单因素方差分析与多重比较
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因素方差分析
单因素方差分析也称作一维方差分析。它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。One-Way ANOVA过程要求因变量属于正态分布总体。如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。如果几个因变量之间彼此不独立,应该用Repeated Measure过程。
[例子]
调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。
表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数
从复
水稻品种
1 2 3 4 5
1 41 33 38 37 31
2 39 37 35 39 34
3 40 35 35 38 3
4 数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。
图5-1
分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据
在数据编辑窗口中输入数据。建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。或者打开已存在的数据文件“DATA5-1.SAV”。
2)启动分析过程
点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击
“0ne-Way ANOVA”项,系统
打开单因素方差分析设置窗口如图5-2。
图5-2 单因素方差分析窗口
3)设置分析变量
因变量:选择一个或多个因子变量进入“Dependent List”框中。本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。本例选择“品种”。
4)设置多项式比较
单击“Contrasts”按钮,将打开如图5-3所示的对话框。该对话框用于设置均值的多项式比较。
图5-3 “Contrasts”对话框
定义多项式的步骤为:
均值的多项式比较是包括两个或更多个均值的比较。例如图5-3中显示的是要求计算
“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。单因素方差分析的“0ne-Way ANOVA”过程允许进行高达5次的均值多项式比较。多项式的系数需要由读者自己根据研究的需要输入。具体的操作步骤如下:
① 选中“Polynomial”复选项,该操作激活其右面的“Degree”参数框。
② 单击Degree参数框右面的向下箭头展开阶次菜单,可以选择“Linear”线性、“Quadratic”二次、“Cubic”三次、“4th”四次、“5th”五次多项式。
③ 为多项式指定各组均值的系数。方法是在“Coefficients”框中输入一个系数,单击Add按钮,“Coefficients”框中的系数进入下面的方框中。依次输入各组均值的系数,在方形显示框中形成—列数值。因素变量分为几组,输入几个系数,多出的无意义。如果多项式中只包括第一组与第四组的均值的系数,必须把第二个、第三个系数输入为0值。如果只包括第一组与第二组的均值,则只需要输入前两个系数,第三、四个系数可以不输入。
可以同时建立多个多项式。一个多项式的一组系数输入结束,激话“Next”按钮,单击该按钮后“Coefficients”框中清空,准备接受下一组系数数据。
如果认为输入的几组系数中有错误,可以分别单击“Previous”或“Next”按钮前后翻找出错的一组数据。单击出错的系数,该系数显示在编辑框中,可以在此进行修改,修改后单击“Change”按钮在系数显示框中出现正确的系数值。当在系数显示框中选中一个系数时,同时激话“Remove”按钮,单击该按钮将选中的系数清除。
④单击“Previous”或“Next”按钮显示输入的各组系数检查无误后,按“Continue”按钮确认输入的系数并返回到主对话框。要取消刚刚的输入,单击“Cancel”按钮;需要查看系统的帮助信息,单击“Help”按钮。
本例子不做多项式比较的选择,选择缺省值。
5)设置多重比较
在主对话框里单击“Post Hoc”按钮,将打开如图5-4所示的多重比较对话框。该对话框用于设置多重比较和配对比较。方差分析一旦确定各组均值间存在差异显著,多重比较检测可以求出均值相等的组;配对比较可找出和其它组均值有差异的组,并输出显著性水平为0.95的均值比较矩阵,在矩阵中用星号表示有差异的组。
图5-4 “Post Hoc Multiple Comparisons”对话框
(1)多重比较的选择项:
①方差具有齐次性时(Equal Variances Assumed),该矩形框中有如下方法供选择:
LSD (Least-significant difference) 最小显著差数法,用t检验完成各组均值间的配对比较。对多重比较误差率不进行调整。
Bonferroni (LSDMOD) 用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。
Sidak 计算t统计量进行多重配对比较。可以调整显著性水平,比Bofferroni方法的界限要小。
Scheffe对所有可能的组合进行同步进入的配对比较。这些选择项可以同时选择若干个。以便比较各种均值比较方法的结果。
R-E-G-WF (Ryan-Einot-Gabriel-Welsch F) 用F检验进行多重比较检验。
R-E-G-WQ (Ryan-Einot-Gabriel-Welsch range test) 正态分布范围进行多重配对比较。
S-N-K(Student-Newmnan-Keuls) 用Student Range分布进行所有各组均值间的配对比较。如果各组样本含量相等或者选择了
“Harmonic average of all groups”即用所有各组样本含量的调和平均数进行样本量估计时还用逐步过程进行齐次子集(差异较
小的子集)的均值配对比较。在该比较过程中,各组均值从大到小按顺序排列,最先比较最末端的差异。
Tukey(Tukey's,honestly signicant difference) 用Student-Range统计量进行所有组间均值的配对比较,用所有配对比较误
差率作为实验误差率。
Tukey's-b用“stndent Range”分布进行组间均值的配对比较。其精确值为前两种检验相应值的平均值。
Duncan (Duncan's multiple range test) 新复极差法(SSR),指定一系列的“Range”值,逐步进行计算比较得出结论。
Hochberg's GT2用正态最大系数进行多重比较。
Gabriel用正态标准系数进行配对比较,在单元数较大时,这种方法较自由。
Waller-Dunca用t统计量进行多重比较检验,使用贝叶斯逼近。
Dunnett指定此选择项,进行各组与对照组的均值比较。默认的对照组是最后一组。选择了该项就激活下面的“Control
Category”参数框。展开下拉列表,可以重新选择对照组。
“Test”框中列出了三种区间分别为:
•“2-sides” 双边检验;
•“ •“>Conbo1”“右边检验。 ②方差不具有齐次性时(Equal Varance not assumed),检验各均数间是否有差异的方祛有四种可供选择: Tamhane's T2, t检验进行配对比较。