折半查找算法伪代码
有序表的折半查找算法
有序表的折半查找算法一、前言有序表是一种常用的数据结构,它可以使查找、插入和删除等操作更加高效。
而折半查找算法是一种常用的查找有序表中元素的方法,它可以在较短的时间内定位到目标元素。
本文将详细介绍有序表的折半查找算法。
二、有序表有序表是一种按照某个关键字排序的数据结构,其中每个元素都包含一个关键字和相应的值。
有序表的排序方式可以是升序或降序,而且排序依据可以是任何属性。
例如,在一个学生信息系统中,可以按照学号、姓名、年龄等属性对学生信息进行排序。
由于有序表已经按照某个关键字排序,因此在进行查找、插入和删除等操作时,可以采用更加高效的算法。
其中最常见的算法之一就是折半查找算法。
三、折半查找算法1. 基本思想折半查找算法也称为二分查找算法,其基本思想是:将待查元素与有序表中间位置上的元素进行比较,如果相等,则返回该位置;如果待查元素小于中间位置上的元素,则在左半部分继续进行二分查找;否则,在右半部分继续进行二分查找。
重复以上过程,直到找到目标元素或确定其不存在为止。
2. 算法实现折半查找算法的实现可以采用递归或循环方式。
以下是采用循环方式实现的伪代码:```int binarySearch(int[] a, int target) {int left = 0;int right = a.length - 1;while (left <= right) {int mid = (left + right) / 2;if (a[mid] == target) {return mid;} else if (a[mid] < target) {left = mid + 1;} else {right = mid - 1;}}return -1; // 没有找到目标元素}```在以上代码中,`a` 表示有序表,`target` 表示待查元素。
首先,将左右指针 `left` 和 `right` 分别初始化为有序表的第一个和最后一个元素的下标。
折半查找程序
先看看这个,下面有例子折半查找:二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。
因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。
重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
算法要求算法复杂度下面提供一段二分查找实现的伪代码:BinarySearch(max,min,des)mid-<(max+min)/2while(min<=max)mid=(min+max)/2if mid=des thenreturn midelseif mid >des thenmax=mid-1elsemin=mid+1return max折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。
它的基本思想是,将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止。
如果x<a[n/2],则我们只要在数组a的左半部继续搜索x(这里假设数组元素呈升序排列)。
如果x>a[n/2],则我们只要在数组a的右半部继续搜索x。
二分查找法一般都存在一个临界值的BUG,即查找不到最后一个或第一个值。
可以在比较到最后两个数时,再次判断到底是哪个值和查找的值相等。
C语言代码int BinSearch(SeqList * R,int n , KeyType K ){ //在有序表R[0..n-1]中进行二分查找,成功时返回结点的位置,失败时返回-1int low=0,high=n-1,mid;//置当前查找区间上、下界的初值if(R[low].key==K){return low ;}if(R[high].key==k)return high;while(low<=high){ //当前查找区间R[low..high]非空mid=low+((high-low)/2);//使用(low + high) / 2 会有整数溢出的问题(问题会出现在当low + high的结果大于表达式结果类型所能表示的最大值时,这样,产生溢出后再/2是不会产生正确结果的,而low+((high-low)/2)不存在这个问题if(R[mid].key==K){return mid;//查找成功返回}if(R[mid].key>K)high=mid-1; //继续在R[low..mid-1]中查找elselow=mid+1;//继续在R[mid+1..high]中查找}if(low>high)return -1;//当low>high时表示查找区间为空,查找失败} //BinSeareh折半查找程序举例程序要求:1.在main函数中定义一个20个元素的int数组,完成初始化和显示操作。
算法设计与分析部分算法伪代码
第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。
折半查找法
二分查找是在我们整个数据结构当中一个比较重要的算法,它的思想在我们的实际开发过程当中应用得非常广泛。
在实际应用中,有些数据序列是已经经过排序的,或者可以将数据进行排序,排序后的数据我们可以通过某种高效的查找方式来进行查找,今天要讲的就是折半查找法(二分查找),它的时间复杂度为O(logn),将以下几个方面进行概述了解二分查找的原理与思想分析二分查找的时间复杂度掌握二分查找的实现方法了解二分查找的使用条件和场景1 二分查找的原理与思想在上一个章节当中,我们学习了各种各样的排序的算法,接下来我们就讲解一下针对有序集合的查找的算法—二分查找(Binary Search、折半查找)算法,二分查找呢,是一种非常容易懂的查找算法,它的思想在我们的生活中随处可见,比如说:同学聚会的时候喜欢玩一个游戏——猜数字游戏,比如在1-100以内的数字,让别人来猜从,猜的过程当中会被提示是猜大了还是猜小了,直到猜中为止。
这个过程其实就是二分查找的思想的体现,这是个生活中的例子,在我们现实开发过程当中也有很多应用到二分查找思想的场景。
比如说仙现在有10个订单,它的金额分别是6、12 、15、19、24、26、29、35、46、67 请从中找出订单金额为15的订单,利用二分查找的思想,那我们每一次都会与中间的数据进行比较来缩小我们查找的范围,下面这幅图代表了查找的过程,其中low,high代表了待查找的区间的下标范围,mid表示待查找区间中间元素的下标(如果范围区间是偶数个导致中间的数有两个就选择较小的那个)第一次二分查找第二次二分查找第三次二分查找通过这个查找过程我们可以对二分查找的思想做一个汇总:二分查找针对的是一个有序的数据集合,查找思想有点类似于分治思想。
每次都通过跟区间的中间元素对比,将待查找的区间范围缩小为原来的一半,直到找到要查找的元素,或者区间被缩小为0。
一:查找的数据有序二:每次查找,数据的范围都在缩小,直到找到或找不到为止。
c语言折半查找法代码
c语言折半查找法代码折半查找法,也称二分查找法,是一种高效的查找算法。
它的基本思想是将有序数组分成两部分,通过比较中间元素和目标元素的大小关系,来确定目标元素在哪一部分中,然后再在该部分中继续进行查找,直到找到目标元素或者确定目标元素不存在为止。
下面是C语言实现折半查找法的代码:```#include <stdio.h>int binarySearch(int arr[], int left, int right, int target) {while (left <= right) {int mid = left + (right - left) / 2;if (arr[mid] == target) {return mid;} else if (arr[mid] < target) {left = mid + 1;} else {right = mid - 1;}}return -1;}int main() {int arr[] = {1, 3, 5, 7, 9, 11, 13, 15};int n = sizeof(arr) / sizeof(arr[0]);int target = 7;int index = binarySearch(arr, 0, n - 1, target);if (index == -1) {printf("目标元素不存在\n");} else {printf("目标元素在数组中的下标为:%d\n", index);}return 0;}```在上面的代码中,binarySearch函数接收四个参数:数组arr、左边界left、右边界right和目标元素target。
它通过while循环不断缩小查找范围,直到找到目标元素或者确定目标元素不存在为止。
其中,mid表示当前查找范围的中间位置,通过比较arr[mid]和target的大小关系来确定目标元素在哪一部分中。
第7章 减治法(《算法设计与分析(第3版)》C++版 王红梅 清华大学出版社)
比较对象,若 k 与中间元素相等,则查找成功;若 k 小于中间元素,则在中间元
算 法 设
计
素的左半区继续查找;若 k 大于中间记录,则在中间元素的右半区继续查找。不
与 分
析
断重复上述过程,直到查找成功,或查找区间为空,查找失败。
( 第
版 )
k
清 华
大
学
[ r1 … … … rmid-1 ] rmid [ rmid+1 … … … rn ] (mid=(1+n)/2)
Page 4
3
7.1.2 一个简单的例子——俄式乘法
【问题】俄式乘法(russian multiplication)用来计算两个正整数 n 和 m 的乘积
,运算规则:如果 n 是偶数,计算 n/2×2m;如果 n 是奇数,计算(n-1)/2×2m+
m;当 n 等于 1 时,返回 m 的值。
算
法
俄式乘法的优点?
与 分 析
2. 测试查找区间[low,high]是否存在,若不存在,则查找失败,返回 0;
( 第
3. 取中间点 mid = (low+high)/2; 比较 k 与 rmid,有以下三种情况:
版 )
3.1 若 k < rmid,则 high = mid - 1;查找在左半区进行,转步骤2;
清 华
3.2 若 k > rmid,则 low = mid + 1;查找在右半区进行,转步骤2;
Page 12
7.2.2 选择问题
【想法】假定轴值的最终位置是 s,则: (1)若 k=s,则 rs 就是第 k 小元素; (2)若 k<s,则第 k 小元素一定在序列 r1 ~ rs-1 中; (3)若 k>s,则第 k 小元素一定在序列 rs+1 ~ rn 中。
算法设计与分析基础习题参考答案
习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d 能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度.a.删除数组的第i个元素(1<=i<=n)b.删除有序数组的第i个元素(依然有序)hints:a. Replace the ith element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array’s element(e.g., 0 for an array of positive numbers ) to mark the ith position is empty.(“lazy deletion”)习题2.11欧几里得算法的时间复杂度欧几里得算法, 又称辗转相除法, 用于求两个自然数的最大公约数. 算法的思想很简单, 基于下面的数论等式gcd(a, b) = gcd(b, a mod b)其中gcd(a, b)表示a和b的最大公约数, mod是模运算, 即求a除以b的余数. 算法如下:输入: 两个整数a, b输出: a和b的最大公约数function gcd(a, b:integer):integer;if b=0 return a;else return gcd(b, a mod b);end function欧几里得算法是最古老而经典的算法, 理解和掌握这一算法并不难, 但要分析它的时间复杂度却并不容易. 我们先不考虑模运算本身的时间复杂度(算术运算的时间复杂度在Knuth的TAOCP中有详细的讨论), 我们只考虑这样的问题: 欧几里得算法在最坏情况下所需的模运算次数和输入的a 和b 的大小有怎样的关系?我们不妨设a>b>=1(若a<b 我们只需多做一次模运算, 若b=0或a=b 模运算的次数分别为0和1), 构造数列{un}: u0=a, u1=b, uk=uk-2 mod uk-1(k>=2), 显然, 若算法需要n 次模运算, 则有un=gcd(a, b), un+1=0. 我们比较数列{un}和菲波那契数列{Fn}, F0=1<=un, F1=1<=un-1, 又因为由uk mod uk+1=uk+2, 可得uk>=uk+1+uk+2, 由数学归纳法容易得到uk>=Fn-k, 于是得到a=u0>=Fn, b=u0>=Fn-1. 也就是说如果欧几里得算法需要做n 次模运算, 则b 必定不小于Fn-1. 换句话说, 若 b<Fn-1, 则算法所需模运算的次数必定小于n. 根据菲波那契数列的性质, 有Fn-1>(1.618)n/sqrt(5), 即b>(1.618)n/sqrt(5), 所以模运算的次数为O(lgb)---以b 为底数 = O(lg(2)b)---以2为底数,输入规模也可以看作是b 的bit 位数。
raptor折半查找法
Raptor是一个教育性的计算机编程学习工具,用于可视化算法和程序设计。
虽然Raptor 通常用于教学和理解算法的工作原理,但它并不是一个实际的编程语言或编译器,因此它不能直接执行代码。
然而,您可以使用Raptor来可视化算法的执行过程,包括折半查找法。
以下是使用Raptor可视化折半查找法的一般步骤:1. 打开Raptor:首先,打开Raptor编程学习工具。
2. 创建一个新程序:在Raptor中创建一个新的程序,以便开始构建折半查找算法。
3. 添加输入:在程序中添加输入,通常是一个有序的数组和要查找的目标元素。
您可以使用Raptor的输入操作符(通常是箭头符号)来模拟输入。
4. 初始化变量:创建变量来存储搜索范围的开始和结束索引以及中间索引。
初始化这些变量的值,通常开始索引为0,结束索引为数组的长度减1。
5. 创建循环结构:使用循环结构(通常是while循环)来执行折半查找。
循环条件通常是开始索引小于等于结束索引。
6. 计算中间索引:在每次迭代中,计算中间索引,通常通过将开始索引和结束索引相加并除以2来实现。
7. 比较中间元素:比较中间索引处的元素与目标元素。
如果它们相等,则找到了目标元素,结束搜索。
如果中间元素大于目标元素,则将结束索引更新为中间索引-1,否则将开始索引更新为中间索引+1。
8. 重复循环:根据比较的结果,重复步骤6和步骤7,直到找到目标元素或搜索范围缩小为0。
9. 输出结果:在找到目标元素或确定不存在时,输出搜索的结果。
10. 结束程序:完成折半查找的过程后,结束程序。
请注意,Raptor中的操作符和符号可能与实际编程语言有所不同,但上述步骤描述了折半查找算法的基本思想,您可以使用Raptor来可视化该算法的执行过程。
各种查找算法的性能比较测试(顺序查找、二分查找)
算法设计与分析各种查找算法的性能测试目录摘要 (2)第一章:简介(Introduction) (3)1.1 算法背景 (3)第二章:算法定义(Algorithm Specification) (4)2.1 数据结构 (4)2.2顺序查找法的伪代码 (4)2.3 二分查找(递归)法的伪代码 (5)2.4 二分查找(非递归)法的伪代码 (6)第三章:测试结果(Testing Results) (8)3.1 测试案例表 (8)3.2 散点图 (9)第四章:分析和讨论 (11)4.1 顺序查找 (11)4.1.1 基本原理 (11)4.2.2 时间复杂度分析 (11)4.2.3优缺点 (11)4.2.4该进的方法 (12)4.2 二分查找(递归与非递归) (12)4.2.1 基本原理 (12)4.2.2 时间复杂度分析 (13)4.2.3优缺点 (13)4.2.4 改进的方法 (13)附录:源代码(基于C语言的) (15)摘要在计算机许多应用领域中,查找操作都是十分重要的研究技术。
查找效率的好坏直接影响应用软件的性能,而查找算法又分静态查找和动态查找。
我们设置待查找表的元素为整数,用不同的测试数据做测试比较,长度取固定的三种,对象由随机数生成,无需人工干预来选择或者输入数据。
比较的指标为关键字的查找次数。
经过比较可以看到,当规模不断增加时,各种算法之间的差别是很大的。
这三种查找方法中,顺序查找是一次从序列开始从头到尾逐个检查,是最简单的查找方法,但比较次数最多,虽说二分查找的效率比顺序查找高,但二分查找只适用于有序表,且限于顺序存储结构。
关键字:顺序查找、二分查找(递归与非递归)第一章:简介(Introduction)1.1 算法背景查找问题就是在给定的集合(或者是多重集,它允许多个元素具有相同的值)中找寻一个给定的值,我们称之为查找键。
对于查找问题来说,没有一种算法在任何情况下是都是最优的。
有些算法速度比其他算法快,但是需要较多的存储空间;有些算法速度非常快,但仅适用于有序数组。
算法设计与分析第五章
第五章作业答案1、伪代码:假设查找范围是有序的,a<b1. low=1;high=n;//设置初始查找区间2. 测试查找区间[low,high]是否存在,若不存在,则查找失败;否则3. 取中间点mid=(low+high)/2; 比较a,b与r[mid],有以下三种情况:3.1 若a>r[mid],则high=mid-1;查找在左半区进行,转2;3.2 若b<r[mid],则low=mid+1;查找在右半区进行,转2;3.3 若a<r[mid]并且b>r[mid],则在左半区对a用折半查找找到对应的r[i]>=a&&r[i-1]<a,在右半区对b用折半查找r[j]<=b&&r[j+1]>b;4. r[i]到r[j]之间的元素即为问题的解参考代码:#include<iostream.h>int i=0;int j=0;//存储a-b的所有元素的起始下标和终止下标int finda(int s[],int begin,int end,int a)//查找边界为a的元素{if(begin==end)return begin;else{int m=(begin+end)/2;if(s[m]==a)return m;else if(s[m]>a)return finda(s,begin,m,a);else return finda(s,m+1,end,a);}}int findb(int s[],int begin,int end,int b)//查找边界为b的元素{if(begin==end){if(s[begin]>b) return begin-1;else return begin;}else{int m=(begin+end)/2;if(s[m]==b)return m;else if(s[m]<b)return findb(s,m+1,end,b);else return findb(s,begin,m,b);}}void find(int s[],int begin,int end,int a,int b)//缩小a-b的查找范围{if(begin==end){if(s[begin]>=a)i=begin;else if(s[begin]<=b)j=begin;}else{int m=(begin+end)/2;if(s[m]<a) find(s,m+1,end,a,b);else if(s[m]>b)find(s,begin,m,a,b);else {i=finda(s,begin,m,a);j=findb(s,m+1,end,b);}}}void main(){int s[]={1,2,5,8,11,24,31,40};int a=2;int b=30;find(s,0,7,a,b);cout<<i<<ends<<j<<endl;}4、参考代码:根据程序运行结果显示使用两种方法生成的堆序列不一定一样#include<iostream.h>const int N=8;void SiftHeap(int r[],int k,int n){int i=k,j=2*i;int temp;while(j<=n){if(j<n&&r[j]<r[j+1])j++;if(r[i]>r[j])break;else{temp=r[i];r[i]=r[j];r[j]=temp;i=j;j=2*i;}}}void InsertHeap(int r[],int k) {int i=k,j;int temp;while(i!=1){j=i/2;if(r[i]<r[j])break;else{temp=r[i];r[i]=r[j];r[j]=temp;i=j;}}}void main(){int s[N+1],s1[N+1];//输入s和s1for(int i=1;i<=N;i++){cin>>s[i];s1[i]=s[i];} //利用筛选法生成堆for(i=N;i>=1;i--)SiftHeap(s,i,N);//利用插入法生成堆for(i=1;i<=N;i++)InsertHeap(s1,i);//输出s和s1for(i=1;i<=N;i++)cout<<s[i]<<ends<<s1[i]<<endl;}。
折半查找法
high=13
折半查找判定树
判定树:折半查找的过程可以用二叉树来描述,树
中的每个结点对应有序表中的一个记录,结点的值为 该记录在表中的位置。通常称这个描述折半查找过程
的二叉树为折半查找判定树,简称判定树。
判定树的构造方法
⑴ 当n=0时,折半查找判定树为空;
high=13
例:查找值为22的记录的过程:
0 1 2 3 4 5 6 7 8 9 10 11 12 13
7 14 18 21 23 29 31 35 38 42 46 49 52
low=1 18<22 mid=7 31>22 mid=3 high=6
low=4 mid=5 23>22
hiபைடு நூலகம்h=4 21<22
9.2.2 折半查找(二分查找)
适用条件:
➢线性表中的记录必须按关键码有序; ➢必须采用顺序存储。
基本思想:在有序表中,取中间记录作为比较对象
,若给定值与中间记录的关键码相等,则查找成功; 若给定值小于中间记录的关键码,则在中间记录的左 半区继续查找;若给定值大于中间记录的关键码,则 在中间记录的右半区继续查找。不断重复上述过程, 直到查找成功,或所查找的区域无记录,查找失败。
9
7
10
5 6-7 8 9-10
11
1-2 2-3 4-5 5-6 7-8 8-9 10-11 11-
内部结点
外部结点
折半查找性能分析
具有n个结点的折半查找判定树的深度为 log 2 n +1 。
查找成功:在表中查找任一记录的过程,即是折半
查找判定树中从根结点到该记录结点的路径,和给定
折半法
二分査找也称折半査找,其优点是查找速度快,缺点是要求所要査找的数据必须是有序序列。
该算法的基本思想是将所要査找的序列的中间位置的数据与所要査找的元素进行比较,如果相等,则表示査找成功,否则将以该位置为基准将所要査找的序列分为左右两部分。
接下来根据所要査找序列的升降序规律及中间元素与所查找元素的大小关系,来选择所要査找元素可能存在的那部分序列,对其采用同样的方法进行査找,直至能够确定所要查找的元素是否存在,具体的使用方法可通过下面的代码具体了解。
1.#include<stdio.h>2.3.binarySearch(int a[],int n,int key){4.int low =0;5.int high = n -1;6.while(low<= high){7.int mid =(low + high)/2;8.int midVal = a[mid];9.if(midVal<key)10. low = mid +1;11.else if(midVal>key)12. high = mid -1;13.else14.return mid;15.}16.return-1;17.}18.19.int main(){20.int i, val, ret;21.int a[8]={-32,12,16,24,36,45,59,98};22.for(i=0; i<8; i++)23.printf("%d\t", a[i]);24.25.printf("\n请输人所要查找的元素:");26.scanf("%d",&val);27.28. ret =binarySearch(a,8,val);29.30.if(-1== ret)31.printf("查找失败 \n");32.else33.printf("查找成功 \n");34.35.return0;36.}运行结果:在上面的代码中,我们成功地通过二分査找算法实现了查找功能,其实现过程如下图所示。
伪代码及其实例讲解
伪代码及其实例讲解伪代码及其实例讲解伪代码(Pseudocode)是一种算法描述语言。
使用伪代码的目的是为了使被描述的算法可以容易地以任何一种编程语言(Pascal,C,Java,etc)实现。
因此,伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。
介于自然语言与编程语言之间。
它以编程语言的书写形式指明算法的职能。
相比于程序语言(例如Java, C++,C, Dephi 等等)它更类似自然语言。
它是半角式化、不标准的语言。
我们可以将整个算法运行过程的结构用接近自然语言的形式(这里,你可以使用任何一种你熟悉的文字,中文,英文等等,关键是你把你程序的意思表达出来)描述出来. 使用伪代码, 可以帮助我们更好的表述算法, 不用拘泥于具体的实现.人们在用不同的编程语言实现同一个算法时意识到,他们的实现(注意:这里是实现,不是功能)很不同。
尤其是对于那些熟练于不同编程语言的程序员要理解一个(用其他编程语言编写的程序的)功能时可能很难,因为程序语言的形式限制了程序员对程序关键部分的理解。
这样伪代码就应运而生了。
当考虑算法功能(而不是其语言实现)时,伪代码常常得到应用。
计算机科学在教学中通常使用虚拟码,以使得所有的程序员都能理解。
综上,简单的说,让人便于理解的代码。
不依赖于语言的,用来表示程序执行过程,而不一定能编译运行的代码。
在数据结构讲算法的时候用的很多。
语法规则例如,类Pascal语言的伪代码的语法规则是:在伪代码中,每一条指令占一行(else if,例外)。
指令后不跟任何符号(Pascal和C中语句要以分号结尾)。
书写上的“缩进”表示程序中的分支程序结构。
这种缩进风格也适用于if-then-else语句。
用缩进取代传统Pascal中的begin和end语句来表示程序的块结构可以大大提高代码的清晰性;同一模块的语句有相同的缩进量,次一级模块的语句相对与其父级模块的语句缩进。
算法的伪代码语言在某些方面可能显得不太正规,但是给我们描述算法提供了很多方便,并且可以使我们忽略算法实现中很多麻烦的细节。
折半查找所描述的算法
折半查找所描述的算法折半查找,也称为二分查找,是一种在有序数组中查找目标元素的算法。
它的基本思想是在每一步中将目标值与数组中间元素进行比较,从而缩小待查找范围,直到找到目标值或者确定目标值不存在。
具体的折半查找算法可以描述为以下几个步骤:1.确定查找范围:首先确定待查找元素所在的起始和结束位置。
一般情况下,初始条件下起始位置为0,结束位置为数组的长度减12. 计算中间位置:通过计算起始位置和结束位置的中间索引,可以得到中间位置mid。
中间位置可以通过如下公式获得:mid = (start + end) / 23. 检查中间元素:将目标元素与中间元素进行比较。
如果目标元素等于中间元素,则查找成功并返回中间位置。
如果目标元素小于中间元素,则新的结束位置为mid-1、如果目标元素大于中间元素,则新的起始位置为mid+14.更新查找范围:根据目标元素与中间元素的比较结果,更新起始位置和结束位置,然后重复步骤2和步骤3,直到查找成功或者待查找范围为空。
5.查找失败:如果查找范围为空,即起始位置大于结束位置,则表示查找失败。
折半查找算法的时间复杂度是O(logn),其中n是数组的长度。
这是由于每一次迭代都将查询范围缩小一半,所以最多需要进行logn次迭代。
下面是一个使用折半查找算法查找目标元素在有序数组中的位置的示例代码:```pythondef binary_search(arr, target):start = 0end = len(arr) - 1while start <= end:mid = (start + end) // 2if arr[mid] == target:return midelif arr[mid] < target:start = mid + 1else:end = mid - 1return -1#测试arr = [1, 3, 5, 7, 9, 11]target = 7result = binary_search(arr, target)if result != -1:print("目标元素在数组中的位置为", result)else:print("数组中不存在目标元素")```在上面的示例代码中,我们首先定义了一个binary_search函数。
《折半查找算法》的教学设计及反思
《折半查找算法》的教学设计及反思.江苏省白蒲高级中学刘兴圣226511授课题目:折半查找算法适应范围:高一年级所属科目:教科版高中信息技术选修模块——算法与程序设计模块授课章节:第三章第3节《在数组中查找数据》教学设计(一)教学目标知识与技能:让学生理解折半查找法的基本思想,并能够编写程序代码。
过程与方法:带领学生一同分析问题、体会理解算法设计思想,先掌握编写关键性语句,再到完整程序的书写,并最终通过分析代码进一步加深理解折半查找算法的设计思想。
让学生从中逐渐学会解决问题的基本方法。
情感态度与价值观:在分析折半查找算法的过程中,引导学生积极思考和分析问题,培养学生严谨的思维习惯。
通过各组讨论、实践活动,养成良好的与人协作交流能力。
(二)教材分析教学重点:以图示法方式,演示折半查找算法的基本思想。
教学难点:由折半查找算法的思想到程序代码编写的转换,尤其是其中关键性语句的编写是教学中的难点。
(三)学情分析学习对象是高一学生,本节知识内容是在学习了数组的相关知识和顺序查找算法之后进行的,由于折半查找算法逻辑性比较强,同时学生对算法的相关概念还比较陌生,基础相对欠缺,以及学生的差异比较大,所以在教学过程中尽量要放慢讲解的速度,循序渐进的展开知识点要素,让学生能够对相关的问题进行充分思索、分析,再到问题解决。
(四)教学策略创设趣味问题情境,引导学生了解什么是折半查找算法,以图示法方式来演示折半查找算法的基本思想,并以伪代码形式描述算法中的关键性语句,最终到完整程序代码的书写。
对课题中的关键环节采用日常生活问题引入,让学生通过比较,由浅入深地引导学生思考、讨论。
通过讲授、演示观察、讨论相结合,充分调动学生的主观能动性,以达到主动式学习、探究性学习。
(五)教学方法:图示法,讲授法。
(六)教学准备:多媒体教室。
(七)课时安排:一课时教学过程一、导入(2~3分钟)上一节课我们一起学习了顺序查询法,知道它一般应用在这种情况之下:待查数据表没有顺序,且数据表的长度比较短。
折半查找递归算法
折半查找递归算法折半查找是一种常用的查找算法,也称为二分查找。
它通过不断地将查找范围缩小一半来快速定位目标值。
递归算法是一种将问题分解成更小的子问题,并通过解决子问题来解决原始问题的方法。
因此,折半查找递归算法是将折半查找问题通过递归的方式解决的算法。
折半查找的思想非常简单,假设我们要在一个有序数组中查找特定的值。
首先,我们取数组的中间元素,与目标值进行比较。
如果中间元素等于目标值,则找到了目标值;如果中间元素大于目标值,则在数组的左半部分继续查找;如果中间元素小于目标值,则在数组的右半部分继续查找。
如此重复,直到找到目标值或者数组为空。
下面是折半查找递归算法的伪代码实现:```function binarySearchRecursive(array, target, start, end):if start > end:return -1mid = (start + end) // 2if array[mid] == target:return midelif array[mid] > target:return binarySearchRecursive(array, target, start, mid-1)else:return binarySearchRecursive(array, target, mid+1, end)```在这个算法中,我们通过递归调用binarySearchRecursive函数来实现折半查找。
函数接受一个有序数组array、目标值target以及查找范围的起始位置start和结束位置end作为参数。
首先,我们判断起始位置是否大于结束位置,如果是,则返回-1表示未找到目标值。
然后,我们计算中间位置mid,并将中间元素与目标值进行比较。
如果中间元素等于目标值,则返回中间位置;如果中间元素大于目标值,则在数组的左半部分继续查找,即调用函数binarySearchRecursive(array, target, start, mid-1);如果中间元素小于目标值,则在数组的右半部分继续查找,即调用函数binarySearchRecursive(array, target, mid+1, end)。
数据结构50:二分查找法(折半查找法)
数据结构50:⼆分查找法(折半查找法)折半查找,也称⼆分查找,在某些情况下相⽐于顺序查找,使⽤折半查找算法的效率更⾼。
但是该算法的使⽤的前提是静态查找表中的数据必须是有序的。
例如,在{5,21,13,19,37,75,56,64,88 ,80,92}这个查找表使⽤折半查找算法查找数据之前,需要⾸先对该表中的数据按照所查的关键字进⾏排序:{5,13,19,21,37,56,64,75,80,88,92}。
在折半查找之前对查找表按照所查的关键字进⾏排序的意思是:若查找表中存储的数据元素含有多个关键字时,使⽤哪种关键字做折半查找,就需要提前以该关键字对所有数据进⾏排序。
折半查找算法对静态查找表{5,13,19,21,37,56,64,75,80,88,92}采⽤折半查找算法查找关键字为 21 的过程为:图 1 折半查找的过程(a)如上图 1 所⽰,指针 low 和 high 分别指向查找表的第⼀个关键字和最后⼀个关键字,指针 mid 指向处于 low 和 high 指针中间位置的关键字。
在查找的过程中每次都同 mid 指向的关键字进⾏⽐较,由于整个表中的数据是有序的,因此在⽐较之后就可以知道要查找的关键字的⼤致位置。
例如在查找关键字 21 时,⾸先同 56 作⽐较,由于21 < 56,⽽且这个查找表是按照升序进⾏排序的,所以可以判定如果静态查找表中有 21这个关键字,就⼀定存在于 low 和 mid 指向的区域中间。
因此,再次遍历时需要更新 high 指针和 mid 指针的位置,令 high 指针移动到 mid 指针的左侧⼀个位置上,同时令 mid 重新指向 low 指针和 high 指针的中间位置。
如图 2 所⽰:图 2 折半查找的过程(b)同样,⽤ 21 同 mid 指针指向的 19 作⽐较,19 < 21,所以可以判定 21 如果存在,肯定处于 mid 和 high 指向的区域中。
所以令 low 指向 mid 右侧⼀个位置上,同时更新 mid 的位置。
算法与程序设计复习知识点
算法与程序设计复习知识点算法与程序设计复习知识点一、算法基础1.1 算法的定义与特点1.2 算法的描述方式:伪代码、流程图1.3 算法的复杂度分析:时间复杂度、空间复杂度1.4 常见的算法设计策略:分治法、动态规划、贪心法、回溯法、分支限界法二、基本数据结构2.1 线性表:数组、链表、栈、队列2.2 树与二叉树:二叉树的遍历、线索二叉树2.3 图:图的存储方式、图的遍历算法、最短路径算法、最小树算法三、排序算法3.1 插入排序:直接插入排序、希尔排序3.2 交换排序:冒泡排序、快速排序3.3 选择排序:简单选择排序、堆排序3.4 归并排序3.5 基数排序四、查找算法4.1 顺序查找4.2 折半查找4.3 哈希查找五、字符串匹配算法5.1 朴素的模式匹配算法5.2 KMP算法5.3 Boyer-Moore算法5.4 Rabin-Karp算法六、动态规划6.1 背包问题:0-1背包、完全背包6.2 最长公共子序列问题6.3 最短路径问题七、图算法7.1 深度优先搜索(DFS)7.2 广度优先搜索(BFS)7.3 最小树算法:Prim算法、Kruskal算法7.4 最短路径算法:Dijkstra算法、Floyd算法7.5 拓扑排序算法附件:附件一:算法复杂度分析表附件二:常用数据结构图示法律名词及注释:1.算法:根据一定规则解决特定问题的步骤和方法。
2.伪代码:一种介于自然语言和编程语言之间的描述方式,用于表示算法的思路和流程。
3.流程图:用图形化的方式表示算法的执行流程和控制结构。
4.复杂度分析:对算法运行时间和所需空间的量化评估。
5.时间复杂度:表示算法运行时间与输入规模之间的关系。
6.空间复杂度:表示算法所需内存空间与输入规模之间的关系。
7.分治法:将原问题划分为多个相互独立且具有相同结构的子问题来求解的方法。
8.动态规划:将一个复杂问题分解为多个简单的子问题来求解,并将结果保存以供重复使用的方法。
C语言程序设计100例之(21):折半查找
C语言程序设计100例之(21):折半查找例21 折半查找问题描述顺序查找是一种最简单和最基本的检索方法。
其基本思想是:从检索表的一端(如表中第一个记录或最后一个记录)开始,逐个进行记录的关键字和给定值的比较。
若某个记录的关键字和给定值比较相等,则查找成功;否则,若直至检索表的另一端(如最后一个记录或第一个记录),其关键字和给定值比较都不等,则表明表中没有待查记录,查找不成功。
顺序查找可以写成一个简单的一重循环,循环中依次将检索表(不妨设为数组a)中的元素与给定值比较,若相等,用break退出循环。
算法描述为:for (i=0; i< n;i++)if (a[i]==x) break;这样,循环结束后,若循环控制变量i小于数组元素个数n,则查找成功;否则,查找失败。
顺序查找实现简单,但效率不高。
当待查找序列有序时,即各检索表中元素的次序是按其记录的关键字值的大小顺序存储的。
此时采用折半查找会大幅提高查找效率。
折半查找的基本思想是先确定待查数据的范围(区间),然后逐步缩小范围直到找到或找不到该记录为止。
具体做法是:先取数组中间位置的数据元素与给定值比较。
若相等,则查找成功;否则,若给定值比该数据元素的值小(或大),则给定值必在数组的前半部分(或后半部分),然后在新的查找范围内进行同样的查找。
如此反复进行,直到找到数组元素值与给定值相等的元素或确定数组中没有待查找的数据为止。
因此,折半查找每查找一次,或成功,或使查找数组中元素的个数减少一半,当查找数组中不再有数据元素时,查找失败。
输入一个整数,在给定的有序数组中查找该整数是否存在,若存在,给出其数组的下标;若不存在,输出查找不成功信息。
输入格式第一行是一个正整数N (1 ≤N ≤100000),代表数组中元素的个数。
第二行有N个整数,这N个整数从小到大排列好了。
第三行是一个整数M,代表待查找元素的个数。
接下来的M行,每行有一个整数x,表示每个待查找的元素。
二分查找迭代法和分治法
二分查找迭代法和分治法二分查找(Binary Search)是一种常用的查找算法,也叫折半查找。
二分查找通过将待查找的序列一分为二,然后确定目标元素在哪个子序列中,从而逐渐缩小查找范围,直到找到目标元素或者确定目标元素不存在。
二分查找可以使用迭代法或者分治法来实现。
首先来看迭代法的实现。
迭代法的思路是不断更新查找范围的上界和下界,然后根据中间位置的值与目标值的比较结果,决定是继续在左半部分查找还是在右半部分查找,直到找到目标值或者确定目标值不存在。
下面是使用迭代法实现二分查找的伪代码:```function binarySearch(nums, target):left = 0right = length(nums) - 1while left <= right:mid = (left + right) / 2if nums[mid] == target:return midelsif nums[mid] < target:left = mid + 1else:right = mid - 1return -1```其中,`nums`是待查找的有序数组,`target`是目标值。
迭代法通过不断更新`left`和`right`的值,从而在每次循环中将查找范围缩小为原来的一半。
接下来,我们来看分治法的实现。
分治法是将问题分解为更小的子问题并解决,然后将子问题的解合并为原问题的解。
对于二分查找,使用分治法的思路是将待查找的序列一分为二,然后分别在左半部分和右半部分递归地进行查找,直到找到目标值或者确定目标值不存在。
下面是使用分治法实现二分查找的伪代码:```function binarySearch(nums, target):return binarySearchRecursive(nums, target, 0, length(nums) - 1)function binarySearchRecursive(nums, target, left, right): if left > right:return -1mid = (left + right) / 2if nums[mid] == target:return midelsif nums[mid] < target:return binarySearchRecursive(nums, target, mid + 1, right) else:return binarySearchRecursive(nums, target, left, mid - 1) ```其中,`binarySearchRecursive`函数是递归地进行二分查找的函数。