初中数学几何必杀技八大模型(pdf)
中考数学模型:飞镖模型与8字型模型
8字模型与飞镖模型8字型与飞镖型就是中考几何模型中常见得两种结构,熟悉这两种结构对于我们快速解题有着极其重要得帮助。
模型1:角得8字模型如图所示,A C、BD 相交于点O ,连接AD 、B C. 结论:∠A +∠D =∠B +∠C .模型分析 证法一:∵∠AOB 就是△AOD 得外角,∴∠A +∠D =∠AOB .∵∠AOB 就是△BOC 得外角, ∴∠B+∠C=∠AO B。
∴∠A +∠D =∠B +∠C。
证法二:∵∠A+∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C+∠BOC =180°, ∴∠B +∠C =180°-∠BO C.又∵∠AOD =∠BO C,∴∠A +∠D=∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到. 模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角得8字模型.如图③,连接CD .∵∠BOC 就是△B OE 得外角, ∴∠B+∠E=∠B OC。
∵∠B OC 就是△C OD 得外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角得8字模型),∴∠A +∠B +∠ACE +∠A DB +∠E =∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠AD C=180°。
解法二:如图④,利用三角形外角与定理。
∵∠1就是△F CE 得外角,∴∠1=∠C +∠E .∵∠2就是△GBD 得外角,∴∠2=∠B +∠D .∴∠A+∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D+∠E+∠F=________。
中考必会几何模型:8字模型
8字模型【结论】如图,AC 与BD 相交于点O ,则∠A+∠B=∠C+∠D.【证明】在△ABD 中,∠A+∠B+∠AOB=180°.在△CDO 中,∠C+∠D+∠COD=180°. ∵∠AOB=∠COD, ∴∠A+∠B=∠C+∠D.拓展模型1若BP ,DP 分别是∠ABC ,∠ADC 的平分线,则∠P=12(∠A+∠C).拓展模型2若∠CBP= 13∠ABC,∠CDP= 13∠ADC,则∠P= 13∠A+ 23∠C.名师小技巧看到相交线,就联想到8字模型,利用结论进行解题.8字模型是经典的2换2模型,已知两角之和,可知另两角之和.经典例题典例1如图,∠C=∠D=90°,∠A=20°,则∠COA=______,∠B=____.典例2如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.典例3(1)如图,五角星的顶点为A,B,C,D,E,则∠A+∠B+∠C+∠D+∠E 的度数为().图①A.90°B.180C.270°D.360°(2)如图②,是由图①中点A向下移动到BE上得到的,∠CAD+∠B+∠E+∠C+∠D五角之和有无变化?证明你的结论;图②(3)如图③,是由②中点C移动到BD上得到的,∠CAD+∠B+∠ACE+∠D+∠E五角之和有无变化?证明你的结论.图③典例4如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.初露锋芒1.如图,已知AB⊥BD,AC⊥CD.∠A=40°,则∠D的度数为().A.40°B.50°C.60°D.70°2.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°3.如图所示,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=().A.240°B.280°C.360°D.540°4.如图,求:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=___________.5.已知:如图,BE与CF相交于点G.求证:∠A+∠B+∠C+∠D+∠E+∠F=360°.直击中考1.(2020浙江绍兴中考模拟)如图所示,∠a的度数是().A.10°B.20°C.30°D.40°答案典例1:【答案】70°;20°【解析】∵∠C=90°,∠A=20°,∴∠COA=180°-∠C -∠A=180°- 90°-20°=70°.由8字模型的结论,知∠A+∠C=∠B+∠D.又∵∠C=∠D,∴B=∠A=20°.典例2:【答案】90°;65°【解析】∵△ABC≌△ADE,∴∠DAE=∠BAC= 12(∠EAB-∠CAD)= 12×(120°-10°)=55°.∴∠DFB =∠FAB+∠B =∠FAC+∠CAB+∠B =10°+55°+25°=90°,∴∠DGB =∠DFB-∠D =90°-25°= 65°.典例3:(1)【答案】B【解析】如图,连接CD.由8字模型的结论,知∠B+∠E=∠1+∠2.∵∠A+∠ACD+∠ADC=180°,∠ACD=∠1+∠3,∠ADC=∠2+∠4.∴∠A+∠B+∠ACE+∠ADB+∠E=180°.故选B.(2)【答案】无变化.【解析】根据平角的定义,得出∠BAC+∠CAD+∠DAE=180°.∵∠BAC=∠C+∠E, ∠EAD=∠B+∠D,∴∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠DAE=180°;(3)【答案】无变化.【解析】∵∠ACB=∠CAD+∠D, ∠ECD=∠B+∠E,∴∠CAD+∠B+∠ACE+∠D+∠E=∠ACB+∠ACE+∠ECD=180°.典例4:【答案】360°【解析】∠A+∠B=∠1+∠2.(角的8字模型)∠A+∠B+∠C+∠ADC+∠FEB+∠F=∠1+∠2+∠C+∠ADC+∠FEB+∠F =360°.(四边形内角和360°)初露锋芒1. 【答案】A【解析】由8字模型的结论,知∠A+∠B=∠C+∠D.∵AB⊥BD.AC⊥CD.∴∠B=∠C=90°,∴∠D=∠A=40°.故选A.2. 【答案】 C【解析】由8字模型的结论知,∠A+∠C=∠D+∠DEG.∠B+∠F= ∠D+∠DGE,∴∠A+∠B+C+∠F=∠D+∠DEG+∠DGE+∠D.∵∠D=28°,∠D+∠DEG+∠DGE=180°.∴∠A+∠B+∠C+∠F=180°+28°=208°.故选C.3. 【答案】A【解析】如图,连接EF. 由8字模型的结论知, ∠A+∠D=∠2+∠3,∠B+∠C= ∠CFE+∠BEF,∴∠A+∠D+∠BEA+∠CFD=∠2+ ∠3+∠BEA+∠CFD=∠CFE+∠BEF. ∵∠1=60°,∴∠CFE+∠BEF=180°-∠1=180°-60°=120.∴∠A+∠B+∠C+∠D+∠BEA+∠CFD=2(∠CFE+∠BEF)=2×120=240°.4. 【答案】360°.【解析】如图,连接GH ,CD. ∠E+∠B=∠1+∠2.(8字模型) ∠A +∠F=∠3+∠4.(8字模型) ∠A +∠B+∠FCH+∠ADG+∠E+∠F+∠DGB+∠EHC=∠1+∠2+∠3+∠4+∠GDA+∠FCH+∠DGB+∠EHC=360°.(四边形内角和360)5.【答案】360°. 【解析】如图,连接BC.∵∠1=∠E+∠F ,∠1=∠GBC+∠GCB,∴∠E+∠F=∠GBC+∠GCB,∴∠A+∠B+∠C+∠D+∠E+∠F=∠A+∠ABC+∠BCD+∠D又∵∠A+∠ABC+∠BCD+∠D=360°,∴∠A+∠B+C+∠D+∠E+∠F=360°.直击中考【答案】A Array【解析】如图.由8字模型的结论,知∠A+∠B=∠C+∠D,∴30°+20°=40°+ ∠a,∴∠a=10°.故选A.。
中考必会几何模型:8字模型与飞镖模型
模型实例 如图,点 O 为三角形内部一点. 求证:(1) 2 (AO+BO+CO)>AB+BC+AC; (2) AB+BC+AC>AO+BO+CO.
证明:(1)∵OA+OB>AB①, OB+OC>BC②, OC+OA>AC③ 由①+②+③得: 2 (AO+BO+CO)>AB+BC+AC
(2)如图,延长 BO 交 AC 于点 E, ∵AB+AC=AB+AE+EC, AB+AE>BE, ∴AB+AC>BE+EC. ① ∵BE+EC=BO+OE+EC, OE+EC>CO,∴BE+EC>BO+CO,② 由①②可得: AB+AC>BO+CO.③(边的飞镖模型) 同理可得: AB+BC>OA+OC.④ ,BC+AC>OA+OB.⑤ 由③+④+⑤得: 2 (AB+BC+AC)>2 (AO+BO+CO). 即 AB+BC+AC>AO+BO+CO. 1.如图,在△ABC 中,D、E 在 BC 边上,且 BD=CE。求证:AB+AC>AD+AE.
初中数学必背几何模型
一、中点模型1.倍长中线条件:AD 为△ABC 的中线辅助线:延长AD 到点E ,使得AD =DE结论:△ADC ≌△EDB ,AC ∥BE2.连中点构造中位线条件:点D 、E 为AB 、AC 的中点辅助线:连接DE 结论:12DE BC DE BC =,∥3.倍长一边构造中位线条件:点D 为AB 的中点辅助线:延长AC 到点E ,使得AC =CE ,连接BE 结论:12DC BE DC BE =,∥4.构造三线合一条件:AB =AC辅助线:取BC 的中点D ,连接AD结论:AD ⊥BC ,∠BAD =∠CADB5.构造斜边中线条件:∠ABC =90°辅助线:取AC 的中点D ,连接BD 结论:12BD AC AD CD ===二、角平分线模型6.往角两边作垂线条件:AD 平分∠BAC辅助线:过点D 作AB 、AC 的垂线,垂足分别为E 、F结论:△ADE ≌△ADF7.在角的两边截取等长线段条件:AD 平分∠BAC辅助线:在AB 、AC 上取点E 、F ,满足AE =AF ,连接DE 、DF 结论:△ADE ≌△ADF8.过角平分线上一点作垂线条件:AD 平分∠BAC辅助线:过点D 作EF ⊥AD ,交AB 、AC 于点E 、FD CBB CCC结论:△ADE ≌△ADF三、双角平分线模型9.内内模型条件:BD 、CD 平分∠ABC 、∠ACB 结论:1902D A ∠=︒+∠10.内外模型条件:BD 、CD 平分∠ABC 、∠ACE 结论:12D A ∠=∠11.外外模型条件:BD 、CD 平分∠CBE 、∠BCF 结论:1902D A ∠=︒-∠四、平行线模型12.猪蹄模型CA BCC ED条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠B +∠D =∠BED13.铅笔头模型条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠B +∠D +∠BED =360°14.鸟头模型条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠D +∠BED =∠B15.平行线+角平分线模型条件:AB ∥CD ,CE 平分∠ACD结论:AC =AE五、等积模型16.等底等高条件:AD ∥BCFAFBC结论:ABC DBC S S =,ADB ADC S S =17.等高模型条件:B 、C 、D 共线结论:::ABD ADC S S BD CD =18.等底模型条件:AE 、DE 为△ABC 、△DBC 边BC 上的高结论:::ABC DBC S S AE DE =六、对称半角模型19.对称半角模型-含45°角的三角形条件:∠BAC =45°,AD ⊥BC辅助线:作点D 关于AB 的对称点E ,关于AC 的对称点F , 连接AE 、AF 、BE 、CF 、EF结论:△AEF 是等腰直角三角形20.对称半角模型-含30°角的三角形B CB C DED条件:∠BAC =30°,AD ⊥BC辅助线:作点D 关于AB 的对称点E ,关于AC 的对称点F , 连接AE 、AF 、BE 、CF 、EF结论:△AEF 是等边三角形七、旋转半角模型21.旋转半角模型-等腰直角三角形条件:AB =AC ,∠BAC =90°,∠MAN =45°辅助线:将△ABM 绕点A 逆时针旋转90°,得到△ACM ' 结论:ANM ANM '≌,222BM CN MN +=22.旋转半角模型-等边三角形条件:△ABC 是等边三角形,BD =CD ,∠BDC =120°, ∠MDN =60°辅助线:将△BDM 绕点D 顺时针旋转120°,得到△DCM ' 结论:NDM NDM '≌,BM CN MN +=23.旋转半角模型-正方形条件:正方形ABCD ,∠MAN =45°,FEAM'M CAB辅助线:将△ABM 绕点A 逆时针旋转90°,得到△ADM ' 结论:NAM NAM '≌,BM DN MN +=八、自旋转模型24.自旋转模型-等边三角形条件:△ABC 是等边三角形,点P 为其内任意一点辅助线:将△BAP 绕点B 顺时针旋转60°,得到△BCP ' 结论:△BPP '是等边三角形25.自旋转模型-等腰直角三角形条件:△ABC 中,∠BAC =90°,AB =AC ,点P 为△ABC 内任 意一点辅助线:将△BAP 绕点A 逆时针旋转90°,得到△ACP ' 结论:△APP '是等腰直角三角形26.自旋转模型-等腰三角形条件:△ABC 中,AB =AC ,点P 为△ABC 内任意一点,∠BAC =α 辅助线:将△BAP 绕点A 逆时针旋转α,得到△ACP ' 结论:△APP '是等腰三角形M'DNCBAB九、手拉手模型29.手拉手模型-等边三角形条件:△ABC和△CDE都是等边三角形结论:△ACE≌△BCD27.手拉手模型-等腰直角三角形条件:△ABC和△CDE都是等腰直角三角形结论:△ACE≌△BCD,AE⊥BDEE28.手拉手模型-等腰三角形条件:△ABC 和△CDE 都是等腰三角形,CA =CB , CD =CE ,且∠ACB =∠DCE结论:△ACE ≌△BCD30.手拉手模型-正方形条件:四边形ABCD 和AEFH 都是正方形结论:△ABE ≌△ADH ,BE ⊥DH十、最短路程模型31.直线同侧两线段之和最小(将军饮马)条件:点A 、B 在直线l 同侧,点P 为l 上一点辅助线:作点A 关于直线l 的对称点A ',连接A 'B 结论:点P 为A 'B 和l 交点时,AP +BP 最小C32.直线异侧两线段之差最小条件:点A 、B 在直线l 异侧,点P 为l 上一点辅助线:作线段AB 的垂直平分线m结论:点P 为m 和l 交点时,|AP -BP |最小33.直线同侧两线段之差最小条件:点A 、B 在直线l 同侧,点P 为l 上一点辅助线:作线段AB 的垂直平分线m结论:点P 为m 和l 交点时,|AP -BP |最小34.过桥模型(将军饮马)条件:A 、B 为定点,l 1∥l 2,MN 为定长线段且MN ⊥l 1 辅助线:将点A 向上平移MN 的长度得到A ',连接A 'B 结论:点N 为A 'B 与l 1交点时,AM +MN +BN 最小35.四边形周长最小(将军饮马)条件:A 、B 为定点,M 、N 为角两边上的动点辅助线:作点A 、B 关于角两边的对称点A '、B ',连接 lAlAll 1l 2A'B'结论:M、N为A'B'与角两边交点时,四边形ABMN的周长最小B'36.三角形周长最小(将军饮马)条件:A为定点,B、C为角两边上的动点辅助线:作点A关于角两边的对称点A'、A",连接A'A"结论:B、C为A'A"与角两边交点时,△ABC的周长最小37.旋转类最短路程模型条件:线段OA=a,OB=b(a>b),OB绕点O在平面内旋转结论:点B与点N重合时,AB最小;点B与点M重合时,AB最大十一、基本相似模型38.A字型条件:BC∥DE结论:△ABC∽△ADE条件:∠ABC =∠ADE结论:△ABC ∽△ADE39.8字型条件:AB ∥CD结论:△AOB ∽△DOC条件:∠BAO =∠DCO结论:△AOB ∽△COD40.母子型条件:△ABC 中,∠ACB =90°,CD ⊥AB结论:△ABC ∽△ACD ∽△CBD41.一线三等角模型条件:∠B =∠D =∠ACE结论:△ABC ∽△CDECBCC A42.手拉手相似模型条件:△ABC ∽△ADE结论:△ACE ∽△ABD十二、对角互补模型43.对角互补模型-90°全等型条件:∠AOB =∠DCE =90°,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,OD +OEOC ,212OECD S OC 四边形CB ACE AB D CDD44.对角互补模型-120°全等型条件:∠AOB =120°,∠DCE =60°,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,OD +OE =OC ,24OECD S =四边形45.对角互补模型-任意角全等型条件:∠AOB =2α,∠DCE =180°-2α,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,2cos OD OE OC α+=⋅, 2sin cos OEC OCD S S OC αα+=⋅46.邻边相等的对角互补模型条件:四边形ABCD 中,AB =AD ,∠ABC +∠ADC =180°D BAN E OB辅助线:延长CD 到E ,使得DE =BC ,连接AE结论:△ABC ≌△ADE ,CA 平分∠BCD十三、隐圆模型47.动点定长模型条件:AB =AC =AP ,点P 为动点结论:点B 、C 、P 三点共圆,点A 为圆心,AB 为半径48.直角圆周角模型条件:点C 为动点,∠ACB =90°结论:点A 、B 、C 三点共圆,线段AB 的中点为圆心,线段 AB 为直径49.定弦定长模型条件:点P 为动点,固定线段AB 所对的动角∠APB 为定值 结论:点A 、B 、P 三点共圆,线段AB 和BP 的中垂线的交点 为圆心BA50.四点共圆模型①条件:点A 、C 为动点,∠BAD +∠BCD =180°结论:点A 、B 、C 、D 四点共圆,线段AB 和BC 的中垂线的 交点为圆心当∠BAD =∠BCD =90°,BD 为直径51.四点共圆模型②条件:线段AB 为固定长度,点D 为动点,∠C =∠D结论:点A 、B 、C 、D 四点共圆,线段AB 和BC 的中垂线的 交点为圆心CCA当∠C=∠D=90°,AB为直径。
中考数学解题大招复习讲义(全国通用)模型02 飞镖、8字模型(解析版)
模型介绍模型一:飞镖模型(1)角的飞镖模型结论:CB A BDC ∠+∠+∠=∠解答:①方法一:延长BD 交AC 于点E 得证②方法二:延长CD 交AB 于点F 得证③方法三:延长AD 到在其延长方向上任取一点为点G 得证总结:利用三角形外角的性质证明(2)边的飞镖模型结论:CDBD AC AB +>+解答:延长BD 交AC 于点E +三角形三边关系+同号不等式大的放左边,小的放在右边得证模型二:8在模型(1)角的8字模型结论:DC B A ∠+∠=∠+∠解答:①方法一:三角形内角和得证②方法二:三角形外角BOD ∠的性质得证总结:①利用三角形内角和等于180证明推出②利用三角形外角的性质证明大招飞镖模型和8字模型(2)边的8字模型结论:BCAD CD AB +<+解答:三角形三边关系+同号不等式得证总结:①三角形两边之和大于第三边例题精讲考点一:飞镖模型【例1】.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC=_______解:延长BO ,交AC 于点D ,∵∠BOC =∠C +∠ODC ,∠ODC =∠A +∠B ,∠A =70°,∠B =40°,∠C =20°,∴∠BOC =∠C +∠A +∠B=20°+70°+40°=130°.变式训练【变式1-1】.如图,∠ABD 、∠ACD 的角平分线交于点P ,若∠A =55°,∠D =15°,则∠P 的度数为()A.15°B.20°C.25°D.30°解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=(∠A﹣∠D),∵∠A=55°,∠D=15°,∴∠P=(55°﹣15°)=20°.故选:B.【变式1-2】.在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为()A.80°B.50°C.100°D.130°解(1)∵∠ABC与∠ACB的平分线交于点I,∴∠BCI=∠ACB,∠CBI=∠ABC,∴∠BIC=180°﹣∠BCI﹣∠CBI=180°﹣100°=130°;故选:D.【变式1-3】.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F的度数.解:如图,根据三角形的外角性质,∠1=∠A+∠C,∠2=∠B+∠D,∵∠BOF=120°,∴∠3=180°﹣120°=60°,根据三角形内角和定理,∠E+∠1=180°﹣60°=120°,∠F+∠2=180°﹣60°=120°,所以,∠1+∠2+∠E+∠F=120°+120°=240°,即∠A+∠B+∠C+∠D+∠E+∠F=240°.【变式1-4】.如图所示,已知P是△ABC内一点,试说明PA+PB+PC>(AB+BC+AC).证明:在△ABP中:AP+BP>AB.同理:BP+PC>BC,AP+PC>AC.以上三式分别相加得到:2(PA+PB+PC)>AB+BC+AC,即PA+PB+PC>(AB+BC+AC).考点二:8字模型【例2】.如图,∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=解:由三角形外角的性质得:∠3=∠A+∠E,∠2=∠F+∠D,∵∠1+∠2+∠3=180°,∠1=60°,∴∠2+∠3=120°,即:∠A+∠E+∠F+∠D=120°,∵∠B+∠C=120°,∴∠A+∠B+∠C+∠D+∠E+∠F=240°.变式训练【变式2-1】.如图,∠A+∠B+∠C+∠D+∠E+∠F=360°.解:在△ACE中:∠A+∠C+∠E=180°,在△BDF中:∠B+∠D+∠F=180°,则:∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360.【变式2-2】.如图,A,B,C,D,E,F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是360度.解:延长FE交AB于M,设FE交CD于N,∵∠CNE=∠D+∠DEF,∠FMB=∠F+∠A,又∵∠C+∠B+∠CNE+∠FMB=360°,∴∠C+∠B+∠D+∠DEF+∠F+∠A=360°,即∠A+∠B+∠C+∠D+∠DEF+∠F=360°,故答案为:360.【变式2-3】.如图,∠A+∠B+∠C+∠D+∠E+∠F=360°.解:∵∠1=∠A+∠B,∠2=∠C+∠D,又∵∠1+∠2+∠E+∠F=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故答案为:360.实战演练【变式2-4】.一副三角板如图摆放,其中一块三角板的直角边EF 落在另一块三角板的斜边AC 上,边BC 与DF 交于点O ,则∠BOD 的度数是105°.解:△COF 中,∵∠CFO =45°,∠FCO =30°,∴∠COF =180°﹣∠CFO ﹣∠FCO =180°﹣45°﹣30°=105°,∵∠COF =∠BOD ,∴∠BOD=105°,故答案为:105°.1.如图,已知AB ⊥BD ,AC ⊥,∠A =35°,则∠D 的度数为()A .35°B .45°C .55°D .65°解:因为∠AEB 与∠DEC 是一组对顶角,所以∠AEB =∠DEC .在△ABO 中AB ⊥BD ,∠A =35°,所以∠AEB =65°.在△DCO 中AC ⊥CD ,∠DEC =65°,所以∠D =35°.故选:A .2.如图,∠A +∠B +∠C +∠D +∠E 的度数为()A.120°B.150°C.180°D.200°解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠E+∠C,在△BDG中,∵∠B+∠D+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故选:C.3.如图,在△ABC中,M,N分别是边AB,BC上的点,将△BMN沿MN折叠;使点B落在点B'处,若∠B=35°,∠BNM=28°,则∠AMB'的度数为()A.30°B.37°C.54°D.63°解:∵△BMN沿MN折叠,使点B落在点B'处,∴△BMN≌△B'MN,∴∠BMN=∠B'MN,∵∠B=35°,∠BNM=28°,∴∠BMN=180°﹣35°﹣28°=117°,∠AMN=35°+28°=63°,∴∠AMB'=∠B'MN﹣∠AMN=117°﹣63°=54°,故选:C.4.如图,将分别含有30°、45°角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为65°,则图中角α的度数为140°.解:如图,∵∠B=30°,∠DCB=65°,∴∠DFB=∠B+∠DCB=30°+65°=95°,∴∠α=∠D+∠DFB=45°+95°=140°,故答案为:140°.5.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=(α+β).(用α,β表示)解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=ABP,∠4=ACP,∵∠1+∠2=180°﹣β,2(∠3+∠4)+(∠1+∠2)=180°﹣α,∴∠3+∠4=(β﹣α),∵∠BQC=180°﹣(∠1+∠2)﹣(∠3+∠4)=180°﹣(180°﹣β)﹣(β﹣α),即:∠BQC=(α+β).故答案为:(α+β).6.如图,则∠A+∠B+∠C+∠D+∠E+∠F+∠H=540度.解:如图,连接CH,由三角形的内角和定理得,∠A+∠B=∠1+∠2,由多边形的内角和公式得,∠1+∠2+∠C+∠D+∠E+∠F+∠H=(5﹣2)•180°=540°,所以,∠A+∠B+∠C+∠D+∠E+∠F+∠H=540°.故答案为:540.7.如图,求∠A+∠B+∠C+∠D+∠E+∠F=230°.解:∵∠1=∠A+∠B,∠2=∠D+∠E,又∵∠1+∠F=115°,∠2+∠C=115°,∴∠A+∠B+∠C+∠D+∠E+∠=115°+115°=230°.故答案为:230°.8.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K的度数为解:连KF,GI,如图,∵7边形ABCDEFK的内角和=(7﹣2)×180°=900°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K=900°﹣(∠1+∠2),即∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠1+∠2)=900°,∵∠1+∠2=∠3+∠4,∠5+∠6+∠H=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)=900°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠K+(∠3+∠4)+∠5+∠6+∠H=900°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I+∠K=1080°.故选:C.9.如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减少(填“增加”或“减少”)10度.解:连接CF,并延长至点M,如图所示.在△ABC中,∠A=50°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣50°﹣60°=70°,∴∠DCE=∠ACB=70°.∵∠DFM=∠DCF+∠D,∠EFM=∠ECF+∠E,∴∠EFD=∠DCF+∠ECF+∠D+∠E=∠DCE+∠D+∠E,即110°=70°+∠D+30°,∴∠D=10°,∴20°﹣10°=10°,∴图中∠D应减少(填“增加”或“减少”)10度.故答案为:减少;10.10.如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I的值.解:如图所示,分别延长BC、IH交EF于点M、N,由三角形的外角的性质可知:∠C+∠D=∠1,∠G+∠H=∠2,∠4=∠1+∠B=∠C+∠D+∠B,∠3=∠2+∠F=∠G+∠H+∠F,∴∠3+∠4=∠5+∠HNM+∠5+∠CMN=180°+∠5,∵∠5=∠6=360°﹣∠A﹣∠B﹣∠I,∴∠C+∠D+∠B+∠G+∠H+∠F=180°+360°﹣∠A﹣∠B﹣∠I,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I=180°+360°=540°11.如图,已知AB∥DE,∠ABC、∠CED的平分线交于点F.探究∠BFE与∠BCE之间的数量关系,并证明你的结论.解:过点C作直线MN∥AB,∵AB∥DE,MN∥AB,∴MN∥DE,∴∠DEC=∠ECN,∵AB∥DE,∴∠ABC=∠BCN,∴∠BCE=∠ABC+∠DEC,同理∠BFE=∠ABF+∠DEF,∵∠ABC、∠CED的平分线交于点F,∴∠ABC=2∠ABF,∠DEC=2∠DEF,∴∠BCE=2∠ABF+2∠DEF=2∠BFE.12.如图,DP平分∠ADC,PB平分∠ABC,求证:∠P=(∠A+∠C)证明:如右图所示,∵∠CMP=∠C+∠CDP=∠P+∠CBP,∠ANP=∠P+∠ADP=∠A+∠ABP,∴∠P+∠CBP+∠P+∠ADP=∠C+∠CDP+∠A+∠ABP,又∵DP、BP是∠ADC、∠ABC的角平分线,∴∠CDP=∠ADP,∠CBP=∠ABP,∴2∠P=∠C+∠A,∴∠P=(∠A+∠C).13.如图,在四边形ABCD中,AM、CM分别平分∠DAB和∠DCB,AM与CM交于M.探究∠AMC与∠B、∠D间的数量关系.解:∠AMC=180°﹣∠B+∠D,理由如下:∵AM、CM分别平分∠DAB和∠DCB,∴∠BAD=2∠BAM,∠BCD=2∠BCM,∵∠BAD+∠B+∠BCD+∠d=360°,∴∠BAM+∠BCM+∠B+∠D=180°,∴∠BAM+∠BCM=180°﹣∠B﹣∠D,∵∠B+∠AMC+∠BAM+∠BCM=∠B+∠AMC+180°﹣∠B﹣∠D=360°,∴∠AMC=360°﹣(180°﹣∠B﹣∠D)﹣∠B=180°﹣∠B+∠D.14.(1)探究:如图1,求证:∠BOC=∠A+∠B+∠C.(2)应用:如图2,∠ABC=100°,∠DEF=130°,求∠A+∠C+∠D+∠F的度数.解:(1)作射线AO,∵∠3是△ABO的外角,∴∠1+∠B=∠3,①∵∠4是△AOC的外角,∴∠2+∠C=∠4,②①+②得,∠1+∠B+∠2+∠C=∠3+∠4,即∠BOC=∠A+∠B+∠C;(2)连接AD,同(1)可得,∠F+∠2+∠3=∠DEF③,∠1+∠4+∠C=∠ABC④,③+④得,∠F+∠2+∠3+∠1+∠4+∠C=∠DEF+∠ABC=130°+100°=230°,即∠BAF+∠C+∠CDE+∠F=230°.15.如图1,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图1的图形称之为“8字形“.如图2,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于点M、N.试解答下列问题:①仔细观察,在图2中有3个以线段AC为边的“8字形”;②若∠B=76°,∠C=80°,试求∠P的度数;③∠C和∠B为任意角时AP、DP分别是∠CAB、∠BDC的三等分线,写出∠P与∠C、∠B之间数量关系,并说明理由.解:①3;故答案为3.②证明:∵∠CAB和∠BDC的平分线AP和DP相交于点P,∴∠CAP=∠BAP,∠BDP=∠CDP,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=∠P﹣∠B,即∠P=(∠C+∠B),∵∠C=80°,∠B=76°,∴∠P=(80°+76°)=78°;③∠P=(2∠C+∠B)或∠P=(∠C+2∠B).证明:设∠CAB=3α,∠BDC=3β,i)如图3,∠CAP:∠BAP=∠CDP:∠BDP=2:1,∴∠CAP=2α,∠BAP=α,∠BDP=β,∠CDP=2β,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=2β﹣2α,∠P﹣∠B=β﹣α,∴∠C﹣∠P=2∠P﹣2∠B,∴∠P=(∠C+2∠B),ii)如图4,∠CAP:∠BAP=∠CDP:∠BDP=1:2,∴∠CAP=α,∠BAP=2α,∠BDP=2β,∠CDP=β,∵∠CAP+∠C=∠CDP+∠P,∠BAP+∠P=∠BDP+∠B,∴∠C﹣∠P=β﹣α,∠P﹣∠B=2β﹣2α,∴2(∠C﹣∠P)=∠P﹣∠B,∴∠P=(2∠C+∠B),16.阅读材料,回答下列问题:【材料提出】“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成.【探索研究】探索一:如图1,在八字型中,探索∠A、∠B、∠C、∠D之间的数量关系为∠A+∠B=∠C+∠D;探索二:如图2,若∠B=36°,∠D=14°,求∠P的度数为25°;探索三:如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,则∠P、∠B、∠D之间的数量关系为∠P=.【模型应用】应用一:如图4,延长BM、CN,交于点A,在四边形MNCB中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD的角平分线BP,CP相交于点P,则∠A=α+β﹣180°(用含有α和β的代数式表示),∠P=.(用含有α和β的代数式表示)应用二:如图5,在四边形MNCB中,设∠M=α,∠N=β,α+β<180°,四边形的内角∠MBC与外角∠NCD的角平分线所在的直线相交于点P,∠P=.(用含有α和β的代数式表示)【拓展延伸】拓展一:如图6,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=.(用x、y表示∠P)拓展二:如图7,AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,猜想∠P与∠B、∠D的关系,直接写出结论2∠P﹣∠B﹣∠D=180°.解:探索一:如图1,∵∠AOB+∠A+∠B=∠COD+∠C+∠D=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D,故答案为∠A+∠B=∠C+∠D;探索二:如图2,∵AP、CP分别平分∠BAD、∠BCD,∴∠1=∠2,∠3=∠4,由(1)可得:∠1+∠B=∠3+∠P,∠2+∠P=∠4+∠D,∴∠B﹣∠P=∠P﹣∠D,即2∠P=∠B+∠D,∵∠B=36°,∠D=14°,∴∠P=25°,故答案为25°;探索三:由①∠D+2∠1=∠B+2∠3,由②2∠B+2∠3=2∠P+2∠1,①+②得:∠D+2∠B+2∠1+2∠3=∠B+2∠3+2∠P+2∠1∠D+2∠B=2∠P+∠B.∴∠P=.故答案为:∠P=.应用一:如图4,由题意知延长BM、CN,交于点A,∵∠M=α,∠N=β,α+β>180°,∴∠AMN=180°﹣α,∠ANM=180°﹣β,∴∠A=180°﹣(∠AMN+∠ANM)=180°﹣(180°﹣α+180°﹣β)=α+β﹣180°;∵BP、CP分别平分∠ABC、∠ACB,∴∠PBC=∠ABC,∠PCD=∠ACD,∵∠PCD=∠P+∠PBC,∴∠P=∠PCD﹣∠PBC=(∠ACD﹣∠ABC)=∠A=,故答案为:α+β﹣180°,;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,∵∠M=α,∠N=β,α+β<180°,∴∠A=180°﹣α﹣β,∵BP平分∠MBC,CP平分∠NCR,∴BP平分∠ABT,CP平分∠ACB,由应用一得:∠P=∠A=,故答案为:;拓展一:如图6,由探索一可得:∠P+∠PAB=∠B+∠PDB,∠P+∠CDP=∠C+∠CAP,∠B+∠CDB=∠C+∠CAB,∵∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,∴∠CDB﹣∠CAB=∠C﹣∠B=x﹣y,∠PAB=∠CAB,∠PDB=∠CDB,∴∠P+∠CAB=∠B+∠CDB,∠P+∠CDB=∠C+∠CAB,∴2∠P=∠C+∠B+(∠CDB﹣∠CAB)=x+y+(x﹣y)=,∴∠P=,故答案为:∠P=;拓展二:如图7,∵AP平分∠BAD,CP平分∠BCD的邻补角∠BCE,∴∠PAD=∠BAD,∠PCD=90°+∠BCD,由探索一得:①∠B+∠BAD=∠D+∠BCD,②∠P+∠PAD=∠D+∠PCD,②×2,得:③2∠P+∠BAD=2∠D+180°+∠BCD,③﹣①,得:2∠P﹣∠B=∠D+180°,∴2∠P﹣∠B﹣∠D=180°,故答案为:2∠P﹣∠B﹣∠D=180°.。
中考数学必会几何模型:8字模型与飞镖模型
8字模型与飞镖模型模型1:角的8字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C .ODC BA模型分析 证法一:∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二:∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC .∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E =∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°.解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E . ∵∠2是△GBD 的外角,∴∠2=∠B +∠D .∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.图②FDCBAE312图⑤P O QA BFC D图⑥21EDCFOBA(2)解法一:如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP .∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③ 由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°. 解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型)∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F =360°.(四边形内角和为360°) 练习:1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ;图图①OOEEDDCCBBAA解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD , ∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:(2)如图②,求:∠CAD +∠B +∠ACE +∠D +∠E = .图②OEDCBA解:由三角形的外角性质,知∠BAC=∠E+∠ACE ,∠EAD=∠B+∠D ,又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD +∠B +∠ACE +∠D +∠E =180°解法二:2.如图,求:∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = .HGFEDCBA解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2, ∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360° 解法二:模型2:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .ADC图①4321AD 4321AD模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2 ∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C 解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM , ∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC ∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .DE【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC .结论AC+BD>AD+BC.CAD模型分析∵OA+OD>AD ①, OB+OC>BC ②, 由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
初中数学必学48个几何模型
初中数学必学48个几何模型
1. 直线和线段
2. 射线
3. 角
4. 直角
5. 锐角和钝角
6. 平行线
7. 等腰三角形
8. 等边三角形
9. 直角三角形
10. 直角坐标系
11. 等比例线段
12. 外接圆和内切圆
13. 弧和扇形
14. 正方形
15. 长方形
16. 平行四边形
17. 梯形
18. 圆
19. 半圆
20. 圆周角
21. 正多边形
22. 立方体
23. 长方体
24. 正方体
25. 球体
26. 圆锥
27. 圆柱
28. 右锥和右圆锥
29. 高锥和高圆锥
30. 正棱柱
31. 正棱锥
32. 正六面体
33. 正八面体
34. 正十二面体
35. 菱形
36. 菱形组合
37. 等角三角形
38. 曲线
39. 等腰梯形
40. 对称图形
41. 平行四边形法则
42. 夹角
43. 三角形中位线定理
44. 三角形中心
45. 三角形外角和
46. 面积公式
47. 三分点
48. 垂线定理。
中考必会几何模型:8字模型与飞镖模型 (1)
8字模型与飞镖模型模型1:角的8字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC . 结论:∠A +∠D =∠B +∠C .ODC BA模型分析 证法一:∵∠AOB 是△AOD 的外角,∴∠A +∠D =∠AOB .∵∠AOB 是△BOC 的外角, ∴∠B +∠C =∠AOB .∴∠A +∠D =∠B +∠C . 证法二:∵∠A +∠D +∠AOD =180°,∴∠A +∠D =180°-∠AOD .∵∠B +∠C +∠BOC =180°, ∴∠B +∠C =180°-∠BOC .又∵∠AOD =∠BOC ,∴∠A +∠D =∠B +∠C . (1)因为这个图形像数字8,所以我们往往把这个模型称为8字模型. (2)8字模型往往在几何综合题目中推导角度时用到.模型实例观察下列图形,计算角度:(1)如图①,∠A +∠B +∠C +∠D +∠E =________;图图①FD C BAE EBCDA图③21O AB图④G F 12AB E解法一:利用角的8字模型.如图③,连接CD .∵∠BOC 是△BOE 的外角, ∴∠B +∠E =∠BOC .∵∠BOC 是△COD 的外角,∴∠1+∠2=∠BOC . ∴∠B +∠E =∠1+∠2.(角的8字模型),∴∠A +∠B +∠ACE +∠ADB +∠E=∠A +∠ACE +∠ADB +∠1+∠2=∠A +∠ACD +∠ADC =180°.解法二:如图④,利用三角形外角和定理.∵∠1是△FCE 的外角,∴∠1=∠C +∠E .∵∠2是△GBD 的外角,∴∠2=∠B +∠D .∴∠A +∠B +∠C +∠D +∠E =∠A +∠1+∠2=180°.(2)如图②,∠A +∠B +∠C +∠D +∠E +∠F =________.图②FDCBAE312图⑤P O QA BFC D图⑥21EDCFOBA(2)解法一: 如图⑤,利用角的8字模型.∵∠AOP 是△AOB 的外角,∴∠A +∠B =∠AOP . ∵∠AOP 是△OPQ 的外角,∴∠1+∠3=∠AOP .∴∠A +∠B =∠1+∠3.①(角的8字模型),同理可证:∠C +∠D =∠1+∠2.② ,∠E +∠F =∠2+∠3.③由①+②+③得:∠A +∠B +∠C +∠D +∠E +∠F =2(∠1+∠2+∠3)=360°.解法二:利用角的8字模型.如图⑥,连接DE .∵∠AOE 是△AOB 的外角, ∴∠A +∠B =∠AOE .∵∠AOE 是△OED 的外角,∴∠1+∠2=∠AOE . ∴∠A +∠B =∠1+∠2.(角的8字模型)∴∠A +∠B +∠C +∠ADC +∠FEB +∠F =∠1+∠2+∠C +∠ADC +∠FEB +∠F=360°.(四边形内角和为360°) 练习:1.(1)如图①,求:∠CAD +∠B +∠C +∠D +∠E = ;图图①OOEEDDCCBBAA解:如图,∵∠1=∠B+∠D ,∠2=∠C+∠CAD ,∴∠CAD+∠B+∠C+∠D+∠E=∠1+∠2+∠E=180°. 故答案为:180° 解法二:(2)如图②,求:∠CAD +∠B +∠ACE +∠D +∠E = .图②OEDCBA解:由三角形的外角性质,知∠BAC=∠E+∠ACE,∠EAD=∠B+∠D,又∵∠BAC+∠CAD+∠EAD=180°,∴∠CAD+∠B +∠ACE +∠D +∠E=180° 解法二:2.如图,求:∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H = .HGFEDCBA解:∵∠G+∠D=∠3,∠F+∠C=∠4,∠E+∠H=∠2,∴∠G+∠D+∠F+∠C+∠E+∠H=∠3+∠4+∠2,∵∠B+∠2+∠1=180°,∠3+∠5+∠A=180°,∴∠A+∠B+∠2+∠4+∠3=360°, ∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°解法二:模型2:角的飞镖模型如图所示,有结论:∠D =∠A +∠B +∠C .C图①图②模型分析解法一:如图①,作射线AD .∵∠3是△ABD 的外角,∴∠3=∠B +∠1,∵∠4是△ACD 的外角,∴∠4=∠C +∠2∴∠BDC =∠3+∠4,∴∠BDC =∠B +∠1+∠2+∠C ,∴∠BDC =∠BAC +∠B +∠C解法二:如图②,连接BC .∵∠2+∠4+∠D =180°,∴∠D =180°-(∠2+∠4)∵∠1+∠2+∠3+∠4+∠A =180°,∴∠A +∠1+∠3=180°-(∠2+∠4) ∴∠D =∠A +∠1+∠3.(1)因为这个图形像飞镖,所以我们往往把这个模型称为飞镖模型. (2)飞镖模型在几何综合题目中推导角度时使用. 模型实例如图,在四边形ABCD 中,AM 、CM 分别平分∠DAB 和∠DCB ,AM 与CM 交于M ,探究∠AMC 与∠B 、∠D 间的数量关系.解答:利用角的飞镖模型如图所示,连接DM 并延长.∵∠3是△AMD 的外角,∴∠3=∠1+∠ADM ,∵∠4是△CMD 的外角,∴∠4=∠2+∠CDM ,∵∠AMC =∠3+∠4 ∴∠AMC =∠1+∠ADM +∠CDM +∠2,∴∠AMC =∠1+∠2+∠ADC .(角的飞镖模型)∵AM 、CM 分别平分∠DAB 和∠DCB ,∴12BAD ∠∠=,22BCD∠∠=, ∴22BAD BCDAMC ADC ∠∠∠=++∠,∴()3602B ADC AMC ADC ︒-∠+∠∠=+∠(四边形内角和360°),∴3602B ADCAMC ︒-∠+∠∠=,∴2∠AMC +∠B -∠ADC =360°.练习:1.如图,求∠A+∠B+∠C+∠D+∠E+∠F= .DE【答案】230°提示:∠C+∠E+∠D=∠EOC=115º.(飞镖模型),∠A+∠B+∠F=∠BOF=115º.∠A+∠B+∠C+∠D+∠E+∠F=115º+115º=230º 2.如图,求∠A+∠B+∠C+∠D= .AA【答案】220°提示:如图所示,连接BD.∠AED=∠A+∠3+∠1,∠BFC=∠2+∠4+∠C ,∠A+∠ABF+∠C+∠CDE=∠A+∠3+∠1+∠2+∠4+∠C=∠AED+∠BFC=220º模型3 边的“8”字模型如图所示,AC 、BD 相交于点O ,连接AD 、BC .结论AC+BD>AD+BC .CA模型分析∵OA+OD>AD ①, OB+OC>BC ②, 由①+②得: OA+OD+OB+OC>BC+AD 即:AC+BD>AD+BC.模型实例如图,四边形ABCD 的对角线AC 、BD 相交于点O 。
中考数学压轴题破解策略 八大几何模型(47页PDF)
!"* #$
点 求 的值 ,! "*+", !
如图 %! !"# 是'0 的直径!, 是线段0# 上一点$不与点0!# 重合作 %! ,$%0# 交'0 于点$!作直径 过点 $*! $ 的切线与*# 的延长线交于点%!作"+%%$ 交%$ 的延长线于点+!连接"$!#$!求证&#$('
$++$%!
"*(-#,(!
$%%如图!过点$ 作$) 与 %+$! #* 交于点) 则 ! "$+) 为等腰直角三角形!
易证 所以 "#$)#""$+! #)'"+!
从而 槡 #+'#)-)+'"+- (+$! 槡 同理可得,+'*+- (+$!
$,%!如图!延长"*!.$!交于点-!延长$. 至点) 使得 连接 ! .)'.$! #)!
$!%"#$*# ""$," $(%",'#*" $)%&"+#' &*+,'%#$"
平分 $*%+$ &#+,"
$+%#+'"+-+$!,+'*+-+$"
$%%"$.- 为等边三角形!
/$"'$#!
证明!$!%由已知条件可得.&"$,'&#$*!
初级中学数学几何模型秘籍
③
SOCE
SOCD
1 OC2 2
(难点)
请独立完成以上证明,必须非常熟练掌握
滴水穿石
~8~
锲而不舍
经典模型系列手册
当∠DCE 一边交 AO 延长线上于点 D 时,如图
AC
O D
EB F
以上三个结论:(辅助线之二)
① CD CE 不变
② OE OD 2OC (重点)
③
SOCE
SOCD
1 OC2 2
D O
A
C
D
O
ECEBAFra bibliotekB条件: OAB , OCD 均为等腰直角三角形 结论:① OAC≌OBD ;② AEB 90
③ OE 平分 AED (易忘)
O E
导角核心图形
A
B
滴水穿石
~2~
锲而不舍
经典模型系列手册
任意等腰三角形
D
D
O
CO
C
E
A
BA
B
条件: OAB , OCD 均为等腰三角形
且 AOB COD 结论:① OAC≌OBD ;② AEB AOB
温故而知新
~ 13 ~
熟能生巧
智康 1 对 1 初数团队制作
(全等型—任意角 )
A
D
C
O
EB
条件:① AOB 2 , DCE 180 2 ② CD CE
结论:① OC 平分 AOB ; ② OD OE 2OC cos
③ SODCE SOCD SOCE OC2 sin cos 难度较大,记得经常复习
满足 BD AC ,若连结 AD 、 BC ,则必有 AD2 BC2 AB2 CD2
S ABCD
初中数学八大几何模型归纳
初中数学几何模型总结归纳1.中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行线延长相交ABCD E ABC DEFEDCBA【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连GABCDEFABCD E【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;(2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明.图3图2图1ACDEFGDEFGCDEGABBFCBA【解答】(1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE =HBEGCFAD(2)延长CG 交AB 于点I ,易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC 错误!未找到引用源。
,且GE ⊥GCF(3)EJ【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF .(1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG .GFE DC BAE H GF EDCBA【解答】(1)证明△ABE ≌△ADF 即可;(2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可【例3】如图,在凹四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 的中点,BA 交EF 延长线于G 点,CD 交EF 于H 点,求证:∠BGE =∠CHE . 【解答】取BD 中点可证,如图所示:JA BCDE F GH2.角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构等腰三角形【例4】如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交边CD 于F 点,交AD 边于H ,延长BA 到G 点,使AG =CF ,连接GF .若BC =7,DF =3,EH =3AE ,则GF 的长为_______.HGFEDCBA【解答】延长FE 、AB 交于点I ,易得CE =CF ,BA =BE ,设CE =x ,则BA =CD =3+x ,BE =7-x , 3+x =7-x ,x =2,AB =BE =5,AE =,作AJ ⊥BC ,连接AC ,求得GF =AC =3JIAB CDEFGH3.手拉手模型【条件】OA =OB ,OC =OD ,∠AOB =∠COD【结论】△OAC ≌△OBD ,∠AEB =∠AOB =∠COD (即都是旋转角);OE 平分∠AEDDC EBAOOABEC D 导角核心图形:八字形CBAO【例5】(2014重庆市A 卷)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且2DE CE ,连接BE .过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为________.FABCOEDDE CBA【例6】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连接BE ,AG ⊥BE于F ,交BC 于点G ,求∠DFG . GFE DCBAABC【答案】45°【例7】(2014重庆B 卷)如图,在边长为ABCD 中,E 是AB 边上一点,G 是AD 延长线一点,BE =DG ,连接EG ,CF ⊥EG 交EG 于点H ,交AD 于点F ,连接CE 、BH .若BH =8,则FG=_____________.HGDE CBAFABE G【答案】4.邻边相等对角互补模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180° 【结论】AC 平分∠BCDEB【模型2】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90° 【结论】① ∠ACB =∠ACD =45°; ② BC +CDABCECB【例8】如图,矩形ABCD 中,AB =6,AD =5,G 为CD 中点,DE =DG ,FG ⊥BE 于F ,则DF 为_____.F ABCEDGG DE【例9】如图,正方形ABCD 的边长为3,延长CB 至点M ,使BM =1,连接AM ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连结ON ,则ON 的长为__________. OMN DCBA【例10】如图,正方形ABCD 的面积为64,△BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,则DG 的长为___________. GFEABCDEC【答案】45.半角模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180°,∠EAF =12∠BAD , 点E 在直线BC 上,点F 在直线CD 上 【结论】BE 、DF 、EF 满足截长补短关系FEDCBA【模型2】【条件】如图,在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,且满足∠EAF =45°,AE 、AF 分别与对角线BD 交于点M 、N . 【结论】①BE +DF =EF ; ② ABE ADF AEF S S S ∆∆∆+=;③AH =AB ;④2ECF C AB ∆=;⑤BM 2+DN 2=MN 2;⑥△ANM ∽△DNF ∽△BEM ∽△AEF ∽△BNA ∽△DAM (由AO :AH =AO :AB =1:可得到△ANM 和△AEF 相似比为1)⑦AMN MNFE S S ∆=四边形;⑧△AOM ∽△ADF ;△AON ∽△ABE ;⑨△AEN 为等腰直角三角形,∠AEN =45°,△AFM 为等腰直角三角形,∠AFM =45°;⑩A 、M 、F 、D 四点共圆,A 、B 、E 、N 四点共圆,M 、N 、F 、C 、E 五点共圆.H NM FEDCBA【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是CB 、DC 延长线上的点,且满足∠EAF =45° 【结论】BE +EF =DFFEDCB A【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是BC 、CD 延长线上的点,且满足∠EAF =45° 【结论】DF +EF =BEAB C DEF【例11】如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =__________.Q PGD FECBA【解答】连接AE ,题目中有一线三等角模型和半角模型设AC =x ,由△BPC ∽△CEQ 得BP CE =BE CQ , 3/(22x )=22x /(x +12),解得x =12 设PG =y ,由AG 2+BP 2=PG 2得32+(12-3-x )2=x 2,解得x =5【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 在AB 、AD 上,且AE =DF .连接BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则S 四边形BCDQ =__________.HGFED CB A【解答】346.一线三等角模型【条件】∠EDF =∠B =∠C ,且DE =DF 【结论】△BDE ≌△CFDFEDCBA【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边为__________.GA B CDEF【解答】如图,构造一线三等角模型,△EFH ≌△FGI 则BC =BF +CF =HF -BH +FI -CI =GI -BH +HE -CI =733IH F ED C B A G7.弦图模型【条件】正方形内或外互相垂直的四条线段 【结论】新构成了同心的正方形LK JIHGFECDB AHG FEDCBA【例14】如图,点E 为正方形ABCD 边AB 上一点,点F 在DE 的延长线上,AF =AB ,AC 与FD 交于点G ,∠F AB 的平分线交FG 于点H ,过点D 作HA 的垂线交HA 的延长线于点I .若AH =3AI ,FH =22,则DG =__________.I H AGFEDCB【解答】1742【例15】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 是AC 中点,连接BE ,作AG ⊥BE 于F ,交BC 于点G ,连接EG ,求证:AG +EG =BE .FE CGDBABC【解答】过点C 作CH ⊥AC 交AG 的延长线于点H ,易证8.最短路径模型【两点之间线段最短】 1、将军饮马Q2、费马点【垂线段最短】【两边之差小于第三边】【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入口,现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 以及PH 之长度和为l ,求l 的最小值.【解答】3500600 ,点线为最短.【例17】如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF,连接CF 交BD 于G ,连接BE 交AG 于H ,若正方形的边长为2,则线段DH 长度的最小值为______________________.【解答】如图,取AB 中点P ,连接PH 、PD ,易证PH ≥PD -PH 即DH ≥15-.【例18】如图所示,在矩形ABCD 中,AB =4,AD =24,E 是线段AB 的中点,F 是线段BC 上的动点,△BEF 沿直线EF 翻折到△EF B ',连接B D ',B D '最短为________________.【解答】4【例19】如图1,□ABCD 中,AE ⊥BC 于E ,AE =AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF .(1)若BE =2EC ,AB =13,求AD 的长;(2)求证:EG =BG +FC ;(3)如图2,若AF =25,EF =2,点M 是线段AG 上一动点,连接ME ,将△GME 沿ME 翻折到△ME G ',连接G D ',试求当G D '取得最小值时GM 的长.图1 图2 备用图【解答】(1)3(2)如图所示(3)当DG ′最小时D 、E 、G '三点共线解得43173-=+'=MN N G GMEH【练习1】如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3、5,求三角形OBE的面积.【解答】25【练习2】问题1:如图1,在等腰梯形ABCD 中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,∠MBN21∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想;问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD延长线,若∠MBN=12∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎么样的关量关系?写出你的猜想,并给予证明。
初中数学常用几何模型
目录1. 8字模型与飞镖模型2.手拉手全等模型3.三垂直全等模型4.角平分线平行线模型5. 角平分线+两垂线段模型6.等腰三角形的存在性问题7.A型、8型相似模型8.一线三等角相似模型8字模型与飞镖模型资料编号:202109012143关键词 8字模型 飞镖模型8字模型如图所示,AC 、BD 相交于点O ,连结AD 、BC ,则有C BD A ∠+∠=∠+∠.OACBD因为这个图形像数字8,所以我们把这个模型称为8字模型. 8字模型的证明:证法一:∵D A AOB ∠+∠=∠ C B AOB ∠+∠=∠ ∴C B D A ∠+∠=∠+∠.(三角形的一个外角等于与它不相邻的两个内角之和) 证法二:∵︒=∠+∠+∠180AOD D A ︒=∠+∠+∠180BOC C B ∴AOD D A ∠-︒=∠+∠180 BOC C B ∠-︒=∠+∠180 ∵BOC AOD ∠=∠ ∴C B D A ∠+∠=∠+∠.点评 8字模型的结论常被用来求角度或证明两个角相等,多出现在几何综合题中.有些复杂的几何问题,应用8字模型的结论,往往会出奇制胜,达到意想不到的效果(见后面的例题).如图所示,有结论:DBABCD∠+∠+∠=∠.因为这个图形像飞镖,所以我们把这个模型称为飞镖模型. 飞镖模型常被用来推导几何图形中角之间的等量关系.AB CD飞镖模型的证明:证法一:延长BC,交AD于点E,如下图所示.∵BADBCD∠+∠=∠∠+∠=∠1,1∴DBABCD∠+∠+∠=∠.证法二:作射线AC,如下图所示.∵DB∠+∠=∠∠+∠=∠42,31∴DB∠+∠+∠+∠=∠+∠4321∴DBBADBCD∠+∠+∠=∠.FBECADAEAE例1. 如图所示,求证:︒=∠+∠+∠+∠+∠180E D C B A .B EC AD证法一:(飞镖模型)设BD 与CE 相交于点F ,如图所示. ∵︒=∠+∠+∠180BFE E B CFD BFE ∠=∠ ∴︒=∠+∠+∠180CFD E B ∵D C A CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B A . 证法二:(8字模型) 连结CD ,如图所示,则有21∠+∠=∠+∠E B∵︒=∠+∠+∠180ADC ACD A∴︒=∠+∠+∠+∠+∠18021ADB ACE A ∴︒=∠+∠+∠+∠+∠180E ADB ACE B A . 证法三:(利用三角形内角和定理与外角和定理) ∵︒=∠+∠+∠18021ADB EC ∠+∠=∠∠+∠=∠21 ∴︒=∠+∠+∠+∠+∠180ED C B A .BECDA例2. 如图所示,=∠+∠+∠+∠+∠+∠F E D C B A _________.F CBEAD解法一:(利用8字模型) ∵32∠+∠=∠+∠B A3121∠+∠=∠+∠∠+∠=∠+∠F E D C∴=∠+∠+∠+∠+∠+∠F E D C B A()3212∠+∠+∠∵︒=∠+∠+∠180321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A . 解法二:(利用三角形内角和定理与外角和定理) ∵B A ∠+∠=∠1DC FE ∠+∠=∠∠+∠=∠32∴=∠+∠+∠321F E D C B A ∠+∠+∠+∠+∠+∠ ∵︒=∠+∠+∠360321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A .例3. 如图所示,=∠+∠+∠+∠+∠E D C B CAD _________.解:(利用飞镖模型)设BD 与CE 相交于点F ,如图所示.FBECD A∵︒=∠+∠+∠180BFE E B ∴︒=∠+∠+∠180CFD E B ∵D C CAD CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B CAD .例4. 如图,△ABC 和△DCE 均是等腰三角形,CE CD CB CA ==,,=∠BCADCE ∠.(1)求证:AE BD =;(2)若︒=∠70BAC ,求BPE ∠的度数.NMPDABCE(1)证明:∵=∠BCA DCE ∠ ∴ACD DCE ACD BCA ∠+∠=∠+∠ ∴ACE BCD ∠=∠ 在△BCD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD ACE BCD CA CB ∴△BCD ≌△ACE (SAS ) ∴AE BD =; (2)解:方法一:∵△BCD ≌△ACE∴21∠=∠ ∵CB CA =∴︒=∠=∠70ABC BAC ∵PBA PAB BPE ∠+∠=∠ ∴PBA BAC BPE ∠+∠+∠=∠2︒=︒+︒=∠+︒=∠+∠+︒=140707070170ABC PBA方法二:∵︒=∠=70,BAC CB CA ∴︒=∠=∠70ABC BAC ∵︒=∠+∠+∠180ABC BAC ACB ∴︒=︒-︒-︒=∠407070180ACB ∵△BCD ≌△ACE ∴21∠=∠∵APB ACB ∠+∠=∠+∠21 ∴︒=∠=∠40APB ACB ∵︒=∠+∠180APB BPE ∴︒=︒-︒=∠14040180BPE .点评 方法二用到了“8”字模型的结论,如下图所示.例5. 如图所示,△ABC 和△ADE 都是等腰 直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥.证明:(1)∵△ABC 和△ADE 都是等腰直角三角形 ∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12(8字模型) ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例6.(1)问题发现 如图1,△ABC 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连结BE .填空: ①AEB ∠的度数为_________;②线段AD 、BE 之间的数量关系为_________;(2)拓展探究如图2,△ABC 和△DCE 均为等腰直角三角形,︒=∠=∠90DCE ACB ,点A 、D 、E 在同一直线上,CM 为△DCE 的高,连结BE ,请写出AEB ∠的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由.图 1ECAB D图 2MEBCAD解:(1)①︒60; ②BE AD =;提示: ∵△ABC 和△DCE 均为等边三角形 ∴CE CD CB CA ==,︒=∠=∠60DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠ ∴BCE ACD ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS ) (属于“手拉手”全等模型) ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB (属于“8”字模型) ∴︒=∠=∠60ACB AEB . (2)解:︒=∠90AEB ,CM BE AE 2=-; 理由如下:∵︒=∠=∠90DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠∴BCE ACD ∠=∠∵△ABC 和△DCE 均为等腰直角三角形 ∴CE CD CB CA ==, 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS )……………………………………7分 ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB ∴︒=∠=∠90ACB AEB……………………………………8分 ∵DE CM CE CD ⊥=, ∴CM 平分DCE ∠∴︒=∠=∠=∠=∠45ECM DCM CED CDE ∴EM DM CM == ∴CM DE 2= ∵AD AE DE -= ∴CM BE AE 2=-.手拉手全等模型资料编号:202108292312关键词 手拉手全等模型 三角形全等手拉手全等模型介绍手拉手全等模型常见的有三种图形形式:两个等腰直角三角形组成的手拉手全等模型、两个等边三角形组成的手拉手全等模型以及两个普通等腰三角形组成的手拉手全等模型.必须说明的是,组成手拉手全等模型的两个等腰三角形,共用顶角的顶点(即两个顶角的顶点重合),且两个等腰三角形的顶角相等.如图1、图2、图3所示,如果把大等腰三角形的腰长看作大手,小等腰三角形的腰长看作小手,两个等腰三角形共用顶角的顶点,类似大手拉着小手,所以把这种模型称为手拉手模型(手拉手模型还有手拉手相似模型).图中两个等腰三角形的相对位置发生变化时,始终存在一对全等三角形. 手拉手模型常和旋转结合,作为几何综合题出现.图 1图 2图 3在图1、图2、图3中,△ABC 和△ADE 均为等腰三角形,AE AD AC AB ==,,且DAE BAC ∠=∠,连结BD 、CE ,则△ABD ≌△ACE . 结论证明:(以图1为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ). 结论证明:(以图2为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ).点评 手拉手全等模型的依据都是SAS. 重要推论推论1 如图所示,△ABC 和△ADE 均为等腰直角三角形,︒=∠=∠90DAE BAC ,连结BD 、CE ,则有: (1)△ABD ≌△ACE ; (2)CE BD CE BD ⊥=,.推论1证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)∵△ABD ≌△ACE ∴21,∠=∠=CE BD延长BD 交CE 于点F ,如图所示. ∵BCF DBC BFE ∠+∠=∠ ∴ACB DBC BFE ∠+∠+∠=∠2︒=∠+∠=∠+∠+∠=901ACB ABC ACBDBC∴CE BD ⊥.推论2 如图所示,△ABD 和△BCE 均为等边三角形,点A 、B 、C 在同一直线上,连结AE 、CD ,则有:FGHEDACB(1)△ABE ≌△DBC ; (2)DC AE =; (3)︒=∠60DHA ; (4)△ABG ≌△DBF ; (5)△BEG ≌△BCF ; (6)连结GF ,则AC GF //; (7)连结HB ,则HB 平分AHC ∠.推论2证明:(1)∵△ABD 和△BCE 均为等边三角形 ∴BC BE DB AB ==,,︒=∠=∠60CBE ABDFGHEDCAB∵点A 、B 、C 在同一直线上 ∴︒=∠=∠120DBC ABE 在△ABE 和△DBC 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE DBC ABE DB AB ∴△ABE ≌△DBC ;(2)由(1)可知:△ABE ≌△DBC ∴DC AE =;(3)∵△ABE ≌△DBC ∴21∠=∠∵12∠+∠=∠+∠ABD DHA ∴︒=∠=∠60ABD DHA ; (“8”字模型)(4)∵︒=∠=∠60CBE ABD ∴︒=︒-︒-︒=∠606060180DBF ∴DBF ABG ∠=∠ 在△ABG 和△DBF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠DBF ABG DB AB 21 ∴△ABG ≌△DBF (ASA ); (5)∵△ABG ≌△DBF ∴BF BG =由前面可知:︒=∠=∠60CBF EBG 在△BEG 和△BCF 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE CBF EBG BF BG ∴△BEG ≌△BCF (SAS );(6)连结GF ,如图所示.∵BF BG =,︒=∠60FBG ∴△BFG 为等边三角形 ∴︒=∠=∠60ABD BGF ∴AC GF //;(7)连结HB ,如图所示,作DC BN AE BM ⊥⊥,.∵△ABE ≌△DBC ∴DBC ABE S S ∆∆=,DC AE = ∴BN DC BM AE ⋅=⋅2121 ∴BN BM =∵DC BN AE BM ⊥⊥,,BN BM = ∴点B 在AHC ∠的平分线上 ∴HB 平分AHC ∠.点评 要求学生能从复杂的几何图形中辨识出手拉手全等模型,并能用SAS 证明两个三角形全等.模型举例例1. 如图,在△ABC 和△ADE 中,AE AD AC AB DAE BAC ==︒=∠=∠,,90,点C 、D 、E 在同一条直线上,连结BD . 求证:(1)△ABD ≌△ACE ;(2)试猜想BD 、CE 有何关系,并证明.ECAB D分析:由条件可知△ABC 和△ADE 均为等腰直角三角形,所以该图形中存在手拉手全等模型,手拉手全等模型的依据都是SAS . 证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)CE BD CE BD ⊥=,. 理由如下:∵△ABD ≌△ACE ∴E CE BD ∠=∠=1, ∵︒=∠=90,DAE AE AD ∴︒=∠=∠45E ADE ∴︒=∠451C ∴︒=︒+︒=∠+∠=∠9045451ADE BDE ∴CE BD ⊥.例2. 如图,△OAB 和△OCD 都是等边三角形,连结AC 、BD 相交于点E . (1)求证:①△OAC ≌△OBD ;②︒=∠60AEB ; (2)连结OE ,OE 是否平分AED ∠?请说明理由.EDOABC(1)证明:①∵△OAB 和△OCD 都是等边三角形 ∴OD OC OB OA ==,︒=∠=∠60COD AOB∴BOC COD BOC AOB ∠+∠=∠+∠ ∴BOD AOC ∠=∠ 在△OAC 和△OBD 中∵⎪⎩⎪⎨⎧=∠=∠=OD OC BOD AOC OB OA ∴△OAC ≌△OBD (SAS ); ②∵△OAC ≌△OBD ∴21∠=∠∵︒=∠+∠+∠180ABE EAB AEB ∴︒=∠+∠+∠+∠1802ABO EAB AEB ∴︒=∠+∠+∠+∠1801ABO EAB AEB ∴()︒=∠+∠+∠+∠1801ABO EAB AEB∴︒=∠+∠+∠180ABO OAB AEB ∴OAB ABO AEB ∠-∠-︒=∠180︒=︒-︒-︒=606060180C(2)OE 平分AED ∠. 理由如下:作BD ON AC OM ⊥⊥, ∵△OAC ≌△OBD ∴OBD OAC S S ∆∆=,BD AC = ∴ON BD OM AC ⋅=⋅2121 ∴ON OM =∵BD ON AC OM ⊥⊥,,ON OM = ∴OE 平分AED ∠.(到角两边距离相等的点在角的平分线上)例3. 如图所示,△ABC 和△ADE 都是等腰直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥. 证明:(1)∵△ABC 和△ADE 都是等腰直角三角形∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12 ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例4. 如图,在线段AE 的同侧作等边△ABC 和等边△CDE (︒<∠120ACE ),点P 与点M 分别是线段BE 和AD 的中点. 求证:△CPM 是等边三角形.PMDBA EC分析:本题图形中包含手拉手全等模型,我们可以证明△ACD 和△BCE 全等.另外,关于等边三角形的判定,可先证明三角形是等腰三角形,再证明三角形有一个角等于︒60.证明:∵△ABC 和△CDE 都是等边三角形 ∴CE CD BC AC ==,,︒=∠=∠60DCE ACB ∴ACE DCE ACE ACB ∠+∠=∠+∠∴ACD BCE ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD BC AC ∴△ACD ≌△BCE (SAS ) ∴BE AD =∠=∠,21∵点P 与点M 分别是线段BE 和AD 的中点 ∴AM BP =在△ACM 和△BCP 中∵⎪⎩⎪⎨⎧=∠=∠=BP AM BC AC 21 ∴△ACM ≌△BCP (SAS ) ∴CP CM =,43∠=∠∴︒=∠=∠+∠=∠+∠=∠6043ACB ACP ACP PCM ∵CP CM =,︒=∠60PCM ∴△CPM 是等边三角形.三垂直全等模型资料编号:202108282255关键词 三垂直全等模型 一线三等角全等模型 三角形全等三垂直全等模型介绍如图1、图2、图3所示,为三种常见的三垂直全等模型.图 1图 2图 3如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,. 结论:△BCD ≌△CAE .结论的证明:∵DE AE DE BD ⊥⊥, ∴︒=∠=∠90E D ,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠901BCD ∴1∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC E D B 1 ∴△BCD ≌△CAE (AAS ).重要推论推论1 如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,,则有:BD AE DE +=;图 1证明:由前面可知:△BCD ≌△CAE ∴BD CE AE CD ==, ∵CE CD DE += ∴BD AE DE +=.推论2 如图2所示,BC AC BC AC CD BD CD AE =⊥⊥⊥,,,,则有:BD AE DE -=.图 2证明:∵CD BD CD AE ⊥⊥, ∴︒=∠=∠9021,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠903BCD ∴3∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC B 213 ∴△BCD ≌△CAE (AAS ) ∴AE CD CE BD ==, ∵CE CD DE -= ∴BD AE DE -=.说明 三垂直全等模型是一种常见的几何模型,同学们要记住这种几何模型的图形特征和题目特点,以后遇到这种模型常常要证明两个三角形全等. 模型举例例1. 如图,直线l 上有三个正方形c b a ,,,若c a ,的面积分别是5和11,则b 的面积是_________.l cba IH JFEBADCGlcba IHJFEBADCG分析 三垂直全等模型作为一种重要且常见的几何模型,要求同学们能从复杂的几何图形中辨识出这种模型,若能找出这种模型,往往要证明两个三角形全等,从而解决相关的问题.解析:根据“三垂直全等模型”,本题易证:△BCG ≌△GJF . ∴JF CG =由题意可得:11,522====JF S BC S c a ∴112=CG在Rt △BCG 中,由勾股定理得:16115222=+=+==CG BC BG S b .∴b 的面积是16.例2. 如图1所示,已知在△ABC 中,︒=∠90BAC ,AC AB =,点P 为BC 上一动点(CP BP <),分别过点B 、C 作AP BE ⊥于点E ,AP CF ⊥于点F . (1)求证:BE CF EF -=;(2)如图2,若点P 为BC 延长线上一点,其他条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.图 1图 2PCBA(1)证明:∵AP BE ⊥,AP CF ⊥ ∴︒=∠=∠901E ,︒=∠+∠903CAE ∵︒=∠90BAC ∴︒=∠+∠902CAE ∴32∠=∠在△ABE 和△CAF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB E 321 ∴△ABE ≌△CAF (AAS ) ∴CF AE AF BE ==, ∵AF AE EF -= ∴BE CF EF -=;(2)如图3所示.图 3BECFEF+=.提示:关键在于证明△ABE≌△CAF.例3.如图,在△ABC中,BCACACB=︒=∠,90,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,求证:BEADDE-=;(3)当直线MN绕点C旋转到图3的位置时,请直接写出DE、AD、BE之间的数量关系.图 1图 2图 3图 1(1)证明:①∵MNAD⊥,MNBE⊥∴︒=∠=∠9021∵︒=∠90ACB ∴︒=∠+∠904ACD ∵︒=∠+∠903ACD ∴43∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC 4321 ∴△ADC ≌△CEB (AAS ); ②∵△ADC ≌△CEB ∴BE CD CE AD ==, ∵CD CE DE += ∴BE AD DE +=;图 2(2)∵MN AD ⊥,MN BE ⊥ ∴︒=∠=∠90CEB ADC ∵︒=∠90ACB ∴︒=∠+∠902ACD ∵︒=∠+∠901ACD ∴21∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC CEB ADC 21 ∴△ADC ≌△CEB (AAS )∴BE CD CE AD ==, ∵CD CE DE -= ∴BE AD DE -=; (3)AD BE DE -=.提示:仍然是证明△ADC ≌△CEB .图 3例4.(1)如图1所示,已知在△ABC 中,AC AB BAC =︒=∠,90,直线m 经过点A ,m BD ⊥于点D ,m CE ⊥于点E ,求证:CE BD DE +=;(2)如图2,将(1)中的条件改为:在△ABC 中,AC AB =,D 、A 、E 三点都在直线m 上,且有α=∠=∠=∠BAC AEC BDA ,其中α为任意锐角或钝角,请问结论CE BD DE +=是否成立?若成立,请你给出证明;若不成立,请说明理由.m 图 1EDCBA m图 2ECD A B(1)证明:∵m BD ⊥,m CE ⊥ ∴︒=∠=∠9021 ∴︒=∠+∠903BAD ∵︒=∠90BAC ∴︒=∠+∠904BAD ∴43∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB 4321 ∴△ABD ≌△CAE (AAS ) ∴CE AD AE BD ==, ∵AE AD DE += ∴BD CE DE +=;(2)成立. 理由如下:∵︒=∠+∠+∠1801BAD BDA ∴α-︒=∠+∠1801BAD ∵︒=∠+∠+∠1802BAD BAC ∴α-︒=∠+∠1802BAD ∴21∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB AEC BDA 21∴△ABD≌△CAE(AAS)∴AE=,AD=CEBD∵AE=ADDE+∴BD=.DE+CE点评第二问所涉及到的几何模型为“一线三等角全等模型”,而我们在前面花大篇幅所介绍的“三垂直全等模型”属于“一线三等角全等模型”的特殊情况.BEFDBCA角平分线平行线模型资料编号:202108310011关键词 角平分线 平行线 等腰三角形角平分线平行线模型介绍如图所示,OM 平分AOB ∠,点P 是OM 上一点,过点P 作OB PC //,交OA 于点C ,则△POC 是等腰三角形. 下图就是角平分线平行线模型.MOBACP模型证明:∵OM 平分AOB ∠ ∴21∠=∠ ∵OB PC // ∴31∠=∠ ∴32∠=∠ ∴CP CO =∴△POC 是等腰三角形.点评 在角平分线的条件下,常过角平分线上一点作一边的平行线,构造等腰三角形. 重要推论推论1 如图所示,在△ABC 中,ABC ∠、ACB ∠ 的平分线交于点D ,过点D 作BC EF //,交AB 于 点E ,交AC 于点F ,则有: (1)FC FD ED EB ==,; (2)CF BE EF +=; (3)AC AB C AEF +=∆.推论1证明: (1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; (2)∵DF DE EF += ∴CF BE EF +=;(3)∵AF EF AE C AEF ++=∆ ∴AF DF DE AE C AEF +++=∆ AF CF BE AE +++= AC AB +=.推论2 如图所示,四边形ABCD 为平行四边形,把△BCD 沿对角线BD 折叠,得到△D BC ','BC 交AD 于点E ,则△BDE 为等腰三角形.EC'DBCA说明:由折叠可知:BD C CBD '∠=∠,即BD 平分BC C ',所以上图中包含角平分线平行线模型.推论2证明:由折叠可知:21∠=∠∵四边形ABCD 为平行四边形 ∴BC AD // ∴31∠=∠ ∴32∠=∠∴EDEB=∴△BDE为等腰三角形.模型举例例1.如图,把一张长方形的纸片ABCD沿BD对折,使点C落在点E处,BE与AD 相交于点O.(1)由折叠可知△BCD≌△BED,除此之外,图中还存在其他的全等三角形,请写出一组全等三角形:________________;(2)图中有等腰三角形吗?请你找出来:__________;(3)若8AB,求OB的长度.,6==BC解:(1)△ABD≌△EDB;(或△ABD≌△CDB或△AOB≌△EOD)(2)△BOD;提示:如图上所示,由折叠可知:=∠1∠2∵BCAD//(为什么?)∴3=∠1∠∴3∠2∠=∴OD OB =,即△BOD 为等腰三角形. (3)由(2)可知:OD OB =. 设x OD OB ==,则x OA -=8 ∵四边形ABCD 为长方形 ∴︒=∠90A在Rt △AOB 中,由勾股定理得:222OB AB OA =+∴()22268x x =+-解之得:425=x ∴425=OB . 例2. 如图,点O 是△ABC 的边AC 上一个动点,过点O 作直线BC MN //.直线MN 交ACB ∠的平分线于点E ,交ACB ∠的外角平分线于点F . (1)求证:OF OE =;(2)若6,8==CF CE ,求OC 的长.DNMEF BCAO(1)证明:∵CE 平分ACB ∠ ∴21∠=∠ ∵BC MN // ∴32∠=∠ ∴31∠=∠ ∴OC OE = 同理可证:OC OF = ∴OF OE =;(2)解:∵CF 平分ACD ∠ ∴ACD ∠=∠215 ∵51∠+∠=∠ECF ∴ACD ACB ECF ∠+∠=∠2121 ()︒=︒⨯=∠+∠=901802121ACD ACB在Rt △ECF 中,由勾股定理得:10682222=+=+=CF CE EF由(1)可知:521==EF OC . 例3. 如图,在△ABC 中,AD 平分BAC ∠,点E 、F 分别在BD 、AD 上,AB EF //,且CD DE =. 求证:AC EF =.EDBCAF证明:作AB CG //交AD 的延长线于点G . ∴G ∠=∠1 ∵AD 平分BAC ∠ ∴21∠=∠ ∴G ∠=∠2 ∴GC AC = ∵AB EF // ∴31∠=∠ ∴G ∠=∠3在△EDF 和△CDG 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DC DE G 543 ∴△EDF ≌△CDG (AAS ) ∴CG EF = ∴AC EF =. 例4. 解答下列问题:(1)如图1所示,在△ABC 中,BC EF //,点D 在EF 上,BD 、CD 分别平分ACB ABC ∠∠、,写出线段EF 与BE 、CF 的数量关系;(2)如图2所示,BD 平分ABC ∠,CD 平分外角ACG ∠,BC DE //交AB 于点E ,交AC 于点F ,写出线段EF 与BE 、CF 的数量关系,并说明理由;(3)如图3所示,BD 、CD 为外角BCN CBM ∠∠、的平分线,BC DE //交AB 的延长线于点E .交AC 的延长线于点N ,直接写出线段EF 与BE 、CF 的数量关系.图 1EFDBCAG图 2FEDBC AMN图 3F EDBCA(1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF += ∴CF BE EF +=; (2)CF BE EF -=. 理由如下:∵BD 平分ABC ∠ ∴21∠=∠ ∵BC DE //∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF -= ∴CF BE EF -=; (3)CF BE EF +=.例5. 如图,在梯形ABCD 中,BC AD //,点E 在CD 上,且AE 平分BAD ∠,BE 平分ABC ∠.求证:BC AB AD -=.EB CAD证明:延长AE 交BC 的延长线于点F . ∵AE 平分BAD ∠ ∴21∠=∠ ∵BC AD // ∴F ∠=∠2 ∴F ∠=∠1 ∴BF BA =∵BF BA =,BE 平分ABC ∠ ∴FE AE =在△ADE 和△FCE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠FEC AED FE AE F 2F∴△ADE ≌△FCE (ASA ) ∴FC AD = ∵BC BF FC -= ∴BC AB AD -=.点评 利用右图所示的辅助线也能证明问题.角平分线+两垂线段模型资料编号:202112022157关键词 角平分线性质定理 等腰三角形 三角形全等 辅助线 垂线段 模型介绍 角平分线+两垂线段模型如图1,点P 是AOB ∠的平分线上一点,过点P 作OB PE OA PD ⊥⊥,,由角平分线的性质定理则有PE PD =.这就是角平分线+两垂线模型.这种模型蕴含了边相等、角相等和三角形全等,还可以构造出等腰三角形.在图1中,若连结DE ,则得到等腰三角形PDE 和等腰三角形DOE .图 1模型推论(1)PED PDE ∠=∠; (2)Rt △POD ≌Rt △POE ; (3)OE OD =.证明:(1)∵OP 平分AOB ∠,OB PE OA PD ⊥⊥, ∴PE PD = ∴PED PDE ∠=∠; (2)∵OB PE OA PD ⊥⊥, ∴△POD 和△POE 都是直角三角形 在Rt △POD 和Rt △POE 中∵⎩⎨⎧==PE PD OP OP∴Rt △POD ≌Rt △POE (HL );(3)由(2)可知: Rt △POD ≌Rt △POE ∴OE OD =.模型应用例1. 如图2所示,在△ABC 中,︒=∠90C ,AD 平分CAB ∠,若4,6==BD BC ,那么点D 到直线AB 的距离是__________.图 2图 3分析 本题条件中有角平分线,有角平分线上一点到一边的垂线段(距离),唯独缺少该点到另一边的垂线段(距离),若作出该垂线段,则可构造出角平分线+两垂线段模型. 解:作AB DE ⊥,则线段DE 的长度即为点D 到直线AB 的距离. ∵AD 平分CAB ∠,AB DE AC DC ⊥⊥, ∴DC DE = ∵4,6==BD BC∴246=-=-=BD BC DC ∴2=DE∴点D 到直线AB 的距离是2.例2. 如图4所示,在△ABC 中,︒=∠︒=∠70,50C B ,AD 是△ABC 的角平分线,AB DE ⊥于点E .(1)求EDA ∠的度数;(2)若3,8,10===DE AC AB ,求ABC S ∆.图 4图 5分析 对于(1),可根据直角三角形的两个锐角互余解决问题;对于(2),可构造角平分线+两垂线段模型求出AC 边上的高DF ,从而求出△ACD 的面积,继而求出△ABC 的面积. 解:(1)∵︒=∠︒=∠70,50C B∴︒=︒-︒-︒=∠-∠-︒=∠607050180180C B CAB ∵AD 平分CAB ∠ ∴︒=∠=∠30211CAB ∵AB DE ⊥ ∴︒=∠+∠901EDA∴︒=︒-︒=∠-︒=∠603090190EDA ; (2)作AC DF ⊥.∵AD 平分CAB ∠,AB DE ⊥,AC DF ⊥ ∴3==DF DE∴DF AC DE AB S S S ACD ABD ABC ⋅+⋅=+=∆∆∆2121 382131021⨯⨯+⨯⨯=27=.例3. 如图6所示,在△ABC 中,︒=∠90C ,AD 是BAC ∠的平分线,AB DE ⊥,DF BD =,求证: (1)EB CF =; (2)EB AF AB 2+=.图 6图 7分析 根据条件知图6中存在角平分线+两垂线段模型,故有DE DC =,这就为Rt △DCF 和Rt △DEB 全等提供了条件.证明:(1)∵AD 平分BAC ∠,AB DE ⊥,AC DC ⊥(︒=∠90C ) ∴DE DC =在Rt △DCF 和Rt △DEB 中∵⎩⎨⎧==DE DC DB DF∴Rt △DCF ≌Rt △DEB (HL ) ∴EB CF =;(2)在Rt △ACD 和Rt △AED 中∵⎩⎨⎧==DE DC AD AD∴Rt △ACD ≌Rt △AED (HL ) ∴AE AC = ∵EB AE AB +=∴EB AF EB EB AF EB CF AF EB AC AB 2+=++=++=+=.例4. 如图8所示,在四边形ABCD 中,BD DC AD AB BC ,,=>平分ABC ∠. 求证:︒=∠+∠180BCD BAD .图 8ABC D图 9E分析 本题难度较高,要证明︒=∠+∠180BCD BAD ,可证明BCD ∠等于BAD ∠的邻补角,而证明两个角相等,可通过证明两个角所在的三角形全等完成,必要时需要添加辅助线来构造全等三角形.题中已有角平分线的条件,过角平分线上的点向角的两边作垂线段,即作出角平分线+两垂线段模型,即可构造出全等三角形. 证明:过点D 作BC DE ⊥,BA DF ⊥,交BA 的延长线于点F . ∵BD 平分ABC ∠,BC DE ⊥,BA DF ⊥ ∴DF DE =在Rt △DCE 和Rt △DAF 中∵⎩⎨⎧==DF DE DA DC∴Rt △DCE ≌Rt △DAF (HL ) ∴1∠=∠C ,即1∠=∠BCD ∵︒=∠+∠1801BAD ∴︒=∠+∠180BCD BAD .例5. 如图10所示,AD 平分BAC ∠,DE 所在直线是BC 的垂直平分线,E 为垂足,过点D 作AC DN AB DM ⊥⊥,.求证:(1)CN BM =; (2)()AC AB AM +=21. 图 10图 11分析 对于(1),我们能想到的最直接的方法是全等法,那就是证明BM 和CN 所在的三角形全等即可,图中只需连结DB 、DC ,就可以构造出全等三角形;对于(2),直接下手证明会比较困难,于是我们把等式转化为AM AC AB 2=+,证明这个等式成立即可,当然,第(1)问的结论会为我们提供重要的条件. 证明:(1)连结DB 、DC ,如图11所示. ∵DE 垂直平分BC ∴DC DB =∵AD 平分BAC ∠,AC DN AB DM ⊥⊥, ∴DN DM =在Rt △DBM 和Rt △DCN 中∵⎩⎨⎧==DNDM DC DB ∴Rt △DBM ≌Rt △DCN (HL )∴CN BM =;(2)在Rt △ADM 和Rt △ADN 中∵⎩⎨⎧==DN DM AD AD∴Rt △ADM ≌Rt △AND (HL ) ∴AN AM =∵CN AN BM AM AC AB -++=+ ∴AM AN AM AC AB 2=+=+ ∴()AC AB AM +=21.等腰三角形的存在性问题资料编号:202111182021关键词 等腰三角形 分类讨论 尺规作图 垂直平分线在八年级数学中,学完了等腰三角形的性质和判定后,我们会遇到等腰三角形的存在性问题,这类问题往往需要学生根据情况分类讨论,确定等腰三角形的各种存在形态,然后根据每种形态解决相关问题.然而我看到的是,学生不能考虑到每一种可能的形态,从而造成漏解.究其原因,我想是学生分类讨论思想方法欠缺,不会借助于圆和线段垂直平分线的性质辅助解决问题造成的.下面,我将教会大家如何借助于圆的知识和线段垂直平分线的性质,将等腰三角形的各种存在性(形态)“一网打尽”.如图1所示,已知线段AB ,现确定一点C ,使△ABC 为等腰三角形.图 1AB由于没有指明线段AB 是腰长还是底边长,所以我们需要分为两种情况进行讨论:(1)当AB 为等腰三角形的腰长时:①以点A 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图2所示;图 2B图 3②以点B 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图3所示;(2)当AB为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB的垂直平分线l,垂足为点D,则垂直平分线l上任一异于点D的点都可以作为点C,如图4所示.B图 4使△ABC为等腰三角形.下面讨论已知线段AB和直线m,在直线m上确定一点C,B Array m图 5由于没有指明线段AB是腰长还是底边长,所以我们需要分为两种情况进行讨论: (1)当AB为等腰三角形的腰长时:①以点A为圆心,AB的长为半径画圆(或圆弧),则圆(或圆弧)与直线m的交点即为点C,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图6所示;m图 6②以点B 为圆心,AB 的长为半径画圆(或圆弧),则圆(或圆弧)与直线m 的交点即为点C ,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图7所示;m图 7(2)当AB 为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB 的垂直平分线l ,直线l 与直线m 的交点即为点C ,如图8所示.m图 8我们知道,角平分线和平行线组合在一起,即构成角平分线+平行线模型,这种模型中就存在等腰三角形,如图9所示.B图 9若要在OB边上确定一点D,使得△COD为等腰三角形,根据角平分线+平行线模型的特征,我们过点C作OA边的平行线,该平行线与OB边的交点,即为其中一个点D的位置,如图10所示,该点D也是线段OC的垂直平分线与OB边的交点,只不过作平行线更容易找出该点.B图 10其余各点D的确定如图(11)、(12)所示,你是否知道这些点是怎样确定出来的吗?B图 11图 12以上共有3个点D,使得△COD为等腰三角形.解决等腰三角形的存在性问题,一般分为三步:分类、画图、计算.当然,随着学习的深入,以后我们还会遇到因动点而产生的等腰三角形问题,让我们拭目以待.应用例1.如图所示,在正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有__________个.第 6 题图图 1图 2答案 8解析 本题考查等腰三角形的存在性问题.分别以点A 、B 为圆心,以AB 的长为半径作圆,如图1所示,则可以找到这样的点C 有4个.这两种情况下,△ABC 是以AB 为腰长的等腰三角形.若AB 为底边长,则作出AB 的垂直平分线,如图2所示,可以找到这样的点C 有4个.综上所述,符合条件的点C 有8个.例2. 如图所示,︒=∠60AOB ,OC 平分AOB ∠,如果射线OA 上的点E 满足△OCE是等腰三角形,那么OEC ∠的度数为__________.解:∵OC 平分AOB ∠,∴︒=∠=∠3021AOB AOC 分为三种情况:①当CE CO =时,如图1所示,∴︒=∠=∠30EOC OEC ;图 1图 2②当OE OC =时,如图2所示. ∵OE OC = ∴OCE OEC ∠=∠ ∴︒=︒-︒=∠75230180OEC ; ③当EC EO =时,如图3所示.图 3(说明:此时,点E 在线段OC 的垂直平分线上或OB CE //) ∵EC EO =∴︒=∠=∠30ECO EOC∴︒=︒-︒-︒=∠1203030180OEC .综上所述,OEC ∠的度数为︒30或︒120或︒75.点评 在讨论一个三角形为等腰三角形时,常常需要分为三种情况进行讨论.。
初中数学几何必杀技八大模型(pdf)
如果您喜欢这份文档,欢迎下载!精品文档,名师推荐!初中几何必杀技一一八大模型MH)手拉手模型一旋转型全等1.等边三角形条件:如图1,AOAB,△OCD均为等边三角形.结论:①左OAC^AOBD;②ZAEB= 60°;③EO平分匕AED.2.等腰直角三角形条件:如图2.AOAB,△OCD均为等腰直角三角形.结论:①左QAC丝△OBD ;②ZAEB= 90°;③EO平分/AED.3.任意等腰三角形条件:如图3,AQAB,AOCD均为等腰三角形,OA=OB,OC=OD,ZAOB=ZCOD. 结论:①左OAC^/\OBD;② ZAEB=ZAOB;③ EO 平分/AED.模型二)手拉手模型一旋转型相似1.一般情况条件:如图4,CD//AB,将△OCD旋转至右图位置.结论:右图中①左OCDw AOAB, AOACco AOBD;②延长AC交BD于点E,必有ZBEC=ZBOA.2.特殊情况条件:如图5,CD//AB,ZAOB=90°,将△OCD旋转至右图位置.结论:右图中①左OCD GO AOAB, AOACco AOBD,②连接AC,BD交于点E,必有ZBEC=ZBOA;®|^ = ^ = ^ = tanZOCD;@BD±AC;⑤连接AD,BC,必有AD2 +BC2=AB2+CD2;⑥S mABCD = yACX BD(对角线互相垂直的四边形).对角互补模型1.全等型一90°条件:如图6①,①ZAOB = ZDCE= 90°;②OC平分ZAOB.结论:®CD=CE;② OD+OE=7^OC;③=扌8气证明提示:①过点C作CM丄OA于点M,CN丄OB于点N,如图②,证明△ CDM^△ CEN;②过点C作CF丄。
C,如图③,证明△ ODC^AFEC.当ZECD的一边交A。
的延长线于点D时,如图④,结论:(DCD=CE(不变);②OE— OD=72OC;③ S ACCE—S A0CD =yOC2.以上结论证明方法与前一种一致,可自行尝试. A图4图62,全等型一120°条件:如图7①,①ZAOB = 2ZDCE= 120°;②OC平分ZAOB.结论:① CD= CE;② OD+OE= OC;③ S* + S ACCE =^OC2.证明提示:①可参考“全等型一90°”证明结论①;②如图②,在OB上取一点F,使OF=OC,证明△ ECF 丝△DCO.当匕DCE的一边交AO的延长线于点D时,如图③,结论:①CD=CE;(DOE—OD= OC;®S ACCE—Sg =^OC.以上结论证明方法与前一种一致.3.全等型一任意角a条件:如图8①,①/AOB = 2a,ZDCE=180°—2a;②CD=CE.结论:①OC平分ZAOB:②OD + OE=2OC - cosa;③S A0CD + S ACCE = OC2• sina •cosa.当/DCE的一边交AO的延长线于点D时(如图②),结论:①0C 平分ZAOB OD = 2OC - cosa;③S ACC£ -S ACCD = 0C2• sina , cosa.可参考上述方法进行证明.对角互补模型总结:①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③两种常见的辅助线作法;④注意OC平分ZAOB时,ZCDE=ZCED=ZCOA=ZCOB如何推导.模型四)角含半角模型90。
初中数学几何模型大全及解析
初中数学几何模型大全及解析一中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行延长相交【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE.(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.二角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为 .三手拉手模型【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .四邻边相等的对角互补模型五半角模型六一线三角模型七弦图模型八最短路径模型【两点之间线段最短】1、将军饮马2、费马点【垂线段最短】【两边之差小于第三边】综合练习已知:如图1,正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.⑴求证:EG=CG且EG⊥CG;⑵将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.问⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.⑶将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果您喜欢这份文档,欢迎下载!精品文档,名师推荐!初中几何必杀技一一八大模型MH)手拉手模型一旋转型全等1.等边三角形条件:如图1,AOAB,△OCD均为等边三角形.结论:①左OAC^AOBD;②ZAEB= 60°;③EO平分匕AED.2.等腰直角三角形条件:如图2.AOAB,△OCD均为等腰直角三角形.结论:①左QAC丝△OBD ;②ZAEB= 90°;③EO平分/AED.3.任意等腰三角形条件:如图3,AQAB,AOCD均为等腰三角形,OA=OB,OC=OD,ZAOB=ZCOD. 结论:①左OAC^/\OBD;② ZAEB=ZAOB;③ EO 平分/AED.模型二)手拉手模型一旋转型相似1.一般情况条件:如图4,CD//AB,将△OCD旋转至右图位置.结论:右图中①左OCDw AOAB, AOACco AOBD;②延长AC交BD于点E,必有ZBEC=ZBOA.2.特殊情况条件:如图5,CD//AB,ZAOB=90°,将△OCD旋转至右图位置.结论:右图中①左OCD GO AOAB, AOACco AOBD,②连接AC,BD交于点E,必有ZBEC=ZBOA;®|^ = ^ = ^ = tanZOCD;@BD±AC;⑤连接AD,BC,必有AD2 +BC2=AB2+CD2;⑥S mABCD = yACX BD(对角线互相垂直的四边形).对角互补模型1.全等型一90°条件:如图6①,①ZAOB = ZDCE= 90°;②OC平分ZAOB.结论:®CD=CE;② OD+OE=7^OC;③=扌8气证明提示:①过点C作CM丄OA于点M,CN丄OB于点N,如图②,证明△ CDM^△ CEN;②过点C作CF丄。
C,如图③,证明△ ODC^AFEC.当ZECD的一边交A。
的延长线于点D时,如图④,结论:(DCD=CE(不变);②OE— OD=72OC;③ S ACCE—S A0CD =yOC2.以上结论证明方法与前一种一致,可自行尝试. A图4图62,全等型一120°条件:如图7①,①ZAOB = 2ZDCE= 120°;②OC平分ZAOB.结论:① CD= CE;② OD+OE= OC;③ S* + S ACCE =^OC2.证明提示:①可参考“全等型一90°”证明结论①;②如图②,在OB上取一点F,使OF=OC,证明△ ECF 丝△DCO.当匕DCE的一边交AO的延长线于点D时,如图③,结论:①CD=CE;(DOE—OD= OC;®S ACCE—Sg =^OC.以上结论证明方法与前一种一致.3.全等型一任意角a条件:如图8①,①/AOB = 2a,ZDCE=180°—2a;②CD=CE.结论:①OC平分ZAOB:②OD + OE=2OC - cosa;③S A0CD + S ACCE = OC2• sina •cosa.当/DCE的一边交AO的延长线于点D时(如图②),结论:①0C 平分ZAOB OD = 2OC - cosa;③S ACC£ -S ACCD = 0C2• sina , cosa.可参考上述方法进行证明.对角互补模型总结:①常见初始条件:四边形对角互补;注意两点:四点共圆及直角三角形斜边中线;②初始条件“角平分线”与“两边相等”的区别;③两种常见的辅助线作法;④注意OC平分ZAOB时,ZCDE=ZCED=ZCOA=ZCOB如何推导.模型四)角含半角模型90。
1.角含半角模型90°-1条件:如图10①,①正方形ABCD;②/EAF=45°.结论:① EF=DF+BE;②ACEF的周长为正方形ABCD周长的一半.也可以这样:条件:①正方形ABCD;②EF=DF+BE.结论:匕EAF=45°.2.角含半角模型90°-2条件:如图11①,①正方形ABCD;②ZEAF=45°.结论:EF=DF-BE.辅助线如图11②所示.3.角含半角模型90°-3条件:如图12,①Rt A ABC;② ZDAE= 45°.结论:B^+CE^DE2.若ZDAE旋转到Z\ABC外部时,结论Biy+CE2=DE2仍然成立.图12如果您喜欢这份文档,欢迎下载!精品文档,名师推荐!4.角含半角模型一90°变形条件:如图13①,①正方形ABCD;②ZEAF=45°.结论:AAHE为等腰直角三角形.证明:连接AC(方法不唯一),如图②,.../DAC=£EAF=45°,:.Z.DAH=Z.CAE.AF) A pr Ari AC图13 •.NADH=/ACE=45。
, .•.△ADHs/WE,.佥=幾,•,端=毙,又':ZDAC=ZEAH, :./\ADC^/\AHE. :./\AHE为等腰直角三角形.模型五)倍长中线类模型1.倍长中线类模型一1条件:如图14,①矩形ABCD:②BD=BE;③DF=EF.结论:AF丄CF.模型提取:①有平行线AD//BE;②平行线间线段有中点DF=EF,可以构造"8”字全等丝2.倍长中线类模型一2条件:如图15①,①平行四边形ABCD;®BC= 2AB;®AM= DM f@CE±AB. 结论:ZEMD=3ZMEA.模型提取:如图②,有平行线AB〃CD,有中点AM= DM.延长EM,构造△AMEW^DMF,连接CM,构造等腰三角形EMC,等腰三角形MCF.通过构造“8”字全等,进行角的大小转化.模型六)相似三角形360。
旋转模型1.相似三角形(等腰直角)360°旋转模型一倍长中线法:条件:如图16①,①△△ DE,^ABC均为等腰直角三角形;②EF= CF.结论:①DF= BF;②DF丄BF.辅助线:如图②,延长DF到点G,使FG=DF,连接CG,BG,BD,证明△BDG 为等腰直角三角形.突破点:AABD^ACBG.难点:证明ZBAD=ZBCG.2.相似三角形(等腰直角)360°旋转模型一补全法:条件:如图17①,®AADE,AAB C均为等腰直角三角形;② EF=CF.结论:①DF=BF;② DF±BF.辅助线:如图②,构造等腰直角三角形AEG,等腰直角三角形AHC.辅助线思路:将DF与BF转化成CG与EH.3.任意相似直角三角形360°旋转模型一补全法:条件:如图18①,①△ OABcz>AODC;②匕OAB = /ODC= 90°;③ BE= CE.结论:① AE= DE;② ZAED= 2ZABO.辅助线:如图②,延长BA到点G,使AG = AB,延长CD到点H,使DH = CD,连接GC,OH,OG,BH.补全△OGB,△OCH构造旋转模型,将AE与DE转化成CG与BH.难点在转化/AED.4. 任意相似直角三角形360°旋转模型一倍长法:条件:①左 OAB^AODCi ②/OAB = ZODC=90°;③ BE=CE. 结论:① AE=DE ;②/AED=2/ABO.辅助线:如图19,延长DE 至M,使ME=DE,连接AD,AM,BM.将结论转 化为证明AAMDcoAABO,此为难点,将AAMDcoAABO 继续转化为证明 △ABMs △AOD,使用两边成比例且夹角相等.此处难点是证明 ZABM=ZAOD.3.最短路程模型三(点到直线类2)条件:A (0,4),B (-2,0),P (0,w ). 问题:”为何值时,PB+尊FA 最小? 求解方法:①如图22,在z 轴上取点C (2,0),使sin 匕QAC =亨;②过B 作 BD 丄AC,交;y 轴于点 E,垂足为 D ;③tanNEBO=tan/QAC=},即 E (0,l ). 4. 最短路程模型四(旋转类最值模型) 条件:①线段OA = 4,OB = 2; ②OB 绕点。
在平面内旋转.问题:AB 的最大值,最小值分别为多少?结论:以点。
为圆心,OB 长为半径作圆,如图23所示,将问题转化为“三角 形两边之和大于第三边,两边之差小于第三边”. 最大值:OA+OB ;最小值:OA —OB. 条件:①线段OA = 4,OB = 2;② 以点。
为圆心,OB,OC 为半径作圆;③ 点P 是两圆所组成圆环内部(含边界)一点(如图24). 结论:若PA 的最大值为10,则OC=6; 若PA 的最小值为1,则OC=3.条件:① RtAOBC,ZOBC=30°;② OC=2;③OA=1;④点P 为BC 上动点(可与端点重合);⑤△OBC 绕点O 旋转. 结论:PA 的最大值为OA + OB=1 + 2^;PA 的最小值为—OA=冲一 1. 如图25,圆的最小半径为O 到BC 的垂线段长.MID 最短路程模型1.最短路程模型一(将军饮马类)总结:图20为常见的轴对称类最短路程问题,最后都转化到根据“亟尝匝 线段最短”解决.特点:①动点在直线上; ②起点,终点更定.2.最短路程模型二(点到直线类1)条件:①OC 平分ZAOB ;②M 为OB 上一定点;③P 为OC 上一动点;④Q 为 OB 上一动点.求:PM+P Q 最小时,F,Q 的位置.辅助线:如图21,作点Q 关于OC 的对称点Q',转化为PQ=FQ',过点M 作MH±OA 于 H,PM+ PQ= PM+ PQ^MH (垂线段最短). A ___ P_垂线段最短 图21最大值位置Af\O ) 最小值位亶图23图24图19图22图25如果您喜欢这份文档,欢迎下载!精品文档,名师推荐!模型八)相似三角形模型1.相似三角形模型一平行型条件:DE//BC1如图26).什沐AP_AE_ DE出论:AB=AC=BC'2.相似三角形模型一斜交型条件:如图27①②,ZAED=ZACB=90°.AB=AC- AD.条件:如图③④,ZACE=ZABC.结论:AC2=AE• AB,图④还存在AB • EC=BC • AC, BC2= BE • BA, CE'=BE • AE.3.相似三角形模型一一线三等角型条件:图28①:匕ABC =/ACE =/CDE= 90°,图②:/ABC=ZACE = 匕CDE=60°,图③:ZABC= ZACE= Z CDE= 45°.结论:①△ABCs/^CDE;②AB • DE=BC • CD, 一线三等角模型也经常用来建立方程或函数关系.4.相似三角形模型一圆中相似模型条件:图29②中PA为圆的切线.结论:图①:FA • FB = FC • FD,图②:PA2 = PC• PB,图③:FA • FB =FC • FD,以上结论均可通过相似三角形进行证明.图29。