初中数学因式分解图文解析

合集下载

八年级数学人教版上册第14章整式的乘除与因式分解14.2.2完全平方公式(第1课时图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.2.2完全平方公式(第1课时图文详解)

八年级上册第14章整式的乘除与因式分解
一位老人非常喜欢孩子.每当有孩子到他家做客时, 老人都要拿出糖果招待他们.来一个孩子,老人就给这个 孩子一块糖,来两个孩子,老人就给每个孩子两块塘,… (1)第一天有a个男孩去了老人家,老人一共给了这些孩
子多少块糖? a2
(2)第二天有b个女孩去了老人家,老人一共给了这些孩
八年级上册第14章整式的乘除与因式分解
(2)(-a2+b3)2 【解析】原式= (b3-a2)2
=b6-2 a2 b3+a4 ∵(a-b)2 =(b-a)2 ∴(-a2 +b3)2 = (a2 -b3)2
八年级上册第14章整式的乘除与因式分解
【例2】运用完全平方公式计算:
(1) 1022;
(2) 992.
(2) (4x-3y)2 =16x2-24xy+9y2
(4)(-2m-1)2 =4m2+4m+1
八年级上册第14章整式的乘除与因式分解
1.(日照·中考)由m(a+b+c)=ma+mb+mc,可得a+b)(a2- ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a+b)(a2-ab+b2) =a3+b3 ①.我们把等式①叫做多项式乘法的立方公式. 下列应用这个立方公式进行的变形不正确的是( ) (A)(x+4y)(x2-4xy+16y2)=x3+64y3 (B)(2x+y)(4x2-2xy+y2)=8x3+y3 (C)(a+1)(a2+a+1)=a3+1 (D) x3+27=(x+3)(x2-3x+9) 【解析选】C.根据乘法的立方公式(a+b)(a2-ab+b2)

八年级数学人教版上册第14章整式的乘除与因式分解14.3.1同底数幂的除法(图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.3.1同底数幂的除法(图文详解)

(2)a4 ÷a ;
(3)(ab) 5÷(ab)2;(4)(-a)7÷(-a)5
(5)(-b) 5÷(-b)2
【解析】(1) x8÷x2=x8-2=x6.
(2)a4÷a =a4-1=a3. (3)(ab) 5÷(ab)2=(ab)5-2=(ab)3=a3b3. (4)(-a)7÷(-a)5=(-a)7-5=(-a)2=a2
am÷an=am-n(a≠0,m,n都是正整数, 并且m>n).
a0=1 (a≠0)
八年级上册第14章整式的乘除与因式分解
1.计算:
(1)(28)·28=216 (2)(52)·53=55
(3)(102)·105=107(4)(a3)·a3=a6
上述运算能否发现
商与除数、被除数
2.计算:
有什么关系?
(1)216÷28=( 28 ) (2)55÷53=( 52 )
(3)107÷105=(102)(4)a6÷a3=( a3 )
x2y2
5.下面的计算结果对不对?如果不对,应当怎样改正?
(1) x6÷x2=x3; x4
(2) 64÷64=6; 1
(3) a3÷a=a3; a2
(4) (-c)4÷(-c)2=-c2. (-c)2=c2
八年级上册第14章整式的乘除与因式分解
6.已知:xa=4,xb=9,
求(1) xa-b;(2) x3a-2b
八年级上册第14章整式的乘除与因式分解
同底数幂相除,底数没有改变,商的指数应该等
于被除数的指数减去除数的指数 . 一般地,我们有
为什么 a≠0呢?
am÷an=am-n(a≠0,m,n都是正整数, 并且m>n).
同底数幂相除,底数不变,指数相减.

因式分解方法总结图

因式分解方法总结图

因式分解方法总结图因式分解是代数学中的一种重要概念,通过将一个多项式分解为不可再分解的因子的乘积形式,可以简化复杂的多项式的计算和求解,是解决多项式相关问题的关键步骤之一。

本文将总结常用的因式分解方法,并用图表的形式进行展示。

一、因式分解方法总结1.提公因式法(抽取公因式法)–步骤:•将多项式中的各项提取一个公因式。

–适用条件:•各项中存在相同的因子。

2.配方法–步骤:•将多项式的各项平方,然后通过合并或分解得到一个完全平方的二次多项式。

–适用条件:•多项式为二次多项式。

•多项式的第一项为完全平方。

3.分组分解法–步骤:•将多项式的各项适当分组,通过合并或分解得到一个有规律的多项式,再通过提公因式法分解。

–适用条件:•多项式的各项之间存在相关性或相似性。

4.差平方公式–步骤:•将二次多项式按照差平方公式进行分解。

–适用条件:•多项式符合差平方公式的形式。

二、因式分解方法示例下表总结了四种常用因式分解方法的步骤和适用条件。

因式分解方法步骤适用条件提公因将多项式中的各项提取一个公因式各项中存在相同的因子式法配方法将多项式的各项平方,然后通过合并或分解得到一个完全平方的二次多项式多项式为二次多项式。

多项式的第一项为完全平方。

分组分解法将多项式的各项适当分组,通过合并或分解得到一个有规律的多项式,再通过提公因式法分解多项式的各项之间存在相关性或相似性。

差平方公式将二次多项式按照差平方公式进行分解多项式符合差平方公式的形式。

三、示例图表以下是对以上四种因式分解方法的示例图表。

1. 提公因式法示例多项式:2x^2 + 6x**步骤:**1. 提取公因式:2x**分解结果:**2x(x + 3)2. 配方法示例多项式:x^2 + 6x + 9**步骤:**1. 合并平方项:(x + 3)^2**分解结果:**(x + 3)(x + 3)3. 分组分解法示例多项式:2x^3 - 4x^2 + x - 2**步骤:**1. 分组:(2x^3 - 4x^2) + (x - 2)2. 提取公因式:2x^2(x - 2) + 1(x - 2)**分解结果:**(x - 2)(2x^2 + 1)4. 差平方公式示例多项式:x^2 - 4y^2**步骤:**1. 差平方公式:(x - 2y)(x + 2y)**分解结果:**(x - 2y)(x + 2y)四、总结本文介绍了常用的因式分解方法,并通过示例图表展示了每种方法的具体步骤和适用条件。

因式分解的概念

因式分解的概念

• 因式分解
ab+ac =a(b+c)
������2-������2 =(������+������)(������-������) ������2 + 2������������ + ������2 = (������ + ������)2
������2-������-12=(������+3)(������-4)
因式分解的概念
把一个多项式写成几个整式乘积的形式称为把这个多项式因式分解。
(2)下列各式从左往右属于因式分解的有(
①6 ������ − ������ = 6������ − 6������
② ③④ )
②2������2 + ������ = ������(2������ + 1) ③������2 − 4������ + 4 = (������ − 2)2 ④������3 − ������ = ������(������ + 1) ������ − 1
因式分解的概念
整式乘法
a(b+c)=ab+ac
(������+������)(������-������)=������2-������2 (������ + ������)2= ������2 + 2������������ + ������2
(������+3)(������-4)=������2-������-12
因式分解
把一个多项式写成几个整式乘积的形式称为把这个多项式因式分解。
把一个多项式写成几个整式乘积的形式称为把这个多项式因式分解。
(1)下列各式从左往右属于因式分解的有(

人教版数学九年级上册21.2.3因式分解法(共17张PPT)

人教版数学九年级上册21.2.3因式分解法(共17张PPT)

4
x
x
11 4
0
故x=0或 x 11 0
4
x1=0,x2
11 4
你能归纳出用因式分解法解方一元二次程的一般步骤吗?
第一步,把方程变形为x2+px+q=0的形式; 第二步,把方程变形为(x-x1)(x-x2)=0的形式; 第三步,把方程降次为两个一次方程x-x1=0或x-x2=0的形式; 第四步,解两个一次方程,求出方程的根.
用因式分解法解一元二次方程
ax2+bx+c=0(a≠0)
方程
的根是
.
∴方程有两个不相等的实数根.
x1=2,x2=4 x2+3x-4=0
因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0
分解因式:左边提公因式,得x(10-4.
解: 移项、合并同类项得
(x+1)2=5
x-2=0或x-3=0
第二步,把方程变形为(x-x1)(x-x2)=0的形式;
①三角形三边长为4、3、3,周长为10;
即2x-1 =0或2x+1 =0,
(1)会用因式分解法解一元二次方程.
直接开平方法适用于哪种形式的方程? 第二步,把方程变形为(x-x1)(x-x2)=0的形式;
解: 移项、合并同类项得
x2=p
若一个三角形的三边长均满足方程x2-7x+12=0,求此三角形的周长.
新课导入
根据物理学规律,如果把一个物体 从地面以10m/s的速度竖直上抛,那么经 过x s后物体离地面的高度(单位:m) 为:10x-4.9x2.
问题:设物体经过x s落回地面,请 说说你列出的方程. 10x-4.9x2=0
(1)会用因式分解法解一元二次方程. (2)能选用合适的方法解一元二次方程.

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级上册第14章整式的乘除与因式分解
1.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C.2x·2x5=4x5
D.5x3·4x4=9x7
2.下列运算正确的是( D )
A.x2·x3=x6
B.x2+x2=2x4
C.(-2x)2=-4x2
D.(-2x2)(-3x3)=6x5
八年级上册第14章整式的乘除与因式分解
第14章 整式的乘除与因式分解
八年级上册
八年级上册第14章整式的乘除与因式分解
14.1.4 整式的乘法
第1课时
八年级上册第14章整式的乘除与因式分解
1.探索并了解单项式与单项式、单项式与多项式相乘的法则, 并运用它们进行运算. 2.让学生主动参与到探索过程中去,逐步形成独立思考、主 动探索的习惯,培养思维的批判性、严密性和初步解决问题 的能力.
八年级上册第14章整式的乘除与因式分解
2.填空:
a4 26
(1)6 2
a9 28
9 x2 y4 4
1
八年级上册第14章整式的乘除与因式分解
光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是 多少千米吗? 分析:距离=速度×时间,即(3×105)×(5×102); 怎样计算(3×105)×(5×102)? 地球与太阳的距离约是: (3×105)×(5×102)=(3 ×5)×(105×102) =15×107=1.5×108(千米)
八年级上册第14章整式的乘除与因式分解
2.单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多 项式的每一项,再将所得的积相加即可.

初中数学经典课件:因式分解(人教版)

初中数学经典课件:因式分解(人教版)
全平方公式吗?
a b2 a2 2ab b2 a b2 a2 2ab b2
a b2 a2 2ab b2
计 算
x 44 x _x_2__8_x__1_6__
: 7 b2 _b_2__1_4b___49__
m 99 m __m_2__1_8_m__8_1_
这两个数的积的两倍,等于这两个 数的和(或差)的平方。
牛刀小试(对下列各式因式分解): ① a2+6a+9 = _______(a_+__3_)2______ ② n2–10n+25 = _____(n__–_5_)2______ ③ 4t2–8t+4 = _______4_(_t–_1_)_2_____ ④ 4x2–12xy+9y2 = ___(2_x_–_3_y_)_2____
② – 4x2 + y2 = y2 – 4x2 = (y+2x)(y–2x) = – ( 4x2 – y2 ) = – (2x+y)(2x–y)
③ x4 – 1 = (x2)2 – 12 = (x2+1) (x22+–11))(x–1)
因式分解一定要分解彻底 !
④ x2 – x6
④ x2 – x6
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd
所以,需要将二次项系数与常数项分别拆成两 个数的积,而这四个数中,两个数的积与另外两 个数的积之和刚好等于一次项系数,那么因式分 解就成功了。
6 x2 + 7 x + 2
2
1
3
2 ∴6x2+7x+2=(2x+1)(3x+2)

最新初中数学因式分解图文解析

最新初中数学因式分解图文解析

最新初中数学因式分解图文解析一、选择题1.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .2.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.3.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010-()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.4.如图,矩形的长、宽分别为a 、b ,周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .30C .15D .16 【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b ,ab ,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a 、b 的长方形的周长为10,面积6,∴2(a+b )=10,ab=6,则a+b=5,故ab 2+a 2b=ab (b+a )=6×5=30.故选:B .【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.5.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.6.若a2-b2=14,a-b=12,则a+b的值为()A.-12B.1 C.12D.2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a2-b2=(a+b)(a-b)=12(a+b)=14∴a+b=1 2故选C.点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是()A.-2 B.2 C.-50 D.50【答案】A【解析】试题分析:先提取公因式ab,整理后再把a+b的值代入计算即可.当a+b=5时,a2b+ab2=ab(a+b)=5ab=-10,解得:ab=-2.考点:因式分解的应用.8.将2x2a-6xab+2x分解因式,下面是四位同学分解的结果:①2x(xa-3ab),②2xa(x-3b+1),③2x(xa-3ab+1),④2x(-xa+3ab-1).其中,正确的是()A.①B.②C.③D.④【答案】C【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.10.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】 判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.11.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+13.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.14.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.15.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.16.将下列多项式因式分解,结果中不含因式x -1的是( )A .x 2-1B .x 2+2x +1C .x 2-2x +1D .x(x -2)+(2-x)【答案】B【解析】【分析】将各选项进行因式分解即可得以选择出正确答案.【详解】A. x 2﹣1=(x+1)(x-1);B. x 2+2x+1=(x+1)2 ;C. x 2﹣2x+1 =(x-1)2;D. x (x ﹣2)﹣(x ﹣2)=(x-2)(x-1);结果中不含因式x-1的是B ;故选B.17.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.18.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.19.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】 A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误;B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。

人教版数学九年级因式分解法ppt课堂课件

人教版数学九年级因式分解法ppt课堂课件

有 3x - 2 = 0 或 2x + 1 = 0,
( 3x - 9 )( 1 - x ) = 0.
x1=
2 3

x2=-
1 2
有 3x - 9 = 0 或 1 - x = 0, x1 = 3 , x2 = 1.
探究新知
素养考点 2 灵活选择方法解一元二次方程
例2 用适当方法解下列方程:
思路点拨:四种方法的选
(1) x2+x=0 解: 因式分解,得
x ( x+1 ) = 0. 于是得 x = 0 或 x + 1 =0,
x1=0 , x2=-1.
(2)x2- 2 3 x=0
解:因式分解,得 x(x-2 3)=0
于是得 x=0 或 x-2 3=0 x1=0,x2=2 3
巩固练习
(3) 3x2 6x 3, (4) 4x2 121 0
1.理解一元二次方程因式分解法的概念.
探究新知
知识点 1 因式分解法的概念
根据物理学规律,如果把一个物体 从地面 10 m/s 的速度竖直上抛,那么经 过 x s 物体离地面的高度(单位:m)为
10x 4.9x2.
【思考】根据这个规律求出物体经过多少秒落回地面?(精 确到 0.01 s)
提示:设物体经过 x s 落回地面,这时它离地面的高
-
1 2
.
探究新知
方法点拨
一.因式分解法简记歌诀:
右化零
左分解
两因式
各求解
二.选择解一元二次方程的技巧:
1.开平方法、配方法适用于能化为完全平方形式的
方程.
2.因式分解法适用于能化为两个因式之和等于0的
形式的方程.
3.配方法、公式法适用于所有一元二次方程.

第三讲因式分解PPT课件

第三讲因式分解PPT课件

① x2-5x+6
1
-2
1
-3
解:原式=(x-2)(x-3)
② a2-a-2
1
1
1
-2
解:原式=(a+1)(a-2)
【例 4】 (2011·台湾)下列四个多项式,是 2x2+5x-3 的因式的只能为
( A)
A.2x-1
B.2x-3
C.x-1
D.x-3
2x²-5x-3
4x²+10x+6
⑷分组分解法: a3 a2 a 1
(1)、提公因式法: 公因式的确定:
ma + mb + mc = m(a+b+c)系数取所有系数的最大公约数,
字母取相同的字母, 指数取最低指数。
练习:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2
)②p(y-x)-2(x-y)
解:原式=3x2y2(2x-3y+1)
解:原式=p(y-x)+2(y-x) =(y-x)(p+2)
综合运用多种方法分解因式
知能迁移 4 (1)分解因式:a5-a (2)分解因式:(x+2)(x+4)+x2-4 (3)(解2012(·x+临2沂)(x)+分4解)+因x式22-:4a-6ab+9ab2= ________=.x22+6x+8+x22-4 (4)在=实2x数22+范6x围+内4 分解因式:x4-4
(2)运用公式法:
例题精析
【例 1】 (1)(2013·广东湛江)分解因式:x2-4=___x_2-__4_=__(_x_+__2_)(_x_-__2_)____. (2)(2013·江苏苏州)分解因式:a2+2a+1=___a_2+__2_a_+__1_=__(_a_+__1_)2_____. (3)(2013·山东滨州)分解因式:5x2-20=__5_x_2_-__2_0_=__5_(_x_+__2_)(_x_-__2_)_. (4)(2013·湖南益阳)分解因式:xy2-4x=___x_y2_-__4_x_=__x_(_y+__2_)_(_y_-__2_) __.

八年级数学人教版上册第14章整式的乘除与因式分解14.3.2整式的除法(图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.3.2整式的除法(图文详解)
=(x2+2xy+y2 -2yx-y2-8x)÷x =(x2-8x)÷x =x-8
八年级上册第14章整式的乘除与因式分解
1.(綦江·中考)2a2÷a的结果是( )
A.2 B.2a
C.2a3
D.2a2
【解析】选B.利用单项式除以单项式的运算法则易得 选项B正确.
八年级上册第14章整式的乘除与因式分解
2.(无锡·中考)下列正确的是( )
A.(a3)2=a5 C.(a3-a)÷a=a2
B.a3+a2=a5 D.a3÷a3=1
【解析】选D.利用单项式除以单项式的运算法则易得选
项D正确.
八年级上册第14章整式的乘除与因式分解
3.(4x2y3)2 ÷ (-2xy2) 【解析】原式=16x4y6÷(-2xy2)
八年级上册第14章整式的乘除与因式分解
【例】计算:
(1)28x4y2÷7x3y (2)-15a5b3c÷5a4b
【解析】原式=4xy
原式=-3ab2c
(3)(2x2y)3×(-7xy2)÷14x4y3
原式=8x6y3×(-7xy2)÷14x4y3
=-56x7y5÷14x4y3
=-4x3y2
八年级上册第14章整式的乘除与因式分解
的值. 【解析】原式
(9x2 4 y2 5x2 2xy 10xy 4 y2 ) 8x (4x2 8xy) 8x 1xy
2 Q x 2 y 2012 1 x y 1006
2 原式 1006
八年级上册第14章整式的乘除与因式分解
通过本课时的学习,需要我们掌握: 1.单项式相除 (1)系数相除; (2)同底数幂相除; (3)只在被除式里的幂不变. 2.多项式除以单项式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学因式分解图文解析一、选择题1.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .2.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.3.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010-()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.4.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B5.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.6.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.7.下列因式分解正确的是( )A .x 3﹣x =x (x 2﹣1)B .x 2+y 2=(x+y )(x ﹣y )C .(a+4)(a ﹣4)=a 2﹣16D .m 2+4m+4=(m+2)2 【答案】D【解析】【分析】逐项分解因式,即可作出判断.【详解】A 、原式=x (x 2﹣1)=x (x+1)(x ﹣1),不符合题意;B 、原式不能分解,不符合题意;C 、原式不是分解因式,不符合题意;D 、原式=(m+2)2,符合题意,故选:D .【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.8.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.9.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.10.下列各式中从左到右的变形,是因式分解的是( )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x) 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、因式分解是把一个多项式转化成几个整式积的形式,故C 正确;D 、因式中含有分式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.11.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.12.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.13.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.14.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.15.若n ()是关于x 的方程的根,则m+n 的值为( ) A .1B .2C .-1D .-2 【答案】D【解析】【分析】将n 代入方程,提公因式化简即可.【详解】 解:∵是关于x 的方程的根, ∴,即n(n+m+2)=0, ∵∴n+m+2=0,即m+n=-2, 故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n 是解题关键.16.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.17.下列从左到右的变形属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .m 2-2m -3=m(m -2)-3C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3)【答案】D【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.18.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=--【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B.是因式分解,故B正确;C.左边不是多项式,不是因式分解,故C错误;D.右边不是整式积的形式,故D错误.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.三角形的三边a、b、c满足a(b﹣c)+2(b﹣c)=0,则这个三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a(b-c)+2(b-c)=0,∴(a+2)(b-c)=0,∵a、b、c为三角形的三边,∴b-c=0,则b=c,∴这个三角形的形状是等腰三角形.故选:A.【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.。

相关文档
最新文档