初三数学教学课件

合集下载

人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题

人教版九年级上册数学精品教学课件 第22章 二次函数 第3课时 抛物线形实物及运动轨迹问题

1 令 x=0 得 y=− 45 ×(0 − 15)2 + 45=40,
∴ 点 B 的坐标为 (0,40).
∴ 这名运动员起跳时的竖直高度为 40 米.
能力提升 悬索桥两端主塔塔顶之间的主悬钢索,其形状 可近似地看作抛物线,水平桥面与主悬钢索之间用垂直 钢索连接. 已知两端主塔之间的水平距离为 900 m,两主 塔塔顶距桥面的高度为 81.5 m,主悬钢索最低点离桥面 的高度为 0.5 m.
当 y = 0 时,可求得点 C 的坐标为 (2.5,0);
同理,可求得点 D 的坐标为 (-2.5,0). y 根据对称性,如果不计其它因素,
●B (1,2.25)
A●(0,1.25)
那么水池的半径至少要 2.5 m,才
能使喷出的水流不致落到池外.

D
O

C
x
例3 如图,一名运动员在距离篮球框中心 4 m (水平距 离) 远处跳起投篮,篮球准确落入篮框,已知篮球运行 的路线为抛物线,当篮球运行的水平距离为 2.5 m 时, 篮球达到最大高度,且最大高度为 3.5 m.如果篮框中 心距离地面 3.05 m,那么篮球在该运动员出手时的高度 是多少?
OABC 的长是 12 m,宽是 4 m,按照图中所示的平面
直角坐标系,抛物线可以用 y= − 1 x2 + 2x + c 表示. (1)请写出该抛物线的函数解析式;6
解:根据题意,得 C (0,4). 将其代入
抛物线 y=− 1 x2 + 2x + c 中,得 c=4,

6
抛物线解析式为
y=−
1
x2
例2 某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出

九年级数学上册教学课件-圆锥的侧面积和全面积

九年级数学上册教学课件-圆锥的侧面积和全面积
l
)n
l
h
n r 360 l
O
r
当圆锥的轴截面是等边三角形时,圆锥的侧面展开图是一个半圆
探究新知
根据下列条件求圆锥侧面积展开图的圆心角(r、h、 分别是圆锥的底面 半径、高线、母线长) (1 h= 2,r = 1 则 =___1_8_0_°__
(2) h=3, r=4 则 =___2_8_8_°____
1 (3)
3.圆锥的侧面积为 8cm2 ,其轴截面是一个等边三角形,则该轴
截面的面积( A )
A. 4 3cm2
B 8. 3cm2
C. 4 3cm2
D.8 3cm2
勇攀高峰
(09年湖北)如图,已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的 直线为轴,将ΔABC旋转一周,则所得几何体的表面积是( ).
_3_8_4___c_m__2 ,全面积为_2_4_0___c_m_2__
2.一个圆锥形的冰淇淋纸筒,其底面直径为6cm, 高为4cm,围成这样的冰淇淋
纸筒所需纸片的面积为( )
A.
B.
C.
D.
D
66cm2
30cm2
28cm2
15cm2
随堂练习
例3.蒙古包可以近似地看成由圆锥和圆柱组成的.如果想用毛毡搭建20个底面积为35 m2,
′D爬圆=D23.=rl行锥×36的沿03°6A.最在0B°短展R=t1Δ路开2A0线成B∴∴°∠答垂解C是扇∠BB::足B中A3D形B它将为B,=AA′D爬3圆=D∠23B..=Brl行锥B×′36,AA的沿03D°6则A.最在0=B°点短展6R=0Ct1Δ路开°∴ ∴∠C答 垂2解是,A0A线成∠BB°B::足BBCA是DB扇B=它将中为B′的=A23形3′,D爬圆=D.23中A.3∠=rBl行锥.点B×36B的沿′0,,3A°垂答 解6∴ ∴A∠D.∴ ∴最答 垂解∠∴ ∴答 垂解 则∠过在将答 垂0解BBB::=足°∠∠BBB∠::::短足足A圆点B展BD点R:=:足B6AA它 将 BD为 DABDBtA01它将锥BC为它将BΔ路为B它开B将为B°=A2=DAD=爬 圆 A′是,作A′沿D′爬圆=230DD爬圆AD线=爬圆D成23=.DB23°23.Br行 锥 lB=AB.r.l行锥==Crrl行B锥 l行6B锥是扇3×D=36展的 沿中0××′的沿36363的03⊥23的3沿的沿形00°3636开A.最 A.,在.最°°6中在060AA.B最A.最BA在成°0在03短∠R展 B展BR=°B点C°.短展扇短R=t展BtR=1,Δ路1B开 开,垂 答 解 t21′t形AΔ路21,开Δ路A开02线线 B成0过成 2BBA::°足AAD0线0则成AD线CBBB成°是扇是 点B扇 °=它 将 BB为中CA是扇点’C23是扇形B23中6形D,爬 圆 中,23作230D形CA23A形,°3r∠l3行 锥 ,.是B,BA.B6.3AAB3∠BDBB30.的 沿 ∠B′3BB,B.A⊥BB6,B.A=′D在 B最,0则A′′的B,则AA=3DR短则展点.CD6中则点 =t6,10C路 点开 =0°26A点C点是,006,C线 AB成是°A,0BC是B,C°B是 BA扇 B是中 ,=过B′BBA的233形BB,B=点.的3中′B的A.=33B′中B的点..中3B作B.,点A中点,B

《数学教学》课件

《数学教学》课件
小数
介绍小数的概念,包括有限小数、 无限循环小数和无限不循环小数, 以及小数的性质和运算规则。
数的四则运算
加法
介绍加法的概念和运算 规则,包括加法的交换
律和结合律。
减法
介绍减法的概念和运算 规则,包括减法的性质
和运算技巧。
乘法
介绍乘法的概念和运算 规则,包括乘法的交换 律、结合律和分配律。
除法
介绍除法的概念和运算 规则,包括除法的性质
解释空间思维在数学中的重要性,如 何通过空间想象力来理解和解决几何 问题。
二维与三维图形
介绍二维和三维图形的基本概念,以 及如何在空间思维中应用这些概念。
转换与变换
阐述如何在空间思维中应用转换和变 换的概念,如平移、旋转和对称。
应用实例
提供一些几何问题,让学生实践空间 思维的应用,如解决立体几何问题、 解析几何问题等。
比例函数和三角函数等。
03
数学应用
生活中的数学
总结词
生活中的数学无处不在,与我们的日常生活紧密相连。
详细描述
从购物时计算找零到规划家庭预算,再到理解各种图表和统计数据,数学在日 常生活中起着至关重要的作用。通过学习数学,我们可以更好地理解这些日常 生活中的数学问题,并解决它们。
数学在科学中的应用
总结词
数学在科学领域中扮演着至关重要的角色,是科学研究和技 术发展的基础。
详细描述
从物理学到化学,再到生物学和地球科学,数学模型和理论 在解释自然现象、预测未来趋势和推动科技进步方面发挥着 关键作用。通过学习数学,我们可以更好地理解科学原理, 并运用这些原理解决实际问题。
数学在工程中的应用
总结词
数学在工程设计和制造过程中发挥着核心作用,是实现创新和优化的关键。

九年级数学上册教学课件《圆周角》

九年级数学上册教学课件《圆周角》
【教材P88练习 第3题】
证明:∵ ∠ACB= ∠AOB,∠BAC= ∠BOC,∠AOB=2∠BOC, ∴ ∠ACB =2∠BAC.
4. 如图,你能用三角尺确定一张圆形纸片的圆心吗?有 几种方法?与同学交流一下.
【教材P88练习 第4题】
解:根据90º的圆周角所对的弦是直径,两直径的交点即是圆心.

(2)如何证明一条弧所对的圆周角等于它所对的圆心角的一半?
第一种情况:
证明:如图,连接 AO 并延长交⊙O 于点 D.∵OA=OB,∴∠BAD=∠B.又∵∠BOD=∠BAD+∠B,
第二种情况:
D
请同学们自己完成证明.
第三种情况:
一条弧所对的圆周角等于它所对的圆心角的一半.
圆周角定理:
拓展延伸


解:(1)连接OA,交BF于点M.∵A是BF上的中点,∴OA垂直平分BF.∴∠BOM=90°-∠B=90°-α=40°.∴∠C= ∠AOB= ×40°=20°,即β=20°.(2)β=45°- α.证明:由(1)知∠BOM=90°-α.又∠C=β= ∠AOB,∴β= (90°-α)=45°- α.
等弧所对的圆周角相等.

等弧:
∠BDC=∠CAE
同弧或等弧所对的圆周角相等.
推论1:
显然,在同圆或等圆中,相等的圆周角所对应的弧相等,所对应的弦也相等.
下列说法是否正确,为什么?“在同圆或等圆中,同弦或等弦所对的圆周角相等”.
D
B
C
O
E
.
一条弦所对应的圆周角有两个.
这两个角有什么关系吗?
9.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合;将三角形ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是 .

九年级数学上册教学课件《弧、弦、圆心角》

九年级数学上册教学课件《弧、弦、圆心角》
24.1.3 弧、弦、圆心角
九年级上册
问题1:圆是中心对称图形吗?它的对称中心在哪里?问题2:把圆绕着圆心旋转一个任意角度,旋转之后的图形还能与原图形重合吗?
这节课我们利用圆的任意旋转不变性来探究圆的另一个重要定理.
(1)知道圆是中心对称图形,并且具有任意旋转不变性.(2)知道什么样的角是圆心角,探究并得出弧、弦、圆心角的关系定理.(3)初步学会运用弧、弦、圆心角定理解决一些简单的问题.
1.从课后习题中选取;2.完成练习册本课时的习题.
A
60°



3.如图,在⊙O中,点C是AB的中点,∠A=50°,则∠BOC= .
40°

4.如图,在⊙O中,AB=AC,∠C=75°,求∠A的度数.解:∵AB=AC,∴AB=AC.∴∠B=∠C=75°,∴∠A=180°-∠B -∠C=30°.




5.如图,在⊙O中,AD=BC,求证:AB=CD.证明:∵AD=BC.∴AD=BC.∴AD+AC=BC+AC,即CD=AB.∴AB=CD.
【教材P85练习 第2题】
解:∵ ,
∴∠BOC=∠COD=∠DOE.又=∠COD=35°,∴∠BOE=∠BOC+∠COD+ ∠DOE=105°,则∴∠AOE=180°-∠BOE=75°
1.四个元素: 圆心角、弦、弧、弦心距
2.四个相等关系:
① 圆心角② 弧 弦④ 弦心距



7.如图,在⊙O中,弦AB与CD相交于点E,AB=CD.(1)求证:△AEC≌△DEB;(2)点B与点C关于直线OE对称吗?试说明理由.
拓展延伸
(1)证明:连接AD.∵AB=CD, ∴AB=CD. ∴AB-AD=CD-AD.即BD=AC. ∴BD=AC.在△ADB和△DAC中,∴△ADB≌△DAC(SSS).

初中九年级(初三)数学课件 射影定理

初中九年级(初三)数学课件 射影定理

所以:AC2 AB DA
A
DB
同理,得:CDB ∽ ACB CD DB CB CB2 AB DB
AC CB AB
ACD ∽ CBD AC CD AD CD2 BD AD
CB BD CD
直角三角形中的成比例线段
在RtABC中,CD是高,则有
C
AC是AD,AB的比例中项。
BC是BD,AB的比例中项。
原来学好数学,一点 都不难!
教 学





目 标





你知道吗?
直角三角形中的成比例线段
使学生了解射影的概念,掌握射影定理及其应用。
直角三角形中的比例线段定理在证题和实际计算中有较
多的应用。
例2证法有一定的技巧性。
直角三角形中的成比例线段
1.
已学习了相似三角形的判定及直角三角形相似的判定方 法。今天我们进一步学习直角三角形的特性。
CD是BD,AD的比例中项。
A
DB
那么AD与AC,BD与BC是什么关系呢? 这节课,我们先来学习射影的概念。
直角三角形中的成比例线段
1.射影:
(1)太阳光垂直照在A点,留在直线MN
上的影子应是什么?
B
(2)线段留在MN上的影子是什么? M B’
.A A’ N
定义:
B
A
过线段AB的两个端点分别作直线l的垂线, 垂足A’,B’之间的线段A’B’叫做线段AB在
C
分析:利用射影定理和勾股定理
CD2 AD DB 2 6 12,
解:
CD
12 2
3cm;
AD
B
AC2 AD AB 2 2 6 16,

人教版九年级上册数学精品教学课件 第21章 一元二次方程 第1课时 传播问题与一元二次方程

人教版九年级上册数学精品教学课件 第21章 一元二次方程 第1课时 传播问题与一元二次方程

x(x 1) 10. 2
解得 x1=5,x2=−4(舍去).∴ x=5.
答:共有 5 个人参加聚会.
归纳 握手问题及球赛单循环问题要注意重复进行了 一次,所以要在总数的基础上除以 2.
【变式题】某中学组织初三学生开展足球比赛,以班为
单位,采用主客场赛制 (即每两个班之间都进行两场比 赛),计划安排 72 场比赛,则共有多少个班级参赛? 解:设共有 x 个班级参赛,则每个班级要进行(x-1)场
第 2 轮传染后人数 x(x + 1) + x + 1
根据示意图,列表如下:
传染源人数 第1轮传染后的人数 第2轮传染后的人数
1
1 + x = (1 + x)1 1 + x + x(1 + x) = (1 + x)2
解:设每轮传染中平均一个人传染了 x 个人.
根据题意,得 (1 + x)2 = 121.
小 分


x
…… 支干
x2 = −12 (不合题意,舍去).
x
答:每个支干长出 11 个小分支.
主干 1
交流讨论 1. 在分析引例和例 1 中的数量关系时它们有何区别?
每个支干只分裂一次,每名患者每轮都传染.
2. 解决这类传播问题有什么经验和方法? (1)审题,设元,列方程,解方程,检验,作答; (2)可利用表格梳理数量关系; (3)关注起始值、新增数量,找出变化规律.
A. x2 = 1980 C. 1 x(x - 1) = 1980
2
B. x(x + 1) = 1980 D. x(x - 1) = 1980
2. 有一根月季,它的主干长出若干数目的支干,每个支

最新浙教版九年级数学下册教学课件全册

最新浙教版九年级数学下册教学课件全册
最新浙教版九年级数学下册 教学课件全册
第1章 解直角三角形 1.1 锐角三角函数
1.1 锐角三角函数(1)
锐角三角函数的定义
直角三角形ABC可以简记为Rt△ABC,你能 说出各条边的名称吗?
B
斜边 c
对边 a
┓┓
A
C
邻边 b
实际问题
某商场有一自动扶梯,其倾斜角为30°,高为7m, 扶梯的长度是多少?
作业
1.计算:(1)tan450-sin300; (2)cos600+sin450-tan300;
36 tan2 300 3 sin 600 2 cos 450.
2.如图,河岸AD,BC互相平行,桥AB垂直 于两岸.桥长12m,在C处看桥两端A,B,夹 角∠BCA=600. 求B,C间的距离(结果精确到1m).
提示
1.sinA,cosA,tanA 是在直角三角形中定义的, ∠A是锐角(注意数形结合,构造直角三角形).
2.sinA, cosA,tanA 是一个比值(数值). 3.sinA, cosA, tanA 的大小只与∠A的大小有 关,而与直角三角形的边长无关.
小练习
1、如图1,在Rt△MNP中,∠N=90゜. ∠P的对边是_________,∠P的邻边是___________; ∠M的对边是________,∠M的邻边是___________;
1 2
(C) 小于 3
2
(B)大于
1 2
(D)大于 3
2
☆ 应用练习 1.已知角,求值 2.已知值,求角 3. 确定值的范围 4. 确定角的范围
确定角的范围
3. 当∠A为锐角,且tan A的 值大于 3 时,∠A( B )
3
(A)小于30° (B)大于30°

九年级数学上册教学课件《几何图形面积问题》

九年级数学上册教学课件《几何图形面积问题》

基础巩固
1.如图,四边形的两条对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?
解:设AC=x,四边形ABCD面积为y,则BD=(10-x).即当AC、BD的长均为5时,四边形ABCD的面积最大.
2.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(如图所示),墙长为18m,这个矩形的长,宽各为多少时,菜园的面积最大,最大面积是多少?
问题:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2 (0≤t≤6). 小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?
分析:①由a=-5可得,图象的开口向下;②结合自变量t的取值范围0≤t≤6,画函数图象的草图如图;③根据题意,结合图象可知,小球在抛物线的顶点时为最大高度。
拓展延伸
4.已知矩形的周长为36 cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,圆柱的侧面积最大?
解:设矩形的长为xcm,圆柱的侧面积为ycm2,则矩形的宽为(18-x)cm,绕矩形的长或宽旋转,圆柱的侧面积相等.有y=2πx(18-x)=-2π(x-9)2+162π(0<x<18).当x=9时,y有最大值为162π.即当矩形的长、宽各为9cm时,圆柱的侧面积最大。
Байду номын сангаас
l
S
①已知矩形场地的周长是60m,一边长是lm,则另一边长是 m,场地面积S= m2.②由一边长l及另一边长30-l都是正数,可列不等式组: .解不等式组得l的范围是 .
l
S
解:
场地的面积
S=l(30-l)
即S=-l2+30l

九年级数学上册教学课件《二次函数的图象和性质(第2课时)》

九年级数学上册教学课件《二次函数的图象和性质(第2课时)》
y2<y3<y1
________________

解:∵抛物线y=3(x+ 2 )2的对称轴为x=- 2,a=3>0,开口向上,
∴当x<- 2时,即在对称轴的左侧,y随x的增大而减小;当x>- 2时,
即在对称轴的右侧,y随x的增大而增大.
∵点A的坐标为(-3 2,y1),
∴点A在抛物线上关于x=- 2的对称点A′的坐标为( 2,y1).
y随x的增大而增大.
当x>h时,y随x的增大
而减小;x<h时,y随x
的增大而增大.
探究新知
22.1 二次函数的图像和性质
素养考点 二次函数y = a(x-h)2 的图象和性质
例 若抛物线y=3(x+ 2 )2的图象上的三个点,A(-3 2 ,y1),
B(-1,y2),C(0,y3),则y1,y2,y3的大小关系为
22.1 二次函数的图像和性质
能力提升题
在同一坐标系中,画出函数y=2x2 与y=2(x-2)2 的图
象,分别指出两个图象之间的相互关系.
y
解:图象如右图.
y = 2x2
函数y=2(x-2)2的图象由函数y=2x2的
图象向右平移2个单位得到.
x
O
2
课堂检测
22.1 二次函数的图像和性质
拓广探索题
y 1 x2
式可表示为y=a(x-3)2,
把x=-1,y=4代入,得4=a(-1-3)2,a =
因此平移后二次函数关系式为y=
1
(x-3)2.
4
1

4
方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a不变,
括号内应“减去3”;若向左平移3个单位,括号二次函数的图像和性质

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.一、教学内容1. 第1章:二次函数详细内容:二次函数的定义、图像、性质、二次函数的顶点式与一般式之间的转换、最值问题等。

2. 第2章:锐角三角函数详细内容:锐角三角函数的定义、图像、性质、互化公式、解直角三角形等。

3. 第3章:圆详细内容:圆的基本概念、圆的方程、圆的性质、直线与圆的位置关系等。

二、教学目标1. 理解并掌握二次函数、锐角三角函数和圆的基本概念和性质。

2. 学会运用二次函数、锐角三角函数和圆的方程解决实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:二次函数与锐角三角函数的性质、图像的理解,圆的方程的求解。

2. 教学重点:二次函数的应用、锐角三角函数的互化公式、直线与圆的位置关系。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、草稿纸、计算器等。

五、教学过程1. 实践情景引入通过生活中与二次函数、锐角三角函数和圆相关的实例,激发学生兴趣,引导学生进入学习状态。

2. 例题讲解(1)二次函数部分:以实际案例为例,讲解二次函数的性质、图像、顶点式与一般式的转换等。

(2)锐角三角函数部分:通过具体例题,讲解锐角三角函数的定义、图像、性质、互化公式等。

(3)圆部分:结合实例,讲解圆的方程、性质、直线与圆的位置关系等。

3. 随堂练习设计具有针对性的练习题,让学生及时巩固所学知识。

六、板书设计1. 二次函数:定义、图像、性质、顶点式与一般式的转换。

2. 锐角三角函数:定义、图像、性质、互化公式。

3. 圆:方程、性质、直线与圆的位置关系。

七、作业设计1. 作业题目:(2)锐角三角函数:已知直角三角形的两个锐角分别为30°和60°,求第三个锐角的正弦、余弦、正切值。

(3)圆:已知圆的方程为(x2)^2+(y3)^2=25,求圆心坐标和半径。

2. 答案:(1)解:x^25x+6=0,解得x1=2,x2=3。

人教版九年级数学上册全册完整优质课件

人教版九年级数学上册全册完整优质课件

人教版九年级数学上册全册完整优质课件一、教学内容二、教学目标通过本节课学习,我希望学生能够掌握一元二次方程、二次函数、圆基本性质及概率初步等知识,培养他们解决实际问题能力,提高数学思维和逻辑推理能力。

三、教学难点与重点本节课教学难点在于二次函数图像与性质理解、圆与直线关系判定以及概率计算。

教学重点是一元二次方程求解方法、二次函数顶点坐标求法以及圆方程。

四、教具与学具准备教具:多媒体课件、黑板、粉笔。

学具:学生用书、练习本、铅笔。

五、教学过程1. 实践情景引入:通过展示生活中实例,引入一元二次方程、二次函数等概念,激发学生兴趣。

2. 例题讲解:(1)求解一元二次方程:x^2 5x + 6 = 0。

(2)二次函数y = x^2 2x 3图像及顶点坐标求法。

(3)圆方程x^2 + y^2 = 4图像及性质。

(4)计算随机事件A和B同时发生概率。

3. 随堂练习:针对每个知识点设计相应练习题,让学生独立完成,并及时给予反馈。

六、板书设计1. 一元二次方程求解方法、判别式。

2. 二次函数图像、性质、顶点坐标求法。

3. 圆方程、性质、圆与直线关系。

4. 概率计算、随机事件独立性。

七、作业设计1. 作业题目:(1)求解一元二次方程:x^2 3x 4 = 0。

(2)求二次函数y = x^2 4x + 3顶点坐标。

(3)已知圆方程为x^2 + y^2 4x 6y + 9 = 0,求圆半径和圆心坐标。

(4)计算随机事件A和B同时发生概率,已知P(A) = 0.3,P(B) = 0.4,P(AB) = 0.12。

2. 答案:(1)x1 = 1,x2 = 4。

(2)顶点坐标为(2,1)。

(3)半径为2,圆心坐标为(2,3)。

(4)P(A∩B) = 0.12。

八、课后反思及拓展延伸本节课结束后,我将反思教学过程中不足之处,并根据学生掌握情况,对教学内容进行适当调整。

同时,针对学有余力学生,我会设计一些拓展延伸题目,提高他们数学思维能力和解决问题能力。

九年级数学上册教学课件《切线的判定与性质》

九年级数学上册教学课件《切线的判定与性质》

∵ OA⊥l∴ l是⊙O的切线.
几何符号表达:
OA是半径,
于A
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线.
判断:
1. 过半径的外端的直线是圆的切线( )2. 与半径垂直的的直线是圆的切线( )3. 过半径的端点与半径垂直的直线是圆的切线( )
直线与圆相切
切线
.
切点
判断直线和圆相切有哪两种办法?
1. 和圆有且只有一个公共点的直线是圆的切线.
2. 圆心到直线的距离等于半径的直线是圆的切线.
1.切线和圆只有一个公共点.
2.圆心到切线的距离等于半径.
切线具有什么性质?
定义法:
数量法(d=r ):
如图,在⊙O中,经过半径OA的外端点A作直线 l ⊥OA ,则直线l与⊙O的位置关系怎样?为什么?
条件一:直线l 经过半径OA的外端点A.
条件二:直线l 垂直于半径OA.
显然,圆心到直线的距离d =半径 r
相切
切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线.
思考
【教材P98练习 第2题】
切线的性质定理:圆的切线垂直于过切点的半径.
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.
1.从课后习题中选取;2.完成练习册本课时的习题.
C
4.如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,求证:AP=BP.证明:连接OP.∵AB切⊙O于点P,∴OP⊥AB.∴AP=BP(垂径定理).
5.如图,AB是⊙O的直径,∠B=∠CAD.求证:AC是⊙O的切线.证明:∵AB是⊙O的直径,∴∠BDA=90°.∴∠B+∠BAD=90°.又∵∠B=∠CAD.∴∠CAD+∠BAD=∠BAC=90°.∵AC过点A,∴AC是⊙O的切线.

九年级数学《锐角三角函数》教学课件

九年级数学《锐角三角函数》教学课件
组内合作 相互交流
请同学们根据思考题,以及自学中的疑惑组 内相互交流。
尝试练习
B
1.如图△ABC中,∠C=90°,BC=5,AC=12.
5
判断:(1)sinA=13( √)
C
(2)tanB= (5
12
)×
2.如图,在Rt△ABC中,∠C=90°.
A
⑴ 若BC=8,AB=17,求sinA, cosA,tanA的值;
0<sinA<1,0<cosA<1.
小组展示
锐角α的正弦,余弦和正切统称∠α的三角函数
注意:
1、在三角函数的表示中,用希腊字母或单独一个大写 英文字母表示的角前面的“∠”一般省略不写,否则 要写. 1、sinA、cosA是在直角三角形中定义的,∠A是锐角 (注意数形结合,构造直角三角形)。 2、sinA、 cosA是一个比值(数值)。 3、sinA、 cosA的大小只与∠A的大小有关,而与直角
导入新课
如图,在Rt△ABC中,∠C=90°,当锐角 A确定时,∠A的对边与邻边的比就随之确 定, 那么∠A的对边与斜边,邻边与斜边之 间的比是否也随之确定?
学习目标
1.掌握锐角的正弦,余弦,三角函数定义。
2.会求一个锐角的三角函数。
3.灵活运用锐角的三角函数解决相关问题。
自主学习 学会质疑
自学课本115页至116页思考下列问题: 1.什么叫锐角的正弦,余弦,如何表示,表示 时需注意什么? 2.一个锐角的三角函数包括哪几个函数? 如何求一个锐角的三角函数值? 3.锐角A的正弦值,余弦值的取值范围是多少?
A的邻边 b
A
C B
⑵ 若BC︰AB=5︰13 ,求sinA, cosA,tanA的值; ⑶ 若sinA= 5, 求sinB的值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.平均数计算公式①的应用
例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温.
让学生动手计算,以巩固平均数计算公式(一名学生板演)
教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同.
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲7 8 6 8 6 5 9 10 7 4
乙9 5 7 8 7 6 8 6 7 7
1.怎样比较两个人的成绩2.应选哪一个人参加射击比赛
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
例2从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
计算它们的平均质量.(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.
2.平均数的概念及计算公式
一般地,如果有n个数
那么

叫做这n个数的平均数,
读作“x拨” .
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.
一般地,当一组数据
的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
那么
因此,


为了加深学生对公式②的认识,再让学生指出例2的
各是什么(学生回答)
课堂练习:
教材p148中~p149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识.
这节课我们首先来学习平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
86 91 100 72 93 89 90 85 75 95
这个小组的平均成绩是多少
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
2.求n个数据的平均数的公式①.
3.平均数的简化计算公式②.这个公式很重要,要学会运用.
方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计行计算.
八、布置作业
教材p153中1、2、3、4 .
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢引导学生观察数据有什么特点都接近于哪一个数启发学生讨论,寻找简便算法.
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.
初三数学教学课件
初三数学教学课件已经为大家准备好啦,老师们,大家可以参考以下教案内容,整理好自己的授课思路哦!
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容.
2.了解平均数的意义,会计算一组数据的平均数.
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.
1.教学重点:平均数的概念及其计算.
2.教学难点:平均数的简化计算.
3.教学疑点:平均数简化公式的应用,a如何选择.
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
讲完例2后,教师指出几点:常数a的取法不是惟一的;
读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受.
3.推导公式②
(二)能力训练点
培养学生的观察能力、计算能力.
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯.
2.渗透数学来源于实践,反地来又作用于实践的观点.
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.
重点·难点·疑点及解决办法
相关文档
最新文档