高二物理原子和原子核知识点总结
高中物理必背知识点原子和原子核公式
高中物理必背知识点原子和原子核公式原子和原子核公式总结1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的偏转(甚至反弹回来)2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁}4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。
射线是伴随射线和射线产生的〔见第三册P64〕6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;(2)熟记常见粒子的质量数和电荷数;(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。
考生只要在全面复习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优异的成绩。
为大家整理了高中物理必背知识点:原子和原子核公式。
高中物理原子与原子核知识点总结.doc
高中物理原子与原子核知识点总结【说明】氢原子跃迁①轨道量子化rn=n2r1(n=1,2.3…)r1=0.53×10-10m能量量子化:E1=-13.6eV②En,Ep,r,nEk,v吸收光子时增大减小放出光子时减小增大③氢原子跃迁时应明确:一个氢原子直接跃迁向高能级跃迁,吸收光子一般光子某一频率光子一群氢原子各种可能跃迁向低能级跃迁放出光子可见光子一系列频率光子④氢原子吸收光子时——要么全部吸收光子能量,要么不吸收光子1光子能量大于电子跃迁到无穷远处(电离)需要的能量时,该光子可被吸收。
(即:光子和原于作用而使原子电离)2光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。
(受跃迁条件限:只适用于光于和原于作用使原于在各定态之间跃迁的情况)。
⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量(实物粒子作用而使原子激发)。
因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。
E51=13.06E41=12.75E31=12.09E21=10.2;(有规律可依)E52=2.86E42=2.55E32=1.89;E53=0.97E43=0.66;E54=0.31⑶玻尔理论的局限性。
由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。
但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
氢原子在n能级的动能、势能,总能量的关系是:EP=-2EK,E=EK+EP=-EK。
(类似于卫星模型)由高能级到低能级时,动能增加,势能降低,且势能的降低量是动能增加量的2倍,故总能量(负值)降低。
量子数1.天然放射现象的发现,使人们认识到原子核也有复杂结构。
核变化从贝克勒耳发现天然放射现象开始衰变(用电磁场研究):2.各种放射线的性质比较种类本质质量(u)电荷(e)速度(c)电离性贯穿性α射线氦核4+代。
(完整版)原子核物理知识点归纳详解
原子核物理重点知识点第一章 原子核的基本性质1、对核素、同位素、同位素丰度、同量异位素、同质异能素、镜像核等概念的理解。
(P2)核素:核内具有一定质子数和中子数以及特定能态的一种原子核或原子。
(P2)同位素:具有相同质子数、不同质量数的核素所对应的原子。
(P2)同位素丰度:某元素中各同位素天然含量的原子数百分比。
(P83)同质异能素:原子核的激发态寿命相当短暂,但一些激发态寿命较长,一般把寿命长于0.1s 激发态的核素称为同质异能素。
(P75)镜像核:质量数、核自旋、宇称均相等,而质子数和中子数互为相反的两个核。
2、影响原子核稳定性的因素有哪些。
(P3~5)核内质子数和中子数之间的比例;质子数和中子数的奇偶性。
3、关于原子核半径的计算及单核子体积。
(P6)R =r 0A 1/3 fm r 0=1.20 fm 电荷半径:R =(1.20±0.30)A 1/3 fm 核力半径:R =(1.40±0.10)A 1/3 fm 通常 核力半径>电荷半径单核子体积:A r R V 3033434ππ==4、核力的特点。
(P14)1.核力是短程强相互作用力;2.核力与核子电荷数无关;3.核力具有饱和性;4.核力在极短程内具有排斥芯;5.核力还与自旋有关。
5、关于原子核结合能、比结合能物理意义的理解。
(P8)结合能:),()1,0()()1,1(),(),(2A Z Z Z A Z c A Z m A ZB ∆-∆-+∆=∆= 表明核子结合成原子核时会释放的能量。
比结合能(平均结合能):A A Z B A Z /),(),(=ε原子核拆散成自由核子时外界对每个核子所做的最小平均功,或者核子结合成原子核时平均每一个核子所释放的能量。
6、关于库仑势垒的理解和计算。
(P17)1.r>R ,核力为0,仅库仑斥力,入射粒子对于靶核势能V (r ),r →∞,V (r ) →0,粒子靠近靶核,r →R ,V (r )上升,靠近靶核边缘V (r )max ,势能曲线呈双曲线形,在靶核外围隆起,称为库仑势垒。
高中原子物理知识点归纳
高中原子物理知识点归纳
1.原子结构
-原子是由带正电的原子核和围绕核运动的电子组成的。
-原子核由质子和中子构成,质子带有正电荷,中子则是中性的。
-电子分布在不同的能级上,每个能级对应一定的能量。
-能级结构可以用波尔模型或者量子力学的薛定谔方程来描述,能级之间的跃迁伴随着能量的变化,这对应着原子光谱的现象。
-核内的质子和中子可以通过核反应(如裂变、聚变)释放或吸收能量。
2.原子核的特性
-原子核的质量远大于电子,集中在原子的中心部位。
-原子核大小与原子整体相比很小,但密度极高。
-卢瑟福通过α粒子散射实验证实了原子的核式结构模型,即大部分空间是空的,电子在核外空间运动。
3.原子序数与核电荷数
-原子序数等于原子核内质子的数量,决定了元素的化学性质。
-原子的核电荷数等于质子数,也等于核外电子总数(在中性原子中)。
4.放射性衰变
-放射性元素自发发生核转变,释放出α粒子、β粒子(电子或正电子)或γ射线等形式的能量。
-放射性衰变遵循一定的半衰期规律。
5.核能与核反应
-核能来源于核子重组过程中释放的能量,如核裂变(如铀-235的链式反应)和核聚变(如氢弹中的氘氚反应)。
6.量子数与电子排布
-电子在原子轨道中的排布遵循泡利不相容原理、洪特规则等,形成了元素周期表中的电子构型。
7.原子光谱
-当电子在不同能级之间跃迁时,会发射或吸收特定波长的光,形成原子的发射光谱和吸收光谱。
原子物理知识点详细汇总
百度文库 - 让每个人平等地提升自我第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。
本章简单介绍一些关于原子和原子核的基本知识。
§ 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。
1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。
1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。
1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。
电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。
由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。
原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。
如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。
为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。
高中物理原子物理知识点总结
高中物理原子物理知识点总结一、原子的组成原子是物质的基本单位,由原子核和电子组成。
原子核位于原子的中心,由质子和中子组成,质子带正电荷,中子不带电荷;电子绕着原子核运动,带负电荷。
二、原子的结构1. 核原子核的直径约为10^-15米,质子和中子都存在于核中。
质子的质量大约是中子的1.6726219 × 10^-27 千克,它们的电量相等,大小为1.60217662 × 10^-19 库仑。
2. 电子壳层电子围绕在原子核外部的轨道上,称为电子壳层。
电子壳层的数量决定了原子的大小。
第一层能容纳最多2个电子,第二层最多容纳8个电子,第三层最多容纳18个电子。
三、原子的质量数和原子序数原子的质量数是指原子核中质子和中子的总数。
原子的质量数通常用字母A表示。
原子的原子序数是指原子核中质子的个数,也称为元素的序数。
原子的原子序数通常用字母Z表示。
四、同位素同位素是指化学元素原子中,质子数相同,中子数不同的原子。
同位素具有相同的化学性质,但物理性质可能有所不同。
五、原子的电离原子的电离是指从一个原子中剥离出一个或多个电子形成带电离子的过程。
当原子失去电子后变为带正电荷的离子,称为正离子;当原子获得电子后变为带负电荷的离子,称为负离子。
六、电子能级和电子排布规则电子能级是指电子在原子中的能量状态。
电子按照一定的能级顺序依次填充到不同的能级中。
根据泡利不相容原理和伯利斯规则,电子排布规则如下:1. 每个能级最多只能容纳一定数量的电子;2. 电子填充时要先填满较低的能级;3. 每个能级的轨道填充电子时,按照上层轨道的能级对轨道进行排布。
七、原子的能级跃迁原子的能级跃迁是指电子在不同能级之间跃迁的过程。
根据能级跃迁所产生的能量差异,原子可以发射光线,这种现象称为光谱。
八、原子核的衰变和辐射原子核可以通过放射性衰变进行变化,衰变过程伴随着放射性辐射的释放。
常见的原子核衰变方式包括α衰变、β衰变和γ衰变。
高中物理原子核知识点高中物理原子核必背知识点
高中物理原子核知识点高中物理原子核必背知识点高中物理原子核知识点高中物理原子核知识点高中物理原子核知识点一:原子核的组成1、1919年卢瑟福用α粒子轰击氮原子核发现质子即氢原子核。
2、卢瑟福预想到原子内存在质量跟质子相等的不带电的中性粒子,即中子。
查德威克经过研究,证明:用天α射线轰击铍时,会产生一种看不见的贯穿能力很强(10-20厘米的铅板)的不带电粒子,用其轰击石蜡时,竟能从石蜡中打出质子,此贯穿能力极强的射线即为设想中的中子。
3、质子和中子统称核子,原子核的电荷数等于其质子数,原子核的质量数等于其质子数与中子数的和。
具有相同质子数的原子属于同一种元素;具有相同的质子数和不同的中子数的原子互称同位素。
高中物理原子核知识点二:放射性元素的衰变1、天然放射现象(1)人类认识原子核有复杂结构和它的变化规律,是从天然放射现象开始的。
(2)1896年贝克勒耳发现放射性,在他的建议下,玛丽·居里和皮埃尔· 居里经过研究发现了新元素钋和镭。
(3)用磁场来研究放射线的性质(图见3-5第74页):①α射线带正电,偏转较小,α粒子就是氦原子核,贯穿本领很小,电离作用很强,使底片感光作用很强;②β射线带负电,偏转较大,是高速电子流,贯穿本领很强(几毫米的铝板),电离作用较弱;③γ射线中电中性的,无偏转,是波长极短的电磁波,贯穿本领最强(几厘米的铅板),电离作用很小。
2、原子核由于放出某种粒子而转变为新核的变化叫做原子核的衰变。
在衰变中电荷数和质量数都是守恒的(注意:质量并不守恒。
)。
γ射线是伴随α射线或β射线产生的,没有单独的γ衰变(γ衰变:原子核处于较高能级,辐射光子后跃迁到低能级。
)。
2、半衰期:放射性元素的原子核有半数发生衰变需要的时间。
放射性元素衰变的快慢是由核内部本身的因素决定,与原子所处的物理状态或化学状态无关,它是对大量原子的统计规律。
N= ,m= 。
高中物理原子核知识点三:放射性的应用与防护1、放射性同位素的应用:a、利用它的射线(贯穿本领、电离作用、物理和化学效应);b、做示踪原子。
原子物理原子核的结构知识点总结
原子物理原子核的结构知识点总结原子物理是研究原子和原子核结构的科学,而原子核作为原子的核心部分,其结构及性质对于了解物质的本质和原子核反应具有重要意义。
本文将对原子核的结构知识进行总结,包括原子核的组成、质量数与原子序数、同位素和同位素符号、核子、核力、核衰变等内容。
1. 原子核的组成原子核是由质子和中子组成的。
质子带有正电荷,质量相对较大,中子不带电荷,质量与质子相似。
质子和中子统称为核子,它们以紧密排列的方式组成原子核。
2. 质量数与原子序数原子核的质量数是指原子核中质子和中子的总数,用字母A表示。
原子核的原子序数是指原子核中质子的个数,用字母Z表示。
质量数和原子序数可以唯一确定一个原子核的性质。
3. 同位素和同位素符号同位素是指原子核中质子数相同、中子数不同的核,它们具有相同的原子序数,但质量数不同。
同位素符号表示了一个特定的同位素,符号的左上角为质量数A,左下角为原子序数Z,符号中间为元素的化学符号。
4. 核子核子是组成原子核的基本粒子,包括质子和中子。
质子带有正电荷,其电荷量为基本电荷e,质子数决定了原子核的化学性质。
中子不带电荷,作为质子的“中性伴侣”,其主要作用是增加原子核的质量,稳定原子核的结构。
5. 核力核力是维持原子核的结构稳定的力。
核力是一种非常强大的力,仅作用于极短的距离,其作用范围约为10^-15米。
核力的作用是吸引核子之间的相互作用力,克服了质子之间的电磁排斥力,使得原子核能够保持稳定。
6. 核衰变核衰变是指原子核不稳定的情况下发生的放射性衰变现象。
核衰变可以分为α衰变、β衰变和γ衰变。
α衰变是原子核释放出一个α粒子,变为一个新的原子核。
β衰变分为β+衰变和β-衰变,其中β+衰变是质子转化为中子,同时放射出一个正电子和一个中微子;β-衰变是中子转化为质子,同时放射出一个电子和一个反中微子。
γ衰变是原子核释放出γ射线,不改变原子核的种类和质量。
总结:原子物理原子核的结构是一个复杂而重要的领域。
高中物理【原子结构和原子核】知识点、规律总结
两类核衰变在磁场中的径迹 [素养必备]
静止核在磁场中自发衰变,其轨迹为两相切圆,α 衰变时两圆外切,β 衰变时两圆 内切,根据动量守恒 m1v1=m2v2 和 r=mqBv知,半径小的为新核,半径大的为 α 粒子或 β 粒子,其特点对比如下表:
α 衰变
AZX→AZ--24Y+42He
β 衰变
AZX→Z+A1Y+0-1e
特征
3.氢原子光谱的实验规律:巴耳末系是氢光谱在可见光区的谱线,其波长公式1λ= R212-n12(n=3,4,5,…,R 是里德伯常量,R=1.10×107 m-1).
4.光谱分析:利用每种原子都有自己的_特__征__谱__线___可以用来鉴别物质和确定物质 的组成成分,且灵敏度很高.在发现和鉴别化学元素上有着重大的意义.
(2)原子的核式结构模型:在原子中心有一个很小的核,原子全部的_正__电__荷___和几乎 全部__质__量__都集中在核里,带负电的电子在核外空间绕核旋转.
二、氢原子光谱 1.光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强 度分布的记录,即光谱. 2.光谱分类
连续
吸收
师生互动
1.α 衰变、β 衰变的比较
衰变类型
α 衰变
β 衰变
衰变方程
AZX→AZ--24Y+42He
AZX→Z+A1Y+-01e
2 个质子和 2 个中子结合成一个整体射 1 个中子转化为 1 个质子和 1 个电子
衰变实质 出
衰变规律
211H+210n→42Βιβλιοθήκη e10n→11H+-01e
电荷数守恒、质量数守恒、动量守恒
五、核力和核能 1.核力 原子核内部,_核__子__间___所特有的相互作用力. 2.核能 (1)核子在结合成原子核时出现质量亏损 Δm,其对应的能量 ΔE=__Δ__m_c_2___. (2)原子核分解成核子时要吸收一定的能量,相应的质量增加 Δm,吸收的能量为 ΔE =__Δ_m__c_2___.
高中物理原子物理知识点总结
高中物理原子物理知识点总结高中物理中的原子物理部分是一个充满神秘和奇妙的领域,它帮助我们深入理解物质的微观结构和原子世界的运行规律。
以下是对高中物理原子物理知识点的详细总结。
一、原子的结构1、汤姆孙的枣糕模型汤姆孙认为原子是一个球体,正电荷均匀分布在整个球体内,电子像枣糕里的枣子一样镶嵌在其中。
但这个模型无法解释α粒子散射实验的结果。
2、卢瑟福的核式结构模型通过α粒子散射实验,卢瑟福提出了原子的核式结构模型。
原子的中心有一个很小的原子核,它集中了几乎全部的原子质量和正电荷,电子在核外绕核高速旋转。
原子核的大小:原子核的半径约为 10⁻¹⁵~ 10⁻¹⁴ m,原子的半径约为 10⁻¹⁰ m。
3、玻尔的原子模型玻尔在卢瑟福模型的基础上,引入了量子化的概念。
他认为电子绕核运动的轨道是量子化的,电子在这些特定的轨道上运动时,不辐射能量,处于稳定状态。
只有当电子从一个轨道跃迁到另一个轨道时,才会辐射或吸收能量。
二、氢原子光谱1、连续光谱由炽热的固体、液体和高压气体发出的光形成连续分布的光谱。
2、线状光谱(原子光谱)稀薄气体发光产生的光谱是一些不连续的亮线,每条亮线对应一种频率的光,称为线状光谱。
氢原子光谱是线状光谱,其谱线的频率符合巴尔末公式:\(\frac{1}{\lambda}=R(\frac{1}{2^{2}}\frac{1}{n^{2}})\)(n = 3,4,5,…),其中 R 是里德伯常量。
三、原子核的组成1、质子质子带正电,电荷量与一个电子所带电荷量相等,其质量约为167×10⁻²⁷ kg。
2、中子中子不带电,质量与质子的质量非常接近,约为 167×10⁻²⁷ kg。
3、核子质子和中子统称为核子。
4、原子核的电荷数等于质子数,等于核外电子数。
5、原子核的质量数等于质子数与中子数之和。
四、天然放射现象1、天然放射现象某些元素自发地放出射线的现象叫做天然放射现象。
精品】高中物理原子与原子核知识点总结(选修3-5)
精品】高中物理原子与原子核知识点总结(选修3-5)高中物理原子与原子核知识点总结虽然原子、原子核这一章不是重点,但是高考选择题也会涉及到。
只要记住模型和方程式,就不会在做题上出错。
下面总结的内容希望对同学们有所帮助。
一、波粒二象性1.光电效应的研究思路1)两条线索:h为普朗克常数h=6.63×10J·S,ν为光子频率。
2)三个关系:①爱因斯坦光电效应方程Ek=hν-W。
②光电子的最大初动能Ek可以利用光电管实验的方法测得,即Ek=eUc,其中Uc是遏止电压。
③光电效应方程中的W为逸出功,它与极限频率νc的关系是W=hνc。
2.波粒二象性波动性和粒子性的对立与统一。
1)大量光子易显示出波动性,而少量光子易显示出粒子性。
2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。
3)光子说并未否定波动说,E=hν=C/λ。
4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。
3.物质波1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也叫德布罗意波。
2)物质波的波长:λ=h/p,h是普朗克常量。
二、原子核结构1.电子的发现1897年,英国物理学家XXX通过对阴极射线的研究发现了电子。
电子的发现证明了原子是可再分的。
2.XXX的核式结构模型XXX根据α粒子散射实验提出了原子的核式结构学说,XXX把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论。
认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点。
裂变和聚变是获取核能的两个重要途径。
裂变和聚变过程中释放的能量符合爱因斯坦质能方程。
整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、粒子、光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。
4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。
高中物理原子结构和原子核
高中物理原子结构和原子核原子结构和原子核是高中物理中一个非常重要的内容。
在这篇文章中,我们将从基本概念开始,逐步展开对原子结构和原子核的讲解。
一、原子结构原子结构是指原子的内部构造。
早在古希腊时期,人们就意识到物质是由非常小的粒子构成的,而这些粒子就是原子。
但直到19世纪末,科学家们才通过实验证据确信原子是物质的基本单位。
1.原子的基本构成原子是由三种基本粒子组成的:质子、中子和电子。
质子和中子位于原子的核心,被称为原子核,而电子则绕着原子核旋转。
质子和中子的质量相近,质量大约为1.67x10^-27千克,而电子的质量则非常小,大约为9.11x10^-31千克。
原子核的半径约为0.1纳米,而电子的轨道半径约为0.1埃。
2.原子的电荷质子带有正电荷,记为+e,其中e为元电荷的基本单位。
电子带有负电荷,记为-e。
中子没有电荷,是中性粒子。
原子总的电荷是零,因为质子和电子数量相等。
3.原子的元素特性每种元素的原子的质子数是固定不变的,被称为原子序数或核电荷数。
根据元素的原子序数从小到大排列,可以得到元素周期表。
电子的数量和排布方式则决定了元素的化学性质。
二、原子核原子核是原子的核心部分,由质子和中子组成。
原子核的直径约为10^-15米,相比整个原子的尺寸非常小。
但是原子核却凝聚着原子99.95%的质量。
1.质子质子带有正电荷,质量较大。
质子数决定了原子的元素特性,因为不同元素的质子数是不同的。
质子数可以通过查看元素周期表获得。
2.中子中子没有电荷,是中性粒子。
中子的质量和质子相近。
中子数可以通过减去原子的质子数来得到。
3.原子的核外电子原子的核外电子按能级分布在轨道上。
能级较低的电子离原子核较近,能级较高的电子离原子核较远。
根据一套量子数规则,电子的能级和轨道数量是有限的。
电子的排布方式决定了元素化学性质的差别。
三、原子结构的实验验证原子结构的理论模型得到广泛接受,主要是基于一系列实验证据得出的。
1.序列反应一些放射性原子的衰变过程表明有一种带正电的粒子存在于原子核中。
高中物理知识点总结:原子和原子核
知识要点:(一)原子结构1. 卢瑟福的核式结构模型卢瑟福的原子核式模型:在原子的中心有一个很小的核叫做原子核,原子的全部正电荷和几乎全部的质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。
2. 玻尔的原子模型由丹麦的物理学家玻尔于1913年提出的原子结构假说,主要包括下列几个方面:(1)轨道量子化。
围绕原子核运动的电子轨道半径只能是某些分立的数值,电子的可能轨道分布是不连续的,这种现象叫做轨道量子化。
(2)能量的量子化。
在原子中,不同的轨道对应着不同的状态,原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外辐射能量,这些状态叫做定态。
(3)能级的跃迁:原子从一种定态(能量为Em),它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,光子的能量为。
3. 量子数原子的各状态用标号1,2,3等来表示,这些状态标号叫做量子数,通常用n来表示。
4. 能级原子的各个定态的能量值叫做它的能级。
5. 基态在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,量子数为6. 激发态通过加热或光照的方法使物体中的某些原子从相互碰撞或入射光子中吸收一定的能量,从基态跃迁到较高的能级,量子数大于1,这时电子在离核较远的轨道上运动,这些定态叫做激发态。
7. 跃迁原子从一种能量状态向另一种能量状态的变化叫做能级的跃迁。
当原子从高能量状态向低能量状态跃迁时,放出一定频率的光子;当原子从低能量状态向高能量状态跃迁时,需吸收一定频率的光子。
8. 能量的量子化原子的各个能级的能量是不连续的,这种现象叫做能量的量子化。
9. 轨道的量子化电子的可能轨道分布是不连续的,这种现象叫做轨道的量子化。
注意点:玻尔原子结构假说提出的背景。
卢瑟福的原子的核式模型很好地解释了 1. 贝克勒耳发现天然放射现象,揭开了人类研究原子核结构的序幕。
本质电离本领穿透本领射线最强最弱射线较弱很强光子最弱最强2. 核反应的基本类型衰变:实质是其元素的原子核同时放出由两个质子和两个中子组成的粒子。
原子物理高考必背知识点归纳总结
原子物理高考必背知识点归纳总结在准备高考物理考试时,原子物理是一个重要的知识点。
了解原子结构、放射性衰变、核能和核辐射等内容,对于解答试题是至关重要的。
本文将对原子物理考点进行归纳总结,帮助考生系统地掌握这些知识。
一、原子结构1. 原子的组成:原子由电子、质子和中子组成。
电子带有负电荷,质量极小;质子带有正电荷,质量较大;中子不带电,质量与质子相近。
2. 原子核的结构:原子核由质子和中子组成,质子数决定了元素的属性。
3. 原子的电荷状态:正负电荷的数量相等时,原子呈中性;带有正电荷时,称为正离子;带有负电荷时,称为负离子。
二、放射性衰变1. 放射性衰变的概念:放射性衰变是指不稳定核自发地转变成稳定核的过程,伴随着放射性衰变产物的释放。
2. 放射性衰变的种类:包括α衰变、β衰变和γ衰变。
α衰变是指放射出α粒子,改变了核的质量数和原子序数;β衰变是指放射出β粒子,改变了核的质量数,但不改变原子序数;γ衰变是指放射出γ射线,不改变核的质量数和原子序数。
3. 放射性衰变的应用:放射性同位素在医学诊疗、工业上有广泛应用,如碘-131用于治疗甲状腺疾病,辐射消毒灯可用于杀菌消毒等。
三、核能1. 核反应的能量变化:核反应中,质量可以转化为能量。
根据爱因斯坦的质能方程E=mc²,质量变化Δm对应的能量变化ΔE=Δmc²。
2. 核聚变和核裂变:核聚变是指轻核聚合成重核的过程,如太阳能的产生;核裂变是指重核分裂成轻核的过程,如核电站的反应堆。
3. 核能的应用:核能可以用于发电、提供热能等,但同时也存在核废料处理和环境影响的问题,需要合理利用和管理。
四、核辐射1. 核辐射的定义:核辐射是指放射性核和高能粒子通过空气、物质等传播的现象。
2. 核辐射的种类:包括α粒子、β粒子、γ射线等。
α粒子带有正电荷,质量较大,穿透能力较弱;β粒子带有负电荷,质量比较小,穿透能力较强;γ射线为电磁辐射,穿透能力最强。
原子原子核知识点整理
原子原子核知识点整理一、原子的结构。
1. 原子的组成。
- 原子是由居于原子中心的原子核和核外电子构成的。
- 原子核带正电,电子带负电,原子整体呈电中性。
例如,氢原子由一个质子构成的原子核和一个核外电子组成;氧原子由8个质子和8个中子构成的原子核以及8个核外电子组成。
2. 原子的大小。
- 原子非常小,原子半径的数量级一般在10⁻¹⁰米。
3. 原子的表示方法。
- 原子可以用元素符号表示,如氢原子用H表示,氧原子用O表示。
同时,在化学中还可以用原子结构示意图来表示原子的核外电子排布情况。
例如,钠原子(Na)的原子结构示意图,原子核内有11个质子,核外有11个电子,电子分层排布,第一层2个电子,第二层8个电子,第三层1个电子。
- 原子的质量主要集中在原子核上,电子的质量很小,几乎可以忽略不计。
相对原子质量是以一种碳原子(碳 - 12)质量的1/12为标准,其他原子的质量跟它相比较所得到的比。
相对原子质量≈质子数 + 中子数。
二、原子核。
1. 原子核的组成。
- 原子核由质子和中子组成(氢原子核只有一个质子,没有中子)。
- 质子带正电,中子不带电。
质子和中子的质量几乎相等,都约为一个原子质量单位(1u)。
2. 质子数、中子数与原子种类的关系。
- 质子数决定元素的种类,不同元素的原子质子数不同。
例如,质子数为1的是氢元素,质子数为8的是氧元素。
- 质子数相同而中子数不同的原子互称为同位素。
例如,氢元素有三种同位素:氕(不含中子)、氘(含1个中子)、氚(含2个中子),它们都有1个质子。
3. 核电荷数。
- 核电荷数等于质子数,因为原子核所带的正电荷数是由质子决定的。
例如,氧原子的质子数是8,核电荷数也是8。
4. 原子核的稳定性。
- 原子核内质子和中子之间存在着一种特殊的力,叫做核力。
核力把质子和中子紧紧地束缚在原子核内,使得原子核保持稳定。
- 当原子核内质子数或中子数过多或过少时,原子核就可能不稳定,会发生放射性衰变。
高中物理知识点总结原子和原子核
高中物理知识点总结原子和原子核原子和原子核1.粒子散射试验结果a)大多数的粒子不发生偏转;(b)少数粒子发生了较大角度的偏转;(c)极少数粒子出现大角度的偏转(甚至反弹回来)2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:h=E初-E末{能级跃迁}4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}5.天然放射现象:射线(粒子是氦原子核)、射线(高速运动的电子流)、射线(波长极短的电磁波)、衰变与衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。
射线是伴随射线和射线产生的〔见第三册P64〕6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}7.核能的计算E=mc2{当m的单位用kg时,E的单位为J;当m用原子质量单位u时,算出的E单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;(2)熟记常见粒子的质量数和电荷数;(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册 P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。
考生们只要加油努力,就一定会有一片蓝天在等着大家。
以上就是的编辑为大家准备的高中物理知识点总结:原子和原子核。
高中物理原子结构与原子核知识点精编汇总,务必掌握!
高中物理原子结构与原子核知识点精编汇总,务必掌握!考试要点基本概念一、原子模型1、J·J汤姆生模型(枣糕模型):1897年发现电子,认识到原子有复杂结构。
2、卢瑟福的核式结构模型(行星式模型)α粒子散射实验是用α粒子轰击金箔,结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。
这说明原子的正电荷和质量一定集中在一个很小的核上。
卢瑟福由α粒子散射实验提出模型:在原子的中心有一个很小的核,叫原子核。
原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。
3、玻尔模型(引入量子理论)(1)玻尔的三条假设(量子化)①轨道量子化:原子只能处于不连续的可能轨道中,即原子的可能轨道是不连续的②能量量子化:一个轨道对应一个能级,轨道不连续,所以能量值也是不连续的,这些不连续的能量值叫做能级。
在这些能量状态是稳定的,并不向外界辐射能量,叫定态③原子可以从一个能级跃迁到另一个能级。
原子由高能级向低能级跃迁时,放出光子,在吸收一个光子或通过其他途径获得能量时,则由低能级向高能级跃迁。
原子在两个能级间跃迁时辐射或吸收光子的能量(量子化就是不连续性,n叫量子数。
)(2)从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞。
用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量。
原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。
(如在基态,可以吸收E ≥13、6eV的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。
(3)玻尔理论的局限性。
由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。
但由于它保留了过多的经典物理理论(牛顿第二定律、向心力、库仑力等),所以在解释其他原子的光谱上都遇到很大的困难。
高二物理原子和原子核知识点总结
高二物理原子和原子核知识点总结一、原子结构知识点:1、电子的发现和汤姆生的原子模型:(1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成①装置:②现象:a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。
如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。
散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型(1)原子核式结构模型与经典电磁理论的矛盾(两方面)a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二物理原子和原子核知识点总结
一、原子结构知识点:
1、电子的发现和汤姆生的原子模型:
(1)电子的发现:
1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:
1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型
(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成
①装置:
②现象:
a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转
c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:
由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。
如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。
散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型
(1)原子核式结构模型与经典电磁理论的矛盾(两方面)
a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
(2)玻尔理论
上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:
①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。
②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1
③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。
原子的能量不连续因而电子可能轨道的分布也是不连续的。
即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即
n为正整数,称量数数
(3)玻尔的氢子模型:
①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。
)
氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:
其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。
即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)
②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。
按能量的大小用图开像的表示出来即能级图。
其中n=1的定态称为基态。
n=2以上的定态,称为激发态。
二、原子核知识点
1、天然放射现象
(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。
这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性
放射性元素:具有放射性的元素称放射性元素
天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象
天然放射现象:表明原子核存在精细结构,是可以再分的
(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:
2、原子核的衰变:
(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒
γ射线是伴随α、β衰变放射出来的高频光子流
在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子
(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。
一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m
3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。
(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。
(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。
4、原子核的组成和放射性同位素
(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子
在原子核中:
质子数等于电荷数
核子数等于质量数
中子数等于质量数减电荷数
(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发现:用α粒子轰击铝时,发生核反应。
发生+β衰变,放出正电子
三、核能知识点:
1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。
2、质能方程:爱因斯坦提出物体的质量和能量的关系:
E=mc²——质能方程
3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。
吸收或放出的能量,与质量变化的关系为:
为了计算方便以后在计算核能时我们用以下两种方法
方法一:若已知条件中以千克作单位给出,用以下公式计算
公式中单位:
方法二:若已知条件中以作单位给出,用以下公式计算
公式中单位:
4、释放核能的途径——裂变和聚变
(1)裂变反应:
①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。
②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。
链式反应的条件:
③裂变时平均每个核子放能约1Mev能量
1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量
(2)聚变反应:①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。
②平均每个核子放出3Mev的能量③聚变反应的条件;几百万摄氏度的高温。