时在高考中也以计算题出现,解答的关键仍是做圆周运动的动力学方程.另外,还需要同学们具有丰富的想象力,描绘情境图、难图化易、化整为零等能力.六.能力演练4.2005年12月11日,有着“送子女神”之称的小行星“婚神”(Juno)冲日,在此后十多天的时间里,国内外天文爱好者凭借双筒望远镜可观测到它的“倩影”.在太阳系中除了八大行星以外,还有成千上万颗肉眼看不见的小天体,沿着椭圆轨道不停地围绕太阳公转.这些小天体就是太阳系中的小行星.冲日是观测小行星难得的机遇.此时,小行星、太阳、地球几乎成一条直线,且和地球位于太阳的同一侧.“婚神”星冲日的虚拟图如图所示,则( )A .2005年12月11日,“婚神”星的线速度大于地球的线速度B .2005年12月11日,“婚神”星的加速度小于地球的加速度C .2006年12月11日,必将发生下一次“婚神”星冲日D .下一次“婚神”星冲日必将在2006年12月11日之后的某天发生【解析】由G Mm r 2=m v 2r 得v 2∝1r ,“婚神”的线速度小于地球的线速度,由a =F m =G Mr2知,“婚神”的加速度小于地球的加速度,地球的公转周期为一年,“婚神”的公转周期大于一年,C 错误,D 正确.[答案] BD5.2007年11月5日,嫦娥一号探月卫星沿地月转移轨道到达月球附近,在距月球表面200 km 的P 点进行第一次“刹车制动”后被月球俘获,进入椭圆轨道 Ⅰ 绕月飞行,如图所示.之后,卫星在P 点经过几次“刹车制动”,最终在距月球表面200 km 、周期127 min 的圆形轨道 Ⅲ 上绕月球做匀速圆周运动.若已知月球的半径R 月和引力常量G ,忽略地球对嫦娥一号的引力作用,则由上述条件( )A .可估算月球的质量B .可估算月球表面附近的重力加速度C .可知卫星沿轨道Ⅰ经过P 点的速度小于沿轨道Ⅲ经过P 点的速度D .可知卫星沿轨道Ⅰ经过P 点的加速度大于沿轨道Ⅱ经过P 点的加速度【解析】由G Mm (R 月+h )2=m (R 月+h )4π2T 2可得:月球的质量M =4π2(R 月+h )3GT 2,选项A 正确.月球表面附近的重力加速度为:g 月=G M R 月2=4π2(R 月+h )3R 月2T 2,选项B 正确.卫星沿轨道Ⅰ经过P 点时有: m v P Ⅰ2R 月+h >G Mm (R 月+h )2沿轨道Ⅲ经过P 点时:m v P Ⅲ2(R 月+h )=G Mm(R 月+h )2可见v P Ⅲ<v P Ⅰ,选项C 错误.加速度a P =F m =G M(R 月+h )2,与轨迹无关,选项D 错误.[答案] AB6.假设太阳系中天体的密度不变,天体的直径和天体之间的距离都缩小到原来的 12,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( )A .地球绕太阳公转的向心力变为缩小前的 12B .地球绕太阳公转的向心力变为缩小前的 116C .地球绕太阳公转的周期与缩小前的相同D .地球绕太阳公转的周期变为缩小前的 12【解析】天体的质量M =ρ43πR 3,各天体质量变为M ′=18M ,变化后的向心力F ′=G 164Mm (r 2)2=116F ,B 正确.又由G Mm r 2=m 4π2T 2r ,得T ′=T .[答案] BC 7.假设有一载人宇宙飞船在距地面高度为4200 km 的赤道上空绕地球做匀速圆周运动,地球半径约为6400 km ,地球同步卫星距地面高为36000 km ,宇宙飞船和一地球同步卫星绕地球同向运动,每当两者相距最近时.宇宙飞船就向同步卫星发射信号,然后再由同步卫星将信号发送到地面接收站,某时刻两者相距最远,从此刻开始,在一昼夜的时间内,接收站共接收到信号的次数为( )A .4次B .6次C .7次D .8次 【解析】设宇宙飞船的周期为T 有:T 2242=(6400+42006400+36000)3 解得:T =3 h设两者由相隔最远至第一次相隔最近的时间为t 1,有: (2πT -2πT 0)·t 1=π 解得t 1=127h再设两者相邻两次相距最近的时间间隔为t 2,有: (2πT -2πT 0)·t 2=2π 解得:t 2=247 h由n =24-t 1t 2=6.5(次)知,接收站接收信号的次数为7次.[答案] C8.图示为全球定位系统(GPS).有24颗卫星分布在绕地球的6个轨道上运行,它们距地面的高度都为2万千米.已知地球同步卫星离地面的高度为3.6万千米,地球半径约为6400 km ,则全球定位系统的这些卫星的运行速度约为()A .3.1 km/sB .3.9 km/sC .7.9 km/sD .11.2 km/s 【解析】同步卫星的速度v 1=2πT r =3.08 km/s .又由v 2∝1r,得定位系统的卫星的运行速度v 2=3.9 km/s .[答案] B9.均匀分布在地球赤道平面上空的三颗同步通信卫星够实现除地球南北极等少数地区外的全球通信.已知地球的半径为R ,地球表面的重力加速度为g ,地球的自转周期为T .下列关于三颗同步卫星中,任意两颗卫星间距离s 的表达式中,正确的是( )A .3RB .23RC .334π2gR 2T 2 D .33gR 2T 24π2【解析】设同步卫星的轨道半径为r ,则由万有引力提供向心力可得:G Mm r 2=m 4π2T 2r解得:r =3gR 2T 24π2由题意知,三颗同步卫星对称地分布在半径为r 的圆周上,故s =2r cos 30°=33gR 2T 24π2,选项D 正确.[答案] D10.发射通信卫星的常用方法是,先用火箭将卫星送入一近地椭圆轨道运行;然后再适时开动星载火箭,将其送上与地球自转同步运行的轨道.则( )A .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能增大B .变轨后瞬间与变轨前瞬间相比,卫星的机械能增大,动能减小C .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要大D .变轨后卫星运行速度一定比变轨前卫星在椭圆轨道上运行时的最大速度要小【解析】火箭是在椭圆轨道的远地点加速进入同步运行轨道的,故动能增大,机械能增大,A 正确.设卫星在同步轨道上的速度为v 1,在椭圆轨道的近地点的速度为v 2,再设椭圆轨道近地点所在的圆形轨道的卫星的速度为v 3.由G Mmr 2=m v 2r,知v 3>v 1;又由向心力与万有引力的关系知v 2>v 3.故v 1<v 2.选项C 错误,D 正确.[答案] AD11.(10分)火星和地球绕太阳的运动可以近似看做是同一平面内同方向的匀速圆周运动.已知火星公转轨道半径大约是地球公转轨道半径的32.从火星、地球于某一次处于距离最近的位置开始计时,试估算它们再次处于距离最近的位置至少需多少地球年.[计算结果保留两位有效数字,⎝⎛⎭⎫3232=1.85]【解析】由G Mm r 2=m 4π2T2r 可知,行星环绕太阳运行的周期与行星到太阳的距离的二分之三次方成正比,即T ∝r 32所以地球与火星绕太阳运行的周期之比为: T 火T 地=(r 火r 地)32=(32)32=1.85 (3分) 设从上一次火星、地球处于距离最近的位置到再一次处于距离最近的位置,火星公转的圆心角为θ,则地球公转的圆心角必为2π+θ,它们公转的圆心角与它们运行的周期之间应有此关系:θ=2πt T 火,θ+2π=2πtT 地 (3分)得:2π+2πt T 火=2πtT 地(2分)最后得:t =T 火T 地T 火-T 地=1.850.85T 地≈2.2年 (2分)[答案] 2.212.(11分)若宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示. 为了安全,返回舱与轨道舱对接时,必须具有相同的速度. 已知:该过程宇航员乘坐的返回舱至少需要获得的总能量为E (可看做是返回舱的初动能),返回舱与人的总质量为m ,火星表面重力加速度为g ,火星半径为R ,轨道舱到火星中心的距离为r ,不计火星表面大气对返回舱的阻力和火星自转的影响. 问:(1)返回舱与轨道舱对接时,返回舱与人共具有的动能为多少?(2)返回舱在返回轨道舱的过程中,返回舱与人共需要克服火星引力做多少功?【解析】(1)在火星表面有:GM R 2=g (2分) 设轨道舱的质量为m 0,速度大小为v ,则有 :G Mm 0r 2=m 0v 2r(2分) 返回舱和人应具有的动能E k =12m v 2 (1分) 联立解得E k =mgR 22r. (1分) (2)对返回舱在返回过程中,由动能定理知:W =E k -E (2分)联立解得:火星引力对返回舱做的功W =mgR 22r-E (2分) 故克服引力做的功为:-W =E -mgR 22r. (1分) [答案] (1)mgR 22r (2)E -mgR 22r13.(11分)中国首个月球探测计划嫦娥工程预计在2017年送机器人上月球,实地采样送回地球,为载人登月及月球基地选址做准备.设想机器人随嫦娥号登月飞船绕月球飞行,飞船上备有以下实验仪器:A .计时表一只;B .弹簧秤一把;C .已知质量为m 的物体一个;D .天平一台(附砝码一盒).在飞船贴近月球表面时可近似看成绕月球做匀速圆周运动,机器人测量出飞船在靠近月球表面的圆形轨道绕行N 圈所用的时间为t .飞船的登月舱在月球上着陆后,遥控机器人利用所携带的仪器又进行了第二次测量,利用上述两次测量的物理量可出推导出月球的半径和质量.(已知引力常量为G ),要求:(1)说明机器人是如何进行第二次测量的.(2)试推导用上述测量的物理量表示的月球半径和质量的表达式.【解析】(1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为物体在月球上所受重力的大小. (3分)(2)在月球上忽略月球的自转可知:mg 月=F (1分)G Mm R 2=mg 月 (1分) 飞船在绕月球运行时,因为是靠近月球表面,故近似认为其轨道半径为月球的半径R ,由万有引力提供物体做圆周运动的向心力可知:G Mm R 2=mR 4π2T 2,又T =t N(2分) 联立可得:月球的半径R =FT 24π2m =Ft 24π2N 2m (2分) 月球的质量M =F 3t 416π4GN 4m 3. (2分) [答案] (1)机器人在月球上用弹簧秤竖直悬挂物体,静止时读出弹簧秤的示数F ,即为。
大单元教学设计说课稿《宇宙航行》
大单元教学设计说课稿《7.4 宇宙航行》一、教材分析①本节课主要介绍了宇宙航行的基本概念、宇宙飞行器的分类、轨道运动和引力加速度等内容。
②学生已经学习了牛顿运动定律和万有引力定律,对物体在空间中的运动有一定的认识和了解。
③学生在初中物理学习中已经掌握了基本的运动学和力学知识,能够理解和应用本节课的基本概念和理论知识。
④本节课的内容比较抽象,需要学生有较强的想象力和理解能力,同时也需要学生具备良好的数学能力和逻辑思维能力。
二、学情分析①学生对宇宙航行的概念和相关知识的了解比较少,需要通过本节课的学习来开拓视野和扩展知识面。
②学生普遍对太空探索和宇宙探索比较感兴趣,对本节课的内容比较好奇,学习积极性较高。
③学生对抽象概念和理论知识的理解能力参差不齐,需要通过多种方式和方法进行引导和巩固。
④学生在数学和逻辑思维能力方面的水平有所不同,需要根据学生的实际情况进行个性化教学。
三、核心素养1.物理观念①深入理解宇宙航行的基本概念和物理原理;②掌握宇宙飞行器的分类和特点,理解轨道运动和引力加速度等物理现象;③理解宇宙航行对人类探索宇宙的重要意义和现实意义。
2.科学思维①运用物理知识和数学知识,分析和解决宇宙航行中的实际问题;②通过实例分析和比较,理解宇宙航行的发展历程和技术创新;③理解科学探究的基本思路和方法,探究宇宙航行的未知领域。
3.科学探究①通过课堂讨论和实验设计,深入了解宇宙航行中的科学问题;②运用科学思维和方法,探究宇宙航行中的未知领域,如宇宙黑洞和暗物质等。
4.科学态度与责任①认识到宇宙航行对人类探索宇宙和推动科学技术发展的重要作用;②强调在宇宙探索中的安全和环保问题,培养学生的责任感和环保意识;③关注国家和人类的长远利益,理解科学研究和应用的社会责任。
四、教学重难点1.重点①理解宇宙航行的基本概念和物理原理,掌握轨道运动和引力加速度等物理现象;②理解宇宙飞行器的分类和特点,掌握常见的轨道类型和宇宙飞行器的运行轨迹;③通过实例分析和比较,理解宇宙航行的发展历程和技术创新。
三种宇宙速度
第二宇宙速度:飞行器绕太阳运动可以看作是距离 地球无穷远处,以无穷远处为零势能面,发射的最 小速度即使飞行器刚好到达零势能面。
根据机械能守恒定 律 1/2V^2-GM/R=0 代入数值得 V2=11.2公里/秒。
第三宇宙速度:只需把第二宇宙速度方程中地球 的质量换成太阳的质量,地球半径换成地球公转 轨道半径即可。
三种宇宙速度
一、定义
• 从研究两个质点在万有引力作用下的运动规律出 发,人们通常把航天器达到环绕地球、脱离地球 和飞出太阳系所需要的最小速度,分别称为第一 宇宙速度、第二宇宙速度和第三宇宙速度。
二、计算
第一宇宙速度:此时万有引力提供向心力。 GM/R^2=V^2/2 代入数值得V1=7.9公里/秒。(实际应略小于)
V3=16.7公里/秒。
三、应用
人造卫星的变轨: 地球表面卫星发射的速度v>v1。 此时万有引力小于卫星以v绕地表做圆周 运动所需的向心力 ,故从此时开始卫星将 做离二次点火, 以达到预定的圆轨 。
谢谢观看
三个宇宙速度的理论推导
三个宇宙速度的理论推导(大庆师范大学物理与电气信息工程系,10级物理学一班,黄忠宇,201001071475)摘要:宇宙速度是指物体达到11.2千米/秒的运动速度时能摆脱地球引力束缚的一种速度。
在摆脱地球束缚的过程中,在地球引力的作用下它并不是直线飞离地球,而是按抛物线飞行。
脱离地球引力后在太阳引力作用下绕太阳运行。
若要摆脱太阳引力的束缚飞出太阳系,物体的运动速度必须达到16.7千米/秒。
那时将按双曲线轨迹飞离地球,而相对太阳来说它将沿抛物线飞离太阳。
关键词:地球引力束缚,环绕速度,逃逸速度,时空作者简介:黄忠宇(1990-),男,广西桂平人,黑龙江省大庆师范学院物理与电气信息工程系学生0引言第一宇宙速度(又称环绕速度):是指物体紧贴地球表面作圆周运动的速度(也是人造地球卫星的最小发射速度)。
大小为7.9km/s ——计算方法是V=√(gR),即是 V= sqrt(gR) (g是重力加速度,R是星球半径)第二宇宙速度(又称脱离速度):是指物体完全摆脱地球引力束缚,飞离地球的所需要的最小初始速度。
大小为11.2km/s第三宇宙速度(又称逃逸速度):是指在地球上发射的物体摆脱太阳引力束缚,飞出太阳系所需的最小初始速度。
其大小为16.7km/s。
环绕速度和逃逸速度也可应用于其他天体。
例如计算火星的环绕速度和逃逸速度,只需要把公式中的M,R,g换成火星的质量、半径、表面重力加速度即可。
第四宇宙速度1第一宇宙速度理论推导在地面上向远处发射炮弹,炮弹速度越高飞行距离越远,当炮弹的速度达到“7.9千米/秒”时,炮弹不再落回地面(不考虑大气作用),而环绕地球作圆周飞行,这就是第一宇宙速度。
第一宇宙速度第一宇宙速度也是人造卫星在地面附近绕地球做“匀速圆周运动”所必须具有的速度。
但是随着高度的增加,地球引力下降,环绕地球飞行所需要的飞行速度也降低,所有航天器都是在距地面很高的大气层外飞行,所以它们的飞行速度都比第一宇宙速度低。
关于三种宇宙速度
(1)动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它 也适用于变力及物体作曲线运动的情况. (2)功和动能都是标量,不能利用矢量 法则分解,故动能定理无分量式.
(3)应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质 和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力 学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能 守恒定律简捷.
所做的功.④根据功是能量转化的量度反过来可求功.
(3)摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.
发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d 是两物体间的相
对路程),且 W=Q(摩擦生热)
2.功率
(1)功率的概念:功率是表示力做功快慢的物理量,是标量.求功率时一定要分
清是求哪个力的功率,还要分清是求平均功率还是瞬时功率.
的方向相同.两个动量相同必须是大小相等,方向一致.
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即 I=Ft.冲量也是矢量,
它的方向由力的方向决定.
2. ★★动量定理:物体所受合外力的冲量等于它的动量的变化.表达
式:Ft=p′-p 或 Ft=mv′-mv
(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量
(4)交通工具的启动问题通常说的机车的功率或发动机的功率实际是指其牵引
力的功率.
①以恒定功率 P 启动:机车的运动过程是先作加速度减小的加速运动,后以最
大速度 v m=P/f 作匀速直线运动, .
②以恒定牵引力 F 启动:机车先作匀加速运动,当功率增大到额定功率时速
第二宇宙速度是多少
三一文库()〔第二宇宙速度是多少〕*篇一:三大宇宙速度三大宇宙速度定义:从研究两个质点在万有引力作用下的运动规律出发,人们通常把航天器达到环绕地球、脱离地球和飞出太阳系所需要的最小速度,分别称为第一宇宙速度、第二宇宙速度和第三宇宙速度。
第一宇宙速度(V1)航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。
按照力学理论可以计算出V1=7.9公里/秒。
航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V1。
第一宇宙速度的计算:在以地球为半径的轨道上运行的速度,万有引力=向心力,GM/R^2=V^2/r第二宇宙速度(V2)当航天器超过第一宇宙速度V1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称脱离速度。
按照力学理论可以计算出第二宇宙速度V2=11.2公里/秒。
由于月球还未超出地球引力的范围,故从地面发射探月航天器,其初始速度不小于10.848公里/秒即可。
第二宇宙速度的计算:能脱离地球引力到达无穷远处的最小速度,此时在无穷远处总能量为零,根据机械能守恒1/2V^2(动能)-GM/R(势能,是负的)=0第三宇宙速度(V3)从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度。
按照力学理论可以计算出第三宇宙速度V3=16.7公里/秒。
需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V3值;如果方向不一致,所需速度就要大于16.7公里/秒了。
可以说,航天器的速度是挣脱地球乃至太阳引力的唯一要素,目前只有火箭才能突破该宇宙速度。
第三宇宙速度的计算:能脱离太阳的引力到达无穷远处的最小速度,这样只需把第二宇宙速度方程中地球的质量换成太阳的质量,地球半径换成地球公转轨道半径就行了,但不同的是,解出速度后,还要再减去地球的公转速度才是最终的第三宇宙速度,因为地球的公转已经提供了一定的动能了,况且发射速度都是相对于地球来说的。
三种宇宙速度的计算方法
三种宇宙速度的计算方法-CAL-FENGHAI.-(YICAI)-Company One1宇宙速度的计算方法第一宇宙速度的计算方法第一宇宙速度(V 1): 航天器沿地球表面作圆周运动时必须具备的速度,也叫环绕速度。
按照力学理论可以计算出V 1=7.9km/s 。
航天器在距离地面表面数百公里以上的高空运行,地面对航天器引力比在地面时要小,故其速度也略小于V 1第二宇宙速度的计算方法1.第二宇宙速度(V 2): 当航天器超过第一宇宙速度V 1达到一定值时,它就会脱离地球的引力场而成为围绕太阳运行的人造行星,这个速度就叫做第二宇宙速度,亦称逃逸速度。
按照力学理论可以计算出第二宇宙速度V第三宇宙速度(V3) 从地球表面发射航天器,飞出太阳系,到浩瀚的银河系中漫游所需要的最小速度,就叫做第三宇宙速度。
按照力学理论可以计算出第三宇宙速度V 3=16.7公里/秒。
需要注意的是,这是选择航天器入轨速度与地球公转速度方向一致时计算出的V 3值;如果方向不一致,所需速度就要大于16.7公里/秒了。
可以说,航天器的速度是挣脱地球乃至太阳引力的惟一要素,目前只有火箭才能突破宇宙速度设物体以第三宇宙速度抛出时具有的动能为1232E mV k =,这部分动能应该包括两部分:即脱离地球引力的动能E k1和脱离太阳引力的动能E k2。
即:E k =E k1+E k2。
易知:12122EmV k =,V 2为地球第二宇宙速度。
下面再求Ek2: 有两点说明:①因为地球绕太阳公转的椭圆轨道的离心率很小,可以当作圆来处理。
②发射时个行星对物体的引力很小,可以忽略不计。
基于这两点简化,发射过程可以应用机械能守恒定律解题。
物体随地球绕太阳的公转速率等于29.8km/s 。
其度,即:'29.842.2/2V km s =(以太阳为参照物)。
如果准备飞出太阳系的物体在地球上的发射方向与地球绕太阳公转方向相同,便可以充分利用地球公转速度,这样物体在离开地球时只需要有相对地球的速度V ’=12.4km 的速率便可以脱离太阳系。
第二宇宙速度公式
第二宇宙速度公式
第二宇宙速度即挣脱地球引力的最小速度,也就是逃逸速率,由公式F=GM1M2/R^2和F=MV^2/R及太阳质量地球环绕半径可求得G*M*m/r^2=m*(v^2)/rG引力常数,M被环绕天体质量,m环绕物体质量,r环绕半径,v速度。
得出v^2=G*M/r,月球半径约1738公里,是地球的3/11.质量约7350亿亿吨,相当于地球质量的1/81.
月球的第一宇宙速度约是1.68km/s。
在根据:V^2=GM(2/r-1/a)a是人造天体运动轨道的半长径。
a →∞,得第二宇宙速度V2=2.38km/s。
一般:第二宇宙速度V2等于第一宇宙速度V1乘以√2.
第三宇宙速度V3较难:
我以地球打比方吧,绕太阳运动的平均线速度为29.8km/s。
在地球轨道上,要使人造天体脱离太阳引力场的逃逸速度为42.1km/s。
当它与地球的运动方向一致的时候,能够充分利用地球的运动速度,在这种情况下,人造天体在脱离地球引力场后本身所需要的速度仅为两者之差V0=12.3km/s。
设在地球表面发射速度为V3,分别列出两个活力公式并且联立:
V3^2-V0^2=GM(2/r-2/d)其中d是地球引力的作用范围半径,由于d远大于r,因此和2/r这一项比起来的话可以忽略2/d这一项,由此就可以计算出:
V3=16.7km/s,也就是第三宇宙速度。
天文学重要公式
1、牛顿运动定律牛顿第一定律(惯性定律):任何物体都保持静止或匀速直线运动的状态,直到其他物体所作用的力迫使它改变这种状态为止。
牛顿第二定律:物体受到外力作用时,物体所获得的加速度的大小与合外力的大小成正比;加速度的方向与合外力的方向相同。
F=ma牛顿第三定律:两物体之间的作用力和反作用力在一直线上,大小相等,方向相反。
它们同时产生,同时消失2、开普勒三定律第一定律:行星沿椭圆轨道绕日运动,太阳在椭圆轨道的一个焦点上。
第二定律:行星与太阳的连线(矢径)在相等的时间内扫过相等的面积。
即vrsinθ=常数(r:从太阳中心引向行星的矢径长度;θ:行星速度与矢径之间的夹角)第三定律:行星公转周期的平方与轨道长半轴的立方成正比。
即T2/a3=4π2/GM(M:太阳质量;G:引力恒量)3、万有引力定律:任何两质点间都存在着相互吸引力,其大小与两质点的质量乘积成正比,与两质点间的距离平方成反比,力的方向沿着两质点的连线,表示式为F=GMm/R2(G:引力恒量,大小为6.67×10-11牛·米2/千克2)4、正午太阳高度计算公式:H=90°-|φ-δ|(φ:当地地理纬度,永远取正值;δ:直射点的纬度,当地夏半年取正值,冬半年取负值)5、河外星系退行速度公式:V=KD(K:哈勃常数,当前的估算值为每百万秒差距每秒70千米;D:星系距离)6、 z=90.-h (Z是天顶距,H是天体的地平高度)7、 p=90。
-δ(δ赤纬, P是天体的极距)8、仰极高度=当地纬度=天顶赤纬9、天体力学一个重要的公式--活力公式v2= G(M+m) (2/r-1/a)(v为天体再轨道的上的运行速度,r为距离,a为轨道半长径)显然:当a=r时: v2=G(M+m)/r ,轨道为正圆当a=∞时: v2=2G(M+m)/r,轨道为抛物线当r<a<∞时:v2= G(M+m) (2/r-1/a),轨道为椭圆10、关于逃逸速度的公式,按照天体力学中的活力公式,令a趋向无穷,同时令r等于中央天体的半径,我们就得到了逃逸速度公式,v 2= 2 G(M+m)/r11、12、有效口径(D)指望远镜的通光直径,即望远镜入射光瞳直径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
正确计算第二宇宙速度
作者:吕吉昌
来源:《新课程·教育学术》2011年第06期
在天体运动规律的教学中,宇宙速度是个非常重要的物理量。
在现行的人教社高一物理教材中给出了三个宇宙速度的定义和数值:第一宇宙速度相对简单,且给出了简单的计算,但是对于第二和第三宇宙速度,教材中仅仅给出了其定义和数值。
学生常常问:这两个宇宙速度到底是怎么计算出来的呢?能够掌握第二宇宙速度的计算对于学生正确理解宇宙速度的本质有很大的帮助。
根据第二宇宙速度的定义:地面上发射的航天器能够脱离地球的引力,不再绕地球运行的最小速度叫做第二宇宙速度(人民教育出版社全日制普通高级中学教科书必修第103页)。
由于物体在离开地球引力场的过程中,所受的引力是在不断变化的,如果直接从动力学的角度分析,高中学生由于数学知识不足的原因在理解上有一定的难度。
如果利用功能关系进行推导,就显得简单易行。
这样,要计算第二宇宙速度,就必须求出在地球引力场中,移动物体时克服引力所做的功。
很显然,物体上升得越高,需要做的功也就越多。
本文正是从第二宇宙速度的定义出发,从便于学生理解的角度,利用功能关系对其大小进行了推导。
详细推导过程如下:
如图所示,设物体m从地球E的引力场中从p0处移动到p1处。
因各处的引力不等,我
们可把p0,pn间的距离分成许多极小的等分Δx(此处包含有微分的思想)。
p0,p1,
p2,…pn-1,pn和地球中心的距离分别为r0,r1,r2,rn-1,rn;先求出每一等分中的平均引力,然后求出通过每一等分时物体克服地球引力所做的功,这些功的总和,就是物体从p0移动到pn克服地球引力所做的功。
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。