蚁群优化算法
蚁群优化算法的研究及其应用的开题报告

蚁群优化算法的研究及其应用的开题报告一、研究背景及意义蚁群优化算法(Ant Colony Optimization,简称ACO)是一种基于自然界蚂蚁的行为特性而发展起来的群智能优化算法。
它通过模拟蚂蚁在寻找食物时的集体行为,通过正反馈和信息素等机制进行迭代搜索,最终达到问题最优解的全局优化方法,被广泛运用于组合优化、机器学习、数据挖掘、图像处理、网络计算等领域。
ACO算法在应用过程中存在的核心问题是参数的选择:如何确定信息素的启发式因子、挥发系数、蚁群大小、局部搜索参数等,以及如何在不同的问题中选择合适的参数组合。
因此,对ACO算法的研究不仅可以提高ACO算法在不同领域应用的效率和性能,还可以对其他基于自然界智慧的算法进行改进和优化。
对此,本研究将重点研究ACO算法的自适应参数优化算法及其在不同应用领域的性能评估和优化探究。
二、研究内容和方向1. ACO算法的原理、模型和迭代搜索过程研究;2. 研究ACO算法的参数选择算法,并结合实际问题进行验证和优化;3. 在不同应用领域(如组合优化、机器学习、数据挖掘等)中,探究ACO算法的性能表现及其在问题求解中的优化效果;4. 侧重于自适应参数优化的ACO算法,探究其在各种应用中的适用性、性能表现和求解效果;5. 探究ACO算法在较大规模问题优化中的可行性和效率,并对其进行实际应用。
三、研究方法和技术路线1. 查阅相关文献,深入理解ACO算法的原理、模型和参数选择等关键技术;2. 基于现有研究,设计ACO算法的自适应参数优化算法,并根据不同问题调整和优化参数组合;3. 选择不同领域问题,研究ACO算法的性能表现及其优化效果,并与其他优化算法进行对比分析;4. 将自适应参数优化的ACO算法应用于实际问题中,对ACO算法的可行性和效率进行实验验证,并与其他优化算法进行比较;5. 探究ACO算法在大规模应用中的效率及其应用瓶颈,根据实际问题调整算法优化方案。
四、预期成果及创新之处本研究旨在设计、优化ACO算法的自适应参数选择方案,并将其应用于不同领域中的优化问题,探究ACO算法在不同应用领域中的性能和优化效果。
蚂蚁算法和蚁群算法

蚂蚁算法(Ant Colony Algorithm)和蚁群算法(Ant Colony Optimization)是启发式优化算法,灵感来源于蚂蚁在觅食和建立路径时的行为。
这两种算法都基于模拟蚂蚁的行为,通过模拟蚂蚁的集体智慧来解决组合优化问题。
蚂蚁算法和蚁群算法的基本原理类似,但应用领域和具体实现方式可能有所不同。
下面是对两者的简要介绍:蚂蚁算法:蚂蚁算法主要用于解决图论中的最短路径问题,例如旅行商问题(Traveling Salesman Problem,TSP)。
其基本思想是通过模拟蚂蚁在环境中寻找食物的行为,蚂蚁会通过信息素的释放和感知来寻找最优路径。
蚂蚁算法的核心概念是信息素和启发式规则。
信息素(Pheromone):蚂蚁在路径上释放的一种化学物质,用于传递信息和标记路径的好坏程度。
路径上的信息素浓度受到蚂蚁数量和路径距离的影响。
启发式规则(Heuristic Rule):蚂蚁根据局部信息和启发式规则进行决策。
启发式规则可能包括路径距离、路径上的信息素浓度等信息。
蚂蚁算法通过模拟多个蚂蚁的行为,在搜索过程中不断调整路径上的信息素浓度,从而找到较优的解决方案。
蚁群算法:蚁群算法是一种更通用的优化算法,广泛应用于组合优化问题。
除了解决最短路径问题外,蚁群算法还可应用于调度问题、资源分配、网络路由等领域。
蚁群算法的基本原理与蚂蚁算法类似,也是通过模拟蚂蚁的集体行为来求解问题。
在蚁群算法中,蚂蚁在解决问题的过程中通过信息素和启发式规则进行路径选择,但与蚂蚁算法不同的是,蚁群算法将信息素更新机制和启发式规则的权重设置进行了改进。
蚁群算法通常包含以下关键步骤:初始化:初始化蚂蚁的位置和路径。
路径选择:根据信息素和启发式规则进行路径选择。
信息素更新:蚂蚁在路径上释放信息素,信息素浓度受路径质量和全局最优解的影响。
全局更新:周期性地更新全局最优解的信息素浓度。
终止条件:达到预设的终止条件,结束算法并输出结果。
蚁群算法路径优化算法

其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转移概率。
allowedk = C − tabuk表示蚂蚁k下一步允许选择的城市。
α为启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起的作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间的协作性越强。
β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t) 为启发函数,表达式为。
式中,dij表示相邻两个城市之间的距离。
(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该元素(城市)移动到该蚂蚁个体的禁忌表中。
(7)若集合C中元素(城市)未遍历完,即k<m,则跳转到第(4)步,否则执行第(8)步。
(8)根据公式更新每条路径上的信息量:τij(t + n) = (1 − ρ) * τij(t) + Δτij(t),(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,否则清空禁忌表并跳转到第(2)步。
蚁群算法的matlab源程序1.蚁群算法主程序:main.m%function [bestroute,routelength]=AntClccleartic% 读入城市间距离矩阵数据文件CooCity = load( 'CooCity.txt' ) ;% 城市网络图坐标数据文件,txt形式给出NC=length(CooCity); % 城市个数for i=1:NC % 计算各城市间的距离for j=1:NCdistance(i,j)=sqrt((CooCity(i,2)-CooCity(j,2))^2+(CooCity(i,3)-CooCity(j,3))^2);endendMAXIT=10;%最大循环次数Citystart=[]; % 起点城市编号tau=ones(NC,NC); % 初始时刻各边上的信息痕迹为1rho=0.5; % 挥发系数alpha=1; % 残留信息相对重要度beta=5; % 预见值的相对重要度Q=10; % 蚁环常数NumAnt=20; % 蚂蚁数量routelength=inf; % 用来记录当前找到的最优路径长度for n=1:MAXITfor k=1:NumAnt %考查第K只蚂蚁deltatau=zeros(NC,NC); % 第K只蚂蚁移动前各边上的信息增量为零%[routek,lengthk]=path(distance,tau,alpha,beta,[]); % 不靠率起始点[routek,lengthk]=path(distance,tau,alpha,beta,Citystart); % 指定起始点if lengthk<routelength %找到一条更好的路径:::routelength=lengthk;:::bestroute=routek;endfor i=1:NC-1 % 第K只蚂蚁在路径上释放的信息量deltatau(routek(i),routek(i+1))=deltatau(routek(i),routek(i+1))+Q/lengthk; % 信息素更新end%deltatau(routek(NC),1)=deltatau(routek(NC),1)+Q/lengthk; %endlength_n(n)=routelength; % 记录路径收敛tau=(1-rho).*tau; % 信息素挥发end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%costtime=toc;subplot(1,2,1),plot([CooCity(bestroute,2)],[CooCity(bestroute,3)],'-*')subplot(1,2,2),plot([1:MAXIT],length_n,'-*')[routelength,costtime]2.蚁群算法寻找路径程序:path.m% 某只蚂蚁找到的某条路径routek,lengthkfunction [routek,lengthk]=path(distance,tau,alpha,beta,Citystart)[m,n]=size(distance);if isempty(Citystart) % 如果不确定起点p=fix(m*rand)+1; % 随机方式初始化起点,均匀概率elsep=Citystart; % 外部给定确定起点 endlengthk=0; % 初始路径长度设为 0routek=[p]; % 蚂蚁路径点序列,即该蚂蚁已经过的城市集合,路径初始起点for i=1:m-1np=routek(end); % 蚂蚁路径城市序号,依次经过的城市编号np_sum=0; % 路由长度初始为 0for j=1:mif inroute(j,routek) % 判断城市节点j是否属于tabuk,即是否已经过continue;else % j为还未经过的点ada=1/distance(np,j); % 预见度np_sum=np_sum+tau(np,j)^alpha*ada^beta; % 路由表:信息痕迹、预见度 endendcp=zeros(1,m); % 转移概率,基于路径长度及路由表for j=1:mifinroute(j,routek)continue;elseada=1/distance(np,j); % 预见度cp(j)=tau(np,j)^alpha*ada^beta/np_sum; % np到j的转移概率endendNextCity=nextcitychoose2(cp); % 根据转移概率确定下一个城市,% 直观地,取转移概率最大值方向方法,决策结果稳定且收敛快routek=[routek,NextCity]; % 更新路径lengthk=lengthk+distance(np,NextCity); % 更新路径长度end蚁群算法仿真结果:其中左边是蚂蚁行走的最短路径,右边是最短路径的值的收敛情况。
蚁群优化算法课件

05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强
蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。
蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。
1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。
蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。
通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。
2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。
2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。
较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。
2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。
通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。
2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。
信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。
蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。
2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。
信息素更新还包括信息素的挥发,以模拟现实中信息的流失。
3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。
3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。
在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。
例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。
3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。
第三讲 蚁群优化算法

(2)信息素量大小的取值范围被限制在一个区间内。 (3)信息素初始值为信息素取值区间的上限,并伴随一个
较小的信息素蒸发速率。 (4)每当系统进入停滞状态,问题空间内所有边上的信息
素量都会被重新初始化。
3.3 最大最小蚂蚁系统
(3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。
(4)迭代(2),直至算法终止。
2 算法流程
信息素更新
m
(i, j) (1 r) (i, j) k (i, j),
食物
6:我自己走,说不定能探索 出一条更短的路径呢,
到时候你们就都会跟着我了
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。和是
两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权
重关系。当=0时,算法演变成传统的随机贪心算法,最邻近城市被 选中的概率最大。当=0时,蚂蚁完全只根据信息素浓度确定路径,
算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大 的差异,算法的性能比较糟糕。
蚁群优化算法应用研究概述

蚁群优化算法应用研究概述
蚁群优化算法是一种仿生智能算法,其灵感来源于蚂蚁寻找食物的集
体行为。
该算法具有自适应、自组织、分布式等特点,适用于解决复杂优
化问题。
蚁群优化算法已经在许多领域得到广泛应用,如:
1.工程设计:蚁群优化算法可以用于机器人路径规划、液压系统优化、建筑结构优化等。
2.电力系统:蚁群优化算法可以用于电网运行优化、电力市场运营优
化等。
3.交通运输:蚁群优化算法可以用于交通信号控制、路径规划、车辆
调度等。
4.金融领域:蚁群优化算法可以用于股票价格预测、信用风险评估等。
5.医学领域:蚁群优化算法可以用于分子结构预测、药物设计等。
总之,蚁群优化算法具有很高的应用价值,在科学研究和工程实践中
有着广泛的应用前景。
蚁群算法基本原理

蚁群算法基本原理
蚁群算法(Ant Colony Algorithm)是一种基于模拟蚁群行为的优化算法,用于解决复杂的优化问题。
其原理是模拟蚂蚁寻找食物的行为,在寻找过程中通过信息素来引导蚂蚁探索最优解。
基本流程:
1. 初始化:将蚂蚁随机分散在问题空间中,每只蚂蚁都随机选择一个起点。
2. 蚂蚁搜索:每只蚂蚁根据一定的概率选择下一个节点,概率与当前节点的信息素有关,如果信息素较高则该节点被选中的概率较大。
3. 信息素更新:每只蚂蚁在搜索过程中会留下一定的信息素,当搜索完成后,信息素会根据一定的规则进行更新,具体规则可以为:信息素浓度与路径长度成反比例关系,或者信息素挥发速度固定。
4. 最优解记录:当所有蚂蚁完成搜索后,从它们所走过的路径中选择获得最优解,并将该路径上的信息素浓度进行更新。
5. 重复搜索:重复上述所有步骤,直到达到设定的迭代次数或者满足终止条件。
蚁群算法基本原理就是通过模拟蚁群行为,通过信息素的引导来搜索最优解。
在
实际应用中,蚁群算法可以用于解决诸如旅行商问题、作业调度问题、路径规划问题、图像分割问题等优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 6
蚁群算法原理
➢人工蚂蚁的模型
7 7
蚁群算法原理
➢自然蚁群与人工蚁群
相似之处在于:都是优先选择信息素浓度大的路径。
两者的区别在于: (1)人工蚁群有一定的记忆能力,能够记忆已经
访问过的节点。 (2)人工蚁群选择路径时不是盲目的,而是按一
定规律有意识地寻找最短路径。例如在TSP问题中, 可以预先知道当前城市到下一个目的地的距离。
子集越大信息正反馈的作用不明显,搜索的随机性增强,造成收 敛速度变慢; 反之,子集越小,搜索的随机性减弱,虽然收敛速度较快,但是 会使算法的全局性能降低,影响算法的稳定性。
➢信息素挥发度 的选取
信息素挥发度 的大小对蚁群算法的收敛性能影响极大; · 当 比较小时,搜索的全局性好,但收敛速度变慢;
xallowk
0, s allowk
信息更新公式为:
ij (t 1) (1 )ij (t) ij
ij
n
k ii
,0 1
k 1
10 10
基本蚁群算法
针对蚂蚁释放信息素问题,M.Dorigo等人曾给出3中 不同的模型,分别为蚁周系统、蚁量系统和蚁密系统, 其计算公式如下:
1.Ant-cycle
蚁群优化算法
Ant Colony Optimization
1
算法介绍
• 群智能算法
群智能是一种由简单智能的个体通过某种形式的聚集协同而表现出智能行 为。它在没有集中控制,不提供全局模型的前提下寻找复杂的分布式问题求解 方案提供了基础。群智能算法通过模仿生物界的进化机理和群体协作行为而提 出的仿生类随机搜索算法。
k ii
Q 0,
/ Lk,第k只蚂蚁从城市i访问城市j 其他
2.Ant-quantity
k ii
Q / dij,第k只蚂蚁从城市i访问城市j
0,
其他
3.Ant-density
k ii
Q,第k只蚂蚁从城市i访问城市j 0, 其他
其中,Q为常数,表示蚂蚁循环一次所释放的信息素总量;L为第k只蚂蚁经
过路径的长度;d为城市间的距离。。
➢较强的鲁棒性 ·➢分布式计算
➢易于与其他方法结合
需要较长的搜索时间 容易出现停滞现
15 15
带精英策略的蚂蚁系统
➢带精英策略的蚂蚁系统(Ant System with elitist strategy,
ASelite)是最早的改进蚂蚁系统。
➢遗传算法中的精英策略
– 传统的遗传算法可能会导致最适应个体的遗传信息丢失 – 精英策略的思想是保留住一代中的最适应个体
8 8
求解组合优化问题的蚁群算法
9 9
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信
息素浓度决定其下一个访问城市,设Pijk t 表示t时刻蚂蚁
k从城市i转移到城市j的概率,其计算公式为:
Pijk
(t
)
is
(t
)is
(t
)
, s allowk
is
(tห้องสมุดไป่ตู้
)is
(t
)
ACO首次被系统的提出
启发
自然界中真实蚁群集体行为
4 4
蚁群算法原理
➢如何找到最短路径 ?
• 信息素:信息素多的地方显然经过这里的蚂蚁多, 因而会有更多的蚂蚁聚集过来。
• 正反馈现象:某一路径上走过的蚂蚁越多,则后来 者选择该路径的概率就越大。
类比:
大肠杆菌在人体肠道内觅食的过程
5 5
蚁群算法原理
可以使蚂蚁系统找出更优的解 找到这些解的时间更短 精英蚂蚁过多会导致搜索早熟收敛
18 18
蚁群系统
➢ 蚁群系统的状态转移规则
一只位于节点r的蚂蚁通过应用下式给出的规则选择 下一个将要移动到的城市s:
s
arg
max {[
uallowedk
(r,
u)]
[(r, u)]
}, 如果q
q0按先验知识选择路径
➢蚂蚁的初始分布
所有蚂蚁初始时刻放在同一个城市; 蚂蚁分布在不同的城市中。
14 14
蚁群算法时间复杂度及优缺点
M.Dorigo曾经对经典的TSP问题求解复杂度进 行过深入的研究,所得到的经验结果表明,算法 的时间复杂度为O(NC·n2·m),NC表示迭代次数, n表示城市数,m则表示参与搜索的蚂蚁数量。当 参与搜索的蚂蚁数量m大致与规模大小n相等时, 算法的时间复杂度变为O(NC·n3)
11 11
蚁群算法的主要特点
采用分布式控制 每个个体只能感知局部的信息 个体可以改变环境 具有自组织性 是一类概率型的全局搜索方法 优化过程不依赖于优化问题本身的严格数学性质 是一种基于多主体(Multi-Agent)的智能算法 具有潜在的并行性
12 12
蚁群算法参数选择
➢蚁群数量m的选择
m
ij
k ij
k 1
k ij
Q
Lk
, 如果蚂蚁k在本次循环中经过路径(i,j)
0, 否则
* ij
Q L*
, 如果边(i,j)是所找出的最优解的一部分
0, 否则
17 17
带精英策略的蚂蚁系统
➢ 表示精英蚂蚁引起的路径(i, j)上的信息素量的增加 ➢ 是精英蚂蚁的个数 ➢ L 是所找出的最优解的路径长度 ➢特点:
当 比较大时,收敛速度比较快,但是容易陷入局部最优。
13 13
蚁群算法参数选择
➢因子 和 的选取
启发式因子 的大小则反映了在蚁群路径搜索中的随机性因素作
用的强度;
启发式因子 的大小反映了在蚁群路径搜索中确定性因素作用的
强度。
➢总信息量Q的选取
总信息量Q越大,可以加强蚁群搜索时的正反馈性能,有助于算 法的快速收敛。
S , 否则
其中,S根据下列公式得:到
Pijk (t)
ij
(t)
ij
(t)
is
(t
)
is
(t
)
sallowedk
去 人工蜂群算法 细菌觅食算法 萤火虫算法 粒子群算法 人工鱼群算法 鸟群算法
2 2
蚁群算法的提出
Macro Dorigo
Gambardella
3 3
蚁群算法的发展
2001年至今
各种改进算法的提出,应用领域更广
1996年-2001年
引起学者关注,在应用领域得到拓宽
意大利学者
Dorigo1991年 Dorigo1991年
➢蚂蚁系统中的精英策略
– 每次循环之后给予最优解以额外的信息素量 – 这样的解被称为全局最优解(global-best solution) – 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
16 16
带精英策略的蚂蚁系统
➢信息素根据下式进行更新
其中
ij (t 1) ij (t) ij i*j