(完整word版)初中数学经典几何模型.docx

合集下载

初中数学——最全:初中数学几何模型

初中数学——最全:初中数学几何模型

最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

初中数学必会的12个几何模型精解精编(222页Word)

初中数学必会的12个几何模型精解精编(222页Word)

中考数学几何模型1:截长补短模型有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系. 这一类题目一般可以采取“截长”或“补短”的方法来进行求解. 所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系. 所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等. 然后求出延长后的线段与最长的已知线段的关系. 有的是采取截长补短后,使之构成某种特定的三角形进行求解.例题1如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.【解析】证明:如图所示:(1)∵BE、CE分别是∠ABC和∠BCD的平分线,∴∠1=∠2,∠3=∠4,又∵AB∥CD,∴∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴∠BEC=90°,∴BE⊥CE.(2)在BC上取点F,使BF=BA,连接EF.在△ABE和△FBE中,,∴△ABE≌△FBE(SAS),∴∠A=∠5.∵AB∥CD,∴∠A+∠D=180°,∴∠5+∠D=180,∵∠5+∠6=180°,∴∠6=∠D,在△CDE和△CFE中,,∴△CDE≌△CFE(AAS),∴CF=CD.∵BC=BF+CF,∴BC=AB+CD,变式1已知△ABC的内角平分线AD交BC于D,∠B=2∠C. 求证:AB+BD=AC.答案:略例题2已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【解析】在BC上取点G使得CG=CD,∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BOE=∠COD=60°,∵在△COD和△COG中,,∴△COD≌△COG(SAS),∴∠COG=∠COD=60°,∴∠BOG=120°﹣60°=60°=∠BOE,在△BOE和△BOG中,,∴△BOE≌△BOG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC.变式2已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.【解析】AB=BD+CD,理由是:延长CD到E,使DE=BD,连接AE,∵∠ADB=90°﹣∠BDC,∴∠ADE=180°﹣(90°﹣)﹣∠BDC=90°﹣,∴∠ADB=∠ADE,在△ABD和△AED中,∴△ABD≌△AED(SAS),∴∠E=∠ABD=60°,AB=AE,∵AB=AC,∴AE=AC,∴△ACE是等边三角形,∴AB=CE=CD+DE=BD+CD.例题3如图,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE【解析】连接AC,延长DE到F,使EF=BC,连接AF,∵BC+DE=CD,EF+DE=DF,∴CD=FD,∵∠ABC+∠AED=180°,∠AEF+∠AED=180°,∴∠ABC=∠AEF,在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AC=AF,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS)∴∠ADC=∠ADF,即AD平分∠CDE变式3如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.【解析】CN=MN+BM(微信公众号:数学三剑客)证明:在CN上截取点E,使CE=BM,连接DE,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,又△BDC为等腰三角形,且∠BDC=120°,∴BD=DC,∠DBC=∠BCD=30°,∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°,在△MBD和△ECD中,,∴△MBD≌△ECD(SAS),∴MD=DE,∠MDB=∠EDC,又∵∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC﹣(∠BDN+∠EDC)=∠BDC﹣(∠BDN+∠MDB)=∠BDC﹣∠MDN=120°﹣60°=60°,∴∠MDN=∠EDN,在△MND与△END中,,∴△MND≌△END(SAS),∴MN=NE,∴CN=NE+CE=MN+BM例题4在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为AE=AB+DE;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,则线段AE长度的最大值是10+4.(直接写出答案).【解析】(1)AE=AB+DE;(2)猜想:AE=AB+DE+BD.证明:在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C是BD边的中点,∴CB=CD=BD.∵AC平分∠BAE,∴∠BAC=∠F AC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE.∵CB=CD,∴CG=CF∵∠ACE=120°,∴∠BCA+∠DCE=180°﹣120°=60°.∴∠FCA+∠GCE=60°.∴∠FCG=60°.∴△FGC是等边三角形.∴FG=FC=BD.∵AE=AF+EG+FG.∴AE=AB+DE+BD.(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.∵C是BD边的中点,∴CB=CD=BD.∵△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE∵CB=CD,∴CG=CF∵∠ACE=135°,∴∠BCA+∠DCE=180°﹣135°=45°.∴∠FCA+∠GCE=45°.∴∠FCG=90°.∴△FGC是等腰直角三角形.∴FC=BD.∵BD=8,∴FC=4,∴FG=4.∵AE=AB+4+DE.∵AB=2,DE=8,∴AE≤AF+FG+EG=10+4.∴当A、F、G、E共线时AE的值最大2,最大值为10+4.故答案为:10+4.例题5在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.【解析】(1)如图1(2)①DF+FH=CA,证明:如图2,过点F作FG⊥CA于点G,∵FH⊥BA于H,∠A=90°,FG⊥CA,∴∠A=∠FGA=∠FHA=90°,∴四边形HFGA为矩形.∴FH=AG,FG∥AB,∴∠GFC=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB,由(1)和平移可知,∠ECB=∠EBC=∠GFC,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴CG=FD,∴DF+FH=GC+AG,即DF+FH=AC;②解:FH﹣DF=AC,理由是:过F作FH⊥BA于H,过点C作CG⊥FH于G,∵FH⊥BA于H,∠BAC=90°,CG⊥FH,∴∠CAH=∠CGH=∠FHA=90°,∴四边形ACGH为矩形.∴AC=GH,CG∥AB,∴∠GCF=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB=∠FCD,∴∠GCF=∠FCD,由(1)和平移可知,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴FG=FD,∵FH﹣FG=GH,∴FH﹣DF=AC.例题6如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.【解析】(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.【练习1】如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.【解析】如图,在AC上截取AE=AB,∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴BD=DE,∠B=∠AED,∵AC=AE+CE,AC=AB+BD,∴CE=BD,∴CE=DE,∴∠C=∠CDE,即∠B=2∠C,在△ABC中,∠BAC+∠B+∠C=180°,∴60°+2∠C+∠C=180°,解得∠C=40°,∴∠ABC=2×40°=80°.【练习2】如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.【练习3】如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.【解析】探究结论:BM+CN=NM.证明:延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ABD=∠DCE=90°,∴在△DCE和△DBM中,∴R t△DCE≌R t△DBM(SAS),∴∠BDM=∠CDE,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC﹣∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°∴DM=DE(上面已经全等)在△DMN和△DEN中,∴△DMN≌△DEN(S A S),∴BM+CN=NM.【练习4】如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DF A=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠F AE的度数;(2)求证:AF=CD+CF.【解析】(1)解:∵∠D=105°,∠DAF=35°,∴∠DF A=180°﹣∠D﹣∠DAF=40°(三角形内角和定理).∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形对边平行且相等).∴∠DF A=∠F AB=40°(两直线平行,内错角相等);∵∠DF A=2∠BAE(已知),∴∠F AB=2∠BAE(等量代换).即∠F AE+∠BAE=2∠BAE.∴∠F AE=∠BAE;∴2∠F AE=40°,∴∠F AE=20°;(2)证明:在AF上截取AG=AB,连接EG,CG.∵∠F AE=∠BAE,AE=AE,∴△AEG≌△AEB.∴EG=BE,∠B=∠AGE;又∵E为BC中点,∴CE=BE.∴EG=EC,∴∠EGC=∠ECG;∵AB∥CD,∴∠B+∠BCD=180°.又∵∠AGE+∠EGF=180°,∠AGE=∠B,∴∠BCF=∠EGF;又∵∠EGC=∠ECG,∴∠FGC=∠FCG,∴FG=FC;又∵AG=AB,AB=CD,∴AF=AG+GF=AB+FC=CD+FC.【练习5】如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.【解析】(1)∵四边形ABCD是正方形,且边长为4,∴∠ABF=90°,AB=AD=4,∵在R t△ABF中,AB=2FB,∴FB=×4=2,∴AF==2,∵AG=AD=4,∴FG=AF﹣AG=2﹣4;(2)证明:在BC上截取BM=AE,连接AM,∵AG=AD,AB=AD,∴AG=AB,∵AE⊥AF,∴∠EAG=∠ABM=90°,在△AGE和△BAM中,,∴△AGE≌△BAM(SAS),∴∠AMB=∠AEG,∠BAM=∠AGD,∵AG=AD,∴∠AGD=∠ADG,∴∠BAM=∠ADG,∵∠BAD=90°,∴∠F AB+∠BAE=∠BAE+∠EAD=90°,∴∠F AB=∠EAD,∴∠AEG=∠EAD+∠ADG=∠F AB+∠BAM=∠F AM,∴∠F AM=∠AMB,∴AF=FM=BF+BM=BF+AE.【练习6】如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.【解析】(1)∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°.∵BC=CD,∴△ABC≌△ADC,∴∠BAC=∠DAC=30°,∠ACB=∠ACD=60°.∴∠AEB=∠BEC=90°,∠ABC=90°,∴CE=BC=1,BE=,AC=2BC=4.∵AM:CM=1:2,∴AM=,CM=,∴EM=,在R t△BEM中由勾股定理得BM==.过点C作CF⊥BM于点F.∴.∴,∴CF=.即点C到BM的距离.(2)证明:延长BC到点F,使CF=CB,连接DF,∵AB=AD,∠ABD=60°,∴△ABD是等边三角形,∴∠ADB=60°,AD=BD,∴BC=CD,∴CF=CD.∵∠BCD=120°,∴∠DCF=180°﹣∠BCD=60°,∴△DCF是等边三角形,∴∠CDF=∠ADB=60°,DC=DF,∴∠ADC=∠BDF,又∵AD=BD,∴△ACD≌△BDF,∴AC=BF=BC+CF,即AC=BC+CD.【练习7】如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.(1)若AE=2,求EF的长;(2)求证:PF=EP+EB.【解析】(1)∵四边形ABCD是正方形,且BE⊥DP,AF⊥AE,∴AB=AD,∠BAD=∠EAF=∠BEF=90°,∴∠1+∠F AB=∠2+∠F AB=90°,∴∠1=∠2.∵∠3+∠5=∠4+∠6,且∠5=∠6,∴∠3=∠4.在△AEB和△AFD中,∵,∴△AEB≌△AFD,∴AE=AF=2,在R t△EAF中,由勾股定理,得EF==2.(2)过点A作AM⊥EF于M,且∠EAF=90°,AE=AF,∴△EAF为等腰直角三角形.∴AM=MF=EM.∠AME=∠BEF=90°.∵点P是AB的中点,∴AP=BP.在△AMP和△BEP中,∵,∴△AMP≌△BEP,∴BE=AM,EP=MP,∴MF=BE,∴PF=PM+FM=EP+BE.中考数学几何模型2:共顶点模型共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。

初中数学几何模型大全

初中数学几何模型大全

初中数学几何模型大全全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

个角是 30°直角三角形的对称(翻折),翻折成正方 形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型 半角:有一个角含 1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等 中点旋转:倍长中点相关线段转换成旋转全等问题说明:上图依次是 45°、30°、22.5 15°及有一说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60 度旋60 度,造等边三角形遇90 度旋90 度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180 度,造中心对称说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“ 8 ”字模型可以证明。

共旋转模型模型变形说明:模型变形主要是两个正多边形或者等腰三角形 的夹角的变化,另外是等腰直角三角形与正方形的混 用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。

(word完整版)初中数学经典几何题及答案

(word完整版)初中数学经典几何题及答案

经典难题(一)1、已知:如图, 0是半圆的圆心, C 、E 是圆上的两点, CD 丄AB , EF 丄AB , EG 丄CO . 求证:CD = GF .(初二)2、已知:如图, P 是正方形 ABCD 内点,/ PAD =Z PDA = 15°.的延长线交MN 于E 、F .求证:/ DEN = Z F .经典难题(二)求证:△ PBC 是正三角形.(初二)3、如图,已知四边形 ABCD 、A i B i C i D i 都是正方形, CC i 、DD i的中点.求证:四边形 A 2B 2C 2D 2是正方形.(初二)A 2、B 2、C 2、D 2 分别是 AA i 、BB i 、4、已知:如图,在四边形 ABCD 中,AD = BC , M 、 N 分别是AB 、CD 的中点, AD 、BCDC2、设MN 是圆0外一直线,过及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP = AQ .(初二)3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以「 设MN 是圆0的弦,过MN 的中点A 任作两弦 于 P 、Q .求证:AP = AQ .(初二)4、如图,分别以厶ABC 的AC 和 CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于1、如图,四边形 ABCD 为正方形,求证:CE = CF .(初二)第2页共17页1、已知:△ ABC 中,H 为垂心(各边高线的交点) (1) 求证:AH = 2OM ;(2) 若/ BAC = 600,求证:AH = AO .(初二),O 为外心,且0M 丄BC 于M .AH EBCM D0作0A 丄MN 于A ,自A 引圆的两条直线,DE 交圆于GBC 为一边,在ABF// AC , AE = AC , AE 与 CD 相交于 F .BC已知:△ ABC 是正三角形,P 是三角形内一点, PA = 3, PB = 4, PC = 5. 求:/ APB的度数.(初二)设P 是平行四边形ABCD 内部的一点, 求证:/ PAB = Z PCB .(初二)E4、 2、如图,四边形 ABCD 为正方形,DE // AC ,且CE = CA ,直线EC 交DA 延长线于F . 求证:AE = AF .(初二) 如图,PC 切圆0于C , AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB = DC , BC = AD .(初三) 1、 2、3、设ABCD 为圆内接凸四边形,求证:4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE = CF.求证:/ DPA =Z DPC .(初二)经典难题(五)AE与CF相交于P,且2、已知:P是边长为1的正方形PA1、设P是边长为1的正△ ABC 内任一点,L =3、P为正方形ABCD内的一点,并且PA= a, PB= 2a, PC= 3a,求正方形的边长.4、如图,△ ABC 中,/ ABC =Z ACB = 80°, D、E 分别是AB、AC 上的点,/ DCA = 30°,/ EBA = 20°,求/ BED 的度数.B C经典难题(一)答案1•如下图做GH丄AB,连接EO。

(完整版)初中数学几何模型大全+经典题型(含答案).docx

(完整版)初中数学几何模型大全+经典题型(含答案).docx

初中数学几何模型大全+ 经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是 45 °、30 °、22.5 °、15 °及有一个角是 30 °直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60 度旋 60 度,造等边三角形遇90 度旋 90 度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋 180 度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“ 8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

初中数学几何模型

初中数学几何模型

全等变换平移:平行等线段 (平行四边形 )对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等 .两边进行边或者角的等量代换 ,产生联系 .垂直也可以做为轴进行对称全等 .对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折) ,翻折成正方形或者等腰直角三角形、等边三角形、对称全等 .旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段 ,需要构造旋转全等共旋转:有两对相邻等线段 ,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起 ,成对称全等 .自旋转模型构造方法:遇60度旋60度 ,造等边三角形遇90度旋90度 ,造等腰直角遇等腰旋顶点 ,造旋转全等遇中点旋180度 ,造中|心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容 .通过"8〞字模型可以证明 .模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用 .当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段 ,分组组成三角形证全等 .中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形 .证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和的等腰直角三角形 (或者正方形 )公旋转顶点 ,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证 .几何最|值模型对称最|值(两点间线段最|短)对称最|值(点到直线垂线段最|短)说明:通过对称进行等量代换 ,转换成两点间距离及点到直线距离 .旋转最|值(共线有最|值)说明:找到与所要求最|值相关成三角形的两个定长线段,定长线段的和为最|大值,定长线段的差为最|小值 .剪拼模型三角形→四边形四边形→四边形说明:剪拼主要是通过中点的180度旋转及平移改变图形的形状 .矩形→正方形说明:通过射影定理找到正方形的边长 ,通过平移与旋转完成形状改变正方形 +等腰直角三角形→正方形面积等分旋转相似模型说明:两个等腰直角三角形成旋转全等,两个有一个角是300角的直角三角形成旋转相似 .推广:两个任意相似三角形旋转成一定角度,成旋转相似 .第三边所成夹角符合旋转"8〞字的规律 .相似模型说明:注意边和角的对应,相等线段或者相等比值在证明相似中起到通过等量代换来构造相似三角形的作用 .说明: (1 )三垂直到一线三等角的演变 ,三等角以30度、45度、60度形式出现的居多 .(2 )内外角平分线定理到射影定理的演变,注意之间的相同与不同之处 .另外,相似、射影定理、相交弦定理(可以推广到圆幂定理)之间的比值可以转换成乘积,通过等线段、等比值、等乘积进行代换 ,进行证明得到需要的结论 .说明:相似证明中最|常用的辅助线是做平行 ,根据题目的条件或者结论的比值来做相应的平行线 .。

中考数学必会几何模型(含答案)

中考数学必会几何模型(含答案)

MATH微信:beijingdaxue777QQ:1456770148中考必会几何模型目录专题一角平分线相关问题模型 (3)模型1角平分线相关模型 (3)专题二8字模型与飞镖模型 (6)模型1:角的8字模型 (6)模型2:角的飞镖模型 (8)模型3边的“8”字模型 (10)模型4边的飞镖模型 (11)专题三半角模型 (15)专题四将军饮马模型 (23)模型1:直线与两定点 (23)模型2角与定点 (28)模型3两定点一定长 (31)专题五角平分线四大模型 (34)模型1角平分线的点向两边作垂线 (34)模型2截取构造对称全等 (35)模型3角平分线+垂线构造等腰三角形 (37)模型4角平分线+平行线 (39)专题六截长补短辅助线模型 (42)模型1截长补短 (42)专题七蚂蚁行程 (48)模型1立体图形展开的最短路径 (48)专题八三垂直全等模型 (55)模型1三垂直全等模型 (55)专题九手拉手模型 (62)模型1手拉手 (62)专题十相似模型 (68)模型1A、8模型 (68)模型2共边共角型 (72)模型3一线三等角型 (75)模型4倒数型 (79)模型5与圆有关的简单相似 (82)模型6相似和旋转 (85)专题十一圆中的辅助线 (89)模型1连半径构造等腰三角形 (89)模型2构造直角三角形 (90)模型3与圆的切线有关的辅助线 (94)专题十二中点四大模型 (97)模型1倍长中线或类中线(与中点有关的线段)构造全等三角形 (97)模型2已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”. (99)模型3已知三角形一边的中点,可考虑中位线定理 (102)模型4已知直角三角形斜边中点,可以考虑构造斜边中线 (107)专题一角平分线相关问题模型模型1角平分线相关模型(1)如图1,若点P是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若点P是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若点P是∠ABC和外角∠ACE的角平分线的交点,则∠P=∠A.图1图2图3针对训练1.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【小结】本题若不套用模型,则需要通过三角形的外角性质证明得到∠A、∠D的数量关系.2.(2018•巴中)如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=.【分析】由解题模型一中的(1)可知,∠BOC=90°+∠A,把∠BOC=110°代入计算可得到∠A的度数.【详解】∵∠BOC=90°+∠A,∠BOC=110°,∴90°+∠A=110°.∴∠A=40°.【小结】本题若不套用模型,需要利用三角形的内角和定理、角平分线的定义得到∠BO C、∠A的数量关系.3.(2018•济南历城区模拟)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,若∠A1=α,则∠A2018=.【详解】∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,【小结】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,以及角平分线的定义,熟记性质然后推出后一个角是前一个角的一半是解题的关键。

初中数学必背几何模型

初中数学必背几何模型

一、中点模型1.倍长中线条件:AD 为△ABC 的中线辅助线:延长AD 到点E ,使得AD =DE结论:△ADC ≌△EDB ,AC ∥BE2.连中点构造中位线条件:点D 、E 为AB 、AC 的中点辅助线:连接DE 结论:12DE BC DE BC =,∥3.倍长一边构造中位线条件:点D 为AB 的中点辅助线:延长AC 到点E ,使得AC =CE ,连接BE 结论:12DC BE DC BE =,∥4.构造三线合一条件:AB =AC辅助线:取BC 的中点D ,连接AD结论:AD ⊥BC ,∠BAD =∠CADB5.构造斜边中线条件:∠ABC =90°辅助线:取AC 的中点D ,连接BD 结论:12BD AC AD CD ===二、角平分线模型6.往角两边作垂线条件:AD 平分∠BAC辅助线:过点D 作AB 、AC 的垂线,垂足分别为E 、F结论:△ADE ≌△ADF7.在角的两边截取等长线段条件:AD 平分∠BAC辅助线:在AB 、AC 上取点E 、F ,满足AE =AF ,连接DE 、DF 结论:△ADE ≌△ADF8.过角平分线上一点作垂线条件:AD 平分∠BAC辅助线:过点D 作EF ⊥AD ,交AB 、AC 于点E 、FD CBB CCC结论:△ADE ≌△ADF三、双角平分线模型9.内内模型条件:BD 、CD 平分∠ABC 、∠ACB 结论:1902D A ∠=︒+∠10.内外模型条件:BD 、CD 平分∠ABC 、∠ACE 结论:12D A ∠=∠11.外外模型条件:BD 、CD 平分∠CBE 、∠BCF 结论:1902D A ∠=︒-∠四、平行线模型12.猪蹄模型CA BCC ED条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠B +∠D =∠BED13.铅笔头模型条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠B +∠D +∠BED =360°14.鸟头模型条件:AB ∥CD辅助线:过点E 作EF ∥AB结论:∠D +∠BED =∠B15.平行线+角平分线模型条件:AB ∥CD ,CE 平分∠ACD结论:AC =AE五、等积模型16.等底等高条件:AD ∥BCFAFBC结论:ABC DBC S S =,ADB ADC S S =17.等高模型条件:B 、C 、D 共线结论:::ABD ADC S S BD CD =18.等底模型条件:AE 、DE 为△ABC 、△DBC 边BC 上的高结论:::ABC DBC S S AE DE =六、对称半角模型19.对称半角模型-含45°角的三角形条件:∠BAC =45°,AD ⊥BC辅助线:作点D 关于AB 的对称点E ,关于AC 的对称点F , 连接AE 、AF 、BE 、CF 、EF结论:△AEF 是等腰直角三角形20.对称半角模型-含30°角的三角形B CB C DED条件:∠BAC =30°,AD ⊥BC辅助线:作点D 关于AB 的对称点E ,关于AC 的对称点F , 连接AE 、AF 、BE 、CF 、EF结论:△AEF 是等边三角形七、旋转半角模型21.旋转半角模型-等腰直角三角形条件:AB =AC ,∠BAC =90°,∠MAN =45°辅助线:将△ABM 绕点A 逆时针旋转90°,得到△ACM ' 结论:ANM ANM '≌,222BM CN MN +=22.旋转半角模型-等边三角形条件:△ABC 是等边三角形,BD =CD ,∠BDC =120°, ∠MDN =60°辅助线:将△BDM 绕点D 顺时针旋转120°,得到△DCM ' 结论:NDM NDM '≌,BM CN MN +=23.旋转半角模型-正方形条件:正方形ABCD ,∠MAN =45°,FEAM'M CAB辅助线:将△ABM 绕点A 逆时针旋转90°,得到△ADM ' 结论:NAM NAM '≌,BM DN MN +=八、自旋转模型24.自旋转模型-等边三角形条件:△ABC 是等边三角形,点P 为其内任意一点辅助线:将△BAP 绕点B 顺时针旋转60°,得到△BCP ' 结论:△BPP '是等边三角形25.自旋转模型-等腰直角三角形条件:△ABC 中,∠BAC =90°,AB =AC ,点P 为△ABC 内任 意一点辅助线:将△BAP 绕点A 逆时针旋转90°,得到△ACP ' 结论:△APP '是等腰直角三角形26.自旋转模型-等腰三角形条件:△ABC 中,AB =AC ,点P 为△ABC 内任意一点,∠BAC =α 辅助线:将△BAP 绕点A 逆时针旋转α,得到△ACP ' 结论:△APP '是等腰三角形M'DNCBAB九、手拉手模型29.手拉手模型-等边三角形条件:△ABC和△CDE都是等边三角形结论:△ACE≌△BCD27.手拉手模型-等腰直角三角形条件:△ABC和△CDE都是等腰直角三角形结论:△ACE≌△BCD,AE⊥BDEE28.手拉手模型-等腰三角形条件:△ABC 和△CDE 都是等腰三角形,CA =CB , CD =CE ,且∠ACB =∠DCE结论:△ACE ≌△BCD30.手拉手模型-正方形条件:四边形ABCD 和AEFH 都是正方形结论:△ABE ≌△ADH ,BE ⊥DH十、最短路程模型31.直线同侧两线段之和最小(将军饮马)条件:点A 、B 在直线l 同侧,点P 为l 上一点辅助线:作点A 关于直线l 的对称点A ',连接A 'B 结论:点P 为A 'B 和l 交点时,AP +BP 最小C32.直线异侧两线段之差最小条件:点A 、B 在直线l 异侧,点P 为l 上一点辅助线:作线段AB 的垂直平分线m结论:点P 为m 和l 交点时,|AP -BP |最小33.直线同侧两线段之差最小条件:点A 、B 在直线l 同侧,点P 为l 上一点辅助线:作线段AB 的垂直平分线m结论:点P 为m 和l 交点时,|AP -BP |最小34.过桥模型(将军饮马)条件:A 、B 为定点,l 1∥l 2,MN 为定长线段且MN ⊥l 1 辅助线:将点A 向上平移MN 的长度得到A ',连接A 'B 结论:点N 为A 'B 与l 1交点时,AM +MN +BN 最小35.四边形周长最小(将军饮马)条件:A 、B 为定点,M 、N 为角两边上的动点辅助线:作点A 、B 关于角两边的对称点A '、B ',连接 lAlAll 1l 2A'B'结论:M、N为A'B'与角两边交点时,四边形ABMN的周长最小B'36.三角形周长最小(将军饮马)条件:A为定点,B、C为角两边上的动点辅助线:作点A关于角两边的对称点A'、A",连接A'A"结论:B、C为A'A"与角两边交点时,△ABC的周长最小37.旋转类最短路程模型条件:线段OA=a,OB=b(a>b),OB绕点O在平面内旋转结论:点B与点N重合时,AB最小;点B与点M重合时,AB最大十一、基本相似模型38.A字型条件:BC∥DE结论:△ABC∽△ADE条件:∠ABC =∠ADE结论:△ABC ∽△ADE39.8字型条件:AB ∥CD结论:△AOB ∽△DOC条件:∠BAO =∠DCO结论:△AOB ∽△COD40.母子型条件:△ABC 中,∠ACB =90°,CD ⊥AB结论:△ABC ∽△ACD ∽△CBD41.一线三等角模型条件:∠B =∠D =∠ACE结论:△ABC ∽△CDECBCC A42.手拉手相似模型条件:△ABC ∽△ADE结论:△ACE ∽△ABD十二、对角互补模型43.对角互补模型-90°全等型条件:∠AOB =∠DCE =90°,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,OD +OEOC ,212OECD S OC 四边形CB ACE AB D CDD44.对角互补模型-120°全等型条件:∠AOB =120°,∠DCE =60°,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,OD +OE =OC ,24OECD S =四边形45.对角互补模型-任意角全等型条件:∠AOB =2α,∠DCE =180°-2α,OC 平分∠AOB辅助线:过点C 作CM ⊥AO ,CN ⊥BO ,垂足分别为M 、N 结论:△CDM ≌△CEN ,CD =CE ,2cos OD OE OC α+=⋅, 2sin cos OEC OCD S S OC αα+=⋅46.邻边相等的对角互补模型条件:四边形ABCD 中,AB =AD ,∠ABC +∠ADC =180°D BAN E OB辅助线:延长CD 到E ,使得DE =BC ,连接AE结论:△ABC ≌△ADE ,CA 平分∠BCD十三、隐圆模型47.动点定长模型条件:AB =AC =AP ,点P 为动点结论:点B 、C 、P 三点共圆,点A 为圆心,AB 为半径48.直角圆周角模型条件:点C 为动点,∠ACB =90°结论:点A 、B 、C 三点共圆,线段AB 的中点为圆心,线段 AB 为直径49.定弦定长模型条件:点P 为动点,固定线段AB 所对的动角∠APB 为定值 结论:点A 、B 、P 三点共圆,线段AB 和BP 的中垂线的交点 为圆心BA50.四点共圆模型①条件:点A 、C 为动点,∠BAD +∠BCD =180°结论:点A 、B 、C 、D 四点共圆,线段AB 和BC 的中垂线的 交点为圆心当∠BAD =∠BCD =90°,BD 为直径51.四点共圆模型②条件:线段AB 为固定长度,点D 为动点,∠C =∠D结论:点A 、B 、C 、D 四点共圆,线段AB 和BC 的中垂线的 交点为圆心CCA当∠C=∠D=90°,AB为直径。

(完整word版)初中数学经典几何模型(2)

(完整word版)初中数学经典几何模型(2)

初中数学经典几何模型(模型即套路)【应用上面模型解决如下问题】初中数学里的几何证明问题有一个顺口溜是什么呀?分享举报浏览507 次4个回答热点话题付费时代,你会花钱买会员,还是等待75秒广告?最佳答案youlan17122012-06-01人人都说几何难,难就难在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

本回答由提问者推荐4评论分享举报收起wxn10445498832012-06-02展开全部人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

初中数学几何模型大全+经典题型.docx

初中数学几何模型大全+经典题型.docx

初中数学几何模型大全+ 经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是 45°、 30°、°、 15°及有一个角是 30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60 度旋 60 度,造等边三角形遇90 度旋 90 度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋 180 度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“ 8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

(完整版)初中数学——最全:初中数学几何模型.docx

(完整版)初中数学——最全:初中数学几何模型.docx

最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是 45°、30°、22.5°、15°及有一个角是 30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2 角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇 60 度旋 60 度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180 度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

(完整word版)初中数学经典几何模型(2)

(完整word版)初中数学经典几何模型(2)

初中数学经典几何模型(模型即套路)几何问题初中几何常见模型解析>模型一:手拉手模型「全等蜻论: a忆■ M出D( 2 "加存砒; 2 (冷r im*盖件:山呦血陀。

均勿等轄肖利上佈理”熔跖辻AOffD,②SER -9『*③0E下井£J£DQjACUC-AOZfD, ^LAEB^LAOB,严圧节甘"加A模型二:手拉手模型-相似(1)一般情况>条件* CD//AH 9将AOCQ旋转至右图位買A结论z右帥K I MOCD SAO肋G AQ4C hOBD :②延长M乞加于点儿咫它厶BEC ■厶BOAa条件* CDHAH. LAOB・90。

.将AOCD转至右图位賈»结论*右昭屮a AOCD^OAB «> AO/fC ^OSD t②延c交M)于点卜•必百厶BEC ■厶BOA、邑.如•如■斷厶os、,、③"OC OA 1 ④ BD 丄 AC t⑤连接必有・4D *BC AB^ +CD ,計"皿如MT甸柚边形〉(2)特療情况A 模型三:对角互补模型乍垂色..S^pCDV/aACEV.②过点(lV cf 丄•加上图(右)•证明AODC ・ZW ・EC\ » ^LDCE 的•边交的延{线亍点〃时:A以上二牛结论* QXQ (T 不支八?)OE-OD =込OC *比结论»证明提示:证明方法与館一种情况町自行钦试.a 条件:①厶4OB=2Z2)CE J20°Y②OC 平分3OB、“+ Sy护■ —^oc2A 结论,①CD.CE,②OD^()E^(X\③(m如E 4 a证明提示】①可善考“金簣住・90"证法r②如图:^L OK tik 点八ft()1 =(fC. uh明AOC'/)茅边一伤形.A 姿厶DCE的一边交.40的运长线丁点D时(如I图右):禺<:①_____________________________________② __________________________________ :③ __________________________________ :可安舟匕述第②和方法进行证明.OC^.sinct • cosa&OC£t②CD - CE.o请思考初始条件的变化对模型的彩响・a 结论,①°C平分厶4OB、②OD + OE ■ 2OC• cosa :③^(MI *九⑷+ ” 半乙DCE的_边交*O的延长线丁点Z)时(如右I:图〉:尿结论变成'①_____________________________________ 3②____________________________________ :③____________________________________ :iHn第②种方法进BMh•tan cia对角互补模覇总结,①常见四边尬对WiH补X辻总两点:四点人圆及盘用二用形斜边中线:小必条件••角T分线• S “刈边柑咎・的区别:③两种京見的他妙线作法:"I E卜附F°C半分乙”5时・乙CQE ■乙CEQ・乙C5 ■乙CO祁等是如何狰导能?A模型四:角含半角模型9CT<1>角含半危樓盘90・1a条件:①正力形肋CD:②LEAF - 45c:a结论「I EF・DF*BE-“W的儿任为1!方电*〃CQj&长的一半:也可以这样:a i d•力形 4BCD、空 EF・DF*BEa 结论,LEAF - 45°(2)焙含半角模舉90・-2a他论?EF・DF・BEA舗助世如下田所示,<3)拾含半加帳型90・7a 乞件;①RTMRC、②Z/W.457a 结论:«O? 4- CE2 - DE2方厶OIE左怖対AJBC外祁时.结论BD'D轴助线:.IB//CD.有中点AACDMH K F\f . Mjit 代小〃JXAMF . 4U 也it蓦護AEVAT.从如現过构进8字仝寻线廉鉞童及位鼻关系,角的大•卜转化a模型六:相似三角形360・旋转模型(1)相似三箱影(等腰直角)360-緞转棋炉倍长中釵法址来"F列点G・ZFG-DF ■违M 1(;• M; . BD uL 明\HlXi为等用文**:WJ»A: i£« “UD.MCG(1)相似三角形(等8?豆角)360・锲转楔型补全法a条件,QMDE、MX旳为鸽世口角二角形*②EFYF; a 结论:Q DF • BF:② DF丄BFa条件半:行四边形人BCD;②AM = DM :④CE丄,4D. a 经论:厶 EMD■ 3Z.A/E-4a条件「MDE .MHC均为构it衿援直角MEG ■ Xl/rc辅射线忠路:将M与BF转化列CG与Eli» 条件:hOABs'ODC ; s LOAB^LODC^。

初中数学常用几何模型

初中数学常用几何模型

目录1. 8字模型与飞镖模型2.手拉手全等模型3.三垂直全等模型4.角平分线平行线模型5. 角平分线+两垂线段模型6.等腰三角形的存在性问题7.A型、8型相似模型8.一线三等角相似模型8字模型与飞镖模型资料编号:202109012143关键词 8字模型 飞镖模型8字模型如图所示,AC 、BD 相交于点O ,连结AD 、BC ,则有C BD A ∠+∠=∠+∠.OACBD因为这个图形像数字8,所以我们把这个模型称为8字模型. 8字模型的证明:证法一:∵D A AOB ∠+∠=∠ C B AOB ∠+∠=∠ ∴C B D A ∠+∠=∠+∠.(三角形的一个外角等于与它不相邻的两个内角之和) 证法二:∵︒=∠+∠+∠180AOD D A ︒=∠+∠+∠180BOC C B ∴AOD D A ∠-︒=∠+∠180 BOC C B ∠-︒=∠+∠180 ∵BOC AOD ∠=∠ ∴C B D A ∠+∠=∠+∠.点评 8字模型的结论常被用来求角度或证明两个角相等,多出现在几何综合题中.有些复杂的几何问题,应用8字模型的结论,往往会出奇制胜,达到意想不到的效果(见后面的例题).如图所示,有结论:DBABCD∠+∠+∠=∠.因为这个图形像飞镖,所以我们把这个模型称为飞镖模型. 飞镖模型常被用来推导几何图形中角之间的等量关系.AB CD飞镖模型的证明:证法一:延长BC,交AD于点E,如下图所示.∵BADBCD∠+∠=∠∠+∠=∠1,1∴DBABCD∠+∠+∠=∠.证法二:作射线AC,如下图所示.∵DB∠+∠=∠∠+∠=∠42,31∴DB∠+∠+∠+∠=∠+∠4321∴DBBADBCD∠+∠+∠=∠.FBECADAEAE例1. 如图所示,求证:︒=∠+∠+∠+∠+∠180E D C B A .B EC AD证法一:(飞镖模型)设BD 与CE 相交于点F ,如图所示. ∵︒=∠+∠+∠180BFE E B CFD BFE ∠=∠ ∴︒=∠+∠+∠180CFD E B ∵D C A CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B A . 证法二:(8字模型) 连结CD ,如图所示,则有21∠+∠=∠+∠E B∵︒=∠+∠+∠180ADC ACD A∴︒=∠+∠+∠+∠+∠18021ADB ACE A ∴︒=∠+∠+∠+∠+∠180E ADB ACE B A . 证法三:(利用三角形内角和定理与外角和定理) ∵︒=∠+∠+∠18021ADB EC ∠+∠=∠∠+∠=∠21 ∴︒=∠+∠+∠+∠+∠180ED C B A .BECDA例2. 如图所示,=∠+∠+∠+∠+∠+∠F E D C B A _________.F CBEAD解法一:(利用8字模型) ∵32∠+∠=∠+∠B A3121∠+∠=∠+∠∠+∠=∠+∠F E D C∴=∠+∠+∠+∠+∠+∠F E D C B A()3212∠+∠+∠∵︒=∠+∠+∠180321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A . 解法二:(利用三角形内角和定理与外角和定理) ∵B A ∠+∠=∠1DC FE ∠+∠=∠∠+∠=∠32∴=∠+∠+∠321F E D C B A ∠+∠+∠+∠+∠+∠ ∵︒=∠+∠+∠360321∴︒=∠+∠+∠+∠+∠+∠360F E D C B A .例3. 如图所示,=∠+∠+∠+∠+∠E D C B CAD _________.解:(利用飞镖模型)设BD 与CE 相交于点F ,如图所示.FBECD A∵︒=∠+∠+∠180BFE E B ∴︒=∠+∠+∠180CFD E B ∵D C CAD CFD ∠+∠+∠=∠ ∴︒=∠+∠+∠+∠+∠180E D C B CAD .例4. 如图,△ABC 和△DCE 均是等腰三角形,CE CD CB CA ==,,=∠BCADCE ∠.(1)求证:AE BD =;(2)若︒=∠70BAC ,求BPE ∠的度数.NMPDABCE(1)证明:∵=∠BCA DCE ∠ ∴ACD DCE ACD BCA ∠+∠=∠+∠ ∴ACE BCD ∠=∠ 在△BCD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD ACE BCD CA CB ∴△BCD ≌△ACE (SAS ) ∴AE BD =; (2)解:方法一:∵△BCD ≌△ACE∴21∠=∠ ∵CB CA =∴︒=∠=∠70ABC BAC ∵PBA PAB BPE ∠+∠=∠ ∴PBA BAC BPE ∠+∠+∠=∠2︒=︒+︒=∠+︒=∠+∠+︒=140707070170ABC PBA方法二:∵︒=∠=70,BAC CB CA ∴︒=∠=∠70ABC BAC ∵︒=∠+∠+∠180ABC BAC ACB ∴︒=︒-︒-︒=∠407070180ACB ∵△BCD ≌△ACE ∴21∠=∠∵APB ACB ∠+∠=∠+∠21 ∴︒=∠=∠40APB ACB ∵︒=∠+∠180APB BPE ∴︒=︒-︒=∠14040180BPE .点评 方法二用到了“8”字模型的结论,如下图所示.例5. 如图所示,△ABC 和△ADE 都是等腰 直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥.证明:(1)∵△ABC 和△ADE 都是等腰直角三角形 ∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12(8字模型) ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例6.(1)问题发现 如图1,△ABC 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连结BE .填空: ①AEB ∠的度数为_________;②线段AD 、BE 之间的数量关系为_________;(2)拓展探究如图2,△ABC 和△DCE 均为等腰直角三角形,︒=∠=∠90DCE ACB ,点A 、D 、E 在同一直线上,CM 为△DCE 的高,连结BE ,请写出AEB ∠的度数及线段CM 、AE 、BE 之间的数量关系,并说明理由.图 1ECAB D图 2MEBCAD解:(1)①︒60; ②BE AD =;提示: ∵△ABC 和△DCE 均为等边三角形 ∴CE CD CB CA ==,︒=∠=∠60DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠ ∴BCE ACD ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS ) (属于“手拉手”全等模型) ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB (属于“8”字模型) ∴︒=∠=∠60ACB AEB . (2)解:︒=∠90AEB ,CM BE AE 2=-; 理由如下:∵︒=∠=∠90DCE ACB∴BCD DCE BCD ACB ∠-∠=∠-∠∴BCE ACD ∠=∠∵△ABC 和△DCE 均为等腰直角三角形 ∴CE CD CB CA ==, 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD CB CA ∴△ACD ≌△BCE (SAS )……………………………………7分 ∴21,∠=∠=BE AD ∵12∠+∠=∠+∠ACB AEB ∴︒=∠=∠90ACB AEB……………………………………8分 ∵DE CM CE CD ⊥=, ∴CM 平分DCE ∠∴︒=∠=∠=∠=∠45ECM DCM CED CDE ∴EM DM CM == ∴CM DE 2= ∵AD AE DE -= ∴CM BE AE 2=-.手拉手全等模型资料编号:202108292312关键词 手拉手全等模型 三角形全等手拉手全等模型介绍手拉手全等模型常见的有三种图形形式:两个等腰直角三角形组成的手拉手全等模型、两个等边三角形组成的手拉手全等模型以及两个普通等腰三角形组成的手拉手全等模型.必须说明的是,组成手拉手全等模型的两个等腰三角形,共用顶角的顶点(即两个顶角的顶点重合),且两个等腰三角形的顶角相等.如图1、图2、图3所示,如果把大等腰三角形的腰长看作大手,小等腰三角形的腰长看作小手,两个等腰三角形共用顶角的顶点,类似大手拉着小手,所以把这种模型称为手拉手模型(手拉手模型还有手拉手相似模型).图中两个等腰三角形的相对位置发生变化时,始终存在一对全等三角形. 手拉手模型常和旋转结合,作为几何综合题出现.图 1图 2图 3在图1、图2、图3中,△ABC 和△ADE 均为等腰三角形,AE AD AC AB ==,,且DAE BAC ∠=∠,连结BD 、CE ,则△ABD ≌△ACE . 结论证明:(以图1为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ). 结论证明:(以图2为例) ∵DAE BAC ∠=∠∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ).点评 手拉手全等模型的依据都是SAS. 重要推论推论1 如图所示,△ABC 和△ADE 均为等腰直角三角形,︒=∠=∠90DAE BAC ,连结BD 、CE ,则有: (1)△ABD ≌△ACE ; (2)CE BD CE BD ⊥=,.推论1证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠-∠=∠-∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)∵△ABD ≌△ACE ∴21,∠=∠=CE BD延长BD 交CE 于点F ,如图所示. ∵BCF DBC BFE ∠+∠=∠ ∴ACB DBC BFE ∠+∠+∠=∠2︒=∠+∠=∠+∠+∠=901ACB ABC ACBDBC∴CE BD ⊥.推论2 如图所示,△ABD 和△BCE 均为等边三角形,点A 、B 、C 在同一直线上,连结AE 、CD ,则有:FGHEDACB(1)△ABE ≌△DBC ; (2)DC AE =; (3)︒=∠60DHA ; (4)△ABG ≌△DBF ; (5)△BEG ≌△BCF ; (6)连结GF ,则AC GF //; (7)连结HB ,则HB 平分AHC ∠.推论2证明:(1)∵△ABD 和△BCE 均为等边三角形 ∴BC BE DB AB ==,,︒=∠=∠60CBE ABDFGHEDCAB∵点A 、B 、C 在同一直线上 ∴︒=∠=∠120DBC ABE 在△ABE 和△DBC 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE DBC ABE DB AB ∴△ABE ≌△DBC ;(2)由(1)可知:△ABE ≌△DBC ∴DC AE =;(3)∵△ABE ≌△DBC ∴21∠=∠∵12∠+∠=∠+∠ABD DHA ∴︒=∠=∠60ABD DHA ; (“8”字模型)(4)∵︒=∠=∠60CBE ABD ∴︒=︒-︒-︒=∠606060180DBF ∴DBF ABG ∠=∠ 在△ABG 和△DBF 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠DBF ABG DB AB 21 ∴△ABG ≌△DBF (ASA ); (5)∵△ABG ≌△DBF ∴BF BG =由前面可知:︒=∠=∠60CBF EBG 在△BEG 和△BCF 中∵⎪⎩⎪⎨⎧=∠=∠=BC BE CBF EBG BF BG ∴△BEG ≌△BCF (SAS );(6)连结GF ,如图所示.∵BF BG =,︒=∠60FBG ∴△BFG 为等边三角形 ∴︒=∠=∠60ABD BGF ∴AC GF //;(7)连结HB ,如图所示,作DC BN AE BM ⊥⊥,.∵△ABE ≌△DBC ∴DBC ABE S S ∆∆=,DC AE = ∴BN DC BM AE ⋅=⋅2121 ∴BN BM =∵DC BN AE BM ⊥⊥,,BN BM = ∴点B 在AHC ∠的平分线上 ∴HB 平分AHC ∠.点评 要求学生能从复杂的几何图形中辨识出手拉手全等模型,并能用SAS 证明两个三角形全等.模型举例例1. 如图,在△ABC 和△ADE 中,AE AD AC AB DAE BAC ==︒=∠=∠,,90,点C 、D 、E 在同一条直线上,连结BD . 求证:(1)△ABD ≌△ACE ;(2)试猜想BD 、CE 有何关系,并证明.ECAB D分析:由条件可知△ABC 和△ADE 均为等腰直角三角形,所以该图形中存在手拉手全等模型,手拉手全等模型的依据都是SAS . 证明:(1)∵︒=∠=∠90DAE BAC ∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ); (2)CE BD CE BD ⊥=,. 理由如下:∵△ABD ≌△ACE ∴E CE BD ∠=∠=1, ∵︒=∠=90,DAE AE AD ∴︒=∠=∠45E ADE ∴︒=∠451C ∴︒=︒+︒=∠+∠=∠9045451ADE BDE ∴CE BD ⊥.例2. 如图,△OAB 和△OCD 都是等边三角形,连结AC 、BD 相交于点E . (1)求证:①△OAC ≌△OBD ;②︒=∠60AEB ; (2)连结OE ,OE 是否平分AED ∠?请说明理由.EDOABC(1)证明:①∵△OAB 和△OCD 都是等边三角形 ∴OD OC OB OA ==,︒=∠=∠60COD AOB∴BOC COD BOC AOB ∠+∠=∠+∠ ∴BOD AOC ∠=∠ 在△OAC 和△OBD 中∵⎪⎩⎪⎨⎧=∠=∠=OD OC BOD AOC OB OA ∴△OAC ≌△OBD (SAS ); ②∵△OAC ≌△OBD ∴21∠=∠∵︒=∠+∠+∠180ABE EAB AEB ∴︒=∠+∠+∠+∠1802ABO EAB AEB ∴︒=∠+∠+∠+∠1801ABO EAB AEB ∴()︒=∠+∠+∠+∠1801ABO EAB AEB∴︒=∠+∠+∠180ABO OAB AEB ∴OAB ABO AEB ∠-∠-︒=∠180︒=︒-︒-︒=606060180C(2)OE 平分AED ∠. 理由如下:作BD ON AC OM ⊥⊥, ∵△OAC ≌△OBD ∴OBD OAC S S ∆∆=,BD AC = ∴ON BD OM AC ⋅=⋅2121 ∴ON OM =∵BD ON AC OM ⊥⊥,,ON OM = ∴OE 平分AED ∠.(到角两边距离相等的点在角的平分线上)例3. 如图所示,△ABC 和△ADE 都是等腰直角三角形,BD 与CE 相交于点M ,BD 与AC 交于点N .求证:(1)CE BD =;(2)CE BD ⊥. 证明:(1)∵△ABC 和△ADE 都是等腰直角三角形∴AE AD AC AB ==,︒=∠=∠90DAE BAC∴CAD DAE CAD BAC ∠+∠=∠+∠ ∴CAE BAD ∠=∠ 在△ABD 和△ACE 中∵⎪⎩⎪⎨⎧=∠=∠=AE AD CAE BAD AC AB ∴△ABD ≌△ACE (SAS ) ∴CE BD =;(2)∵△ABD ≌△ACE ∴21∠=∠∵BAC BMC ∠+∠=∠+∠12 ∴︒=∠=∠90BAC BMC ∴CE BD ⊥.例4. 如图,在线段AE 的同侧作等边△ABC 和等边△CDE (︒<∠120ACE ),点P 与点M 分别是线段BE 和AD 的中点. 求证:△CPM 是等边三角形.PMDBA EC分析:本题图形中包含手拉手全等模型,我们可以证明△ACD 和△BCE 全等.另外,关于等边三角形的判定,可先证明三角形是等腰三角形,再证明三角形有一个角等于︒60.证明:∵△ABC 和△CDE 都是等边三角形 ∴CE CD BC AC ==,,︒=∠=∠60DCE ACB ∴ACE DCE ACE ACB ∠+∠=∠+∠∴ACD BCE ∠=∠ 在△ACD 和△BCE 中∵⎪⎩⎪⎨⎧=∠=∠=CE CD BCE ACD BC AC ∴△ACD ≌△BCE (SAS ) ∴BE AD =∠=∠,21∵点P 与点M 分别是线段BE 和AD 的中点 ∴AM BP =在△ACM 和△BCP 中∵⎪⎩⎪⎨⎧=∠=∠=BP AM BC AC 21 ∴△ACM ≌△BCP (SAS ) ∴CP CM =,43∠=∠∴︒=∠=∠+∠=∠+∠=∠6043ACB ACP ACP PCM ∵CP CM =,︒=∠60PCM ∴△CPM 是等边三角形.三垂直全等模型资料编号:202108282255关键词 三垂直全等模型 一线三等角全等模型 三角形全等三垂直全等模型介绍如图1、图2、图3所示,为三种常见的三垂直全等模型.图 1图 2图 3如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,. 结论:△BCD ≌△CAE .结论的证明:∵DE AE DE BD ⊥⊥, ∴︒=∠=∠90E D ,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠901BCD ∴1∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC E D B 1 ∴△BCD ≌△CAE (AAS ).重要推论推论1 如图1所示,BC AC BC AC DE AE DE BD =⊥⊥⊥,,,,则有:BD AE DE +=;图 1证明:由前面可知:△BCD ≌△CAE ∴BD CE AE CD ==, ∵CE CD DE += ∴BD AE DE +=.推论2 如图2所示,BC AC BC AC CD BD CD AE =⊥⊥⊥,,,,则有:BD AE DE -=.图 2证明:∵CD BD CD AE ⊥⊥, ∴︒=∠=∠9021,︒=∠+∠90BCD B ∵BC AC ⊥ ∴︒=∠+∠903BCD ∴3∠=∠B在△BCD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA BC B 213 ∴△BCD ≌△CAE (AAS ) ∴AE CD CE BD ==, ∵CE CD DE -= ∴BD AE DE -=.说明 三垂直全等模型是一种常见的几何模型,同学们要记住这种几何模型的图形特征和题目特点,以后遇到这种模型常常要证明两个三角形全等. 模型举例例1. 如图,直线l 上有三个正方形c b a ,,,若c a ,的面积分别是5和11,则b 的面积是_________.l cba IH JFEBADCGlcba IHJFEBADCG分析 三垂直全等模型作为一种重要且常见的几何模型,要求同学们能从复杂的几何图形中辨识出这种模型,若能找出这种模型,往往要证明两个三角形全等,从而解决相关的问题.解析:根据“三垂直全等模型”,本题易证:△BCG ≌△GJF . ∴JF CG =由题意可得:11,522====JF S BC S c a ∴112=CG在Rt △BCG 中,由勾股定理得:16115222=+=+==CG BC BG S b .∴b 的面积是16.例2. 如图1所示,已知在△ABC 中,︒=∠90BAC ,AC AB =,点P 为BC 上一动点(CP BP <),分别过点B 、C 作AP BE ⊥于点E ,AP CF ⊥于点F . (1)求证:BE CF EF -=;(2)如图2,若点P 为BC 延长线上一点,其他条件不变,则线段BE 、CF 、EF 是否存在某种确定的数量关系?画图并直接写出你的结论.图 1图 2PCBA(1)证明:∵AP BE ⊥,AP CF ⊥ ∴︒=∠=∠901E ,︒=∠+∠903CAE ∵︒=∠90BAC ∴︒=∠+∠902CAE ∴32∠=∠在△ABE 和△CAF 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB E 321 ∴△ABE ≌△CAF (AAS ) ∴CF AE AF BE ==, ∵AF AE EF -= ∴BE CF EF -=;(2)如图3所示.图 3BECFEF+=.提示:关键在于证明△ABE≌△CAF.例3.如图,在△ABC中,BCACACB=︒=∠,90,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,求证:BEADDE-=;(3)当直线MN绕点C旋转到图3的位置时,请直接写出DE、AD、BE之间的数量关系.图 1图 2图 3图 1(1)证明:①∵MNAD⊥,MNBE⊥∴︒=∠=∠9021∵︒=∠90ACB ∴︒=∠+∠904ACD ∵︒=∠+∠903ACD ∴43∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC 4321 ∴△ADC ≌△CEB (AAS ); ②∵△ADC ≌△CEB ∴BE CD CE AD ==, ∵CD CE DE += ∴BE AD DE +=;图 2(2)∵MN AD ⊥,MN BE ⊥ ∴︒=∠=∠90CEB ADC ∵︒=∠90ACB ∴︒=∠+∠902ACD ∵︒=∠+∠901ACD ∴21∠=∠在△ADC 和△CEB 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CB AC CEB ADC 21 ∴△ADC ≌△CEB (AAS )∴BE CD CE AD ==, ∵CD CE DE -= ∴BE AD DE -=; (3)AD BE DE -=.提示:仍然是证明△ADC ≌△CEB .图 3例4.(1)如图1所示,已知在△ABC 中,AC AB BAC =︒=∠,90,直线m 经过点A ,m BD ⊥于点D ,m CE ⊥于点E ,求证:CE BD DE +=;(2)如图2,将(1)中的条件改为:在△ABC 中,AC AB =,D 、A 、E 三点都在直线m 上,且有α=∠=∠=∠BAC AEC BDA ,其中α为任意锐角或钝角,请问结论CE BD DE +=是否成立?若成立,请你给出证明;若不成立,请说明理由.m 图 1EDCBA m图 2ECD A B(1)证明:∵m BD ⊥,m CE ⊥ ∴︒=∠=∠9021 ∴︒=∠+∠903BAD ∵︒=∠90BAC ∴︒=∠+∠904BAD ∴43∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB 4321 ∴△ABD ≌△CAE (AAS ) ∴CE AD AE BD ==, ∵AE AD DE += ∴BD CE DE +=;(2)成立. 理由如下:∵︒=∠+∠+∠1801BAD BDA ∴α-︒=∠+∠1801BAD ∵︒=∠+∠+∠1802BAD BAC ∴α-︒=∠+∠1802BAD ∴21∠=∠在△ABD 和△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠CA AB AEC BDA 21∴△ABD≌△CAE(AAS)∴AE=,AD=CEBD∵AE=ADDE+∴BD=.DE+CE点评第二问所涉及到的几何模型为“一线三等角全等模型”,而我们在前面花大篇幅所介绍的“三垂直全等模型”属于“一线三等角全等模型”的特殊情况.BEFDBCA角平分线平行线模型资料编号:202108310011关键词 角平分线 平行线 等腰三角形角平分线平行线模型介绍如图所示,OM 平分AOB ∠,点P 是OM 上一点,过点P 作OB PC //,交OA 于点C ,则△POC 是等腰三角形. 下图就是角平分线平行线模型.MOBACP模型证明:∵OM 平分AOB ∠ ∴21∠=∠ ∵OB PC // ∴31∠=∠ ∴32∠=∠ ∴CP CO =∴△POC 是等腰三角形.点评 在角平分线的条件下,常过角平分线上一点作一边的平行线,构造等腰三角形. 重要推论推论1 如图所示,在△ABC 中,ABC ∠、ACB ∠ 的平分线交于点D ,过点D 作BC EF //,交AB 于 点E ,交AC 于点F ,则有: (1)FC FD ED EB ==,; (2)CF BE EF +=; (3)AC AB C AEF +=∆.推论1证明: (1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; (2)∵DF DE EF += ∴CF BE EF +=;(3)∵AF EF AE C AEF ++=∆ ∴AF DF DE AE C AEF +++=∆ AF CF BE AE +++= AC AB +=.推论2 如图所示,四边形ABCD 为平行四边形,把△BCD 沿对角线BD 折叠,得到△D BC ','BC 交AD 于点E ,则△BDE 为等腰三角形.EC'DBCA说明:由折叠可知:BD C CBD '∠=∠,即BD 平分BC C ',所以上图中包含角平分线平行线模型.推论2证明:由折叠可知:21∠=∠∵四边形ABCD 为平行四边形 ∴BC AD // ∴31∠=∠ ∴32∠=∠∴EDEB=∴△BDE为等腰三角形.模型举例例1.如图,把一张长方形的纸片ABCD沿BD对折,使点C落在点E处,BE与AD 相交于点O.(1)由折叠可知△BCD≌△BED,除此之外,图中还存在其他的全等三角形,请写出一组全等三角形:________________;(2)图中有等腰三角形吗?请你找出来:__________;(3)若8AB,求OB的长度.,6==BC解:(1)△ABD≌△EDB;(或△ABD≌△CDB或△AOB≌△EOD)(2)△BOD;提示:如图上所示,由折叠可知:=∠1∠2∵BCAD//(为什么?)∴3=∠1∠∴3∠2∠=∴OD OB =,即△BOD 为等腰三角形. (3)由(2)可知:OD OB =. 设x OD OB ==,则x OA -=8 ∵四边形ABCD 为长方形 ∴︒=∠90A在Rt △AOB 中,由勾股定理得:222OB AB OA =+∴()22268x x =+-解之得:425=x ∴425=OB . 例2. 如图,点O 是△ABC 的边AC 上一个动点,过点O 作直线BC MN //.直线MN 交ACB ∠的平分线于点E ,交ACB ∠的外角平分线于点F . (1)求证:OF OE =;(2)若6,8==CF CE ,求OC 的长.DNMEF BCAO(1)证明:∵CE 平分ACB ∠ ∴21∠=∠ ∵BC MN // ∴32∠=∠ ∴31∠=∠ ∴OC OE = 同理可证:OC OF = ∴OF OE =;(2)解:∵CF 平分ACD ∠ ∴ACD ∠=∠215 ∵51∠+∠=∠ECF ∴ACD ACB ECF ∠+∠=∠2121 ()︒=︒⨯=∠+∠=901802121ACD ACB在Rt △ECF 中,由勾股定理得:10682222=+=+=CF CE EF由(1)可知:521==EF OC . 例3. 如图,在△ABC 中,AD 平分BAC ∠,点E 、F 分别在BD 、AD 上,AB EF //,且CD DE =. 求证:AC EF =.EDBCAF证明:作AB CG //交AD 的延长线于点G . ∴G ∠=∠1 ∵AD 平分BAC ∠ ∴21∠=∠ ∴G ∠=∠2 ∴GC AC = ∵AB EF // ∴31∠=∠ ∴G ∠=∠3在△EDF 和△CDG 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠DC DE G 543 ∴△EDF ≌△CDG (AAS ) ∴CG EF = ∴AC EF =. 例4. 解答下列问题:(1)如图1所示,在△ABC 中,BC EF //,点D 在EF 上,BD 、CD 分别平分ACB ABC ∠∠、,写出线段EF 与BE 、CF 的数量关系;(2)如图2所示,BD 平分ABC ∠,CD 平分外角ACG ∠,BC DE //交AB 于点E ,交AC 于点F ,写出线段EF 与BE 、CF 的数量关系,并说明理由;(3)如图3所示,BD 、CD 为外角BCN CBM ∠∠、的平分线,BC DE //交AB 的延长线于点E .交AC 的延长线于点N ,直接写出线段EF 与BE 、CF 的数量关系.图 1EFDBCAG图 2FEDBC AMN图 3F EDBCA(1)∵BD 平分ABC ∠ ∴21∠=∠ ∵BC EF // ∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF += ∴CF BE EF +=; (2)CF BE EF -=. 理由如下:∵BD 平分ABC ∠ ∴21∠=∠ ∵BC DE //∴31∠=∠ ∴32∠=∠ ∴EB ED = 同理可证:FC FD =; ∵DF DE EF -= ∴CF BE EF -=; (3)CF BE EF +=.例5. 如图,在梯形ABCD 中,BC AD //,点E 在CD 上,且AE 平分BAD ∠,BE 平分ABC ∠.求证:BC AB AD -=.EB CAD证明:延长AE 交BC 的延长线于点F . ∵AE 平分BAD ∠ ∴21∠=∠ ∵BC AD // ∴F ∠=∠2 ∴F ∠=∠1 ∴BF BA =∵BF BA =,BE 平分ABC ∠ ∴FE AE =在△ADE 和△FCE 中∵⎪⎩⎪⎨⎧∠=∠=∠=∠FEC AED FE AE F 2F∴△ADE ≌△FCE (ASA ) ∴FC AD = ∵BC BF FC -= ∴BC AB AD -=.点评 利用右图所示的辅助线也能证明问题.角平分线+两垂线段模型资料编号:202112022157关键词 角平分线性质定理 等腰三角形 三角形全等 辅助线 垂线段 模型介绍 角平分线+两垂线段模型如图1,点P 是AOB ∠的平分线上一点,过点P 作OB PE OA PD ⊥⊥,,由角平分线的性质定理则有PE PD =.这就是角平分线+两垂线模型.这种模型蕴含了边相等、角相等和三角形全等,还可以构造出等腰三角形.在图1中,若连结DE ,则得到等腰三角形PDE 和等腰三角形DOE .图 1模型推论(1)PED PDE ∠=∠; (2)Rt △POD ≌Rt △POE ; (3)OE OD =.证明:(1)∵OP 平分AOB ∠,OB PE OA PD ⊥⊥, ∴PE PD = ∴PED PDE ∠=∠; (2)∵OB PE OA PD ⊥⊥, ∴△POD 和△POE 都是直角三角形 在Rt △POD 和Rt △POE 中∵⎩⎨⎧==PE PD OP OP∴Rt △POD ≌Rt △POE (HL );(3)由(2)可知: Rt △POD ≌Rt △POE ∴OE OD =.模型应用例1. 如图2所示,在△ABC 中,︒=∠90C ,AD 平分CAB ∠,若4,6==BD BC ,那么点D 到直线AB 的距离是__________.图 2图 3分析 本题条件中有角平分线,有角平分线上一点到一边的垂线段(距离),唯独缺少该点到另一边的垂线段(距离),若作出该垂线段,则可构造出角平分线+两垂线段模型. 解:作AB DE ⊥,则线段DE 的长度即为点D 到直线AB 的距离. ∵AD 平分CAB ∠,AB DE AC DC ⊥⊥, ∴DC DE = ∵4,6==BD BC∴246=-=-=BD BC DC ∴2=DE∴点D 到直线AB 的距离是2.例2. 如图4所示,在△ABC 中,︒=∠︒=∠70,50C B ,AD 是△ABC 的角平分线,AB DE ⊥于点E .(1)求EDA ∠的度数;(2)若3,8,10===DE AC AB ,求ABC S ∆.图 4图 5分析 对于(1),可根据直角三角形的两个锐角互余解决问题;对于(2),可构造角平分线+两垂线段模型求出AC 边上的高DF ,从而求出△ACD 的面积,继而求出△ABC 的面积. 解:(1)∵︒=∠︒=∠70,50C B∴︒=︒-︒-︒=∠-∠-︒=∠607050180180C B CAB ∵AD 平分CAB ∠ ∴︒=∠=∠30211CAB ∵AB DE ⊥ ∴︒=∠+∠901EDA∴︒=︒-︒=∠-︒=∠603090190EDA ; (2)作AC DF ⊥.∵AD 平分CAB ∠,AB DE ⊥,AC DF ⊥ ∴3==DF DE∴DF AC DE AB S S S ACD ABD ABC ⋅+⋅=+=∆∆∆2121 382131021⨯⨯+⨯⨯=27=.例3. 如图6所示,在△ABC 中,︒=∠90C ,AD 是BAC ∠的平分线,AB DE ⊥,DF BD =,求证: (1)EB CF =; (2)EB AF AB 2+=.图 6图 7分析 根据条件知图6中存在角平分线+两垂线段模型,故有DE DC =,这就为Rt △DCF 和Rt △DEB 全等提供了条件.证明:(1)∵AD 平分BAC ∠,AB DE ⊥,AC DC ⊥(︒=∠90C ) ∴DE DC =在Rt △DCF 和Rt △DEB 中∵⎩⎨⎧==DE DC DB DF∴Rt △DCF ≌Rt △DEB (HL ) ∴EB CF =;(2)在Rt △ACD 和Rt △AED 中∵⎩⎨⎧==DE DC AD AD∴Rt △ACD ≌Rt △AED (HL ) ∴AE AC = ∵EB AE AB +=∴EB AF EB EB AF EB CF AF EB AC AB 2+=++=++=+=.例4. 如图8所示,在四边形ABCD 中,BD DC AD AB BC ,,=>平分ABC ∠. 求证:︒=∠+∠180BCD BAD .图 8ABC D图 9E分析 本题难度较高,要证明︒=∠+∠180BCD BAD ,可证明BCD ∠等于BAD ∠的邻补角,而证明两个角相等,可通过证明两个角所在的三角形全等完成,必要时需要添加辅助线来构造全等三角形.题中已有角平分线的条件,过角平分线上的点向角的两边作垂线段,即作出角平分线+两垂线段模型,即可构造出全等三角形. 证明:过点D 作BC DE ⊥,BA DF ⊥,交BA 的延长线于点F . ∵BD 平分ABC ∠,BC DE ⊥,BA DF ⊥ ∴DF DE =在Rt △DCE 和Rt △DAF 中∵⎩⎨⎧==DF DE DA DC∴Rt △DCE ≌Rt △DAF (HL ) ∴1∠=∠C ,即1∠=∠BCD ∵︒=∠+∠1801BAD ∴︒=∠+∠180BCD BAD .例5. 如图10所示,AD 平分BAC ∠,DE 所在直线是BC 的垂直平分线,E 为垂足,过点D 作AC DN AB DM ⊥⊥,.求证:(1)CN BM =; (2)()AC AB AM +=21. 图 10图 11分析 对于(1),我们能想到的最直接的方法是全等法,那就是证明BM 和CN 所在的三角形全等即可,图中只需连结DB 、DC ,就可以构造出全等三角形;对于(2),直接下手证明会比较困难,于是我们把等式转化为AM AC AB 2=+,证明这个等式成立即可,当然,第(1)问的结论会为我们提供重要的条件. 证明:(1)连结DB 、DC ,如图11所示. ∵DE 垂直平分BC ∴DC DB =∵AD 平分BAC ∠,AC DN AB DM ⊥⊥, ∴DN DM =在Rt △DBM 和Rt △DCN 中∵⎩⎨⎧==DNDM DC DB ∴Rt △DBM ≌Rt △DCN (HL )∴CN BM =;(2)在Rt △ADM 和Rt △ADN 中∵⎩⎨⎧==DN DM AD AD∴Rt △ADM ≌Rt △AND (HL ) ∴AN AM =∵CN AN BM AM AC AB -++=+ ∴AM AN AM AC AB 2=+=+ ∴()AC AB AM +=21.等腰三角形的存在性问题资料编号:202111182021关键词 等腰三角形 分类讨论 尺规作图 垂直平分线在八年级数学中,学完了等腰三角形的性质和判定后,我们会遇到等腰三角形的存在性问题,这类问题往往需要学生根据情况分类讨论,确定等腰三角形的各种存在形态,然后根据每种形态解决相关问题.然而我看到的是,学生不能考虑到每一种可能的形态,从而造成漏解.究其原因,我想是学生分类讨论思想方法欠缺,不会借助于圆和线段垂直平分线的性质辅助解决问题造成的.下面,我将教会大家如何借助于圆的知识和线段垂直平分线的性质,将等腰三角形的各种存在性(形态)“一网打尽”.如图1所示,已知线段AB ,现确定一点C ,使△ABC 为等腰三角形.图 1AB由于没有指明线段AB 是腰长还是底边长,所以我们需要分为两种情况进行讨论:(1)当AB 为等腰三角形的腰长时:①以点A 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图2所示;图 2B图 3②以点B 为圆心,AB 的长为半径画圆,则圆上任一异于直线AB 与圆的交点的点都可以作为点C ,如图3所示;(2)当AB为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB的垂直平分线l,垂足为点D,则垂直平分线l上任一异于点D的点都可以作为点C,如图4所示.B图 4使△ABC为等腰三角形.下面讨论已知线段AB和直线m,在直线m上确定一点C,B Array m图 5由于没有指明线段AB是腰长还是底边长,所以我们需要分为两种情况进行讨论: (1)当AB为等腰三角形的腰长时:①以点A为圆心,AB的长为半径画圆(或圆弧),则圆(或圆弧)与直线m的交点即为点C,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图6所示;m图 6②以点B 为圆心,AB 的长为半径画圆(或圆弧),则圆(或圆弧)与直线m 的交点即为点C ,注意交点的个数可能不唯一,不要漏掉其中任何一个交点,造成漏解,如图7所示;m图 7(2)当AB 为等腰三角形的底边长时,根据线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,利用尺规作图作出线段AB 的垂直平分线l ,直线l 与直线m 的交点即为点C ,如图8所示.m图 8我们知道,角平分线和平行线组合在一起,即构成角平分线+平行线模型,这种模型中就存在等腰三角形,如图9所示.B图 9若要在OB边上确定一点D,使得△COD为等腰三角形,根据角平分线+平行线模型的特征,我们过点C作OA边的平行线,该平行线与OB边的交点,即为其中一个点D的位置,如图10所示,该点D也是线段OC的垂直平分线与OB边的交点,只不过作平行线更容易找出该点.B图 10其余各点D的确定如图(11)、(12)所示,你是否知道这些点是怎样确定出来的吗?B图 11图 12以上共有3个点D,使得△COD为等腰三角形.解决等腰三角形的存在性问题,一般分为三步:分类、画图、计算.当然,随着学习的深入,以后我们还会遇到因动点而产生的等腰三角形问题,让我们拭目以待.应用例1.如图所示,在正方形网格中,网格线的交点称为格点.已知A、B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有__________个.第 6 题图图 1图 2答案 8解析 本题考查等腰三角形的存在性问题.分别以点A 、B 为圆心,以AB 的长为半径作圆,如图1所示,则可以找到这样的点C 有4个.这两种情况下,△ABC 是以AB 为腰长的等腰三角形.若AB 为底边长,则作出AB 的垂直平分线,如图2所示,可以找到这样的点C 有4个.综上所述,符合条件的点C 有8个.例2. 如图所示,︒=∠60AOB ,OC 平分AOB ∠,如果射线OA 上的点E 满足△OCE是等腰三角形,那么OEC ∠的度数为__________.解:∵OC 平分AOB ∠,∴︒=∠=∠3021AOB AOC 分为三种情况:①当CE CO =时,如图1所示,∴︒=∠=∠30EOC OEC ;图 1图 2②当OE OC =时,如图2所示. ∵OE OC = ∴OCE OEC ∠=∠ ∴︒=︒-︒=∠75230180OEC ; ③当EC EO =时,如图3所示.图 3(说明:此时,点E 在线段OC 的垂直平分线上或OB CE //) ∵EC EO =∴︒=∠=∠30ECO EOC∴︒=︒-︒-︒=∠1203030180OEC .综上所述,OEC ∠的度数为︒30或︒120或︒75.点评 在讨论一个三角形为等腰三角形时,常常需要分为三种情况进行讨论.。

初中数学几何模型大全(精心整理)

初中数学几何模型大全(精心整理)

三线八角同位角找F型内错角找Z型同旁内角找U型拐角模型1.锯齿形∠2=∠1+∠3 ∠1+∠2=∠3+∠42.鹰嘴型鹰嘴+小=大∠2=∠1+∠3 ∠2=∠1+∠33.铅笔头型∠1+∠2+∠3=360° ∠1+∠2+∠3+∠4=540°180×(n-1)等积变换模型S△ACD=S△BCD 八字模型∠A+∠B=∠C+∠DAD+BC>AB+CD飞镖模型∠D=∠B+∠C+∠AAB+AC>BD+CD内内角平分线模型∠A∠D=90°+12内外角平分线模型∠D=1∠A2外外角平分线模型∠D=90°-1∠A2平行平分出等腰模型HG=HM等面积模型 D是BC的中点S△ABD= S△ACD 倍长中线模型:D是BC的中点S△FBD= S△ECD角平分线构造全等模型角平分线垂直两边角平分线垂直中间角平分线构造轴对称以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,垂直也可以做为轴进行对称全等。

三垂模型拉手模型大小等边三角形虚线相等且夹角为60°大小等腰三角形顶角为a,虚线相等,且夹角为a大小等腰直角三角形虚线相等且夹角为90°大小正方形虚线相等,且夹角为90°半角模型正方形ABCD ∠EDF=45°得:EF=AE+CFCD=AD,∠ADC=90°,∠EDF=45°,∠A+∠C=180°得:EF=AE+CF∠BADAB=AD,∠B+∠D=180°,∠EAF=12得:EF=BE+DFAB=AC,∠BAC=90°,∠DAE=45°得:DE2=BD2+CE2△CEF为直角三角形上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

初中数学——最全:初中数学几何模型

初中数学——最全:初中数学几何模型

最全:初中数学几何模型几何是初中数学中非常重要的内容,一般会在压轴题中进行考察,而掌握几何模型能够为考试节省不少时间,小编整理了常用的各大模型,一定要认真掌握哦~全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形;遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等;遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

初中数学经典几何模型总结上册

初中数学经典几何模型总结上册

初中数学经典几何模型总结上册几何图形初步模型(一)线段双中点 (2)几何图形初步模型(二)——双角平分线 (6)相交线与平行线模型(三)——猪蹄模型 (11)相交线与平行线模型(四)——铅笔头模型 (15)相交线与平行线模型(五)——锯齿模型 (20)三角形模型(六)——8字模型 (23)三角形模型(七)——飞镖模型 (28)三角形模型(八)——A字模型 (32)三角形模型(九)——老鹰抓小鸡模型 (35)三角形模型(十)——双角平分线模型 (38)全等三角形模型(十一)——K型模型 (44)全等三角形模型(十二)——手拉手模型 (48)全等三角形模型(十三)——倍长中线模型 (53)全等三角形模型(14)——平行线中点模型 (56)全等三角形模型(十五)——雨伞模型 (60)全等三角形模型(十六)——半角模型 (63)全等三角形模型(十七)——胖瘦模型(SSA) (70)轴对称模型(十八)——将军饮马模型 (75)轴对称模型(十九)——海盗埋宝模型 (82)轴对称模型(二十)——婆罗摩笈多模型 (86)几何图形初步模型(一)线段双中点◎结论1:已知点C 在线段AB 上,点M、N 分别是AC,BC 的中点,则MN=21AB.【证明】∵点M、N 分别是AC,BC 的中点,∴CM=21AC,CN=21BC 【奇思妙想消消消:等号左边CM,CN 消掉共同字母C,得MN。

等号右边21AC,21BC 消掉共同字母C,得21AB】∴MN =CM+CN =21AC+21BC =21(AC+BC)=21AB ◎结论2:已知点C 在线段AB 延长线上,点M、N 分别是AC,BC 的中点,则MN=21AB.【证明】∵点M、N 分别是AC,BC 的中点,∴MC=21AC,NC=21BC,【奇思妙想消消消:等号左边MC,NC 消掉共同字母C,得MN。

等号右边21AC,21BC 消掉共同字母C,得21AB】∴MN =MC -NC =21AC-21BC =21(AC -BC)=21AB ○巧○记○口○诀一半一半又一半已知点C 是线段BA 延长线上一点,点M,N 分别是AC,BC 的中点,则MN=21AB无论线段之间的和差关系如何变,MN 的长度只与AB 有关.即MN=21AB.1.(2022·山西晋城·七年级期末)已知线段5cm AB =,在线段AB 上任取一点C ,其中线段AC 的中点为E 、线段BC 的中点为F .则线段EF 的长度是_______.2.(2022·甘肃·凉州区中佳育才学校七年级期末)如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若AM =1,BC =4,求MN 的长度.(2)若AB =6,求MN 的长度.1.(2022·福建泉州·七年级期末)如图,线段13cm AB =,点C 是线段AB 上一点,点M 、N 分别是AC 、BC 的中点,则MN 的长为__________cm .2.(2022·安徽·桐城市第二中学七年级期末)已知线段AB =10cm ,线段AC =16cm ,且AB 、AC 在同一条直线上,点B 在A 、C 之间,此时AB 、AC 的中点M 、N 之间的距离为()A .13cmB .6cmC .3cmD .1.5cm 3.(2022·云南保山·七年级期末)如图,点M 是AB 的中点,点N 是BD 的中点,AB =6cm ,BC =10cm ,CD =8cm .则MN 的长为()A .12cmB .11cmC .13cmD .10cm4.(2021·山东枣庄东方国际学校七年级阶段练习)如图,已知线段AB =12cm ,点C 为线段AB 上的一个动点,点D ,E 分别是AC 和BC 的中点.(1)若AC =4cm ,求DE 的长;(2)若把“点C 在线段AB 上”改为“点C 在直线AB 上”,当AC =4cm 时,求DE 的长.(请画出图形,说明理由)5.(2022·山东·龙口市培基学校期中)如图,C 是线段AB 上一点,M 是AC 的中点,N 是BC 的中点.(1)若AM =2,BC =8,求MN 的长度;(2)若AB =14,求MN 的长度.1.(2018·湖南邵阳·中考模拟)如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.2.(2022·安徽·宣城市第六中学一模)如图所示,已知C D 、是线段AB 上的两个点,点M N 、分别为AC BD 、的中点.(1)若16AB cm =,6CD cm =,求AC BD +的长和M N ,的距离;(2)如果AB m =,CD n =,用含m n ,的式子表示MN 的长.几何图形初步模型(二)——双角平分线◎【结论1】如图,已知OP 为∠AOB 内一条射线,OM 平分∠BOP,ON 平分∠AOP,则∠MON=21∠AOB【证明】∵OM 平分∠BOP,ON 平分∠AOP,∴∠POM=21∠BOP,∠PON=21∠AOP,∴∠MON=∠POM+∠PON=21∠BOP+21∠AOP =21(∠BOP+∠AOP)=21∠AOB【奇思妙想消消消:等号左边∠POM,∠PON 消掉共同字母P,得∠MON。

初中数学几何模型大全+经典题型(含答案)

初中数学几何模型大全+经典题型(含答案)

初中数学几何模型大全+经典题型(含答案)全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。

两边进行边或者角的等量代换,产生联系。

垂直也可以做为轴进行对称全等。

对称半角模型说明:上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。

旋转全等模型半角:有一个角含1/2角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。

自旋转模型构造方法:遇60度旋60度,造等边三角形遇90度旋90度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋180度,造中心对称共旋转模型说明:旋转中所成的全等三角形,第三边所成的角是一个经常考察的内容。

通过“8”字模型可以证明。

模型变形说明:模型变形主要是两个正多边形或者等腰三角形的夹角的变化,另外是等腰直角三角形与正方形的混用。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三角形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三角形证全等。

中点旋转:说明:两个正方形、两个等腰直角三角形或者一个正方形一个等腰直角三角形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直角三角形。

证明方法是倍长所要证等腰直角三角形的一直角边,转化成要证明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋转顶点,通过证明旋转全等三角形证明倍长后的大三角形为等腰直角三角形从而得证。

几何最值模型对称最值(两点间线段最短)对称最值(点到直线垂线段最短)说明:通过对称进行等量代换,转换成两点间距离及点到直线距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

...初中数学经典几何模型(模型即套路)...【应用上面模型解决如下问题】初中数学里的几何证明问题有一个顺口溜是什么呀?分享举报浏览507次4个回答热点话题付费时代,你会花钱买会员,还是等待75 秒广告?最佳答案youlan17122012-06-01人人都说几何难,难就难在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

本回答由提问者推荐4评论分享举报收起wxn10445498832012-06-02展开全部人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

1评论分享举报fw8704751832012-06-02...展开全部人人都说几何难,难就难在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

1评论分享...举报初中数学里的几何证明问题有一个顺口溜是什么呀?分享举报浏览507次4个回答热点话题付费时代,你会花钱买会员,还是等待75 秒广告?最佳答案youlan17122012-06-01人人都说几何难,难就难在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

本回答由提问者推荐4评论分享举报收起wxn10445498832012-06-02展开全部人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看;底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等;公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠;中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线;梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线;正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决;实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈;弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添;两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线;基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。

相关文档
最新文档