第五章 骨骼肌、心肌和平滑肌生理
骨骼肌、心肌和平滑肌细胞生理
横桥结合的位点,静息时被原肌
球蛋白掩盖;原肌球蛋白:静息
时掩盖横桥结合位点;肌钙蛋白:
与Ca2+结合变构后,使原肌球蛋白
位移,暴露出结合位点。
ppt课件完整
11
(二) 骨骼肌的肌膜系统
横管系统: T管(肌膜内凹而成。肌膜
AP沿T管传导)。 纵管系统:
L管(也称肌浆网。肌节两 端的L管称终池,富含Ca2+)。
ppt课件完整
23
骨骼肌收缩的形式
ppt课件完整
24
ppt课件完整
25
(三) 肌长-肌张力关系
肌肉遇到的负荷有两种:
前负荷:使肌肉具有一定的初长度 后负荷:不增加肌肉的初长度,但能阻止肌肉的缩短
只有在具有一定后负荷的条件下进行等张收缩, 肌肉收缩才能有效做功
肌钙蛋白的构型 原肌球蛋白位移,暴露 细肌丝上的结合位点 横桥与结合位点结合,
分解ATP释放能量 横桥摆动
肌节缩短=肌细胞收缩 ppt课件完整
按任意键 飞入横桥摆动动画
14
横桥周期:
结 合
解 离
摆 动
ppt课件完整
15
肌丝滑行几点说明: 1)肌细胞收缩时肌原纤维的缩短,并不是肌丝本身 缩短,而是细肌丝向肌节中央(粗肌丝内)滑行。因①相 邻Z线靠近,即肌节缩短;②暗带长度不变,即粗肌丝长 度不变;③从Z线到H带边缘的距离不变,即细肌丝长 度不变; ④明带和H带变窄。
ppt课件完整
3
第一节 骨骼肌生理
骨骼肌是机体最大的组织,接受神经纤维的 支配,因而能将神经信号转变为肌细胞的收 缩。过程涉及电信号——化学信号——电信 号间的转换,最后表现为骨骼肌收缩。
ppt课件完整
骨骼肌、平滑肌、心肌的比较生理
且粗细不等,分界不 清。 ➢有周期性横纹(不如 骨骼肌明显);
心肌纤维的超微结构
心肌纤维的超微结构与骨骼肌相近似,但有以下特点
①肌原纤维较少且大小不规则
②横小管较粗
③肌质网较稀疏,纵小管不甚发达,终池扁小,往往横小管只 与一侧终池相贴,形成二连体。
4个Ca2+与胞质中的钙 调蛋白结合形成复合体
钙调蛋白复合体与胞质
中的肌球蛋白轻链激酶 (MLCK)结合(激活)
磷酸化的横桥被激活, 与肌动蛋白结合
4个Ca2+与胞质 中的钙调蛋白结 合形成复合体
激活的MLCK使用 ATP将位于肌球蛋 白球头的轻链磷酸 化
横桥分解ATP释 放能量
横桥摆动
三种肌肉收缩机制的比较:
肌质网洗漱,纵 小管不甚发达
三种类型肌肉的收缩机制
骨骼肌收缩机理:(肌丝滑行学说) •神经兴奋→肌膜→横小管→终池→肌浆网钙通 道开放→肌浆钙浓度升高→肌钙蛋白与钙结合 后发生构型改变而位移→肌动蛋白位点暴露→ 肌球蛋白头与位点结合,激活ATP酶释放能量→ 肌球蛋白屈曲转动将肌动蛋白拉向M线→细肌丝 滑入A带使I带变窄→肌节缩短。
有粗、细肌丝, 但细肌丝中无肌 钙蛋白;无肌原 纤维
细胞膜内陷只形 成小凹,未形成 横小管
肌质网不发达, 只形成小管状结 构
长柱形,无分支, 短柱形,有分支,
多核
核1-2个
有粗、细肌丝; 有粗、细肌丝;
有肌原纤维
有肌原纤维(较
少)网密布,纵 小管发达
存在横小管,且 较粗大
肌原纤维,在光学显微 镜下观察:1)明带(I带) 和暗带(A带); 2)H带, M线,Z线; 3)肌节
骨骼肌心肌和平滑肌
B. 电镜结构: 1. 肌原纤维: 无数,与肌纤维长轴平行排列。是肌纤维收缩 的物质基础。每条肌原纤维由上千条粗肌丝和细肌丝构成。
4. 结果: A带,粗肌丝和 细肌丝的长度不变,但 I带,H带和肌节长度变 短。
(二)粗肌丝和细肌丝的功能解剖
a. 粗肌丝(Thick filament)位于A带,固定在M线上。粗肌丝由肌 球蛋白(Myosin)构成,肌球蛋白由杆和头2部分构成。头部 称横桥(Cross-bridge) ,有ATP酶活性。杆部与其他的肌球 蛋白杆部平行排列,集合成束形成粗肌丝。
C. 骨骼肌收缩原理: 滑动学说(Sliding filament hypothesis) 。 1. 神经冲动 → 肌膜 → 横小管 → 三联体 → 纵小管 → Ca2+ 泵 → Ca2+ 浓度上升 2. Ca2+ 与 TnC 结合 → TnI 位置变化 → 横桥与肌动蛋白结合 → ATP酶水解ATP 获得能量。 3. 横桥向内弯曲 → 细肌丝滑进粗肌丝内。舒张时横桥与肌 动蛋白分离,此时需要ATP。
2. 横纹和肌原纤维可见但不明显。纤维外有大量的毛细血管。 3. 纤维之间有闰盘(Intercalated disc)连接。
B. 电镜结构: 与骨骼 肌纤维相比,心肌纤 维具有以下特点: 1. 横小管粗短,位于 Z线。不能完全缠绕 每条肌原纤维。 2. 肌浆网稀疏,只能 形成二联体(Diads) 。 3. 糖原和MT丰富。
(三)骨骼肌的肌膜系统
横小管(Transverse
tubules): a. 来源于肌膜于AI带 交界处的向内凹陷。 b. 横小管在肌浆内分 支吻合,在每个肌节 的AI带交界处包绕每 条肌原纤维。 c. 横小管能将肌纤维 表面的电冲动迅速传 递到肌纤维内部。
骨骼肌心肌平滑肌的异同点
骨骼肌心肌平滑肌的异同点
骨骼肌、心肌和平滑肌是三种不同类型的肌肉组织。
它们在结构、功能和分布等方面都有一些不同。
以下是它们之间的异同点:
一、结构方面:
1. 骨骼肌:骨骼肌由横纹肌细胞组成,它们是多核的、长形的、有横纹的细胞。
骨骼肌细胞被包在肌腱中,连接骨头。
骨骼肌还包括血管、神经和结缔组织。
2. 心肌:心肌也是由横纹肌细胞组成,但它们是单核的、短形的,有横纹和纵纹的细胞。
心肌细胞连接在一起形成心肌组织,并由心脏的结缔组织包裹。
3. 平滑肌:平滑肌是由平滑肌细胞组成,它们是单核的、长形的,没有横纹。
平滑肌细胞可以形成平滑肌组织,分布在人体中的许多内脏器官中。
二、功能方面:
1. 骨骼肌:骨骼肌用于支撑身体、运动和产生力量。
它们是意志控制的,意味着我们可以通过自我控制来控制它们的收缩和放松。
2. 心肌:心肌用于泵血,以维持身体的血液循环。
它们是自主控制的,也就是
说,它们是自动地收缩和放松的,我们无法自主控制它们。
3. 平滑肌:平滑肌用于控制内脏器官的大小和形状,例如肠道、血管和子宫。
它们也是自主控制的,但可以被神经和荷尔蒙调节。
三、分布方面:
1. 骨骼肌:骨骼肌分布在人体的骨架系统中,例如肢体、躯干和颈部。
2. 心肌:心肌只分布在心脏中。
3. 平滑肌:平滑肌分布在人体中的内脏器官中,例如肠道、血管和子宫。
人体及动物生理学-第五章肌细胞收缩、心肌、平滑肌生理
★三联管triad:
骨骼肌的T管与其两侧的终池
2.肌原纤维及其肌丝的分子组成
1)粗肌丝thick filament 肌球蛋白(肌凝蛋白,myosin),属收缩蛋白
杆状部—朝向M线成主干 头部—横桥cross-bridge :
可与肌动蛋白可逆性结合, 具有ATP酶活性 2)细肌丝thin filament (构成主干)
AP在运动神经纤维上的传导 N-M接头处兴奋的传递
AP在骨骼肌cell上的传导(局部电流) 骨骼肌的兴奋收缩耦联
骨骼肌的肌丝滑行收缩
(一)神经—骨骼 肌接头处兴奋的 传递
neuromuscular transmission
1.神经肌接头(neuromuscular junction) 的结构:
⑴接头前膜prejunctional membrane: ①突触囊泡synaptic vesicle,内含ACh; ②电压门控Ca2+通道;
速度(Vmax)。
图B:张力-速度曲线
既产生张力,又 出现缩短,且每 一收缩开始后, 张力不再增加, 故为等张收缩
等长收缩
P0—— 产生最大张力 而不出现缩短 W=0
Vmax—— 后负荷为零时, 产生最大缩短速 度 W=0
曲线最弯处—— W最大
*肌肉收缩的缩短速度:取决于横桥周 期的长短; *肌肉收缩的收缩张力:取决于每一瞬 间与肌动蛋白结合的横桥的数目。
(注:肌肉收缩或AP频率与刺激频率有关)
1)运动单位及其总和
① motor unit:一个脊髓前角运动神经元及 其轴突分支所支配的全部肌纤维。
②motor unit summation:大小原则
★ 3、ACh的分解: ACh在刺激终板膜产生终板电位的同时,
第五章 骨骼肌、心肌和平滑肌生理.
(三)多单位平滑肌和神经源性活动
多单位平滑肌:由多个分离的,在功能上相互独立的单位组成。 大血管的管壁、气管等 多单位平滑肌和骨骼肌都属于神经源性活动。
三、平滑肌的收缩
(一)平滑肌收缩的机制
平滑肌兴奋时,胞内Ca2+浓度升高,引起肌球蛋白的2+与钙调蛋白结合;
3.动作电位:动作电位一般是在慢波基础上去极化发生的 ①上升慢,持续时间长,与慢波相比,它又要快得多,因 此又称为快波(fast wave). ②平滑肌动作电位的上升支由一种慢通道介导的离子内流 引起(主要是Ca2+和少量Na+的内流)。 ③平滑肌动作电位下降支主要是K+外流而产生的复极化。 ④大量Ca2+进入肌细胞,通过钙调素激活肌动蛋白-肌球 蛋白-三磷酸腺苷系统,引起肌肉收缩。 肌肉收缩是继动作电位之后产生的
其信息通过TnI传递 给TnT
肌动蛋白与 肌球蛋白的 横桥结合
原肌球蛋白的构型 发生变化,深陷于 肌动蛋白的双股螺 旋沟中
ATP分解释放能量
肌肉收缩
肌肉舒张:
肌浆中的Ca2+↓ Ca2+与TnC结合解 除,其构型复原 原肌球蛋白回到横 桥和肌动蛋白分子 之间的位置
肌肉舒张
阻碍两者相互 作用继续进行
第五章 骨骼肌、心肌和平滑肌生理
第一节 骨骼肌生理
一、骨骼肌的结构特征
骨骼肌 纤维由肌原 纤维和肌管 系统构成, 肌原纤维由 高度有序排 列的粗肌丝 和细肌丝构 成,被膜状 微管结构 (肌管系统) 所环绕
(一)骨骼肌的超微结构
1、肌原纤维(myofibril) (1)粗肌丝:200-300个肌球蛋白分子组成
第三节 心肌生理
一、心肌的形态结构
第5章-骨骼肌、心肌和平滑肌细胞生理
• C亚单位带负电荷,可与Ca2+结合。 • T亚单位将整个肌钙蛋白结合在原肌凝蛋 白上。 • I亚单位的作用是将C亚单位结合Ca2+的信 号传给原肌凝蛋白,引起它的变形。
二、骨骼肌收缩的机制
(一)肌肉收缩的肌丝滑行学说 • 1、主要证据 • A. 粗细肌丝之间的几何构形表明在收缩 时它们之间要相互作用。 • B. 肌肉收缩时,暗带的长度没有改变, 说明粗肌丝没有发生卷曲变化。 • C. 拉长肌丝,H带的长度也增长。暗带的 长度不变。 • 这表明,肌收缩是粗细肌丝互相穿插滑行 造成的。
2、细肌丝(由三种蛋白质组成)
A. 肌动蛋白(肌纤蛋白,actin) 占60%。单体呈球 状,聚合成双螺旋结构,是细肌丝的主干。上面每隔一 段距离就有一个与横桥结合的位点。正常情况下被掩盖 着。
肌钙蛋白 原肌球蛋白 肌动蛋白
• B. 原肌球蛋白: 为丝状,位于肌动蛋 白双螺旋的沟内,处于横桥与肌动蛋白之 间,掩盖着横桥的结合位点。 • C. 肌钙蛋白: 是钙离子的受体含有T、 I、C三个亚单位:
由上到下:
单收缩 收缩总和 不完全强直收缩 完全强直收缩
在体骨骼肌是 以运动单位而不是 以单根肌纤维收缩 的。
3、肌肉长度与收缩张力的关系
肌肉过长或过短都使张力下降,以肌小节长2.20-2.25 μm时 张力最大。此时粗细肌丝重叠程度最佳,发挥作用的数目最多。
初长过短,部分细 肌丝得不到横桥
初长过长时,部分 横桥没有结合位点
肌 管 系 统 的 立 体 模 式 图
三联体
(三)粗、细肌丝
肌钙蛋白
肌动蛋白
原肌球蛋白
横桥
1、粗肌丝(由肌球蛋白分子构成)
相邻的两对横桥互相 扭转60度角,相距 14.3nm
骨骼肌心肌平滑肌形态结构的异同点
骨骼肌心肌平滑肌形态结构的异同点一、引言骨骼肌、心肌和平滑肌是人体中三种不同类型的肌肉组织。
它们在形态结构上存在着一些异同点,本文将对这些异同点进行详细的探讨。
二、骨骼肌的形态结构1. 组成:由多个长条形肌纤维组成。
2. 形态:呈现典型的条纹状,由交替排列的明暗带组成。
3. 细胞核:每个肌纤维只有一个多核细胞核。
4. 横纹间隔:明暗相间的横纹间隔为骨骼肌独特的结构特征。
5. 肌小节:由一个神经元和与之相连的所有肌纤维组成,是神经和肌肉之间传递信息的基本单位。
三、心肌的形态结构1. 组成:由多个短梭形心肌细胞组成。
2. 形态:呈现典型的条纹状,由交替排列的明暗带组成。
3. 细胞核:每个心肌细胞有一个或两个圆形单核细胞核。
4. 横纹间隔:心肌中的横纹间隔比骨骼肌中的更不规则。
5. 互联结构:心肌细胞之间通过交错连接形成紧密的互联结构,这种结构被称为“心肌纤维网”。
四、平滑肌的形态结构1. 组成:由多个长条形平滑肌细胞组成。
2. 形态:没有明显的条纹状,呈现光滑的外观。
3. 细胞核:每个平滑肌细胞有一个或两个长条形细胞核。
4. 沟道连接:平滑肌细胞之间通过沟道连接形成紧密的互联结构。
5. 神经支配:平滑肌受到自主神经系统的调节,神经末梢直接与平滑肌细胞相连。
五、三种肌肉组织形态结构异同点总结1. 形态特征:骨骼肌和心肌都具有明显的条纹状,而平滑肌则没有。
2. 细胞核数量:骨骼肌和平滑肌每个细胞只有一个或两个核,而心肌每个细胞有一个或两个核。
3. 横纹间隔:骨骼肌和心肌的横纹间隔比平滑肌更明显,而心肌的横纹间隔比骨骼肌更不规则。
4. 互联结构:心肌细胞之间通过交错连接形成紧密的互联结构,而平滑肌细胞之间通过沟道连接形成紧密的互联结构。
5. 神经支配:平滑肌受到自主神经系统的调节,神经末梢直接与平滑肌细胞相连,而骨骼肌和心肌则通过神经元和神经末梢传递信息。
六、结论三种不同类型的肌肉组织在形态结构上存在着一些异同点。
人体及动物生理学第三版考试重点
1.细胞跨膜物质转运方式:(1)单纯扩散:一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。
如O2、CO2、NH3等脂溶性物质的跨膜转运,也称简单扩散。
(2)膜蛋白介导的跨膜转运:①主动运输:指物质逆浓度梯度或电位梯度的转运过程。
特点:①需要消耗能量,能量由分解ATP来提供;②依靠特殊膜蛋白质(泵)的“帮助”;③是逆电-化学梯度进行的。
分类: A原发性主动转运(泵转运):如K+、Na+、Ca2+逆浓度梯度或电位梯度的跨膜转运。
B继发性主动转运:如小肠粘膜和肾小管上皮细胞吸收和重吸收葡萄糖时跨管腔膜的主动转运。
②被动运输:物质顺电位或化学梯度的转运过程。
特点:①不耗能(转运动力依赖物质的电-化学梯度所贮存的势能)。
②依靠或不依靠特殊膜蛋白质的“帮助”。
③顺电-化学梯度进行。
归属: A 单纯扩散:上已提B易化扩散:一些非脂溶性或脂溶解度甚小的物质,需特殊膜蛋白质的“帮助”下,由膜的高浓度一侧向低浓度一侧移动的过程。
此过程不需消耗细胞能量。
分类: A经载体介导的易化扩散:如葡萄糖由血液进入红细胞B经通道介导的易化扩散:如K+、Na+、Ca2+顺浓度梯度跨膜转运。
经载体介导的易化扩散的特点:特异性、饱和现象、竞争性抑制。
(3)胞吞和胞吐:如白细胞吞噬细菌、异物的过程为入胞作用;腺细胞的分泌,神经递质的释放则为出胞作用。
2.细胞间通讯和信号传导的类型:(1)离子通道受体介导的跨膜信号传导①化学门控通道②电压门控通道③机械门控通道(2)G蛋白耦联受体介导的跨膜信号转导① cAMP-PKA途径②磷脂酰肌醇代谢途径(3)激酶相关受体介导的跨膜信号转导①激酶受体: A酪氨酸激酶受体 B鸟甘酸环化酶受体② JAK相关激酶受体1. 静息电位:细胞在没有受到外来刺激时,处于静息状态下的细胞内、外侧所存在的电位差称静息电位。
特点:①在大多数细胞是一种稳定的直流电位。
②细胞内电位低于胞外,即内负外正。
③不同细胞静息电位的数值可以不同。
【论文】动物骨骼肌、心肌及平滑肌生理特性的比较研究
摘要:本文通过对兔子离体组织器官至于模拟体内环境的溶液中,以台氏液作灌流液,在体外观察及记录家兔离体肠段的一般生理特性,以及对蛙骨骼肌的电刺激,心肌的电刺激和蛙心灌流,收集它们的生理信号,分析并比较兔子平滑肌、蛙骨骼肌和心肌的生理特性的异同。
结果表明,平滑肌兴奋性较低,具有自动节律性,对化学、温度和机械牵张刺激较敏感,骨骼肌的不应期很短,会发生强直收缩。
心肌的不应期很长,不会发生强直收缩,但会出现期外收缩和代偿间歇。
关键词:动物生理;平滑肌;骨骼肌;心肌;生理特性;取离体兔肠段置于台氏液中,用计算机采集系统扫描其收缩曲线,加入肾上腺素、乙酰胆碱、阿托品等不同的化学药物,观察他们对于离体肠段收缩的影响。
通过这种观察,学习离体肠段平滑肌的实验方法,分析消化管平滑肌组织的特性,如兴奋性、传导性和收缩性等。
制备蛙坐骨神经及腓肠肌标本,采用生理信号采集处理系统,通过改变电流对标本的刺激强度找出阈刺激、阈上刺激和最适刺激,了解刺激强度与肌肉收缩反应大小的一般关系,掌握骨骼肌收缩的总和现象,认识骨骼肌的能够产生强直收缩这一重要生理特性。
同步记录蛙心搏过程(心脏收缩)曲线和心电图曲线,了解心脏电活动与机械活动的时相关系,通过对心电图的分析掌握期前收缩与代偿间歇,并比较心肌和骨骼肌的不同收缩特点。
通过实验,研究这三种肌肉的生理特性,可以更好的分析这三种肌肉在不同温度离子浓度下的收缩状态,从而在生活中运用其中的机理,如在医学、运动比赛、和物理力学。
1 材料与方法1.1实验材料以及仪器家兔、蛙;恒温平滑肌浴管、生理信号采集处理系统、肌张力传感器、万能支架、大铁夹、螺旋夹、双凹夹2个、温度计、烧杯、常用手术器械、玻璃分针、神经-肌肉标本屏蔽盒、刺激电极线、引导电极线、双针刺激电极、滴管、蛙心夹,蛙板,玻璃板,废物缸,培养皿,滑轮,棉花,线;任氏液、台氏液、无钙台氏液、1:50000肾上腺素、1:50000乙酰胆碱、1:50000阿托品。
生理课后题答案
⽣理课后题答案第⼆章细胞膜动⼒学和跨膜信号转导1.哪些因素影响可通透细胞膜两侧溶质的流动?脂溶性越⾼,扩散通量越⼤。
①单纯扩散:膜两侧物质的浓度梯度和物质的脂溶性。
浓度梯度越⼤蛋⽩的数量。
②易化扩散:膜两侧的浓度梯度或电势差。
由载体介导的易化扩散:载体的数量,载体越多,运输量越⼤;竞争性抑制物质,抑制物质越少,运输量越⼤。
③原发性主动转运:能量的供应,离⼦泵的多少。
④继发性主动转运:离⼦浓度的梯度,转运⑤胞膜窖胞吮和受体介导式胞吞:受体的数量,ATP的供应。
⑥胞吐:钙浓度的变化。
2.离⼦跨膜扩散有哪些主要⽅式?①易化扩散:有⾼浓度或⾼电势⼀侧向低浓度或低电势⼀侧转运,不需要能量,需要通道蛋⽩介导。
如:钾离⼦通道、钠离⼦通道等。
②原发性主动转运:由低浓度或低电势⼀侧向⾼浓度或⾼电势⼀侧转运,需要能量的供应,需要转运蛋⽩的介导。
如:钠钾泵。
③继发性主动转运:离⼦顺浓度梯度形成的能量供其他物质的跨膜转运。
需要转运蛋⽩参与。
3.阐述易化扩散和主动转运的特点。
①易化扩散:顺浓度梯度或电位梯度,转运过程中需要转运蛋⽩的介导,通过蛋⽩的构象或构型改变,实现物质的转运,不需要消耗能量,属于被动转运过程。
由载体介导的易化扩散:特异性、饱和现象和竞争性抑制。
由通道介导的易化扩散:速度快。
②主动转运:逆浓度梯度或电位梯度,由转运蛋⽩介导,需要消耗能量。
原发性主动转运:由ATP直接提供能量,通过蛋⽩质的构象或构型改变实现物质的转运。
如:NA-K泵。
继发性主动转运:由离⼦顺浓度或电位梯度产⽣的能量供其他物质逆浓度的转运,间接地消耗ATP。
如:NA-葡萄糖。
4.原发性主动转运和继发性主动转运有何区别?试举例说明。
前者直接使⽤ATP的能量,后者间接使⽤ATP。
①原发性主动转运:NA-K泵。
过程:NA-K泵与⼀个ATP结合后,暴露出NA-K泵上细胞膜内侧的3个钠离⼦⾼亲结合位点;NA-K泵⽔解ATP,留下具有⾼能键的磷酸基团,将⽔解后的ADP 游离到细胞内液;⾼能磷酸键释放的能量,改变了载体蛋⽩的构型。
第五章骨骼肌、平滑肌、心肌细胞生理
导)。 纵管系统:L管(也称肌
浆网。肌节两端的L管称终池,
富含Ca2+)。
2三.肌联小管节::T是管肌+细终胞池收×2缩的基本结构和功能单位。
=1/2明带+暗带+1/2明带 = 2条Z线间的区域
T管
三联体
肌质网
终池
第五章 骨骼肌、心肌、平滑肌细胞生理
二、肌丝的分子组成及其作用
商丘师范学院
第五章 骨骼肌、心肌、平滑肌细胞生理
(三)肌丝滑行机制
3.肌肉舒张
兴奋-收缩耦联后
肌膜电位复极化
终池对Ca2+通透性↓ 肌质网Ca2+泵激活
肌浆[Ca2+]↓
Ca2+与肌钙蛋白解离,构象复原
原肌球蛋白构象复原,重新覆盖横桥结合位点
肌肉舒张
商丘师范学院
总之,肌肉收缩实际上是
一种去抑制过程,即除去横桥 和肌动蛋白之间的抑制因素, 使二者得以实现可逆性结合的 过程。
50年代,赫格斯裂根据其实验研究,提出了肌丝滑行学说, 其依据主要有以下两点:
1.肌丝的排列特点适宜用肌丝滑行来解释。 2.在肌肉收缩时,暗带长度不变,明带和H带变窄,说明肌 纤维的收缩是由细肌丝向粗肌丝间的插进而引起的,两种肌丝 的长度并不改变。 (二)肌丝滑行学说内容 该学说认为:肌肉收缩时,肌丝本身并不缩短,而是由Z线 发出的细肌丝向暗带中央移动,使相邻的Z线相互靠拢,肌节变 短,导致整个肌纤维缩短和肌肉收缩。
商丘师范学院
第五章 骨骼肌、心肌、平滑肌细胞生理
(三)肌丝滑行机制
2.肌丝滑行过程
Ca2+与肌钙蛋白结合 肌钙蛋白构象改变 原肌球蛋白构象改变 暴露肌动蛋白与横桥的结合位点 横桥与肌动蛋白结合,分解ATP释放能量
第五章骨骼肌、心
(1) 肌纤蛋白(肌动蛋白):细肌丝的主干, 存在与粗肌丝结合的位点 (2) 原肌凝蛋白:阻挡和遮盖结合位点
(3) 肌钙蛋白:与Ca2 +结合 (三)肌丝滑行导致肌小节缩短
横桥周期:横桥与细肌丝的结合、解离、复位,然后再与 细肌丝上另外的点结合,出现新的扭动,横桥的这种往复 活动称为横桥周期。P68
名词解释 横桥周期 兴奋---收缩偶联 单收缩 不完全 强直收缩 强直收缩
单个肌纤维对单个动作电位产生的反应称为单收缩。
单收缩可分为三个时期:P72
1、潜伏期;2、缩短期;3、舒张期。
相继两次超最大刺激,如间隔时间短,则先后两 次收缩可呈现重叠,甚至变成一次更大的收缩,
这一现象称为时间总和效应。如个收缩峰仍可分
辨,称为不完全强直收缩。
如各收缩波完全融合,不能分辨,表示肌肉维持 稳定的收缩状态,称为完全强直收缩。产生完全 强直收缩所需要的最低刺激频率,称为临界融合
(二)粗肌丝和细肌丝的功能解剖
肌细丝
肌粗丝
(三)骨骼肌的肌膜系统
肌原纤维为膜状微管结构所环绕:环
绕着每一条肌原纤维的膜状微管结构, 统称为内膜系统,由功能和结构上相
互独立的横管和纵管两部分构成。
肌管系统
二、骨骼肌的收缩机制
(一)钙离子是骨骼肌兴奋--收缩的偶联因子
1、兴奋通过横管传导到肌细胞深部:
(四)富有伸展性:在外力作用下,消化管平滑肌
能作很大的伸展,以适应实际的需要。例如胃可以
容纳好几倍于自己原来体积的食物。
(五)对某些理化刺激较敏感
二、平滑肌的结构
平滑肌纤维呈长梭形,无横纹。平滑肌受自主神经支配,为
骨骼肌、心肌和平滑肌细胞生理幻灯片课件
2、滑行的基本过程
• • • • • • • 肌膜上的动作电位传至横管→ 终池膜上的钙通道开放,肌浆中的钙离子浓度升高→ 钙离子与细肌丝的肌钙蛋白结合,使肌钙蛋白构型发生改变→ 原肌球蛋白的分子结构随之发生改变→ 细肌丝上的横桥结合位点被暴露→ 横桥与结合位点结合,拉动细肌丝插向M线方向→ 肌小节缩短,整个肌纤维收缩。 肌肉的舒张 • 肌浆中钙离子浓度升高→ • 激活了肌质网纵管膜上钙泵,钙泵分解ATP将钙离子泵回终池 内→肌浆中钙离子浓度下降→钙离子与肌钙蛋白脱开被泵回终 池→肌钙蛋白和原肌球蛋白分子构型复原→肌纤维舒张 • 由此可见,肌肉时刻处于一种待收缩状态,肌肉收缩是一个去 抑制过程;肌肉舒张也是需要耗能的。 13
• C亚单位带负电荷,可与Ca2+结合。 • T亚单位将整个肌钙蛋白结合在原肌凝蛋 白上。 • I亚单位的作用是将C亚单位结合Ca2+的信 号传给原肌凝蛋白,引起它的变形。
11
二、骨骼肌收缩的机制
(一)肌肉收缩的肌丝滑行学说 • 1、主要证据 • A. 粗细肌丝之间的几何构形表明在收缩 时它们之间要相互作用。 • B. 肌肉收缩时,暗带的长度没有改变, 说明粗肌丝没有发生卷曲变化。 • C. 拉长肌丝,H带的长度也增长。暗带的 长度不变。 • 这表明,肌收缩是粗细肌丝互相穿插滑行 造成的。 12
5
肌 管 系 统 的 立 体 模 式 图
三联体
6
(三)粗、细肌丝
肌钙蛋白
肌动蛋白肌丝(由肌球蛋白分子构成)
相邻的两对横桥互相 扭转60度角,相距 14.3nm
横桥
结 合 位 点
M线 主 干
单个 肌球 头 蛋白 分子
8
肌球蛋白分子的头组成粗肌丝后形成横桥。
Chapt 5.3 Smooth muscle contraction骨骼肌、心肌和平滑肌生理 南开大学细胞生理课件
4Ca2+.CaM
4Ca2+.CaM激活肌球蛋白轻链激酶(MLCK)
肌球蛋白轻链磷酸化、头部构象改变、横桥与细 肌丝肌动蛋白结合,进入横桥周期, 产生张力和缩短
胞质内Ca2+浓度下降时,MLCK失活,肌球蛋白轻 链磷酸酶(MLC phosphatase, MLCP)作用,脱 磷酸,横桥与细肌丝的肌动蛋白解离,肌肉舒张
B
单位平滑肌细胞的自发电活动
A 起搏点电位与自身诱发电位 B 慢波电位与一串动作电位
Come on and go!
四、平滑肌的分类 及特点
分类
单个单位平滑肌 (s输 分布器官 尿管和子宫平滑肌等
缝隙连接 大量 特 自律性 少数细胞有 点 牵张刺激 可引发肌肉收缩
多单位平滑肌 (multi-unit smooth muscle)
睫状肌、虹膜肌、 竖毛肌以及呼吸道 和大血管的平滑肌
1、兴奋-收缩耦联: Ca2+内流;CICR
2、激动剂-收缩耦联: 受体-G蛋白-PLC途径
21
-
MLCK MLCP
肌 球
肌 球
( 药
蛋蛋 物
白 轻
白 轻
机
链 磷 酸 酶
链 激 酶 ,
械 耦 联
平 滑 肌 收 缩 蛋
白
+-
MLC20 20KD
电的
机激
械活
的耦
肌 球 蛋
联 )
机 制
白
轻
链
三、平滑肌的收缩机制
(Contraction and Relaxation of Smooth Muscle) 一、平滑肌的微细结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
肌球蛋白( myosin ) 头部-横桥:与肌动蛋白结合 并向M线摆动,具有ATP酶活性。
(2)细肌丝 肌动蛋白(actin)+原肌球蛋白(tropomyosin)+肌钙蛋白 (troponin:C、T、I )
(二)骨骼肌的肌膜系统
外膜系统+内膜系统 内膜系统:肌管系统 横小管:细胞膜 纵小管:光面内质网-肌质网,在Z线附近膨大成终池
(二)肌丝滑行学说
主要内容:肌肉收缩(时),肌小节缩短, 是细肌丝(肌动蛋白丝)在粗肌丝(肌球蛋白丝) 中间主动滑行的结果。收缩时,肌小节中的粗肌 丝与细肌丝的长度均未发生变化,只是由Z线发出 的细肌丝在向粗肌丝中央滑行时,增加了其与粗 肌丝重迭的区域,因此H区的宽度减少直至消失, 甚至出现细肌丝重迭的新区带,相应肌小节的亮 带也变窄。
3期:快速复极化末期,0mv→-90mv, 100~150ms ,形成 机制:Ca2+通道失活,内向离子流终止,而膜对K+通透性增 高,K+外流逐渐增强,使膜内电位向负的方向转化,膜内电 位越负,K+外流越快,造成再生性复极。 4期:膜电位数值已达静息电位水平,但细胞内外离子分布 发生变化,膜内多了Na+、Ca2+, 膜外多了K+,激活膜上 Na+-K+泵,每次泵出3个Na+,同时摄入2个K+;由胞外进入细 胞内的Ca2+ ,通过Na+-Ca2+交换排出胞外,使细胞内外离子 分布恢复到静息状态,保证心肌正常兴奋性。
(三)横桥周期
横桥与肌动蛋白结合、扭动、解离的 循环过程
1.静息状态:横桥水解ATP成ADP和Pi
2.Ca2+释放,TnC与Ca2+结合,暴露位 点,横桥与肌动蛋白结合 3. ADP和Pi解离,释放能量,横桥摆 动,拖动肌动蛋白细肌丝向M线移动 4.横桥摆动结束,ATP结合横桥,解 除横桥头与肌动蛋白的链接。
动作电位传导 到T小管,导 致横管膜电变 化
动作电位由神 经细胞传递给 肌细胞
T小管上的DHPR构 型改变,激活RYR, Ca2+通道开放, Ca2+内流,肌浆中的 Ca2+↑ 横桥ATP 酶激活
TnC与Ca2+结 合,肌钙蛋白的 构型发生变化 暴露出肌 动蛋白与 横桥的结 合位点 横桥向M线方向摆 动,拖动细肌丝向 粗肌丝中滑行
(三)多单位平滑肌和神经源性活动
多单位平滑肌:由多个分离的,在功能上相互独立的单位组成。 大血管的管壁、气管等 多单位平滑肌和骨骼肌都属于神经源性活动。
三、平滑肌的收缩
(一)平滑肌收缩的机制
平滑肌兴奋时,胞内Ca2+浓度升高,引起肌球蛋白的磷 酸化,启动粗细肌丝的相对滑动,其主要过程包括:
1、Ca2+与钙调蛋白结合;
第五章 骨骼肌、心肌和平滑肌生理
第一节 骨骼肌生理
一、骨骼肌的结构特征
骨骼肌 纤维由肌原 纤维和肌管 系统构成, 肌原纤维由 高度有序排 列的粗肌丝 和细肌丝构 成,被膜状 微管结构 (肌管系统) 所环绕
(一)骨骼肌的超微结构
1、肌原纤维(myofibril) (1)粗肌丝:200-300个肌球蛋白分子组成
红肌纤维 :缓慢而持久 白肌纤维 :快速而短暂
第二节 平滑肌生理
一、平滑肌的结构
平滑肌纤维:粗肌丝+细肌丝+中间丝
二、平滑肌的电活动
(一)单位平滑肌和电活动 1. 单位平滑肌 功能合包体细胞形成的一个共同单位,内脏平滑肌多属于单 位平滑肌。 2.自发电活动 (1)肌源性活动:通过肌肉自身启动的非神经支配的收缩活动 (2)慢波电位:平滑肌细胞膜自动周期性交替发生的去极化、 复极化的电位变化。慢波电位并不引起肌肉的收缩,但可使静 息电位接近阈电位。一旦去极化达到了阈电位水平,即在其波 幅上产生1至数个动作电位 (3)起搏点电位:膜自动去极化达到阈电位的这种膜电位变化, 一般由自动起搏点平滑肌细胞产生的动作电位。
5.骨骼肌收缩的基本形式?
6.单收缩、强直收缩 7.试比较心室肌、单位平滑肌和骨骼肌三种肌肉动作电位的 异同点? 8.试论述在神经肌肉标本中,当神经受到一阈上刺激时,是 如何引起肌肉收缩的?(阐述这一生理现象各个环节产生的 机理及离子机制)
3.动作电位:动作电位一般是在慢波基础上去极化发生的 ①上升慢,持续时间长,与慢波相比,它又要快得多,因 此又称为快波(fast wave). ②平滑肌动作电位的上升支由一种慢通道介导的离子内流 引起(主要是Ca2+和少量Na+的内流)。 ③平滑肌动作电位下降支主要是K+外流而产生的复极化。 ④大量Ca2+进入肌细胞,通过钙调素激活肌动蛋白-肌球 蛋白-三磷酸腺苷系统,引起肌肉收缩。 肌肉收缩是继动作电位之后产生的
三、骨骼肌收缩的机械特性
(一)肌肉收缩的形式和特性
肌肉收缩的形式:等长收缩、等张收缩和伸长收缩 等长收缩(isometric contraction):收缩时肌肉的长度几 乎不发生变化,张力却增加 等张收缩(isotornic contraction):收缩时肌肉的张力几 乎不发生变化,肌肉的长度缩短 伸长收缩:伸肌的一种收缩形式。
(二)单收缩和强直收缩
1、单收缩:潜伏期→缩短期→舒张期
Байду номын сангаас
2、单根肌纤维收缩的总和
不完全强直收缩(ineomplete tetanus) :当动作电位出现 的频率较高时,未完全舒张的肌纤维将进一步缩 短,出现了多次收缩的总和,得到一条锯齿状收缩 曲线,也叫不完全强直收缩 完全强直收缩(eomplete tetanus):当传来的动作电位的 频率更高时,肌纤维持续收缩而不舒张,得到一条 平滑的收缩总和曲线,叫完全强直收缩 临界融合频率(critical fusion frequency) :产生完全 强直收缩所需要的最低刺激频率。
2、钙调蛋白复合体与肌球蛋白轻链激酶(MLCK)结合 并激活此酶; 3、激活的MLCK分解ATP,使肌球蛋白轻链磷酸化; 4、磷酸化的横桥被激活,与肌动蛋白结合。
(二)肌浆中Ca2+浓度的调节
慢波、动作电位,肌肉收缩三者关系可简单归纳为:
平滑肌收缩是继动作电位之后产生;而动作电位则是在慢波 基础上去极化发生的;慢波不能引起动作电位,但却能提高平 滑肌的兴奋性,被认为是平滑肌的起步电位,它控制着平滑肌 收缩的节律,决定蠕动方向、节律、速度。每个慢波上的动作 电位数目越多,动作电位频率越高,平滑肌收缩幅度也就越大。
其信息通过TnI传递 给TnT
肌动蛋白与 肌球蛋白的 横桥结合
原肌球蛋白的构型 发生变化,深陷于 肌动蛋白的双股螺 旋沟中
ATP分解释放能量
肌肉收缩
肌肉舒张:
肌浆中的Ca2+↓ Ca2+与TnC结合解 除,其构型复原 原肌球蛋白回到横 桥和肌动蛋白分子 之间的位置
肌肉舒张
阻碍两者相互 作用继续进行
0 期:-90mv→+30mv,1~2ms 形成机制:心室肌细胞在窦房结传来的动作电位刺激下→
1 期:+30mv→0mv,10ms,形成机制:Na+ 通道迅速失活 关闭, 同时K+通道激活,K+外流,导致膜快速复极化 2期:平台期,0mv,100~150ms,是心肌动作电位时程较长 的主要原因,也区别于骨骼肌细胞的主要特征。这一期形成 的机制是:Ca2+的内流与K+外流 所负栽的电荷量几乎相等。
相邻的两个终池+横管:三联管
二、骨骼肌的收缩机制
(一)骨骼肌兴奋-收缩耦联(excitation--contraction coupling)
兴奋-收缩耦联:指肌膜的电变化与肌节的机械缩短 之间所存在的中介性过程。 Ca2+是兴奋-收缩偶联的启动因子: 10-7→10-5,与肌 钙蛋白的C亚基结合。 兴奋-收缩耦联中,横管的作用是将肌膜兴奋产生 的电位变化传入肌细胞内部;纵管(肌质网)终池的作用 是贮存释放和再积聚Ca2+;三联管结构的作用。
(三)肌长-肌张力关系
前负荷(preload):负荷在肌肉收缩前就加到肌肉上。肌 肉的收缩有一个最适前负荷和最适初长度 后负荷(afterload):肉开始收缩时才遇到的负荷或阻力 。 只有中等程度负荷情况下肌肉收缩完成的功才最大 最适长度:产生最大等长收缩肌张力时的肌长度。
四、骨骼肌的分类 1、快肌和慢肌:根据分解ATP的速度来划分 2、红肌纤维和白肌纤维:根据氧化磷酸化的能力来划分
三、心肌的收缩
(一)心肌收缩的Ca2+移动机制 Ca2+移入的 两条路径:胞 外移入和肌质 网移入,其中 胞外移入可以 诱导肌质网的 Ca2+释放(称为 Ca2+诱导的Ca2+ 释放)。 (二)心肌的 被动张力和主 动张力
三种肌肉组织静息电位、动作电位形成的比较
思考题:
1.肌原纤维的主要结构以及蛋白构成情况? 2.试述骨骼肌的收缩机理? 3.试比较骨骼肌、心肌和平滑肌收缩过程中Ca2+的作用? 4.简述骨骼肌收缩的横桥周期的主要过程?
第三节 心肌生理
一、心肌的形态结构
合包体结构:相邻细胞间形成闰盘结构将细胞连接在一起,闰 盘处存在缝隙连接。
二、心肌细胞的动作电位
1.心室肌细胞的动作电位
心室肌细胞动 作电位的主要特征 在于复极化过程比 较复杂,持续时间 很长,动作电位降 支与升支很不对称。 通常用0、1、2、3、 4等数字分别代表 心室肌细胞动作电 位的各个时期。