基于单片机的电风扇智能控制
本科毕业论文---基于单片机智能电风扇控制系统设计
目录摘要 (1)第1章概述 (2)1.1 STC89C52单片机简介 (2)1.2 本设计任务和主要内容 (2)第2章方案选择 (4)2.1 温度传感器的选用 (4)2.2 控制核心的选择 (5)2.3 显示电路 (5)2.4 调速方式 (6)2.5 控制执行部件 (6)第3章硬件设计 (7)3.1 系统总体设计 (7)3.2 控制装置原理 (7)3.3 温度检测和显示电路 (8)3.3.1DS18B20的温度处理方法 (8)3.3.2温度传感器和显示电路组成 (9)3.4 电机调速电路 (10)3.4.1电机调速原理 (10)3.4.2电机控制模块设计 (11)第4章软件设计 (13)4.1 主程序 (13)4.2 数字温度传感器模块和显示子模块 (14)4.3 电机调速与控制子模块 (15)总结 (17)附录1 主要程序代码 (19)附录2 仿真图 (35)附录3 实物图 (36)附录4 元件清单 (37)摘要本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统STC89C52单片机作为控制平台对风扇转速进行控制。
可由用户设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动关闭风扇,控制状态随外界温度而定。
所设高低温值保存在温度传感器DS18B20内部E2ROM中,掉电后仍然能保存上次设定值,性能稳定,控制准确。
关键词单片机;温度传感器;智能控制。
四川信息职业技术学院毕业设计说明书第1章概述1.1STC89C52单片机简介STC89C52是美国ATMEL公司生产的低电压、高性能CMOS8位单片机,片内4bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置用8位中央处理器(CPU)和Flash存储单元,功能强大。
基于单片机的智能电风扇的设计
基于单片机的智能电风扇的设计
1. 系统设计思路:
智能电风扇系统由传感器、单片机以及电机驱动电路组成。
传感器检测环境温度、湿度和人体距离等参数,单片机根据这些参数控制电机的工作,并且可以根据预设程序自动调节电风扇的转速和运转模式。
2. 硬件设计:
(1) 传感器模块:
环境温湿度传感器模块和人体距离传感器模块分别采用DHT11和HC-SR501。
(2) 单片机模块:
根据项目需求,使用STM32F103ZET6单片机,主要处理传感器的读取和数据处理,并进行PWM波输出,控制电机转速。
(3) 电机驱动模块:
电机采用直流无刷电机,控制驱动电路采用L298N芯片。
3. 软件设计:
(1)初始化各个模块,包括传感器、GPIO等。
(2)读取传感器的数据,并根据不同温度、湿度和人体距离进行选择参数,设置不同的转速和运转模式。
(3)通过PWM波输出,控制电机的转速,实现电风扇的自动调节和控制。
4. 实现功能:
灵活的温湿度和人体距离检测,自动选择合适的电风扇运转模式和转速,节能环保,人性化的操作界面等。
总之,基于单片机的智能电风扇系统可以在提供便利的同时,达到节能环保的目的。
基于单片机的电风扇模拟控制系统设计
基于单片机的电风扇模拟控制系统设计一、引言电风扇是现代生活中常见的家用电器之一,它的使用方便、功能多样,深受人们喜爱。
随着科技的发展,基于单片机的电风扇控制系统逐渐成为研究的热点。
本文将介绍一种基于单片机的电风扇模拟控制系统设计,旨在提供一个可靠、智能的电风扇控制方案。
二、系统设计1. 系统框架基于单片机的电风扇模拟控制系统主要由单片机、传感器、电机驱动电路、显示器和按键等组成。
其中,单片机充当控制中心的角色,传感器用于采集环境参数,电机驱动电路用于控制电机的转速,显示器和按键用于用户与系统进行交互。
2. 传感器选择传感器的选择对于系统的精确性和稳定性至关重要。
在电风扇控制系统中,常用的传感器有温度传感器和湿度传感器。
温度传感器用于检测环境温度,湿度传感器用于检测环境湿度。
根据不同的需求,可以选择合适的传感器进行使用。
3. 单片机编程单片机是系统中的核心部件,其编程决定了整个系统的功能和性能。
在电风扇控制系统中,单片机需要实现以下功能:- 读取传感器采集到的温度和湿度数据;- 根据设定的温度和湿度阈值,控制电机的转速;- 实时显示温度、湿度和电机转速等信息;- 通过按键进行系统设置和操作。
4. 电机驱动电路电机驱动电路用于控制电机的转速。
常用的电机驱动电路有直流电机驱动电路和交流电机驱动电路。
根据不同的电机类型,选择适合的驱动电路。
在电风扇控制系统中,一般采用直流电机,因此需要设计一个合适的直流电机驱动电路。
5. 显示器和按键显示器和按键用于用户与系统进行交互。
显示器可以显示当前环境的温度、湿度和电机转速等信息,按键则可以用于设置温度和湿度阈值以及控制电机的开关。
合理设计显示器和按键的布局和界面,使用户操作方便,信息清晰。
三、系统优势1. 智能化控制基于单片机的电风扇模拟控制系统可以根据环境的温湿度变化自动调节电机的转速,实现自动控制。
用户只需设定好温湿度阈值,系统会自动根据环境参数进行调节,提供舒适的使用体验。
基于单片机的智能电风扇ppt
5 风扇电机驱动与调速电路
风扇电机接线图如下图4-5所示:
6总电路图
软件流程图如下图所示 :
仿真1
当把温度传感 器DS18B20温 度设置为26.4摄 氏度,用键盘 S2调节系统预 设的温度为22 摄氏度。点击开 始仿真按钮,系 统开始仿真,待 一段时间稳定后, 观察到此时风扇 直流电机的转速 为+14.2r/s,如 左图所示。
系统设计总体方案框图
系统由6个部分组成:电机驱动控制部分、温度采 集部分、温度显示部分、独立键盘部分、复位部分和 晶振部分。系统框图如下图所示:
各部分电路设计
1 按键复位与晶振电路
系统复位与晶振电路如下图所示:
当按下 按键开 关S1时, 系统复 位一次。 晶振为 11.0592 MHz
ቤተ መጻሕፍቲ ባይዱ
2 温度采集模块
仿真4
然后在上一步仿真 的基础上(温度传感 器DS18B20温度设置 为33.4摄氏度,系 统预设的温度为22 摄氏度),用键盘S2 调节系统预设温度 至34摄氏度,此时 可知系统预设温度 大于温度传感器检 测到的温度,观察 到直流风扇电机的 转速逐渐变慢,最 后转速变为0,符合 系统要实现的功能, 如左图所示。
结论
通过以上仿真可以看出,直流风扇电机在系 统设定温度一定的情况下,其转速随着环境温度 (温度传感器检测到的温度)的增加而增大。当 环境温度低于系统预设的温度时,风扇自动停止 运转,实现了系统所设计的功能。
基于单片机的智能电风扇控制系统
目录第1节引言 (3)1.1 智能电风扇控制系统概述 (3)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (5)2.1 总体硬件设计 (5)2.2 数字温度传感器模块设计 (5)2.2.1 温度传感器模块的组成 (5)2.2.2 DS18B20的温度处理方法 (6)2.3 电机调速与控制模块设计 (7)2.3.1 电机调速原理 (7)2.3.2 电机控制模块硬件设计 (8)2.4 温度显示与控制模块设计 (9)第3节系统软件设计 (10)3.1 数字温度传感器模块程序设计 (10)3.2 电机调速与控制模块程序流程 (15)3.2.1 程序设计原理 (15)3.2.2 主要程序 (16)第4节结束语 (19)参考文献 (20)基于单片机的智能电风扇控制系统第1节引言电风扇曾一度被认为是空调产品冲击下的淘汰品,其实并非如此,市场人士称,家用电风扇并没有随着空调的普及而淡出市场,近两年反而出现了市场销售复苏的态势。
其主要原因:一是风扇和空调的降温效果不同——空调有强大的制冷功能,可以快速有效地降低环境温度,但电风扇的风更温和,更加适合老人儿童和体质较弱的人使用;二是电风扇有价格优势,价格低廉而且相对省电,安装和使用都非常简单。
尽管电风扇有其市场优势,但传统电风扇还是有许多地方应当进行改良的,最突出的缺点是它不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。
鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。
1.1 智能电风扇控制系统概述传统电风扇是220V交流电供电,电机转速分为几个档位,通过人为调整电机转速达到改变风力大小的目的,亦即,每次风力改变,必然有人参与操作,这样势必带来诸多不便。
基于单片机的风扇智能控制器硬件设计
1 控 制器 整体设计 方案
在选用单片机时 , 考虑到尽量减少系统 的硬件 电路 , 选用 TA 8 C 2 T 9 5 作为系统控制 的核心 , 其整体 硬件 框 图如 图1 所示 .
红 \
广 —]/I 储模块
过 零 检
L
I
持 静 l 卜 、
A 8 C5 T9 2 \
红 外线 转换 为 电信号 , 信 号经选 频放 大 、 该 解调 后 由 1 输 出与 ' L l 容 的 电信 号 , 信 号可 以直接 脚 I  ̄ z - T 兼 该
I测 模 块 I
可 控 硅 驱 由 n 儿
一 ~
l
开 关
I
l
、
显模 l 示块< =
y
/ 动 电 路
图1 智 能电风扇控制器 的整体硬件框图
风扇智能控制器由微处理器A 8C 2 T 9 5构成核心电路 , 外加红外信号接收电路 , 交流 电过零点检测 电
基于51单片机的智能风扇控制系统设计与实现
基于51单片机的智能风扇控制系统设计与实现智能风扇控制系统是一种能够根据环境温度自动调节风扇速度的系统。
在本文中,将介绍基于51单片机的智能风扇控制系统的设计与实现。
首先,需要明确智能风扇控制系统的主要功能。
该系统的主要功能包括:根据环境温度自动调节风扇速度、显示当前环境温度和风速、设置风扇工作模式等。
下面将详细介绍智能风扇控制系统的硬件设计和软件实现。
硬件设计方面,系统需要使用51单片机作为主控芯片。
此外,还需使用一个温度传感器来感知环境温度。
为了实现显示功能,可以使用一个数码管或液晶显示屏。
此外,还需要一个电机驱动模块来控制风扇的转速。
软件实现方面,首先需要编写一个温度采集程序,从温度传感器中读取环境温度,并将其保存在一个变量中。
然后,需要编写一个风扇控制程序,根据环境温度的变化调节风扇的转速。
可以通过改变电机驱动模块中的PWM信号来控制风扇的转速。
同时,还需要编写一个显示程序,以实时显示当前环境温度和风速。
在风扇控制程序中,可以设置一些阈值来决定风扇的工作模式。
例如,可以设置一个最低温度阈值和一个最高温度阈值。
当环境温度低于最低温度阈值时,风扇停止工作;当环境温度高于最高温度阈值时,风扇以最大速度工作;在最低温度阈值和最高温度阈值之间,风扇的转速随着温度的升高而逐渐增加,以保持环境温度在一个合适的范围内。
此外,还可以为系统添加一些附加功能,如远程控制功能。
可以通过添加一个无线通信模块,使得用户可以通过手机或电脑远程控制智能风扇的开关和工作模式。
综上所述,基于51单片机的智能风扇控制系统可以通过温度传感器感知环境温度,并根据环境温度的变化来调节风扇的转速。
通过添加显示功能和远程控制功能,可以提高智能风扇控制系统的实用性和便利性。
该系统的设计与实现不仅可以提供更舒适的使用体验,还可以节省能源和降低使用成本。
基于单片机的智能温控风扇系统设计
基于单片机的智能温控风扇系统设计一、本文概述随着科技的快速发展,智能家居系统在人们的日常生活中扮演着越来越重要的角色。
其中,智能温控风扇系统作为智能家居的重要组成部分,通过自动调节风速和温度,为用户提供舒适的室内环境。
本文旨在探讨基于单片机的智能温控风扇系统的设计与实现。
本文首先介绍了智能温控风扇系统的背景和意义,阐述了其在现代家居生活中的重要性和应用价值。
接着,文章详细分析了系统的总体设计方案,包括硬件平台的选择、软件编程的思路以及温度控制算法的实现。
在此基础上,文章还深入探讨了单片机在智能温控风扇系统中的应用,包括单片机的选型、外设接口的设计以及控制程序的编写。
文章还注重实际应用的可行性,对智能温控风扇系统的硬件电路和软件程序进行了详细的说明,包括电路原理图的设计、元器件的选择以及程序的调试过程。
文章对系统的性能和稳定性进行了测试和分析,验证了系统的有效性和可靠性。
通过本文的阐述,读者可以全面了解基于单片机的智能温控风扇系统的设计和实现过程,为相关领域的研究和应用提供参考和借鉴。
本文也为智能家居系统的发展提供了新的思路和方法。
二、系统总体设计智能温控风扇系统的设计旨在实现根据环境温度自动调节风扇转速的功能,从而提高使用的舒适性和能源效率。
整个系统以单片机为核心,辅以温度传感器、电机驱动模块、电源模块以及人机交互界面等组成部分。
在总体设计中,首先需要考虑的是硬件的选择与配置。
单片机作为系统的核心控制器,需要选择运算速度快、功耗低、稳定性高的型号。
温度传感器则选用能够精确测量环境温度、响应速度快、与单片机兼容的型号。
电机驱动模块负责驱动风扇电机,需要选择能够提供足够驱动电流、控制精度高的模块。
电源模块需要为整个系统提供稳定可靠的电源。
人机交互界面则用于显示当前温度和风扇转速,同时提供用户设置温度阈值的接口。
在软件设计上,系统需要实现温度数据的采集、处理与传输,风扇转速的控制,以及人机交互界面的管理等功能。
基于单片机的智能电风扇系统设计与实现
1. 引言在现代科技日新月异的时代,智能化已经成为了各行各业的趋势之一。
智能电风扇作为家电中的一员,也不例外。
本文将从单片机的角度出发,探讨基于单片机的智能电风扇系统设计与实现,并带您深入了解这一主题。
2. 单片机技术简介单片机是一种集成了微处理器、存储器和各种输入输出设备的芯片,具有控制功能。
由于其体积小、价格低廉、功能强大等特点,因此在各种电子设备中得到了广泛的应用。
在智能电风扇系统中,我们可以利用单片机实现对风扇的控制、监测和反馈等功能,从而实现智能化。
3. 智能电风扇系统的设计要点(1)传感器的选择和应用在智能电风扇系统中,传感器起着至关重要的作用。
通过传感器可以实时监测环境温度、湿度、空气质量等参数,从而根据实时情况对电风扇进行智能化调节。
(2)风扇控制算法的设计为了实现对电风扇的智能控制,需要设计相应的控制算法。
这涉及到对传感器数据的处理、对电机的控制、对风速的调节等方面,需要深入研究和设计。
4. 基于单片机的智能电风扇系统的实现通过选取合适的单片机芯片,编写相应的程序,并结合传感器、电机等外围硬件设备,可以实现基于单片机的智能电风扇系统。
5. 个人观点与总结智能电风扇系统作为智能家居的一部分,正在逐渐走进人们的日常生活。
基于单片机的智能电风扇系统,通过利用单片机的强大功能和灵活性,可以实现更加智能化、便捷化的电风扇控制和使用体验。
基于单片机的智能电风扇系统设计与实现,是一个涉及到多方面知识的复杂课题。
通过本文的介绍,相信您已经对这一主题有了更深入的理解。
参考文献:[1] 王明. 单片机原理与应用. 北京:清华大学出版社,2018.[2] 张强. 智能家居系统设计与实现. 上海:上海科技教育出版社,2019.以上为文章草稿,我需要继续扩展和完善内容,敬请期待最终版本的文章。
智能电风扇系统的设计与实现在当今社会,智能化已经成为了各行各业的发展趋势。
智能家居作为智能化的重要组成部分,正在逐渐改变人们的生活方式。
基于51单片机的智能风扇控制系统
基于51单片机智能风扇控制系统的设计与实现摘要:随着气温的逐渐上升,风扇的需求量也逐渐扩大。
传统风扇不能根据外界温度的变化对风扇转速快慢进行调整,也不能对风扇的开关与否进行自动控制,这将会损耗大量的电力资源。
针对这些问题,开发设计了智能风扇控制系统。
该系统以STC89C51RC单片机最小系统为核心,利用DS18B20温度采集模块,LCD 1602显示屏、L298N电机驱动模块、HC-SR501人体感应模块、舵机控制模块、ESP8266 WIFI控制模块组成智能风扇控制系统。
当有人进入室内, HC-SR501人体感应模块会监测到有人出现,同时DS18B20温度采集模块将采集到的温度与系统开始设置的阈值做比较,并将采集到的温度数据显示在LCD 16 -02显示屏上。
当室温高于所设置的温度且有人存在的情况下,风扇将会自动吹风;当温度低于所设置的温度时风扇仍保持关闭状态。
该系统采取了三种工作方式,第一种工作方式为按键控制,从左至右按键功能依次为摇摆、红外、定温、定时。
第二种工作方式为红外遥控器控制,在遥控器上按下相应的功能按键,即可控制风扇。
第三种工作方式为手机终端APP控制,通过手机客户端实现风扇的自动启动和停止,旋转方向,改变风扇的转速等。
关键词:STC89C51RC单片机;智能风扇;人体感应;keil Uvision;Intelligent Fan Control System Basedon 51 Single Chip Design and Implementation Abstract:With the gradual rise in temperature, the demand for fans has gradually expanded. However, the traditional fan can not adjust the speed of the fan according to the change of the outside temperature, and can not control the fan switch automatically. In response to this problem, we will develop intelligent control system of the fan.The system is based on the minimum system of the STC89C51RC MCU.The intelligent fan control system is composed of DS18B20 temperature acquisition module, LCD 1602 display, L298N motor drive module, HC-SR501 human body induction module, steering control module and ESP8266 WIFI control module. When the person enters the room, the human body infrared sensor module will detect people, while the DS18B20 temperature acquisition module will collect the temperature and the system begins to set the threshold to compare, and the collected temperature data is displayed on the LCD 1602 display. When the room temperature is higher than the set temperature and someone exists, the fan will automatically blow; when the temperature is lower than the set temperature ,the fan will still turn off . The system takes three kinds of work, the first work for the key control, from left to right button function in order of swing, infrared, fixed temperature and timing. The second mode of operation for the infrared remote control, press the corresponding function button on the remote control, you can control the fan. The third type of work for the mobile terminal APP control, through the mobile client to achieve automatic fan start and stop, rotation direction, change the fan speed and so on.Key words: STC89C51RC Single-Chip; Intelligent Fan; Human Infrared Sensor Module; Keil Uvision ;目录一、论文(设计)正文 (1)1绪论 (1)1.1系统开发的背景 (1)1.2系统开发的目的和意义 (1)1.3国内外研究现状 (2)1.3.1国内研究现状 (2)1.3.2国外研究现状 (2)1.4主要研究内容 (3)2系统分析 (4)2.1可行性分析 (4)2.2系统需求分析 (5)2.2.1功能需求分析 (5)2.2.2性能需求分析 (6)2.2.3系统实现方式 (7)3系统硬件设计 (9)3.1系统概述 (9)3.2单片机最小系统电路 (9)3.2.1 STC89C51RC单片机简介 (9)3.2.2 STC89C51RC单片机常用寄存器 (10)3.3 LCD 1602显示屏模块 (11)3.4 DS18B20温度传感器模块 (12)3.4.1 DS18B20温度传感器的特性 (12)3.4.2 DS18B20温度传感器的电路实现 (13)3.5红外遥控模块 (13)3.6 HC-SR501人体感应模块 (14)3.6.1 HC-SR501人体感应模块工作原理 (14)3.6.2 HC-SR501人体感应模块特性 (14)3.6.3 HC-SR501人体感应模块的电路实现 (15)3.7舵机控制模块 (16)3.7.1舵机的特性 (16)3.7.2舵机控制模块工作原理 (17)3.8 ESP8266 WIFI控制模块 (17)3.8.1 ESP8266 WIFI控制模块特性 (18)3.8.2 ESP8266 WIFI控制模块AT指令 (18)3.9系统其它电路 (21)3.9.1复位电路 (21)3.9.2晶振电路 (22)3.9.3开关电路 (22)3.9.4按键电路 (23)3.9.5 DS1302时钟芯片电路 (23)3.9.6 L298N电机驱动电路 (24)4系统软件设计 (25)4.1程序语言及开发环境 (25)4.2主程序 (25)4.3 LCD 1602显示屏控制程序 (26)4.4 DS18B20温度监测控制程序 (27)4.5红外遥控控制程序 (29)4.6 HC-SR501人体感应控制程序 (30)4.7 舵机控制程序 (31)4.8 ESP8266 WIFI控制程序 (32)5系统功能实现与测试 (34)5.1系统显示界面与实物图 (34)5.2LCD 1602显示屏的测试 (34)5.3 DS18B20温度传感器的测试 (35)5.4红外遥控器的测试 (35)5.5 HC-SR501人体感应的测试 (36)5.6舵机控制测试 (37)5.7 ESP8266 WIFI测试 (38)6总结 (39)参考文献 (40)谢辞 (41)二、附录 (42)宝鸡文理学院本科毕业设计开题报告 ............................... 错误!未定义书签。
基于51单片机的温控智能电风扇教材
浙江理工大学《单片机系统设计及应用实验》设计报告题目:基于51单片机的温控智能电风扇专业:机械电子工程班级:机电11(1)班姓名:叶惠芳学号:2011330300302指导教师:袁嫣红机械与自动控制学院2014 年7 月3 日目录摘要 (4)第一章课程设计的目标及主要内容 (5)1.1课程设计的目标及意义 (5)1.2温控智能电风扇的主要内容和技术关键 (5)1.2.1课程设计的主要内容 (5)1.2.2技术关键 (5)第二章温控智能电风扇控制系统硬件设计 (6)2.1课程设计总体硬件设计 (6)2.2芯片及主要器件选择 (6)2.2.1控制核心的选择 (6)2.2.2温度传感器的选用 (7)2.2.3显示电路 (7)2.3芯片及器件介绍 (7)2.3.1 AT89C51单片机 (7)2.3.2 L298芯片介绍 (8)2.3.3 DS18B20温度传感器 (9)2.3.4LED数码管简介 (11)2.4主要硬件电路 (12)2.4.1温度检测电路设计 (12)2.4.2 电机调速电路设计 (12)2.4.3 PWM调速原理 (13)2.4.4 LED数码管显示电路及按键电路 (13)第三章温控智能电风扇控制系统软件设计与实现 (14)3.1 主程序 (14)3.2 数字温度传感器模块 (14)3.3电机调速与控制子模块 (16)第四章调试结果与总结 (16)4.1 调试结果 (16)4.2 课程设计总结 (20)参考文献 (21)附录一 (23)附录二 (24)附录三 (25)摘要电风扇与空调的降温效果不同,相较于空调的迅速降低环境温度不同,电风扇更加温和,适宜于体质较弱的老人与小孩。
并且,电风扇价格实惠,使用简单。
现在市面上的电风扇大多只能手动调速,还外加一个定时功能。
对于温差较大的夜晚,若不能及时改变风速大小后停止,很容易感冒着凉。
所以本课程设计以AT89C51为核心控制系统根据外界温度的变化对电风扇进行转速控制,以实现自动换挡功能。
基于单片机的智能风扇控制系统设计
基于单片机的智能风扇控制系统设计摘要:介绍了一种基于单片机的智能风扇控制系统的设计,目的在于解决电扇在实际生活中不合理的使用的现状和在已有电扇上的一些小创新,在设计过程中通过硬件电路的实际焊接,基本实现了想要实现的功能,通过对该系统的设计,证明该系统的实际可行性,有助于在以后可以开发出此类产品,提高人们生活质量,节约能源。
关键词:单片机;DS18B20;直流电机;风扇;人体红外;LCD1602基金项目:湖北师范学院教学研究项目资金。
引言:在我国大学校园里,教室里面安装电扇很普及,电扇相比较空调而言,节约成本,便于安装,但是通过在大学里的观察和研究发现,电扇的使用存在很多不合理的现象,经常会出现人走了电扇还开着,或者电扇档位无法根据气温自动调节的现象,电扇在我国的使用范围十分广泛,除了大学校园,很多地方都用到了电扇.单片机便宜,功耗低,便于控制,基于此在现有电扇的基础上开发了智能风扇系统,并制作出了硬件,实现了预期的效果,证实了该系统的实际可行性,如果可以得到大量使用,对于目前电扇存在的不合理问题是一个很好的解决方法。
一、系统整体设计基于单片机的智能风扇控制系统包含温度感应和显示、外部按键设置功能、人体红外感应模块、直流电机PWM调速、蜂鸣器报警、LCD风速等级显示模块,首先在显示功能上使用了数码管和LCD1602分别显示出当前温度和风速等级,显示功能的目的在于增加产品的直观性和合理操作性,便于人们在使用时有可以调节的依据。
外部按键实现了设置温度上下限、复位、加减温度的功能,使电扇在没有人为操作的情况下可以按照温度上下限和外部实际温度做出合理的响应,蜂鸣器的作用是为了提醒使用者当前温度高于温度上限或者低于温度下限,直流电机PWM调速实现了风速级别的调节,通过温度传感器得到的温度,对电机的速度分级调节,以最合理的方式调节电扇的使用,从而达到智能、合理、高效的目的。
这些功能使用到的存储、中断、显示、调速都可以用单片机实现,因此选用51单片机作为控制芯片。
基于单片机控制的智能风扇设计
基于单片机控制的智能风扇设计第1章:引言1.1 研究背景在现代社会中,风扇作为一种常见的家用电器,被广泛应用于各个领域。
传统的风扇具有简单的功能,只能通过手动控制开关来调节风速。
然而,随着科技的不断发展和人们对生活品质的追求,传统的风扇已经无法满足人们对智能化、便捷化的需求。
因此,基于单片机控制的智能风扇设计应运而生。
1.2 研究目的本文旨在通过基于单片机控制的智能风扇设计,实现对风速、风向、定时等参数的智能调节,提升用户的使用体验,并且具备一定的节能功能。
第2章:智能风扇的原理和设计思路2.1 单片机的选择在智能风扇的设计中,单片机起着核心的作用,它负责接收用户输入的指令,并通过控制电机实现对风速、风向的调节。
本文选择XX型号的单片机作为控制芯片,其具备较高的性能和可靠性。
2.2 传感器的应用为了实现智能化的控制,本文采用了温湿度传感器、红外线传感器和光线传感器等多种传感器。
温湿度传感器用于检测环境的温度和湿度,以便根据实际情况调节风速。
红外线传感器用于接收用户的遥控指令,实现远程控制功能。
光线传感器则用于根据环境光线的强弱自动调节风速。
2.3 控制电路的设计控制电路是智能风扇设计中的关键部分,它由单片机、驱动电路和电机组成。
通过单片机控制驱动电路的开关状态,从而控制电机的工作状态。
同时,为了保证风扇的安全运行,还需添加过热保护电路和电流保护电路。
第3章:智能风扇的功能设计与实现3.1 风速控制用户可以通过面板按钮或遥控器来调节风扇的风速。
通过单片机读取用户输入的指令,并通过控制电路调节电机的转速,实现对风速的智能调节。
3.2 风向控制智能风扇具备自动摆风功能,可以实现左右扫风和上下扫风。
通过单片机控制电机的转向,从而实现风向的智能调节。
用户也可以通过遥控器来选择风向模式。
3.3 定时功能智能风扇具备定时功能,用户可以通过面板按钮或遥控器设置定时时间,风扇将会在设定的时间后自动关闭。
通过单片机的计时功能,风扇可以准确地实现定时功能。
基于51单片机的智能温控风扇毕业设计
基于51单片机的智能温控风扇毕业设计基于51单片机的智能温控风扇毕业设计引言:近年来,随着科技的不断进步,智能家居设备已经成为了人们生活中不可或缺的一部分。
在众多智能家居设备中,智能温控风扇作为一个重要的家居电器,为我们的生活带来了极大的便利和舒适。
本文旨在介绍一种基于51单片机的智能温控风扇毕业设计,通过深入探讨其原理、设计和应用,展示其在实际生活中的价值和应用潜力。
一、背景与需求分析1.1 背景过去的传统风扇只能通过手动调节风速和转动方向,无法根据环境温度进行智能调节。
现如今,人们迫切需要一种能够根据温度自动调节风速的智能风扇,以提供更加舒适和节能的生活体验。
1.2 需求分析为了满足人们对舒适和节能的需求,我们提出了以下需求:- 风扇能够根据环境温度自动调节风速。
- 风扇能够根据人体活动感知温度变化。
- 风扇能够通过遥控或手机应用进行远程控制。
- 风扇能够具备智能化的系统保护功能。
二、设计方案与实施2.1 传感器选用为了实现风扇的智能温控功能,我们需要选用适当的温度传感器。
常用的温度传感器包括NTC热敏电阻、DS18B20数字温度传感器等。
根据需求,我们选择了DS18B20作为温度传感器,它能够准确地检测环境温度。
2.2 控制电路设计基于51单片机的智能温控风扇控制电路主要由以下几个部分组成:- 温度传感器模块:用于检测环境温度。
- 驱动电路:用于控制风扇的转速。
- 单片机板:用于处理温度数据和控制风扇运行状态。
- 通信模块:用于实现与遥控器或手机应用的远程通信。
2.3 系统设计与软件开发基于51单片机的智能温控风扇的系统设计主要包括以下几个方面:- 温度采集与处理:通过DS18B20温度传感器采集环境温度,并通过单片机进行数据处理。
- 控制与调速:根据采集到的温度数据,控制驱动电路实现风扇转速的智能调整。
- 远程控制:通过手机应用或遥控器与风扇进行远程通信,实现远程控制和监控。
三、系统实施与测试3.1 硬件实施根据设计方案,我们将电路图进行布局,选择合适的电子元件进行组装,完成基于51单片机的智能温控风扇的硬件实施。
基于单片机的智能温控风扇设计
设计目的和任务
设计目的
本设计旨在利用单片机实现智能温控风扇的控制,通过温度 传感器检测环境温度,并将温度信息传递给单片机进行处理 ,单片机根据温度信息控制风扇的转速,以达到节能、便捷 的目的。
负载测试
在模拟实际负载的情况下,测试系统的响应时间、吞吐量等性能指 标。
瓶颈分析
通过性能分析工具,找出系统的瓶颈所在,如CPU、内存、IO等资 源的使用情况。
优化建议
根据瓶颈分析结果,提出针对性的优化建议,如优化算法、减少内存 占用等措施。
01
结论与展望
设计成果总结
硬件设计
设计了一个以单片机为核心,搭配温度传感器和风扇控制 电路的智能温控风扇硬件系统。实现了温度监测、风扇转 速调节、自动关机等功能。
风扇控制策略
风速调节
01
根据环境温度和设定阈值,调节风扇转速,以实现风速的平滑
变化。
多种工作模式
02
设计多种工作模式,如高速、中速、低速等,以满足不同场景
和需求。
异常处理
03
当出现异常情况时,如风扇卡死、温度传感器故障等,触发应
急处理机制,如报警、停机等,以保障系统安全。
01
系统测试与性能分析
硬件测试
控制程序
根据温度数据,通过单片机控制风扇的转速,实现温度的调节。
01
单片机选择与硬件设计
单片机选择
8051单片机
8051单片机是一种经典的8位 单片机,具有丰富的指令集和 多种外设接口,适用于多种应
用场景。
STM32单片机
基于51单片机的智能温控电扇设计-图文
基于51单片机的智能温控电扇设计-图文摘要:风扇是人们日常生活中必不可缺的工具,尤其是在夏天,作为一种使用频率很高的电器,备受人们喜爱。
本文将以AT89S51为主控芯片,辅以DS18B20温度传感器,结合红外探测装置,来实现一种智能温控电扇的设计。
此风扇通过液晶显示器来显示温度和风速,配备2个温度设定按键,由DS18B20读取外界温度,红外探头探测是否有人,通过设定的温度配合程序来调节风速,最后通过L298N来驱动电机。
经过调试,风扇可以按照温度智能变速,无人自动关闭,实现了智能温控的目标。
关键词:DS18B20;AT89S51;红外探头;液晶显示器1602;L298N1引言电扇是人们日常生活中常用的降温工具,从开始的吊扇到现在的USB风扇,无处不见电扇的踪迹。
虽然如今空调已经走进千家万户,但是电扇的低位还是无可取代,作为一种节能环保,并且廉价简单的降温工具,电扇还在很多人家发挥着自己独特的作用。
顺应时代潮流,各种多功能的风扇逐渐在取代传统风扇。
单片机作为一种智能化程度高,控制精度高,操作简单,廉价易得,抗干扰能力强等特点,越来越多的应用于智能化产品之中。
市场上智能风扇产品相继问世,制作方法也多种多样,功能也逐渐完善,普遍都具有了手动变速和定时关闭等功能,相对而言,具备人性化,智能化的风扇还是很少,使用也并不广泛,而且在电子工艺高度发展的今天,智能化的步伐也越来越快,尤其是中国这个高速发展的国家,电扇的智能化也该向前迈进一个步伐。
在中国市场上风扇还是有一定的市场份额的,几乎每个家庭都有风扇,具备价格便宜,摆放轻便,体积灵巧等特点,使得风扇在中小城市以及乡村将来一段时间内仍然会占有市场的大部分份额,为提高风扇的市场竞争力,使之在技术含量上有所提高,满足智能化的要求,智能风扇很具竞争力。
大学四年即将结束,为了检验自己的学习情况,我决定使用之前所学习到的硬件只是结合相关的软件基础来制作一个基于单片机的智能温控风扇。
基于单片机的智能电风扇设计
基于单片机的智能调速风扇控制系统专摘要随着空调的产生,电风扇面临巨大冲击。
其实,电风扇和空调相比还是有很多优点,首先耗能小,符合目前节能的观念。
其次,空调房间都是密闭的,电风扇吹风比较自然,可开门窗,空气流通好,不易感染疾病。
为了更好的研发智能风扇,本文基于STC89C52单片机设计电风扇的控制系统。
以单片机为控制中心,主要通过提取热释电红外线传感器感应到的人体红外线信息和温度传感器DS18B20得到的温度来控制电风扇的开关及档速的变化,通过单片机对室内温度进行档速划分处理后应用PWM方式控制电风扇档速,并通过液晶显示电路实时显示温度及电风扇的档速。
首先进行总体设计,然后进行硬件电路设计与软件设计,最后试制出电风扇原型机。
经过前期设计、制作和最终的测试得出,该风扇电源稳定性好,操作方便,运行可靠,功能强大,价格低廉,节约能耗,能够满足用户多元化的需求。
该风扇具有的人性化设计和低廉的价格很适合普通用户家庭使用。
关键词:STC89C52单片机;电风扇;控制器;智能AbstractWith the generation of air conditioning, electric fan is facing a huge impact. In fact, compared with the electric fan and air conditioning has many advantages, the first energy consumption is small, in line with the current concept of energy conservation. Next, the air conditioning room is airtight, the electric fan hair dryer is quite natural, can open the windows and doors, air circulation is good, is not easy to infect the disease. In order to develop the intelligent fan, the control system of the electric fan is designed based on STC89C52 microcontroller. In order to control the center of the single chip microcomputer as control center, the temperature is controlled by the thermal release infrared sensor and the temperature sensor DS18B20 to control the temperature of the electric fan.Firstly, the overall design, and then the hardware circuit design and software design, and finally developed the prototype of electric fan. After the preliminary design, production and final test, the power supply of the fan is good, the operation is convenient, the operation is reliable, the function is strong, the price is low, the energy consumption can meet the diversified needs of users. The fan has a user-friendly design and low price is very suitable for ordinary users to use the family.Keywords: STC89C52 microcontroller; electric fan; controller; intelligent目录摘要 (I)Abstract...................................................................................................... I I 第一章绪论 (1)1.1 系统整体设计 (1)1.2方案论证 (1)1.2.1温度传感器的选择 (1)1.2.2控制核心的选择 (2)1.2.3温度显示器件的选择 (2)1.2.4调速方式的选择 (2)第二章系统各主要单元硬件电路 (3)2.1 温度检测电路 (3)2.1.1DS18B20的温度处理方法 (3)2.1.2温度传感器 (4)2.2 LED数码管显示电路 (5)2.2.1移位寄存器简介 (5)2.2.2共阴极八段数码管简介 (5)2.3电机调速电路 (7)2.3.1电机调速原理 (7)2.3.2电机控制模块设计 (8)2.4独立控制键电路 (8)2.5红外传感器模块 (9)第三章系统软件设计 (11)3.1 数字温度传感器模块程序设计 (11)3.2 电机调速与控制模块程序流程 (15)3.2.1电机调速与控制子模块 (15)3.2.2 主要程序 (16)3.3 显示设计 (18)3.4程序设计 (18)第四章系统调试 (20)4.1 软件调试 (20)4.1.1按键显示部分的调试 (20)4.1.2传感器DS18B20温度采集部分调试 (20)4.1.3电动机调速电路部分调试 (20)4.2 硬件调试 (20)4.2.1按键显示部分的调试 (20)4.2.2传感器DS18B20温度采集部分调试 (21)4.2.3电动机调速电路部分调试 (21)4.3 系统功能 (21)4.3.1系统实现的功能 (21)4.3.2系统功能分析 (21)结束语 (23)致谢 (24)参考文献 (25)1 绪论本文设计了由ATMEL公司的8052系列单片机AT89C52作为控制器,采用DALLAS公司的温度传感器DS18B20作为温度采集元件,并通过一个达林顿反向驱动器ULN2803驱动风扇电机的转动。
基于单片机的智能电风扇控制设计
目录第1节引言 (3)1.1 智能电风扇控制系统概述 (3)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (5)2.1 总体硬件设计 (5)2.2 数字温度传感器模块设计 (5)2.2.1 温度传感器模块的组成 (5)2.2.2 DS18B20的温度处理方法 (6)2.3 电机调速与控制模块设计 (7)2.3.1 电机调速原理 (7)2.3.2 电机控制模块硬件设计 (8)2.4 温度显示与控制模块设计 (9)第3节系统软件设计 (10)3.1 数字温度传感器模块程序设计 (10)3.2 电机调速与控制模块程序流程 (15)3.2.1 程序设计原理 (15)3.2.2 主要程序 (16)第4节结束语 (19)参考文献 (20)第1节引言电风扇曾一度被认为是空调产品冲击下的淘汰品,其实并非如此,市场人士称,家用电风扇并没有随着空调的普及而淡出市场,近两年反而出现了市场销售复苏的态势。
其主要原因:一是风扇和空调的降温效果不同——空调有强大的制冷功能,可以快速有效地降低环境温度,但电风扇的风更温和,更加适合老人儿童和体质较弱的人使用;二是电风扇有价格优势,价格低廉而且相对省电,安装和使用都非常简单。
尽管电风扇有其市场优势,但传统电风扇还是有许多地方应当进行改良的,最突出的缺点是它不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。
鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题。
1.1 智能电风扇控制系统概述传统电风扇是220V交流电供电,电机转速分为几个档位,通过人为调整电机转速达到改变风力大小的目的,亦即,每次风力改变,必然有人参与操作,这样势必带来诸多不便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类号:TP203单位代码:10452本科毕业论文基于单片机的电风扇智能控制姓名学号年级 2006专业自动化专业系(院)信息学院指导教师2010年6月12日临沂师范学院2010届本科毕业论文摘要在日常生活中,单片机得到了越来越广泛的应用,特别在小型的自动控制系统的应用中。
本文基于AT89C51单片机设计了电风扇自动调温系统。
通过单片机的控制我们实现了电风扇的主要功能:当按下开关键时,系统初始化默认的设定温度为25度,如果外界温度高于设定温度电风扇进行运转,如果外界温度高于低于设定温度则风页不转动,同时显示外界的温度。
当加减键同时按下时进入温度设定状态,可以设置所需的温度,并同时显示所设定的温度,同时按加减键退出设定功能。
电风扇的自动控制,让电风扇这一家用电器变的更智能化。
克服了普通电风扇无法根据外界温度自动调节转速困难。
智能电风扇的设计具有重要的现实意义。
关键词: AT89C51单片机;温度传感器;直流电机AbstractIn daily life, SCM got more and more widely applied in small system, particularly in the application of automatic control system. This thesis based on AT89C51 to design thermostat automatically electric system .Through the MCU control we realized the fan main function:after you press the button,the default system initialization temperature is 25.If the temperature higher than outside temperature,the fan ran. If the temperature is lower than outside temperature the fan doesn't turn and display outside temperature at the same time.when press add key and subtract key ,enter the temperature setting system. Then we can set temperature what we needed and display the temperature at the same time.We can exit set temperature system by press add key and subtract key at the same time.The automatic control make electric fan become more intelligent in the household appliances.It overcome the difficulty which cannot according to the temperature outside automatically to adjust the speed of the normal fan.Keywords: Semperature sensor; Single Chip Machine ; D.C. electric machine目录一、自动调温电风扇概论 (1)(一)自动调温电风扇简介 (1)(二)自动调温电风扇设计目的 (1)二、自动调温电风扇设计原理和具体结构 (2)(一)自动调温电风扇结构 (2)1、内部结构: (2)2、外部结构 (2)(二)电风扇控制流程图 (3)(三)主要元器件的工作原理简介 (4)1、AT89C51单片机简介 (4)2、直流电机的结构 (5)3、LED显示器 (6)4、温度传感器的原理 (6)5、直流稳压器 (7)三、自动调温电风扇控制系统设计 (8)(一)自动调温电风扇的各模块的控制 (8)1、AT89C51部分 (8)2、电源转换电路部分 (10)3、按键部分 (10)4、单片机复位部分 (11)5、数模转换部分 (11)(二)缓冲与保护部分 (12)(三)自动调温电风扇的整体硬件电路 (12)四、软件设计 (15)(一)主程序设计 (15)(二)总程序 (16)结束语 (21)参考文献 (22)谢辞 (23)一、自动调温电风扇概论我们常见的风扇一般只有四、五个风速挡,用的是人工开关,不知室内温度,只是人为的调节该用哪个挡。
而自动调温电风扇这个设计是一新领域,它用的是在电子行业中应用广泛的AT89C51单片机。
通过单片机与温度探测器结合,将其应用于家用电风扇的转速精确控制上,能够有良好的性能。
(一)自动调温电风扇简介它使用直流电动机的控制以模拟电路为基础,运算放大器、非线性集成电路以及数字电路组成,使得对电风扇各挡风量的调节更加细化,使得电风扇的控制更具人性化,同时它也具有全自动、控制简单、智能化、制作容易。
使用温度传感器、专用控制集成电路和单片机,实现当室温达到自己所设定开启风扇的温度时,电风扇自动开启,并且可以根据室温变换风速;当室温低于这一设定温度时,电风扇自动关闭。
同时显示当前室内的温度,和自己所设定的温度,提醒人们合理的使用电风扇。
(二)自动调温电风扇设计目的进入5月份,天气越来越炎热,尤其到了盛夏,更是酷热难当。
目前可供选择的纳凉工具主要有:空调、普通电风扇、冷风机以及蒲扇、纸扇等等。
空调使用方便,且越来越智能化,但它使用费用高,并且常常给人带来疾病。
而电风扇以其低廉的价格使它的使用极为普遍。
人们常常通宵达旦的使用,一旦气温稍有变化,感冒人数就会急剧增加;冷风机能增强空气的湿度但使用久了,家里电器会受潮,同时也会让使用者长期裸露在外的关节受到危害;蒲扇和纸扇价格低廉,但不自动,目前使用者微乎其微。
在这种情况下,自动调温电风扇应运而生。
我们的生活加快,人们需要处理的事情越来越多,在炎热的夏天,回到家更想好好休息,消除自己一天的工作疲劳,而自动调温电风扇的设计就解决了这些问题。
自动调温电风扇是通过单片机控制来实现直流电动机运转频率的自动调节,从而达到改变风速的目的。
此设计用到AT89C51单片机,它是把微处理器,存储器(RAM和ROM),输入/输出接口以及定时器/计数器等集成在一起的集成电路芯片。
它与集成电路相结合,组成一个设定温度,感温,控制和输出与一身的模块。
利用单片机AT89C51和一些电路对室温进行探测,从而对电风扇进行开和关的一系列控制。
二、自动调温电风扇设计原理和具体结构(一)自动调温电风扇结构自动调温电风扇有内部结构和外部结构组成。
1、内部结构:有集成电路板和直流电机组成,整个部分电路板是重中之中,它上面连接了有单片机,温度传感器,延时开关电路,按键式电磁开关,LED显示器,A/D、D/A转换电路、可控硅触发控制电路、振荡电路、电源电路等。
如图1所示:图1自动调温电风扇内部结构图2、外部结构由外壳、风扇叶、开关、电源线、网罩、转页组成。
如图2所示:图2外部结构图(二)电风扇控制流程图如图3所示:图3 电风扇控制流程图(三)主要元器件的工作原理简介1、AT89C51单片机简介AT89C51 单片机引脚图如图4所示:图4 引脚图管脚定义:Vss :接地。
Vcc :电源,提供掉电、空闲、正常工作电压。
P0.0-0.7 : P0 I/O 口 - P0 口是开漏双向口,可以写为1 使其状态为悬浮用作高阻输入。
P0 也可以在访问外部程序存储器时作地址的低字节,在访问外部数据存储器时作数据总线,此时通过内部强上拉输出1。
P1.0-1.7 : P1 I/O 口 - P1 口是带内部上拉的双向I/O 口,向P1 口写入1时,P1 口被内部上拉为高电平,可用作输入口。
当作为输入脚时,被外部拉低的P1 口会因为内部上拉而输出电流。
P1 口第2 功能:T2(P1.0) 定时/计数器2 的外部计数输入/时钟输出。
T2EX(P1.1) 定时/计数器2 重装载/捕捉/方向控制。
P2.0-2.7 : P2 I/O 口 - P2 口是带内部上拉的双向I/O 口,向P2 口写入1时,P2 口被内部上拉为高电平,可用作输入口。
当作为输入脚时,被外部拉低的P2 口会因为内部上拉而输出电流。
在访问外部程序存储器和外部数据时分别作为地址高位字节和16 位地址(MOVX @DPTR),此时通过内部强上拉传送1。
当使用8 位寻址方式(MOV @Ri)访问外部数据存储器时,P2 口发送P2 特殊功能寄存器的内容。
RST :复位当晶振在运行中,只要复位管脚出现2 个机器周期高电平即可复位,内部有扩散电阻连接到Vss 仅需要外接一个电容到Vcc ,即可实现上电复位。
PSEN :程序存储使能当执行外部程序存储器代码时,PSEN 每个机器周期被激活两次,在访问外部数据存储器时PSEN无效,访问内部程序存储器时PSEN 无效。
XTAL1 :晶体1 反相振荡放大器输入和内部时钟发生电路输入。
XTAL2 :晶体2 反相振荡放大器输出。
2、直流电机的结构直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约大量的人力资源和降低系统成本,从而有效的提高工作效率。
直流电动机的转速与施加于电动机两端的电压大小有关。
电枢电压为Ua,电枢电流为Ia,电枢回路总电阻为Ra,电机常数Ca,励磁磁通量是¢。
根据KVL方程:电机转速n=(Ua-IaRa)/Ca¢,其中,对于极对数p,匝数为N,电枢支路数为a的电机来说:电机常数Ca=pN/60a,意味着电机确定后,该值是不变的。
而在Ua-IaRa中,由于Ra仅为绕组电阻,导致IaRa非常小,所以Ua-IaRa约等于Ua。
由此可见我们改变电枢电压时,转速n即可随之改变。
直流电动机如图5所示:图5直流电机原理图3、LED显示器本设计采用两个一样的集成数码管。
LED数码管由各自的三极管驱动和关闭。
当单片机输出显示数据的同时还输出两个驱动信号送到 DS1、DS2的各自的三极管的基极,使三极管导通从而使LED显示相应输出电压值。