七年级上册数学规律题题目
七年级上册数学找规律试题
初一数学找规律:1 .(2013山东滨州,18,4分)观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…… ……请猜测,第n 个算式(n 为正整数)应表示为____________________________.【答案】 [10(n -1)+5]×[10(n -1)+5]=100n(n -1)+25.2. (2013山东莱芜,17,4分)已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数种从左往右数第2013位上的数字为 . 【答案】73.(3分)(2013•青岛)要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切 6 次;分割成64个小正方体,至少需要用刀切 9 次.4.(2013泰安)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( )A .0B .1C .3D .7考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C .点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.5.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ).A.40B.45C.51D.56答案:C .考点:新定义问题.点评:本题需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题,分析问题,解决问题的能力.6.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)答案:n 2+4n考点:本题是一道规律探索题,考查了学生分析探索规律的能力.点评:解决此类问题是应先观察图案的变化趋势,然后从第一个图形进行分析,运用从特殊到一般的探索方式,分析归纳找出黑白正方形个数增加的变化规律,最后含有n 的代数式进行表示.7.(3分)(2013•烟台)将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A . 502B . 503C . 504D . 505考点: 规律型:图形的变化类.分析: 根据正方形的个数变化得出第n 次得到2013个正方形,则4n+1=2013,求出即可.解答: 解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,若第n 次得到2013个正方形,则4n+1=2013,解得:n=503.故选:B .点评: 此题主要考查了图形的变化类,根据已知得出正方形个数的变化规律是解题关键.8、(2013安徽)如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个。
七年级(上)数学【找规律】经典题汇总带答案
……一、数字排列规律题1、观察下列各算式: 1+3=4=22,1+3+5=9=23,1+3+5+7=16=24… 按此规律 (1)试猜想:1+3+5+7+…+2005+2007的值 ?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢? 2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个( )二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).三、数、式计算规律题 1、已知下列等式:① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,… 根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a aba b 则符合前面式子的规律,,若…21010 规律发现专题训练1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块。
七年级数学(上)探索规律类-问题及答案
七年级数学(上)探索规律类 问题班级 学号 姓名 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。
4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。
第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10(第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到1条 2条 3条 图1 图2 图 3 O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。
数学规律题集锦(七年级上册)
数学规律题集锦(七年级上册)一、奇偶性规律1.奇数和奇数相加的结果是偶数。
例如:3 + 5 = 82.偶数和偶数相加的结果是偶数。
例如:2 + 4 = 63.奇数和偶数相加的结果是奇数。
例如:7 + 6 = 134.奇数和偶数相乘的结果是偶数。
例如:3 × 4 = 12二、连续数规律1.连续自然数之和可以通过求平均数乘以个数计算。
例如:1+2+3+4+5 =(1 + 5)× 5 ÷ 2 = 152.连续自然数之差可以通过求平均数乘以个数计算。
例如:9-5 =(9 + 5)× 5 ÷ 2 = 14三、乘方规律1.任意数的平方等于该数乘以自己。
例如:5² = 5 × 5 = 252.任意数的立方等于该数乘以自己再乘以自己。
例如:4³ = 4 × 4 × 4 = 64四、倍数与约数规律1.若一个数可以被另一个数整除,则前者是后者的倍数,后者是前者的约数。
例如:8是16的约数,16是8的倍数。
2.每个数都是1的倍数,且每个数都是自己的约数。
例如:1是任意数的约数,任意数是自己的倍数。
五、除法规律1.任意数除以1等于该数本身。
例如:12 ÷ 1 = 122.任意数除以自身等于1.例如:18 ÷ 18 = 1六、十进制与分数转换1.十进制数可以转换成分数,分子为十进制数,分母为1后面跟着相应的0的个数。
例如:0.5可以转换为5/10,简化为1/22.分数可以转换成十进制数,分子除以分母即可。
例如:3/4可以转换为0.75这些数学规律题的集锦包含了奇偶性、连续数、乘方、倍数与约数、除法、十进制与分数转换等方面的问题。
通过解答这些题目,学生可以提高对这些数学规律的理解,并提升数学解题能力。
七年级上册数学试卷规律题
一、单项选择题1. 下列各数中,不是正数的是()A. 0.01B. -2.5C. 0.001D. 22. 下列各数中,绝对值最小的是()A. -3B. 3C. -2.5D. 2.53. 若a、b是两个正数,则下列各式中,一定成立的是()A. a+b < a-bB. a+b > a-bC. a+b = a-bD. 无法确定4. 下列各式中,符合二次根式的是()A. √(x^2+1)B. √(x^2-1)C. √(x^2-2x+1)D. √(x^2+2x+1)5. 若x+y=10,x-y=2,则x的值为()A. 6B. 8C. 10D. 12二、填空题6. 下列各数中,-3的相反数是______,0的相反数是______。
7. 下列各数中,|-5|的值为______,|-(-2)|的值为______。
8. 若x^2=4,则x的值为______。
9. 若a、b是两个负数,且|a|<|b|,则a+b的值为______。
10. 若a=2,b=-3,则a^2-b^2的值为______。
三、解答题11. 已知:x+y=7,x-y=3,求x和y的值。
12. 若a、b是两个正数,且a+b=5,ab=6,求a^2+b^2的值。
13. 若x^2-5x+6=0,求x的值。
14. 若a、b是两个正数,且a+b=10,ab=9,求a^2+2ab+b^2的值。
15. 若a、b是两个正数,且a^2+b^2=50,ab=18,求a^2-b^2的值。
规律总结:1. 相反数:一个数的相反数是指与该数相加等于0的数。
例如,-3的相反数是3。
2. 绝对值:一个数的绝对值是指该数去掉符号的值。
例如,|-5|的值为5。
3. 二次根式:形如√(x^2+a)的式子称为二次根式,其中x是未知数,a是一个非负实数。
4. 解一元二次方程:可以通过配方法、因式分解等方法求解一元二次方程。
5. 求代数式的值:根据题目中给出的条件,将未知数代入代数式中,计算出结果。
七年级(上册)数学规律题题目
一、数字排列规律题1观察下列各算式:1+3=4=2 2, 1+3+5=9=3, 1+3+5+7=16=4按此规律(1)试猜想:1+3+5+7+…+2005+2007 的值?(2)推广:1+3+5+7+9+…+(2n-1)+ (2n+1)的和是多少?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 _3、请填出下面横线上的数字。
1 123 5 8 ______ 214、有一串数字3 6 10 15 21 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是()•A. 1B. 2C. 3D. 47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“ 0”的个数为____________ 个.二、几何图形变化规律题1、观察下列球的排列规律(其中•是实心球,O是空心球):从第1个球起到第2004个球止,共有实心球_________ 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,o是圆),口0厶口口0厶口0△ □□。
△□――,若第一个图形是正方形,则第2008个图形是___________________ (填图形名称)三、数、式计算规律题1、已知下列等式:① 13=12;② 1 3 + 23= 32; ③ 13 + 23+ 3= 62;④ 1 3 + 23 + 33 + 43 = 102 ;由此规律知,第⑤个等式是 _________________________2、观察下面的几个算式:1+2+仁4 , 1+2+3+2+1=9 ,1+2+3+4+3+2+1=161+2+3+4+5+4+3+2+1=25 …根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+- +99+100+99+…+3+2+1= __ .13、1+2+3+- +100= ?经过研究,这个问题的一般性结论是1+2+3+- + n — nn 1,其中n2是正整数.现在我们来研究一个类似的问题:1 X 2+2X 3+…nn 1 = ? 观察下面三个特殊的等式 11 2- 1 2 3 0 1 2 3 123 -234123 3 13 43 4 5 2 3 4 31将这三个等式的两边相加,可以得到 1X 2+2X 3+3X 4= 1 3 4 5203读完这段材料,请你思考后回答: ⑴1 2 2 3 100 101 __________⑵ 1 2 3 2 3 4 nn1n2 _________________________________ ⑶ 1 2 3 2 3 4 nn1n2 _______________________________参考答案:、1、( 1) 1004的平方(2) n+1的平方2 、23 30。
七年级上册有理数规律题
七年级上册有理数规律题
七年级上册有理数规律题指的是在七年级上学期数学课程中,涉及到有理数及其运算的规律性的题目。
这类题目通常会考察学生的观察、推理和归纳能力,以发现和掌握有理数运算中的规律。
以下是七年级上册有理数规律题示例:
1. 找规律填数:1,-2,3,-4,5,-6,…第100个数是多少?
2. 计算下列算式:1+2+3=多少,1+2+3+4+5=多少,1+2+3+4+5+6=多少,…根据你发现的规律,1+2+3+…+100=多少。
3. 观察下列各数列的规律,并填上适当的数:
-1,1/2,-1/3,1/4,-1/5,1/6,…第10个数是多少?
2,4,8,16,32,64,…第n个数是多少?
4. 观察下列运算:8^2=64,9^2=81,10^2=100,11^2=121,…请你猜想:第n(n是正整数)个算式的结果是多少?
5. 下列算式中,结果的符号与加数中负数的个数有关吗?如果有关,请你找出规律并加以证明。
如:(+) + (+) + (-) + (-) = 0
又如:(-) + (-) + (-) + (+) = (-)
概括:七年级上册有理数规律题主要考察学生对于有理数及其运算规律的掌握程度,通过观察、推理和归纳等思维方式来找出数列、算式等中的规律。
这类题目旨在培养学生的逻辑思维和数学推理能力。
七年级数学上册有理数找规律题型专题练习
七年级数学上册有理数找规律题型专题练习一、等差型数列规律1. 有一组数:1,2,3,4,5,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:2,5,8,11,14,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .3.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4.有一组数:4,7,10,13,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .5.有一组数:11,20,29,38,…请观察这组数的构成规律,用你发现的规律确定第n个数为 .二、等比型数列规律1.有一组数:1,2,4,8,16,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定第n个数为 .3. 有一组数:1,-1,1,-1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .4. 有一组数:27,9,3,1,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n个数为 .三、含n2型数列规律1.有一组数:1,4,9,16,25,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .2.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .3.有一组数:1,3,6,10,15,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .4.有一组数:0,2,6,12,20,…请观察这组数的构成规律,用你发现的规律确定第8个数为 , 第n 个数为 .四、其它数列规律列举1.有一组数:1,2,3,5,8,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,2.有一组数:-2,3,1,4,5,…请观察这组数的构成规律,用你发现的规律确定第7个数为 ,3. 观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2013个数是___________4. 观察下列一组数:,,,,…… ,它们是按一定规律排列的. 那么这一组21436587数的第k 个数是 .5. 观察下列一组数:.,61,51,41,31,21,1 ---它们是按一定规律排列的. 那么这一组数的第2014个数是6.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是五、循环型数列.1. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082的末位数是 .2.已知21873,7293,2433,813,273,93,337654321=======…推测到203的个位数字是 ;3. 若,,,… ;则的值为 .1113a =-2111a a =-3211a a =-2014a 六、算式型规律1. 已知22223322333388+=⨯+=⨯,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .2. 某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报⎪⎭⎫ ⎝⎛+111,第2位同学报⎪⎭⎫⎝⎛+121,...这样得到的20个数的积为_________________.3. 求1+2+22+23+...+22013的值,可令S=1+2+22+23+...+22013,则2S=2+22+23+24+ (22013)因此2S﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52013的值为:4. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1)请用含n 的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算的值11111(1)(1)(1)132********+++++⨯⨯⨯⨯⨯ 七、数列阵型1.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?第1个图形第2个图形第3个图形第4个图形(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.2. 观察下面一列数:1,2,3,4,5,6,7,...将这列数排成下列形式:按照上述规律排下去,那么第10行从左边第4个数是:八、几何图形型1.观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★.2.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按 照这样的规律摆下去,则第个n 图形需要黑色棋子的个数是 .3.如图,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.4.如图,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有 个,第n 幅图中共有 个.图案1图案2图案3…………第1幅第2幅第3幅第n 幅5. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是______,第个“广”字中的棋子个数是________n 6.同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少颗黑色棋子?(2)第几个图形有2013颗棋子?说明理由。
七年级上数学规律题集锦
七年级上数学规律题集锦七年级上数学规律题集锦1、观察有趣的奇数的求和,并填空:1=1×1=12;1+3=22;1+3+5=32;……⑴1+3+5+7+…+17= ;⑵1+3+5+7+…+ =172;⑶1+3+5+7+…+(2n-1)=2、观察下列等式:11111111=1-,=-,=-,将以上三个等式两边分别相加得:1111111113++=1-+-+-=1-⑴猜想并写出:⑵⑶计算:3、已知:9×1+0=9,9×2+1=19,9×3+2=29,9×4+3=39,……根据前面的式子的构成规律,写出第6个式子是什么?请用含n的式子表示上面的规律。
4、给出依次排列的一列数:-1;2;-4;8;-16;32;……⑴写出32后面的三项数:⑵按照规律,第n个数为:5、已知:3;-6;9;-12;…;-2004;2007;-2010;完成下列问题:⑴写出这一列数中第100个数;⑵求这一列数的和;6、观察下列各数:⑴1;-2;3;-4;5;-6;7;…;第100个数为:;第2012个数是;123456 ⑵1;-;;-;;-;;…;其中第100个数为;234567第2012个数为:;7、观察下面一列数,探求其规律;1百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆11111;-;;-;; (56234)⑴写出第7、8、9三个数:,,。
⑵第2010个数是:,如果这一列数无限排列下去,与越来越接近。
118、观察下列各式:-1×=-1+;221111 -×=-+;23231111 -×=-+;3434……⑴你发现的规律是:(用含n的式子表示)⑵用你发现的规律计算:11111111 (-1×)+(-×)+ (-×)+ ……+(-×)+(-223342009201020101×)20119、观察下列等式(式子中“!”是一种数学运算符号):1!=1;2!=2×1;3!=3×2×1;100!4!=4×3×2×1;……则的值为:;98!10、你能比较两个数的20032004和20042003的大小吗?为了解决这个问题,我们应先把它抽象成一般的数学问题,写出它的一般形式,即比较nn+1和(n+1)n的大小(n为自然数,且n≥1),然后我们分析n=1,n=2,n=3, ……这些特殊数入手,从中发现规律,经过归纳猜想得出结论。
七年级数学上册—找规律
七年级数学上册—找规律本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March七年级找规律—数与图形专题【典型例题】【例1】 观察下列算式:,65613,21873,7293,2433,813,273,93,3387654321========……用你所发现的规律写出20043的末位数字是__________。
【例2】观察下列式子:326241⨯==+⨯;4312252⨯==+⨯;5420263⨯==+⨯;6530274⨯==+⨯……请你将猜想得到的式子用含正整数n 的式子表示来__________。
【例3】 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。
……(1)将下表填写完整(2)在第n个图形中有____________________个三角形(用含n 的式子表示)。
【例4】如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为41的正方形,再把面积为1的矩形等分成两个面积为81的矩=+++++++25611281641321161814121 ①②③【例5】把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正方体的个数是【例6】观察下列图形并填表。
【巩固练习】1.用黑白两颜色的正六边形地面砖按如图所示规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n 个图案中有白色地面砖 块。
……2.下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有)2(≥n n 个棋子,每个图案棋子总数为S ,按下图的排列规律推断,S 与n 之间的关系可以用式子 来表示。
七年级上册找规律数学题
七年级上册找规律数学题一、数字规律题。
1. 观察下列数:1,4,9,16,25,…,按此规律,第n个数是()- 解析:- 第1个数是1 = 1^2;- 第2个数是4=2^2;- 第3个数是9 = 3^2;- 第4个数是16=4^2;- 第5个数是25 = 5^2。
- 所以第n个数是n^2。
2. 有一组数:1, - 2,3,-4,5,-6,·s,按此规律,第n个数是()- 解析:- 当n为奇数时,数为正数,即第n个数为n;- 当n为偶数时,数为负数,即第n个数为-n。
- 所以第n个数是( - 1)^n + 1n。
3. 观察数列:2,5,8,11,·s,则第n个数是()- 解析:- 可以发现每一个数都比前一个数大3。
- 第1个数2 = 3×1 - 1;- 第2个数5=3×2 - 1;- 第3个数8 = 3×3-1;- 所以第n个数是3n - 1。
4. 数列1,(1)/(2),(1)/(3),(1)/(4),(1)/(5),·s,第n个数是()- 解析:- 很明显,第n个数是(1)/(n)。
5. 找规律:0,3,8,15,24,·s,第n个数是()- 解析:- 第1个数0 = 1^2-1;- 第2个数3=2^2-1;- 第3个数8 = 3^2-1;- 第4个数15=4^2-1;- 第5个数24 = 5^2-1;- 所以第n个数是n^2-1。
二、图形规律题。
6. 用火柴棒按下图的方式搭三角形:- 照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?- 解析:- 搭1个三角形需要3根火柴棒;- 搭2个三角形需要3 + 2=5根火柴棒;- 搭3个三角形需要3+2×2 = 7根火柴棒;- 搭n个三角形需要3 + 2(n - 1)=2n + 1根火柴棒。
7. 观察下列图形的构成规律,根据此规律,第n个图形中有多少个圆?- 第1个图形有1个圆;- 第2个图形有1 + 2 = 3个圆;- 第3个图形有1+2 + 3=6个圆;- 第4个图形有1+2+3 + 4 = 10个圆;- 解析:- 第n个图形中圆的个数为1 + 2+3+·s+n=(n(n + 1))/(2)。
七年级数学上册第三章--整式及其加减--探索规律题
七年级数学上册第三章《整式及其加减 》探索规律 专项训练题一、选择题:1. 在解决数学问题时,常常需要建立数学模型,如图,用大小相同的圆点摆成的图案,按照这样的规律摆放,则第7个图案中共有圆点的个数是( )A .37B .49C .50D .512.观察算式:1234567833,39,327,381,3243,3729,32187,36561,========⋅⋅⋅.通过观察,用你所发现的规律确定()201132--的个位数字是( )A .3B .9C .7D .13. 按如图方式摆放桌子和椅子.当摆放8张桌子时,可以坐( )人.A .34B .32C .30D .364. 如图,将连续的偶数2,4,6,8,…..排成如图形式,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,思考:若将十字框上下左右移动,则框内五个数之和可能是( )A .2022B .2024C .2025D .20305. 观察下面点阵图的规律,第9幅点阵图中有( )个◯.A .18B .28C .32D .366. 按照如图所示的计算机程序计算,若开始输入的x 值为2,第一次得到的结果为1,第二次得到的结果为4,…第2024次得到的结果为()A.1B.2C.3D.47.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A.70 B.72 C.74 D.768.观察依次排列的一串单项式x,﹣2x2,4x3,﹣8x4,16x5,…,按你发现的规律继续写下去,第8个单项式是()A.﹣128x7B.﹣128x8C.﹣256x7D.﹣256x89.用同样大小的黑、白色正方形按如图的方式搭建图形,图①中有2个黑色正方形,图②中有3个黑色正方形,图③中有5个黑色正方形,图④中有6个黑色正方形,…,按照这个规律,则图⑨中的黑色正方形个数为()A.13B.14C.15D.1610.如下图所示的三角形数阵叫“菜布尼茨调和三角形”,它们是由整数的倒数组成的,第n行有n个数:且两端的数均为1n,每个数是它下一行左右相邻两个数的和,则第8行第3个数(从左往右数)为()A.160B.1168C.1252D.1280二、填空题:11.观察:{}{}{}{}1,3,5,7,9,11,13,15,17,19,则2009在第组(从左往右数依次为第1,2,3,…组).12.循环小数0.123451234512345⋯⋯简记为,它的小数部分第2019 位是.13.如图,小明用小棒搭房子,他搭3间房子用了13根小棒,照这样搭,用21根小棒可以搭间房子;搭100间房子要用根小棒.14.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90︒算一次,则滚动第2024次后,骰子朝下一面的点数是.15.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图有5张黑色正方形纸片,第③个图有7张黑色正方形纸片……按此规律排列下去,第n个图中黑色正方形纸片的张数为16.如图,用火柴棒搭三角形,搭1个三角形需票3根火柴棒,搭2个三角形需要5根火柴棒,搭3个三角形需要7根火柴,…,则2024个这样的三角形需要火柴棒根.17.有一个正六面体骰子,放在桌面上,将骰子沿如图所示按顺时针方向滚动,每滚动90︒算一次,则滚动2016次后,骰子朝下一面的点数是.18.观察下列图形规律,当1n=图形中的“•”的个数和“〇”个数和4,当2n=图形中的“•”的个数和“〇”个数和9,那么当图形中的“•”的个数和“〇”个数和为85时,n的值为.三、解答题:19.观察下列三行数:(1)请直接写出:①每一行的第8个数;②第三行的第n个数.(2)第一行连续三个数中最大数与最小数的差为1536,求这三个数中最大数与最小数的和;(3)用如图的“L”形框圈起4个数,从上到下分别记为a,b,c,d,求2a b c d+++的值.20.如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.(1)可知x=_____,●=_____,○=_____.(2)试判断第2023个格子中的数是多少?并给出相应的理由.(3)判断:前n个格子中所填整数之和是否可能为2024?若能,求出n的值,若不能,请说明理由.21.按如下方式摆放餐桌和椅子:(1)当有5张桌子时,可以坐_____人;(2)某班恰好有50人,需要多少张餐桌?22.观察下列等式:第1个等式:a1==(1﹣), 第2个等式:a2==(﹣)第3个等式:a3==(﹣), 第4个等式:a4==(﹣)……请回答下列问题:(1)按上述等式的规律,列出第5个等式:a5==(2)用含n的式子表示第n个等式:a n==(3)求a1+a2+a3+a4+…+a100的值.23.探索规律:在数学探究课上,小明将一张面积为1的正方形纸片进行分割,如图所示:第1次分割,将此正方形的纸片三等分,其中空白部分的面积记为1S ; 第2次分割,将第1次分割图中空白部分的纸片继续三等分,其中空白部分的面积记为2S ;第3次分割,将第2次分割图中空白部分的纸片继续三等分,其中空白部分的面积记为3S ; ……根据以上规律,完成下列问题: (1)尝试:第4次分割后,4S =______ (2)初步应用:根据规律,求23422223333+++的值. (3)拓展应用:利用以上规律,求2311113333n +++⋅⋅⋅+的值.。
七年级数学规律题
n
(
n
-
1)
2
如果一列数,从第二项起,每一项与 它前一项的差都相等,那么这列数叫做 等 差数列。每相邻两项的差叫做公差。
等差规律:公差×序数+某数
(4)观察一组数据6,11,16,21,第n个数 是( 5n+1 )
解:相邻两数的差是5,即公差为5,
第1个数=5×1+1; 第2个数=5×2+1; 第n个数=5×n+1=5n+1
n行共有(2n-1) 个数。 1
23 4
56 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25
26 27 28 29 30 31 32 33 34 35 36
二、图形问题:
问题一: 用火柴棍拼一排由三角形组 成的图形,如果图形中含有1,2,3或4个 三角形,分别需要多少根火柴?如果图形 中含有n个三角形,需要多少根火柴棍?
我们来观察(1)
一列数3,8,13,18,23,28……
依此规律,在此数列中比2000大的最小整
数是 。
我们来观察(2): 2×4=32-1; 3×5=42-1; 4×6=52-1; …;
第2024个等式是(
我校全体学生按如下的规律排 成一列纵队参加社会服务课活动
男女男男女女男男男女男女男男 女女男男男女男女男男女女…… 则队伍前2003名学生中, 共有 名女学生。
2.观察一列单项式:x2,-3x4,5x6,-7x8, …按此 规律写出第19个单项式是_37_x3_8 ,第20个单项式 是_-3_9x_40 ,第n个单项式是_(-1_)n+_1(2_n-_1)x.2n
3.观察一组数据1,2,5,10,17,26, …第n个 数是_(n_-1)_2+1 .
七年级上册数学找规律试题
七年级上册数学找规律试题题一:算盘在七年级上册数学课本中,我们学习了许多关于找规律的内容,其中一个有趣的问题是关于算盘的。
算盘是一种辅助计算工具,通过移动珠子来进行数学运算。
在这个问题中,我们需要找到算盘上任意一列珠子的规律。
将算盘的每一列依次编号为第一列、第二列、第三列...。
我们以算盘的第一列为例,假设我们从上到下的珠子数目分别为1、2、3、4、5、6、7,顺序编号为a1、a2、a3、a4、a5、a6、a7。
观察珠子从上到下的编号,我们可以发现一个规律:a(n) = n,表示第n颗珠子的编号等于n(n为正整数)。
同样的规律也适用于其他列的珠子。
例如,第二列的珠子按相同的顺序编号为b1、b2、b3、b4、b5、b6、b7,则有b(n) = n(n为正整数)。
通过这个例子,我们可以发现算盘上每一列的珠子都有相同的规律,即第n列的珠子按顺序编号为n(n为正整数)。
题二:数字图形在七年级上册数学课本中,还有一个有趣的环节是关于数字图形的。
在这个环节中,我们需要观察图形中数字的规律,并进行推理。
以一个简单的例子开始,我们观察一个数字图形:1121231234```可以看出,每一行数字都是顺序增加的。
第一行有1个数字,第二行有2个数字,第三行有3个数字...以此类推。
根据这个规律,可以预测如果再添加一行,那么这一行应该有4个数字。
通过这个例子,我们可以发现数字图形中数字数量的规律为逐行递增,每一行的数字数量等于该行的行号。
除了数字的数量规律外,我们还可以观察到数字的排列规律。
例如,在以下的数字图形中:```12345678910可以看出,每一行的数字也是按照顺序增加的。
第一行从1开始,第二行从2开始,第三行从4开始...以此类推。
根据这个规律,可以预测如果再添加一行,那么这一行的起始数字应该是11。
综上所述,数字图形中数字的排列规律是每一行从行号开始逐个增加。
题三:等差数列进一步地,在七年级上册数学课本中还有一个重要的知识点是等差数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数字排列规律题
1、观察下列各算式:
1+3=4=22,1+3+5=9=32,1+3+5+7=16=42
按此规律
(1)试猜想:1+3+5+7+…+2005+2007的值?
(2)推广:1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少?
2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __
3、请填出下面横线上的数字。
1 1
2
3 5 8 ____ 21
4、有一串数字3 6 10 15 21 ___ 第6个是什么数?
6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个
数是().
A.1 B.2 C.3 D.4
7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个.
二、几何图形变化规律题
1、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……
从第1个球起到第2004个球止,共有实心球个.
2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是(填图形名称).
三、数、式计算规律题
1、已知下列等式:
①13=12;
② 13+23=32; ③ 13+23+33=62;
④ 13+23+33+43=102 ;
由此规律知,第⑤个等式是 .
2、观察下面的几个算式: 1+2+1=4,
1+2+3+2+1=9,
1+2+3+4+3+2+1=16,
1+2+3+4+5+4+3+2+1=25,…
根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.
3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()12
1
+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式
()21032131
21⨯⨯-⨯⨯=⨯
()32143231
32⨯⨯-⨯⨯=⨯
()4325433
1
43⨯⨯-⨯⨯=⨯
将这三个等式的两边相加,可以得到1×2+2×3+3×4=205433
1
=⨯⨯⨯
读完这段材料,请你思考后回答:
⑴=⨯++⨯+⨯1011003221
⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n
4、,,,,已知:
245
52455154415448338333223222222⨯=+⨯=+⨯=+⨯=+ =+⨯=+b a a
b
a b 则符合前面式子的规律,,若 (21010)
参考答案:
一、1、(1)1004的平方(2)n+1的平方
2、23 30。
数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。
3、13。
这一数列后面一个数是前面相邻两个数的和。
4、34 。
考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。
每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。
5、28。
3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。
其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。
6、A
7、33 二、 1、602 2、圆
三、1、2333331554321=++++ 2、10000
3、 ⑴343400 或1021011003
1
⨯⨯⨯ ⑵()()2131++n n n ⑶()()()32141+++n n n n
4、109.
一、 填空题:
1、如果飞机离地面6000米记为+6000米,现在它又下降了1600米,那么现在飞机的高度
可记为__________米.
2、当n=______时,3x 2y 5 与 -2x 2y 3n -4是同类项.
3、比较大小:23
-_____-7
8.
4﹑若关于x 的方程a-x=3的解是4,则a=
5、你玩过“24点”游戏吗?就是让你将给定的四个数,用加、减、乘、除、乘方运算(每 个数只能使用一次),使运算结果等于24. 现在给你四个数3、2、
6、9,请你列算式:_______________________.
6 已知︱a-2︱+(b+3)2=0,则ab 的值等于
7、一粒废旧电池大约会污染60万升的水。
我校共1200名学生,若每个学生都丢弃一粒废旧
的电池,则共污染 升水。
若每杯鲜奶250毫升,则我校学生污染的水相当于 杯的鲜奶。
8、“千佳百货”举办的促销活动,全场商品一律打八折销售。
赵老师花了1000元买了台“福
星牌”平衡式热水器,那么该商品的原售价为_______元。
9 已知a ,b 互为相反数,c ,d 互为倒数,x 等于4的二次方,则式子(a+b-cd)x 的值是 10 写出一个二元一次方程组,使它的解为X=1,Y=-2
二、选择题:
1、有下面的算式:①(-1)2003=-2003;②1-(-1)=1;③-2
1+3
1= -6
1;④)2
1(21-÷= -1;
⑤2×(-3)2=36;⑥-3÷(-2
1)×2= -3,其中正确算式的个数是
A 、1个
B 、2个
C 、3个
D 、4个 2、下列说法,正确的是
A 、若|x |=x ,则x 一定是正数
B 、如果两个数的和为零,那么这两个数一定是一正一负
C 、-a 2表示一个负数
D 、两个有理数的差不一定小于被减数
3、你的一本语文书大约有多薄?
A 、13毫米
B 、14厘米
C 、50分米
D 、1米 4、下列各式,成立的是
A 、a -b+c=a -(b -c)
B 、3a -a = 3
C 、8a –4b = 4ab
D 、-2(a -b)= -2a+b 5 5、甲数的2倍比乙数小1,设甲数为X ,则乙数为( )
A. 2X-1
B. 2X+1 C .2(X-1) D.2(X+1) 6 若︱a ︱=3,︱b ︱=2,且a<b,则a+b 的值等于( )
A 1 或 5
B 1 或 -5
C -1 或 -5
D -1 或 5
7、银行存入30000元人民币,存期一年,年利率为1.98%,到期应交纳所获利息的20%的利息税,那么到期取款并交利息税后,可取回( )
A 、30594
B 、30475.8元
C 、30475.2元
D 、30198元 三、解答题:
1、化简:- 7ab + ( -8ac) - ( -5ab) + 10ac -12ab
2、先化简,再求值:4x
3
- [ -x 2 + 3( x 3 -3
1x 2 )],其中x= -3
3、解方程:x +7= 10 - 4( x + 0.5)
4、解方程: )7(3
1
81)15(121--=+x x
5、解方程组 : 2x —3y=8 7x -5y=-5
6.一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间吗,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒。
根据以上数据,你能否求出火车的长度?若能,火车的长度是多少?若不能,请说明理由。
7.甲乙两船分别从A,B 两个港口同时出发相向而行,甲船顺水,乙船逆水,两船在静水中的速度都是a 千米/小时,水流速度是b 千米/小时。
已知甲船航行3小时到达途中的C 处休息半小时后,乙船也正好到达C 处。
(1)甲船比乙船每小时多航行多少千米?(2)求A,B 两个港口之间的距离。
(3)如果,a=50,b=10,甲、乙两船从C 处各自继续航行,那么,甲、乙两船到达A,B 两港口的时间分别是多少?
8、如图,按一定的规律用火柴棒搭图形:
① ② ③ (1)按图示的规律填表:
图形标号 ① ② ③ …… ⑩ 火柴棒数
……
(2)搭第n 个图形需要________________________根火柴棒。