埋弧焊焊缝产生气孔的主要原因及防止措施如下
焊接常见缺陷产生原因及防治措施
焊接常见缺陷产生原因及防治措施缺陷一、气孔(Blow Hole)手工电弧焊发生原因:(1)焊条不良或潮湿。
(2)焊条有水分、油污或锈。
(3)焊接速度太快。
(4)电流太强。
(5)电弧长度不适合。
(6)焊件厚度大,金属冷却过速。
措施:(1)选用适当的焊条并注意烘干。
(2)焊接前清洁被焊部份。
(3)降低焊接速度,使内部气体容易逸出。
(4)使用厂商建议适当电流。
(5)调整适当电弧长度。
(6)施行适当的预热工作。
CO2气体保护焊发生原因:(1)母材不洁。
(2)焊丝有锈或焊药潮湿。
(3)点焊不良,焊丝选择不当。
(4)干伸长度太长,CO2气体保护不周密。
(5)风速太大,无挡风装置。
(6)焊接速度太快,冷却快速。
(7)火花飞溅粘在喷嘴,造成气体乱流。
(8)气体纯度不良,含杂物多(特别含水份)。
措施:(1)焊接前注意清洁被焊部位。
(2)选用适当的焊丝并注意保持干燥。
(3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊丝尺寸要适当。
(4)减小干伸长度,调整适当气体流量。
(5)加装挡风设备。
(6)降低速度使内部气体逸出。
(7)注意清楚喷嘴处焊渣,并涂以飞溅附着防止剂,以延长喷嘴寿命。
(8)CO2纯度为99.98%以上,水份为0.005%以下。
埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂志。
(2)焊剂潮湿。
(3)焊剂受污染。
(4)焊接速度过快。
(5)焊剂高度不足。
(6)焊剂高度过大,使气体不易逸出(特别在焊剂粒度细的情形)。
(7)焊丝生锈或沾有油污。
(8)极性不适当(特别在对接时受污染会产生气孔)。
措施:(1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。
(2)约需300℃干燥。
(3)注意焊剂的储存及焊接部位附近地区的清洁,以免杂物混入。
(4)降低焊接速度。
(5)焊剂出口橡皮管口要调整高些。
(6)焊剂出口橡皮管要调整低些,在自动焊接情形适当高度30-40mm。
(7)换用清洁焊丝。
(8)将直流正接(DC-)改为直流反接(DC+)。
埋弧焊管焊接主要缺陷及防控措施
埋弧焊管焊接主要缺陷及防控措施埋弧焊管焊接主要缺陷及防控措施摘要:文章分析了埋弧焊管在焊接过程易出现的焊接缺陷,判断其产生的原因,并提出了相应的处理方法。
1焊缝外观缺陷1.1咬边埋弧焊管焊接过程易出现单个单侧咬边缺陷的原因在于:成型缝间隙变化过大、带钢边缘有小毛刺或小缺口、成型错边。
出现这种情况,不必进行大的调整,可以在条件允许的情况下尽可能将带钢边缘处理光滑并保持成型稳定。
对于带钢边缘的光滑处理问题,可以采用铣边机代替圆盘剪剪边进行解决。
埋弧焊管焊接过程还会出现单个双侧咬边的情况,其形成原因主要是焊丝直径不均匀、焊丝接头不光滑、焊丝硬度不均匀造成送丝不均匀、金属毛刺导致的电嘴处瞬间短路。
出现这样的情况可采取的防控措施有:检查焊丝直径大小如果导电嘴为原型导电嘴则适当扩大导电嘴直径要求焊丝制造厂家对焊丝接头处修磨保证接头处直径一致切硬度一致,注意板边剪边和铣边情况确保无毛刺,定期放空内焊焊剂并进行磁筛选。
1.2焊缝余高、焊缝“脊棱”、焊缝“马鞍形”太大焊缝余高过大形成的原因有:焊接规范搭配不当,电流过大、电压过小以及焊速过慢;焊丝后倾角过大,使熔池金属剧烈后排;焊丝的前、后间距过小。
焊丝伸出长度过大。
防控措施包括:通过工艺试验确定合理的焊接规范匹配;厚壁钢管采用开坡口的焊接、减少焊丝伸出长度、适当增加焊丝间距、适当增加焊点偏中心。
焊缝鱼脊背的形成原因是:焊点位置不当,焊点偏中心过小,液态熔池金属流向熔池尾部,导致焊缝高度增大,特别是焊缝中间的余高增大,形成焊缝“脊棱”;或者是前焊丝前倾角过大后丝后倾角偏小。
其防控措施有:适当增加焊点偏中心、减小前焊丝前倾角和后焊丝后倾角。
焊缝“马鞍形”太大的形成原因有两个,一是下坡焊时的钢管焊点偏中心过大,二是弧压偏大。
防控措施包括:适当减小焊点偏中心,要不出焊缝“马鞍形”则一般条件下偏中心为0.07R(R 为钢管半径)、降低弧压由于采用烧结焊剂对焊接工艺规范反映非常敏感所以每次调整焊接规范幅度要小。
焊接钢管焊缝气孔产生的原因及防治措施
焊接钢管焊缝气孔产生的原因及防治措施第一篇:焊接钢管焊缝气孔产生的原因及防治措施焊接钢管焊缝气孔产生的原因及防治措施焊接钢管焊缝气孔不仅影响管道焊缝致密性,造成管道泄漏,而且会成为腐蚀的诱发点,严重降低焊缝强度和韧性。
焊缝产生气孔的因素有:焊剂中的水分、污物、氧化皮和铁屑,焊接的成份及覆盖厚度,钢板的表面质量以及钢板边板处理,焊接工艺及钢管成型工艺等。
相关防治措施为:1焊剂成分。
焊接含有适量的CaF2和SiO2时,会反应吸收大量的H2,生成稳定性很高且不溶于液态金属的HF,从而可以防止氢气孔的形成。
2焊剂的堆积厚度一般为25-45mm,焊剂颗粒度大、密度小时堆积厚度取最大值,反之取最小值;大电流、低焊速堆积厚度取最大值,反之取最小值,此外,夏天或空气湿度大时,回收的焊剂应烘干后再使用。
3钢板表面处理。
为避免开卷矫平脱落的氧化铁皮等杂物进入成型工序,应设置板面清扫装置。
4钢板板边处理。
钢板板边应设置铁锈和毛刺清除装置,以减少产生气孔的可能。
清除装置的位置最好安装在铣边机和圆盘剪后,装置的结构是一边2个上下位置可调整间隙的主动钢丝轮,上下压紧板边。
5焊缝形貌。
焊缝的成型系数过小,焊缝的形状窄而深,气体和夹杂物不容易浮出,易形成气孔和夹渣。
一般焊缝成型系数控制在1.3-1.5,厚壁焊管取最大值,薄壁取最小值。
6减小次级磁场。
为了减少磁偏吹的影响,应使工件上焊接电缆的连接位置仅可能远离焊接终端,避免部分焊接电缆在工件上产生次级磁场。
7工艺方面。
应适当降低焊接速度或增大电流,从而延迟焊缝熔池金属的结晶速度,以便于气体逸出,同时,如果带钢递送位置不稳定,应及时进行调整,杜绝通过频繁微调前桥或后桥维持成型,造成气体逸出困难。
焊接钢管焊缝夹渣产生的原因及防治措施焊后残留在焊缝中的熔渣称为夹渣,夹渣对接头的性能影响比较大。
因夹渣多数呈不规则状,会降低焊缝的塑性和韧性,其尖角会引起很大的应力集中,尖角顶点常导致裂纹产生,焊缝中的针形氧化物和磷化物夹渣会使焊缝金属变脆,降低力学性能,氧化铁及硫化铁夹渣容易使焊缝产生脆性。
埋弧焊SAW
小车:用于通用埋弧焊, 配导轨使用。
小车上通常包括送丝 /行走驱动装置、焊剂斗、 焊丝盘和控制面板等。
一般多用内绕式焊丝 盘(也可以用开式焊丝 盘)。 小车机头上的导电嘴 有滚动式、夹瓦式和管式, 以夹瓦式多见。
二、辅助设备
通用焊机(小车式)通常用于平板的拼接和工字/T形/ 箱形梁的角缝等简单构件的焊接,筒体的纵、环缝和复杂结 构的焊接还要升降机构和焊接滚轮架(变位机)的配合。 滚轮架(用于圆筒形结构焊缝的焊接) 变位器(用于把焊缝置于平焊位置) 升降机构(用于提升机头) 焊剂垫(用于在背面承托熔池),有带式、盘式和热固 化焊剂垫等多种形式。 夹紧机构(用于固定焊件,多用于专机上) 另外,在有的埋弧焊机(特别是各种专机)上还会有焊 剂回收装置和焊缝跟踪传感器等。
2、裂纹 1)结晶裂纹 钢材焊接时,焊缝中的S 、P等杂质在结晶过程中形成低熔点 共晶。随着结晶过程的进行,它们逐渐被排挤在晶界,形成了“液 态薄膜”。焊缝凝固过程中,由于收缩作用,焊缝金属受拉应力, “液态薄膜”不能承受拉应力而形成裂纹。 钢材的化学成分对结晶裂纹的形成有重要影响。硫对形成结晶 裂纹影响最大,但其影响程度又与钢中其他元素含量有关,如Mn与 S 结合成MnS而除硫,从而对S的有害作用起抑制作用。Mn还能改善 硫化物的性能、形态及其分布等。因此,为了防止产生结晶裂纹, 对焊缝金属中的Mn/S值有一定要求。Mn/S值多大才有利于防止 结晶裂纹,还与含碳量有关。 埋弧焊焊缝的熔合比通常都较大,因而母材金属的杂质含量对 结晶裂纹倾向有很大关系。母材杂质较多,或因偏析使局部 C 、S含 量偏高,Mn/S可能达不到要求。可以通过工艺措施。(如采用直流 正接、加粗焊丝以减小电流密度、改变坡口尺寸等) 减小熔合比;也 可以通过焊接材料调整焊缝金属的成分,如增加含Mn量,降低含C 、 Si量等。
埋弧焊焊缝产生气孔的主要原因及防止措施如下(共五篇)
埋弧焊焊缝产生气孔的主要原因及防止措施如下(共五篇)第一篇:埋弧焊焊缝产生气孔的主要原因及防止措施如下埋弧焊焊缝产生气孔的主要原因及防止措施如下:1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。
水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。
防止焊剂吸收水分的最好方法是正确肋储存和保管6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。
2)焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。
焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。
3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。
如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。
通过调整焊剂的化学成分,改变熔渣的粘度即可解决。
4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。
电弧磁偏吹会在焊缝中造成气孔。
磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。
在同一条焊缝的不同部位,磁偏吹的方向也不相同。
在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。
为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。
5)工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。
油污要清理干净去掉氧化皮子焊剂干燥铁锈预热问题再有就是停弧的时候先停速度在停弧这样可以减少缩孔裂纹等再有就是清根要彻底第二篇:埋弧焊产生气孔原因埋弧焊缝产生气孔的主要原因埋弧焊缝产生气孔的主要原因是氢,氢气是由焊材、母材带入电弧区的水分所造成的。
但是电磁偏吹、母材质量不好等也会造成气孔,应根据实际情况具体分析,采取相应防止措施。
埋弧自动焊气孔缺陷形成原因及预防措施浅析
埋弧自动焊气孔缺陷形成原因及预防措施浅析摘要:埋弧自动焊作为一种高效的焊接方法在制造业中得到了广泛的应用。
但各种因素的影响使得埋弧焊焊缝易出现气孔等焊接缺陷。
在压力容器的生产单位中,由于某些因素的影响,焊缝中也会出现气孔、裂纹、夹渣等焊接缺陷,直接影响了焊缝质量,其中气孔是最易产生并极具危害的缺陷之一。
它使焊缝的致密度下降,强度降低,影响焊缝的一次合格率。
因此尽量减少气孔缺陷是提高埋弧焊质量必须解决的一个重要问题。
关键词:埋弧焊;气孔;预防措施一、问题的提出及自动埋弧焊的特点在检验某公司蒸汽蓄热器时,宏观检验发现直径约4mm气孔,比平时常见的焊缝表面气孔尺寸要大,经过初步打磨后发现气孔内有类似夹渣物(见图一),该气孔位于焊缝边缘,打磨至17mm深度尚未完全消除,焊缝焊接方法为埋弧自动焊。
后经查阅相关资料后发现,自动埋弧焊该类缺陷较为常见,属铁豆型气孔缺陷。
埋弧焊是一种电弧在焊剂层下燃烧进行焊接的方法。
其固有的焊接质量稳定、焊接生产率高、无弧光、烟尘很少等优点,使其成为压力容器、管材制造、箱型梁柱等重要承压、承重钢结构制作中的主要焊接方法。
埋弧自动焊接时,引燃电弧、送丝、电弧沿焊接方向移动及焊接收尾等过程完全由机械来完成。
近年来,虽然先后出现了许多种高效、优质的新焊接方法,但埋弧焊的应用领域依然未受任何影响。
从各种熔化焊方法的熔敷金属质量所占份额的角度来看,埋弧焊约占10%左右,且多年来一直变化不大。
图一气孔缺陷二、气孔、铁豆缺陷形成原因(1)焊缝附近母材的影响焊缝附的近母材表面质量是产生气孔的重要因素之一,主要是指母材表面的铁锈、水分、油污等影响因素。
铁锈的主要成分为三氧化二铁(Fe2O3)与水(H2O)形成的络合物。
水分在高温作用下会分解出氢(H2)和氧(O2),在焊接熔池中,氢的溶解度很高,冷却时氢的溶解度急剧下降,容易形成氢气孔。
同时分解出的氧(O2)经过焊接的冶金过程,会与金属材料中的碳(C)元素结合,从而形成一氧化碳(CO)气孔。
埋弧焊主要缺陷及防止
埋弧焊主要缺陷及防止埋弧焊时可能产生的主要缺陷,除了由于所用焊接工艺参数不当造成的熔透不足、烧穿、成形不良以外,还有气孔、裂纹、夹渣等。
本节主要叙述气孔、裂纹、夹渣这几种缺陷的产生原因及其防止措施。
1. 气孔埋弧焊焊缝产生气孔的主要原因及防止措施如下:1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。
水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。
防止焊剂吸收水分的最好方法是正确肋储存和保管 6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。
2)焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。
焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。
3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。
如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。
通过调整焊剂的化学成分,改变熔渣的粘度即可解决。
4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。
电弧磁偏吹会在焊缝中造成气孔。
磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。
在同一条焊缝的不同部位,磁偏吹的方向也不相同。
在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。
为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。
5)工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。
2 裂纹通常情况下,埋弧焊接头有可能产生两种类型裂纹,即结晶裂纹和氢致裂纹。
前者只限于焊缝金属,后者则可能发生在焊缝金属或热影响区。
1)结晶裂纹钢材焊接时,焊缝中的S 、P等杂质在结晶过程中形成低熔点共晶。
常见焊接缺陷类型产生原因与防止措施
常见焊接缺陷类型产生原因与防止措施1)焊缝尺寸不符合要求焊波粗,外形高低不平,焊缝加强高度过低或者过高,焊波宽度不一及角焊缝单边或下陷量过大,其原因是:1,焊件坡口角度不当或装配间隙不均匀;2,焊接规范选用不当;3,运条速度不均匀,焊条(或焊把)角度不当角焊缝的K 值不等—一般发生在角平焊,也称偏下。
偏下或焊缝没有圆滑过渡会引起应力集中,容易产生焊接裂纹。
焊条角度问题,应该考虑铁水受重力影响问题。
许多教授在编写教材注重理论性而忽略实用性。
焊条角度适当上抬,48/42 度合适。
另外,在K 值要求较大时,尽量采用斜圆圈型运条方法。
时没有进行调整。
三是在熔池边缘停留时间不均匀。
所以焊接时焊接速度均匀、考虑坡口宽度、熔池边缘停留时间合适。
焊缝高低不一致:与焊接速度不均匀有关外,与弧长变化有关。
所以采用均匀的焊接速度、保持一定的弧长,是防止焊缝高低不一致的有效措施。
弧坑:息弧时过快。
与焊接电流过大、收弧方法不当有关。
平焊缝可以采用多种收弧方法,例如回焊法、画圈法、反复息弧法。
立对接、立角焊采用反复息弧法,减小焊接电流法。
焊缝尺寸不符合要求,在凸起时应力集中,产生裂纹;在焊缝尺寸不足时,降低承载能力;所以在焊接前尽量预防,在焊接中尽量防止,在焊接以后及时修补,保证焊缝尺寸符合施工图纸要求。
2)夹渣在焊缝金属内部或熔合线部位存在的非金属夹杂物,夹渣对力学性能有影响,影响程度与夹渣的数量和形状有关,其产生的原因是:1,多层焊时每层焊渣未清除干净2,焊件上留有厚锈;3,焊条药皮的物理性能不当;4,焊层形状不良,坡口角度设计不当5,焊缝的熔宽与熔深之比过小,咬边过深;6,电流过小,焊速过快,熔渣来不及浮出。
夹渣是非金属化合物在焊接熔池冷却没有及时上浮而被封闭在焊缝内,所以与清渣不够、打底层、填充层的成型太差、焊条角度没有进行调整而及时对准坡口两个死角,焊接速度过快、焊接电流过小、非正规的运条方法,没有分清铁水与熔渣,保持熔池的净化氛围。
焊接中的常见缺陷的成因和防止措施
焊接中的常见缺陷的成因和防止措施焊接是保证结构强度的关键,是保证质量的关键,是保证安全和作业的重要条件。
如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起事故。
据对脆断事故调查表明,40%脆断事故是从焊缝缺陷处开始的。
在进行检验的过程中,对焊缝的检验尤为重要。
因此,应及早发现缺陷,把焊接缺陷限制在一定范围内,以确保安全。
焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。
常见缺陷有气孔、夹渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等。
一、气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。
产生气孔的主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
此外,低氢型焊条焊接时,电弧过长,焊接速度过快;埋弧自动焊电压过高等,都易在焊接过程中产生气孔。
由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。
预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。
严格按规定保管、清理和焙烘焊接材料。
不使用变质焊条,当发现焊条药皮变质、剥落或焊芯锈蚀时,应严格控制使用范围。
埋弧焊时,应选用合适的焊接工艺参数,特别是薄板自动焊,焊接速度应尽可能小些。
二、夹渣夹渣就是残留在焊缝中的熔渣。
夹渣也会降低焊缝的强度和致密性。
产生夹渣的原因主要是焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
进行埋弧焊封底时,焊丝偏离焊缝中心,也易形成夹渣。
防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。
多层焊时,应仔细观察坡口两侧熔化情况,每一焊层都要认真清理焊渣。
封底焊渣应彻底清除,埋弧焊要注意防止焊偏。
焊接气孔产生原因及处理方法
焊接气孔产生原因及处理方法随着时代的发展,现代工业对焊接技术的工艺要求也越来越高,而焊接气孔产生的不良影响成为大多数焊接作业者的关注和急需解决的问题,本文就常见气孔形成的原因及一些处理措施进行论述。
标签:气孔;形成因素;防治措施焊接是在工程施工中广泛应用的一项专业技术,实践性较强。
在平常的焊接作业中,钢构的仰焊、管道的定位焊和管道的横焊出现气孔的机率与平焊、立焊相比要多。
在实际施工中,管道的定位焊和横焊由于焊接的位置空间比较狭小、盲区较多,焊接过程中的操作会受到限制,以致于无法观察熔池的形态,因此出现气孔的可能性会大大增加。
本文结合作者的实践和理论经验,浅谈气孔形成的因素和处理措施。
一、气孔的定义和类形(一)定义气孔就是在焊接时,熔池中的气泡在凝固时未能逸出而残留下来形成的空穴。
(二)分类按气孔产生的部位不同,可分为表面气孔和内部气孔。
按气孔的分布状况,分为单个气孔、疏散气孔、均布气孔、密集气孔和链接气孔。
按气孔的形态,分为球形气孔、条形气孔、针状气孔等。
按气体成分,分为氢气孔、氮气孔、氧气孔、一氧化碳气孔等。
二、气孔形成的因素一般施工条件中常见的气孔形成必然与气体有联系,气孔的实质是:在金属凝固期间没有及时浮出熔池而残留在金属中的气泡。
焊接金属中的气体主要有氢、氧、一氧化碳、二氧化碳、硫化氢等多种气体。
这些气体可能来源于母材、焊丝、焊材、保护气体、大气等,不同的焊接母材所选用的焊接材料、焊接方法、焊接环境都会起到不同的作用,根据不同的焊接作业条件,从以下几个方面分析影响气孔形成的因素。
(一)母材在工程施工中不同的施工工艺要求用不同的焊接母材,这就需要焊接作业者有更高的技能要求,焊缝的处理、焊缝的清理是焊接作业中的一项重要环节,因为母材表面往往都会有水分、油、漆、锈等物质,这些物质会导致形成焊接气孔。
要通过机械处理、钢丝刷处理、化学处理的办法清理母材表面,处理后的母材要恢复原有的金属色泽。
(二)焊材焊材是焊缝填充的主要来源,也是对焊缝影响较大的因素之一。
焊缝气孔的形成原因及防治措施
焊缝气孔的形成原因及防治措施作者:郑建勇史智杰刘永春来源:《文化产业》2015年第03期摘要:焊接制造技术是一门综合性技术。
论述焊缝气孔缺陷的类型及形成条件,如何限制熔池溶入或产生气体以及排除熔池中存在的气体,选用与母材匹配的焊接材料,制定并控制焊接工艺条件,可以有效的控制焊接过程中的气孔缺陷的产生。
关键词:气孔;气孔类型;防治措施;中图分类号:TG441.7 文献标识码:A 文章编号:1674-3520(2015)-03-00-01焊接制造技术,是一门综合性技术。
在焊接施工中焊接缺陷如果影响焊接产品的质量,会造成返修,严重的甚至会造成焊接件报废,所以在此分析焊接过程中缺陷出现的条件及防治措施。
防治焊接缺陷的首要条件是掌握缺陷的形成条件及形成原因,以制定合理的焊接工艺,并在生产制造中严格工艺要求,认真贯彻执行。
焊缝气孔是典型的焊接缺陷,气体的存在是形成气孔的先决条件。
形成气孔的气体有两类:高温时金属溶解了较多的气体(如氢气和氮气)和熔池内产生的冶金反应产物(如一氧化碳和水蒸气)。
焊接熔池吸收的气体因过饱和以致形成气泡,又不能及时逸出而残留于焊缝中,就会形成气孔。
气孔的存在,不仅减少小了焊缝的有效承载面积,而且会形成应力集中,使焊缝的强度、韧性、疲劳强度下降,有时气孔还会成为裂纹源。
因此,气孔的防止是焊接中第一个十分重要的问题。
一、焊缝气孔的类型及形成机理(一)气孔类型及特征。
气孔可按不同特征分为不同的类型,按形成气孔的气体来源可为析出型气孔和反应型气孔两种。
1、析出型气孔。
因溶解度差而造成过饱和状态的气体的析出所形成的气孔,称为析出型气孔。
这类气体主要是外部侵入熔池的氢和氮。
对于大多数金属来说,易于溶解的氢最易在焊缝中形成气孔。
氮的唯一来源是空气,如果采取正确的防护措施,氮气孔是比较容易避免的。
就氢的影响而言因溶解度变化特性不同,在不同金属中对气孔的影响会有较大差别。
2、反应型气孔。
熔池中除外部入侵的气体氢或氮之外,还会由于冶金反应而生成反应性气体,这类气体主要是一氧化碳、水蒸气,均为根本不溶于金属的气体。
埋弧焊常见缺陷成因及对策
埋弧焊常见缺陷成因及对策管理提醒:埋弧自动焊是焊接生产中广泛采用的高效率焊接方法之一,其焊缝质量高、劳动条件好,广泛应用于造船、桥梁、化工容器制造中。
洛阳隆惠石化工程有限公司在二套催化生产的冷换设备中成功地采用了埋弧自动焊,不仅缩短了工期,同时提高了焊缝质量。
但由于经验不足和操作等原因,焊接时仍出现多种缺陷,削弱了焊缝的有效工件断面,降低了焊缝金属的强度和韧性,使容器的整体质量下降。
从现场观察和X射线底片上统计,这批容器最常见的缺陷有焊缝成形不良、气孔和夹渣、裂纹。
一、焊缝表面成形不良主要表现在两个方面:焊缝表面堆积过高和焊缝金属满溢。
焊接过程中影响焊缝成形的主要因素是焊接工艺参数和环焊缝焊接提前量。
当电流增大时,焊缝的熔深和余高均增大,熔宽基本不变;当电压增大时,熔深略有减小而熔宽增大;焊接速度增大后,线能量减小,熔深略有减小而熔宽增大,余高减小。
因此,当电流过大而电压过低时,会使焊缝表面堆积过大;当焊接速度太慢或电压过低时,会造成焊缝金属满溢。
水平位置熔池最稳定,易于得到良好的成形。
环缝焊接时,熔池随工件旋转始终处于运动状态,从熔池形成到冷却结晶需要一段时间,在这段时间内,熔池会随工件旋转一段距离,如何控制焊丝的焊接提前量,使熔池在水平的位置冷却结晶,是控制焊缝成形好坏的关键。
焊接提前量的大小取决于熔池在液态存在的最长时间、工件直径、拖辊转速(焊接速度)。
当提前量过大时,熔池会在上坡过程停留时间长,使熔池金属向熔池尾部运动,冷却后造成焊缝金属表面堆积过大;当提前量过小时,熔池在下坡过程中运动时间长时,熔池金属向熔池前部运动,溢出熔池表面。
从焊缝外观上看,提前量过大,焊缝表面纹路过于平缓;提前量过小,焊缝表面纹路过于尖锐。
埋弧焊产生气孔原因电子版本
埋弧焊产生气孔原因埋弧焊缝产生气孔的主要原因埋弧焊缝产生气孔的主要原因是氢,氢气是由焊材、母材带入电弧区的水分所造成的。
但是电磁偏吹、母材质量不好等也会造成气孔,应根据实际情况具体分析,采取相应防止措施。
(1)焊接材料和坡口门不清洁,是造成气孔的最常见的原因。
焊剂末烘干或烘干不彻底,焊丝表面、坡口表面及邻近区域有油、锈和水分,都会使熔池中含氢量显著增高而产生气孔。
防止氢气孔的方法,是减少氢的来源和创造使氢逸出熔池的条件:①焊剂(包括焊剂垫用的焊剂):应按规定严格烘干。
如果天气潮湿,焊剂从烘箱中取出到使用的时间不能太长,最好能在50度左右温度下保温待用。
回收再用的焊剂要避免被水、尘土等污染。
②严格清除焊丝和坡口两侧20毫米范围内的油、锈和水分。
焊件要随装随焊,如果沾有水分,要将焊接区域烘烤干燥后焊接。
③焊剂粒度要合适,细粉末和灰分要筛除,使焊剂有一定透气性,利于气体跑出。
(2)钢材轧制或热冲压、卷板过程中,形成或脱落的氧化皮,以及定位焊渣壳,碳弧气刨飞渣等夹入焊剂,也会在焊缝中造成气孔。
防止措施:①卷板、弯曲等加工过程中脱落的氧化皮,在装配焊接前要清扫或用压缩空气吹除,防止夹入装配间隙或落入坡口中。
②焊接场地周围要清洁,防止氧化皮、渣壳、碳弧.气刨飞渣混入焊剂。
回收复用的焊剂中,这些杂质的含量往往较多,所以要在多次回用的焊剂中掺进新焊剂o(3)焊剂层太薄、焊接电压过高或网路电压波动较大时,电弧可能穿出焊剂层,使熔池金属受外界空气污染而造成气孔;焊剂粒度太粗时,空气会透过焊剂层污染熔池;悬空焊装配间隙超过0.8毫米时,会造成焊缝中的深气孔。
防止措施:①焊剂层厚度要合适使与焊接规范相适应,焊剂粒度不能过粗,以保证焊接过程中不透出连续弧光o②悬空焊,特别在焊件厚度20毫米以内的悬空焊时,装配间隙不要超过0.8―1毫米o(4)磁偏吹会造成气孔,最容易在用直流焊接薄板时发生,气孔多出现在收尾区域,越近焊缝末端气孔越严重。
埋弧焊问题及解决
埋弧焊问题及解决埋弧焊是目前广泛使用的一种生产效率较高的机械化焊接方法。
它与焊条电弧焊相比,虽然灵活性差一些,但焊接质量好、效率高、成本低,劳动条件好。
1 埋弧焊的原理及特点一、埋弧焊的过程及原理埋弧焊是利用焊丝与工件之间在焊剂层下燃烧的电弧产生热量,熔化焊丝、焊剂和母材金属而形成焊缝的熔化极电弧焊方法。
由于焊接时电弧掩埋在焊剂层下燃烧,电弧光不外露,因此被称为埋弧焊。
二、埋弧焊的特点1.埋弧焊的主要优点:(1)焊接生产率高;(2)焊缝质量好;(3)焊接成本较低;(4)劳动条件好;2.埋弧焊的主要缺点:(1)难以在空间位置施焊;(2)对工件装配质量要求高;(3)不适合焊接薄板和短焊缝。
三、埋弧焊的分类及应用范围埋弧焊的应用范围(1)焊缝类型和焊件厚度凡是焊缝可以保持在水平位置、或倾斜度不大的工件,不管是对接、角接和搭接接头,都可以用埋弧焊焊接,如平板的拼接缝、圆筒形工件的纵缝和环缝、各种焊接结构中的角缝和搭接缝等。
埋弧焊可焊接的焊件厚度范围很大。
除了厚度在5mm以下的焊件由于容易烧穿,埋弧焊用得不多外,较厚的焊件都适于用埋弧焊焊接。
目前,埋弧焊焊接的最大厚度已达650mm。
(2)焊接材料种类随着焊接冶金技术和焊接材料生产技术的发展,适合埋弧焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢以及某些有色金属,如镍基合金、铜合金等。
此外,埋弧焊还可在基体金属表面堆焊耐磨或耐腐蚀的合金层。
2 埋弧焊的焊接材料与冶金过程一、埋弧焊的焊接材料及选用1.焊丝根据焊丝的成分和用途可将其分为碳素结构钢焊丝、合金结构钢焊丝和不锈钢焊丝三大类,随着埋弧焊所焊金属种类的增加,焊丝的品种也在增加,目前生产中已在应用高合金钢焊丝、各种有色金属焊丝和堆焊用的特殊合金焊丝等新品种焊丝。
焊丝选用原则:埋弧焊焊接低碳钢时,常用的焊丝牌号有H08、H08A、H15Mn等,其中以H08A的应用最为普遍。
当工件厚度较大或对力学性能的要求较高时,则可选用含Mn量较高的焊丝。
埋弧焊气孔产生原因分析及控制措施
埋弧焊气孔产生原因分析及控制措施一、埋弧焊气孔缺陷产生的原因1、人为因素的影响(1)导电嘴离工件表面太近。
过低的导电嘴使焊剂堆积高度不够,易产生间断性的明弧,而且会因导电嘴太低致使堆覆的焊剂被拖带走,使熔池及电弧保护变差而产生气孔。
另外导电嘴离工件表面太近还易造成短路,使导电嘴烧坏和产生密集气孔。
(2)焊剂斗堵塞造成明弧。
由于焊剂的反复使用,在回收焊剂时有大块的熔渣没被筛除回收到焊剂斗内,造成出口堵塞而产生明弧。
2、设备因素的因素的影响(1)焊接规范执行不准确。
焊接过程中的电压电流不稳定,焊接参数变小,造成焊丝不稳定及保护效果欠佳,从而使空气中水蒸气容易进入焊缝形成气孔;同时焊接参数变小,使得焊接热输入变小,而冷却速度加快,使气体不易从正在凝固的熔化金属中逸出,从而造成气孔。
(2)网络电压的影响。
当电弧电压由于网络电压的影响而降低时,熔深迅速增加而焊接速度不变,熔池很快结晶,使气体和熔渣来不及逸出,存留在焊缝金属中形成气孔。
3、焊接材料、母材表面的氧化物及焊接环境因素的影响(1)焊剂受潮。
由于焊剂从烘干箱内取出后露天放置,过热的焊剂极易吸收空气中的水分,尤其是空气湿度较大的季节更突出,这时剩余的焊剂还要过夜而使其受潮更为严重,致使焊剂中过多的水分增加了熔池中的气体,这也是产生气孔的原因之一。
(2)焊剂中的杂质与氧化物。
由于焊缝周围清理不彻底,在回收焊剂的同时有一定量的灰尘、氧化物和球状的熔渣被收入装置内,这些灰尘、氧化物和球状的熔渣被收入装置内,这些灰尘、氧化物和熔渣在电弧高温作用下在熔池内发生强烈的氧化反应,另一方面焊剂在反复使用时颗粒度减小并与细小的灰尘混合形成比重较大的混合物,在熔池结晶过程中来不及浮出,这些都是产生气孔、夹渣的重要原因之一。
(3)焊剂垫中的焊剂不干净或受潮。
焊剂垫是双面埋弧焊的重要设备之一,焊剂垫内焊剂清洁与否将直接影响焊缝质量。
由于忽视对焊剂垫中焊剂的管理,使焊剂垫中的焊剂在反复使用时混入了很多杂质,同时焊剂始终暴露在空气中,长期受空气的浸蚀也是产生气孔的主要原因。
埋弧焊产生气孔原因之欧阳与创编
埋弧焊缝产生气孔的主要原因埋弧焊缝产生气孔的主要原因是氢,氢气是由焊材、母材带入电弧区的水分所造成的。
但是电磁偏吹、母材质量不好等也会造成气孔,应根据实际情况具体分析,采取相应防止措施。
(1)焊接材料和坡口门不清洁,是造成气孔的最常见的原因。
焊剂末烘干或烘干不彻底,焊丝表面、坡口表面及邻近区域有油、锈和水分,都会使熔池中含氢量显著增高而产生气孔。
防止氢气孔的方法,是减少氢的来源和创造使氢逸出熔池的条件:①焊剂(包括焊剂垫用的焊剂):应按规定严格烘干。
如果天气潮湿,焊剂从烘箱中取出到使用的时间不能太长,最好能在50度左右温度下保温待用。
回收再用的焊剂要避免被水、尘土等污染。
②严格清除焊丝和坡口两侧20毫米范围内的油、锈和水分。
焊件要随装随焊,如果沾有水分,要将焊接区域烘烤干燥后焊接。
③焊剂粒度要合适,细粉末和灰分要筛除,使焊剂有一定透气性,利于气体跑出。
(2)钢材轧制或热冲压、卷板过程中,形成或脱落的氧化皮,以及定位焊渣壳,碳弧气刨飞渣等夹入焊剂,也会在焊缝中造成气孔。
防止措施:①卷板、弯曲等加工过程中脱落的氧化皮,在装配焊接前要清扫或用压缩空气吹除,防止夹入装配间隙或落入坡口中。
②焊接场地周围要清洁,防止氧化皮、渣壳、碳弧.气刨飞渣混入焊剂。
回收复用的焊剂中,这些杂质的含量往往较多,所以要在多次回用的焊剂中掺进新焊剂o (3)焊剂层太薄、焊接电压过高或网路电压波动较大时,电弧可能穿出焊剂层,使熔池金属受外界空气污染而造成气孔;焊剂粒度太粗时,空气会透过焊剂层污染熔池;悬空焊装配间隙超过0.8毫米时,会造成焊缝中的深气孔。
防止措施:①焊剂层厚度要合适使与焊接规范相适应,焊剂粒度不能过粗,以保证焊接过程中不透出连续弧光o ②悬空焊,特别在焊件厚度20毫米以内的悬空焊时,装配间隙不要超过0.8―1毫米o (4)磁偏吹会造成气孔,最容易在用直流焊接薄板时发生,气孔多出现在收尾区域,越近焊缝末端气孔越严重。
螺旋埋弧焊管焊缝夹杂原因分析及解决措施
螺旋埋弧焊管焊缝夹杂原因分析及解决措施摘要:埋弧焊用来焊接管结构,因其焊接面呈曲状,而且焊接速度快,导致焊缝液态熔池在结晶过程中,很有可能进入焊渣、空气或者水分等,进而降低焊接质量。
同时,螺旋埋弧焊管焊接过程中常见的板边积压、错边以及成型缝隙等,都是影响焊接质量的主要原因。
因此,要想提高螺旋埋弧焊管的焊接质量,就需要严格把控焊接工艺、焊接材料以及板边形状等方面的内容。
鉴于此,本文立足于螺旋埋弧焊管焊接特点,分析造成焊缝夹杂的原因,在此基础之上提出相应的解决措施,具体内容如下。
关键词:螺旋埋弧焊;管焊缝;焊缝夹杂1.螺旋埋弧焊管焊接特点螺旋埋弧焊管的焊缝主要有内焊缝和外焊缝这两种,基于上卷成型钢管埋弧内焊和外焊的过程对螺旋埋弧焊管的焊接特点进行分析:(1)螺旋埋弧焊管的内外焊是同时实现的,焊接过程中需要使用环焊将其连接起来。
而且螺旋埋弧焊管内焊通常使用下坡焊的方法,这样一来就能够提高焊缝质量。
(2)螺旋埋弧焊管的焊接速度快。
就普通螺旋埋弧焊而言,大多数焊管的焊接速度在1.8~2.0m/min之间,为了能够加快液态熔池金属的结晶速度,就需要加快管件的转速[1]。
(3)管件成型质量和焊缝质量息息相关。
成型后的螺旋埋弧焊管,由于其管径会发生变化,因此,其错边、椭圆度以及成型缝间隙都会发生相应的改变,进而会影响焊缝的质量。
2.螺旋埋弧焊管焊缝夹杂原因分析2.1焊接材料原因分析焊接材料和气孔是影响螺旋埋弧焊管焊缝夹杂的主要原因,很多焊接材料经过除锈和抛光之后,虽然外表看起来和正常材料无异,但是其内部已经出现了锈蚀现象,而且这种锈迹是无法去除的。
经过成型器冷弯变形使其成圆筒状后,内部的铁锈就会显现出来,通过焊接和焊剂混合,由于焊接工作是在高温环境下进行的,因此,氧化铁中的水经过氧化还原反应便会分解成为氢气和氧气,氧气具有加快氧化反应速度的作用,但是,如果氧气燃烧不充分,就会形成一氧化碳气孔,同时氢气也会产生气孔。
螺旋埋弧焊管内焊缝夹珠型气孔的形成与消除
螺旋埋弧焊管内焊缝夹珠型气孔的形成与消除摘要:本文阐述了螺旋埋弧焊管一种内焊缝夹珠型气孔的特征,从烧穿和局部熔滴温度偏低两方面进行了分析,提出了避免该类气孔产生的相应控制措施。
关键词:螺旋埋弧焊管;焊接缺陷;气孔;夹珠1、前言在螺旋埋弧焊管生产过程中,常见的夹珠型气孔有夹粉尘、夹焊剂等。
本文阐述一种较为少见的夹珠型气孔,该气孔呈单个非连续性出现,有时以间隔100mm左右等距离出现,且大小、位置基本一致。
我单位在生产ф813X14.2 X70M钢管时,连续两天都出现了此类气孔。
2、问题描述焊缝余高未去除前,此气孔用X射线工业电视检查无法发现,焊缝余高去除后, X射线工业电视检查才能发现。
从X射线检查的缺陷图片(见图1)可知,缺陷外侧有一环状气孔,内有夹珠。
对缺陷位置进行碳弧气刨(见图2)发现,缺陷处于内焊缝中部。
图1 X射线工业电视检查的缺陷图片图2 碳弧气刨图片此夹珠型气孔有如下特点:(1)缺陷大小基本一致,直径均在3-4mm;(2)缺陷都在内焊缝中部,距离内表面母材3-4mm位置开始出现,到7-8mm位置缺陷消失。
(3)整根钢管只有此类气孔缺陷,无别的缺陷。
3、该气孔的产生原因分析该规格钢管由A和B两套机组同时生产,焊丝、焊剂、焊接规范均相同,但只有A机组生产出的钢管有夹珠型气孔。
因此,焊接工艺不存在问题。
从图1中可以看出,焊缝上只有一环形气孔,气孔内侧焊缝金属也无其它夹杂。
从气刨后(图2)的焊缝内部情况看,也未发现气孔外的其它缺陷。
考虑到此类气孔不同于氢气孔、CO气孔、夹焊剂或夹渣气孔,本文主要从外烧穿、局部熔滴温度偏低两个方面进行分析。
3.1烧穿经现场观察与分析,钢管生产过程中,成型合缝状态欠佳,内焊容易出现轻微烧穿,即在外坡口中心附着有2-3mm的焊瘤,焊瘤过外焊时若外焊前丝焊接电流没有适当降低,容易再次产生烧穿。
若外焊烧穿较轻,会在外焊缝根部产生气孔,严重时会直接穿透内焊缝,在内焊缝表面形成堆积焊瘤。
埋弧焊裂纹、夹渣产生原因
埋弧焊时可能产生的主要缺陷,除了由于所用焊接工艺参数不当造成的熔透不足、烧穿、成形不良以外,还有气孔、裂纹、夹渣等。
本节主要叙述气孔、裂纹、夹渣这几种缺陷的产生原因及其防止措施。
1. 气孔埋弧焊焊缝产生气孔的主要原因及防止措施如下:1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。
水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。
防止焊剂吸收水分的较好方法是正确肋储存和保管 6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。
2) 焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。
焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。
想学习电焊技术的,可以到博德职业培训学校选择相关培训课程,作为一个专注培训技术型的专业学校。
坚持操作实践,排难解惑,探讨共进。
3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。
如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。
通过调整焊剂的化学成分,改变熔渣的粘度即可解决。
4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。
电弧磁偏吹会在焊缝中造成气孔。
磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。
在同一条焊缝的不同部位,磁偏吹的方向也不相同。
在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。
为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。
5) 工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。
2. 裂纹通常情况下,埋弧焊接头有可能产生两种类型裂纹,即结晶裂纹和氢致裂纹。
浅谈焊接过程中产生气孔的原因及防治措施
浅谈焊接过程中产生气孔的原因及防治措施摘要】:气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴,气体是熔池从外界吸收的,或焊接冶金过程中反应生成的。
气孔对在动载荷下,特别是交变载荷下工作的焊接结构更为不利,它将显著降低焊接接头的疲劳极限。
本文对焊接过程中气孔产生的原因进行分析,并根据工程实践,提出相应的了防治措施。
【关键词】焊接气孔措施1.前言气孔是指焊接时,熔池中的气体未在金属凝固前逸出,残存于焊缝之中所形成的空穴,气体是熔池从外界吸收的,或焊接冶金过程中反应生成的。
气孔分为氢气孔、氮气孔、二氧化碳气孔、一氧化氮气孔、氧气孔,熔焊中常见的气孔是氢气孔、一氧化碳气孔。
气孔减少了焊缝的有效截面积、使焊缝疏松,从而降低了接头的强度,降低塑性,还会引起泄漏,气孔也是引起应力集中的因素,氢气孔还可能促成冷裂纹。
2.产生气孔的因素2.1.冶金因素对气孔的影响冶金因素主要指与焊接化学冶金过程有关的因素,如熔渣的化学性质、焊条药皮或焊剂的成分、保护气体种类、铁锈和水分等。
焊接时,熔渣的氧化性强弱,对生成气孔的倾向有明显的影响。
实验证明,熔渣的氧化性增强。
CO气孔的倾向就增加,而氢气孔的倾向减小;熔渣的还原性增强则相反。
焊条药皮和焊剂的组成都比较复杂,所以对生成气孔的影响也比较复杂。
现仅介绍焊接低碳钢和低合金钢时的影响。
CaF2可以去氢,是因为CaF2在焊接中能与焊接区的氢形成稳定的HF,HF在高温时不发生分解,也不溶于金属中。
所以,用碱性焊条或加CaF2的焊剂焊接低碳钢,可以有效地防止氢气孔。
实践证明,在HJ431中适量的CaF2和SiO2共存时,也可形成稳定的HF。
酸性焊条防止氢气孔主要是提高药皮的(SiO2、MnO、FeO、MgO等)氧化性,使氧化物与氢在高温时形成稳定性仅次于HF的OH。
生成的OH不仅降低了氢的分压,而且也不溶于金属,对消除氢气孔也是有效的。
焊接区内的铁锈、水分、油污等对生成氢气孔的影响是很大的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
埋弧焊焊缝产生气孔的主要原因及防止措施如下:
1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。
水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。
防止焊剂吸收水分的最好方法是正确肋储存和保管6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。
2)焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。
焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。
3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。
如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。
通过调整焊剂的化学成分,改变熔渣的粘度即可解决。
4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。
电弧磁偏吹会在焊缝中造成气孔。
磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。
在同一条焊缝的不同部位,磁偏吹的方向也不相同。
在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。
为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。
5)工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。
油污要清理干净去掉氧化皮子焊剂干燥铁锈预热问题
再有就是停弧的时候先停速度在停弧这样可以减少缩孔裂纹等
再有就是清根要彻底。