平行四边形的性质学案

合集下载

平行四边形的性质(1)导学案.doc

平行四边形的性质(1)导学案.doc

课题内容:平行四边形的性质(1) 学习目标:1、经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯。

2、探索并掌握平行四边形的性质,并能简单应用。

3、通过观察、实验、猜想、验证…等活动进一步发展学生的合情推理能力。

教学重点1、理解并掌握平行四边形的概念,2、探索平行四边形的性质。

教学难点有条理的表达平行四边形性质的验证过程学习过程:(1)微课引入:①通过微课引入“平行四边形”的定义。

②通过微课讲解定义的理解。

两组对边分别平行的四边形,叫做平行四边形。

平行四边形的相邻的两个顶点连成的一段叫做它的对角线。

教师进一步强调,平行四边形定义中的两个条件:①四边形,②两边分别分别平行AD//BC且AB〃DC平行四边形的表示(2)小组活动:动手制作一个平行四边形,观察平行四边形,总结平行四边形的其他性质问题:同学们拿出准备好的剪刀、彩纸或白纸一张。

将你们设计的平行四边形进行研讨分析。

思考两个问题:%1小组内能研究出平行四边形有哪些的特性(性质)%1请你们通过所学的知识来证明你们得出的结论。

(2)理论推导:上述猜想涉及线段相等、角相等。

我们知道,利用三角形全等得出全等三角形的对应边、对应角都相等,是证明线段相等、角相等的-•种重要的方法。

为此,我们通过添加辅助线,构造两个角形,通过三角形全等进行证明°性质理论推导:证明:如图,连接ACV AD//BC且AB//DC:.Z1 = Z2 , Z3 = Z4又AC是AABC和\CDA的公共边・.. \ABC^\CDAAD=CB, AB = CD:.ZB = ZD这样我们证明了平行四边形具有以下性质:%1平行四边形的对边相等%1平行四边形的对角相等(3)例题1:如图,在平行四边形ABCD中, DE A. AB ,BF1CD垂足分别为E, F o求证:AE = CF证明:..•四边形ABCD是平行四边形A ZA = ZC, AD = CB・「ZAED = ZCFB = 90°.I AADE g XCBF:.AE = CF(4)巩固练习:在平行四边形ABCD中,对角线AC, BD相交于点0, AO16, BD=10,则AO, B0二。

认识平行四边形教案6篇

认识平行四边形教案6篇

认识平行四边形教案6篇精心设计的教案可以有效提升学生们的学习积极性和参与度,教案的创新性能够激发学生的学习热情和动力,本店铺今天就为您带来了认识平行四边形教案6篇,相信一定会对你有所帮助。

认识平行四边形教案篇1教学目标:1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。

2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。

3、在学习活动中积累对数学的兴趣,培养交往、合作意识。

教学重点:认识平行四边形。

教学难点:感悟平行四边形的特征。

教学过程:一、情境导入同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。

二、自主探究同学们在生活中见过这样的图形吗?在哪见过?看,这是教师在生活中见到的四边形,你知道这是什么吗?课件出示:教材第14页例2图第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。

你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。

学生动手操作,尝试拼平行四边形,教师巡视指导。

组织交流,展示学生拼图结果,并让学生说说发现了什么?(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角) 老师边画平行四边形边指出:像这样的四边形叫做平行四边形。

三、巩固练习1.想想做做第1题。

学生独立完成,分小组讨论,汇报。

2.想想做做第2题。

组织学生想一想,再围一围。

3.想想做做第3题,学生在书上描一描,教师巡视检查。

4.想想做做第4题,学生动手完成。

5.想想做做第5题,学生在家长的帮助下完成。

三、全课总结提问:今天这节课你有什么收获?课后反思: 文章认识平行四边形教案篇2教学内容:数学人教版四年级上册第五课第二节《认识平行四边形》教学目标:1.让学生在联系生活实际和动手操作的过程中认识平行四边形,发现平行四边形的基本特征。

平行四边形的性质学案

平行四边形的性质学案

6.1《平行四边形的性质》学案(第一课时)一、学习目标:1、能够通过实例,得到平行四边形的定义,并会用符号表示平行四边形。

2、能通过实验、猜想、几何证明的方法得到平行四边形的性质定理1、2,并熟记这两个定理。

3、能应用平行四边形的定义和性质定理1、2进行推理论证。

4、逐步形成正确识图及进行图形之间转化的能力。

二、课前预习:(一)平行四边形的定义:1、叫做平行四边形。

如图(1),平行四边形ABCD用符号表示为:2、请根据图(1),回答问题:边AB的邻边是对边是,边CD的邻边是对边是;∠ABC的邻角是对角是,∠BCD的邻角是对角是。

3、请在图(1)中,分别过点A、B画出平行四边形的高。

4、请在图(2)中画出平行四边形的对角线。

5、如图(3)中,已知ABCD中,E F∥AB,GH∥BC,那么共有个平行四边形。

(二)平行四边形的性质:1、动手实验:任意画ABCD,连接对角线AC,如果沿这条对角线将平行四边形剪成两个三角形,这两个三角形能互相重合吗?由此,你能猜出平行四边形的对边和对角分别有什么性质呢?猜想1:平行四边形的对边。

猜想2:平行四边形的对角。

2、证明猜想(请同学们根据课本P4—P5,根据所给图形,写出已知,求证及证明过程)猜想1:猜想2:3、证明:平行四边形邻角互补。

(要求:根据命题画图,写出已知、求证及证明过程)4、得出结论:平行四边形的性质定理1平行四边形的性质定理2补充定理:平行四边形邻角5、应用定理解决问题:(根据例1证明下面两个命题)命题1:夹在两条平行直线间的平行线段相等。

命题2:如果两条直线平行,那么一条直线上各点到另一条直线的距离相等。

思考:1:经过推理得到证实的真命题叫做2、两条平行线中,其中一条直线上任意一点到另一条直线的垂线段的叫做平行线之间的距离。

因此命题2我们可以这样概括:。

三、应用知识,解决问题 A D如图在 ABCD 中,1、若AB=1㎝,BC=2 ㎝,则 ABCD 的周长=2、若AB=4㎝, ABCD 的周长是18㎝,则BC=3、若AB :BC=3:4,周长为14㎝,则CD=——,DA=——4、若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______5、若∠A+ ∠C= 200°,则∠A=______ 、∠B=______6、若∠A:∠B= 5:4,则∠C=______ 、∠D=______7、如图,平行四边形ABCD 中,点E 、F 在对角线BD 上,且AE || CF. 求证:AE =CF五:挑战自我1、如图,AC 是 ABCD 的对角线,请说明:S △ABC = S △ADC2、如图,点P 是 ABCD 内部任意一点,连接AP 、BP 、CP 、DP , 请说明:S △ABP+S △DCP = S △ADP+S △BCP四、自我评价C B1、下列命题中,正确的个数是( )。

平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇

《平行四边形》教案参考5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!《平行四边形》教案参考5篇教案的编写应当充分考虑学生的学习能力和学习需求,以便让每个学生都能够得到适当的教育,一份完善的教案能够提供丰富多样的教学资源和教学辅助材料,下面是本店铺为您分享的《平行四边形》教案参考5篇,感谢您的参阅。

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)

平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。

教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。

教学重点掌握平行四边形和梯形的特征。

教学难点理解平行四边形、长方形、正方形的关系。

教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。

教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。

2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。

3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。

比赛开始!(学生活动:画四边形)4、学生展示画图的结果。

师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。

本节课我们一起来研究平行四边形和梯形。

【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。

二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。

[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。

学生操作学具探究,同时教师巡视指导。

【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案

人教版初中数学八年级下册《平行四边形的性质》教案一. 教材分析《平行四边形的性质》是人教版初中数学八年级下册的教学内容,本节课主要让学生掌握平行四边形的性质,包括对边平行且相等,对角相等,对边和对角线的性质等。

通过学习,让学生能够识别平行四边形,并运用性质解决实际问题。

二. 学情分析学生在七年级时已经学习了四边形的分类和性质,对四边形有了一定的认识。

但平行四边形作为一个特殊的四边形,其性质和特点需要进一步引导学生理解和掌握。

在导入环节,可以通过复习四边形的性质,为新课的学习打下基础。

三. 教学目标1.知识与技能:让学生掌握平行四边形的性质,能够识别和判断平行四边形。

2.过程与方法:通过观察、操作、推理等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:平行四边形的性质及其应用。

2.难点:对角线的性质和判定平行四边形的方法。

五. 教学方法采用问题驱动法、合作学习法和情境教学法,引导学生主动探索、发现和解决问题,提高学生的学习兴趣和参与度。

六. 教学准备1.教具:平行四边形的模型、剪刀、彩笔等。

2.课件:平行四边形的性质及其应用。

七. 教学过程1.导入(5分钟)复习四边形的性质,提问:四边形有哪些性质?设计意图:巩固学生对四边形的认识,为新课的学习做好铺垫。

2.呈现(10分钟)展示平行四边形的模型,引导学生观察并提问:平行四边形有什么特点?学生分组讨论,总结出平行四边形的性质。

设计意图:培养学生观察和思考的能力,引导学生发现平行四边形的性质。

3.操练(10分钟)让学生用剪刀剪出平行四边形,并用彩笔标记出对边和对角线。

学生互相检查,教师巡回指导。

设计意图:培养学生动手操作的能力,加深对平行四边形性质的理解。

4.巩固(10分钟)出示一些判断题,让学生判断题目中给出的图形是否为平行四边形。

设计意图:巩固所学知识,提高学生的判断能力。

《平行四边形的性质》教学设计范文

《平行四边形的性质》教学设计范文

《平行四边形的性质》教学设计范文《平行四边形的性质》教学设计范文篇一:《平行四边形的性质》教学设计一、教学目标1知识目标经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质;探索并掌握平行四边形的对边相等,对角相等的性质。

2能力目标在进行探索的活动过程中发展学生的探究能力,提高学生运用数学知识解决河题的能力;3情感目标在探索讨论中养成与他人合作交流的习惯,增强克复困难的勇气和信心。

二、教学内容及重点、难点:教学内容:1平行四边形的概念2平行四边形的性质3平行四边形的概念、性质的应用。

教学重点:探索平行四边形的性质教学难点:通过操作、思考、升化、归纳出结论教学方法:探索归纳证明三、教学对象分析这节内容通过小制作拼图引出平行四边形的定义,让学生经历探索、猜想、证明的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的更多性质,教师在教学过程中,结合具体的背景适时的让学生提出问题并寻求搭档解决问题,满足学生多样化的要求,这节内容对以后的菱形、矩形、正方形内容的引入埋下伏笔。

四、教学策略及教学设计设置问题情境,从上海世博会引入课题。

1.用图片(东方之冠,日常生活中平行四边形图片)展示平行四边形,引出平行四边形的相关概念(定义,对边,对角,对角线)2.让学生进行如下操作后,思考以下问题:(动动手幻灯片展示)小组合作,探究新知(学生思考、操作后,教师用PPT展示)答:(1)AB=CD,AD=CB(2)∠1=∠3 ,∠2=∠4,∠B=∠D(3)AD//BC ,AB//CD3.针对学生指出 AD//BC,AD//CD分析究其原因。

让学生分析,分小组讨论。

得出结论:∠1和∠3 是内错角,∠2和∠4是内错角,依据“内错角相等,两直线平行”4.平行四边形的定义,即“两组对边分别平行的四边形是平行四边形”通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。

平行四边形的性质的教案(精选10篇)

平行四边形的性质的教案(精选10篇)

平行四边形的性质的教案平行四边形的性质的教案(精选10篇)作为一位不辞辛劳的人民教师,通常需要准备好一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

教案应该怎么写呢?下面是小编精心整理的平行四边形的性质的教案,欢迎阅读与收藏。

平行四边形的性质的教案篇1教学目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.索并掌握平行四边形的性质,并能简单应用;3.在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学准备:多媒体课件教学过程第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。

)1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。

将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?第二环节探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)小组活动3:用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?(1)让学生动手操作、复制、旋转、观察、分析;(2)学生交流、议论;(3)教师利用多媒体展示实践的过程。

第三环节推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。

)实践探索内容(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

平行四边形定义及性质学案

平行四边形定义及性质学案

OABCO图4-3平行四边形定义及性质学案1、定义理解:(利用P98~99平行四边形定义和性质段落内容,完成下列题目) ①在四边形ABCD 中,∵ , ;∴四边形ABCD 为 。

理由是 ②线段AC 和线段BD 叫做平行四边形ABCD 的两条 。

③平行四边形ABCD 用符号表示为 ;④∵□ABCD ,∴AB CD ,(定义)理由是: 。

AB CD ,(性质)理由是: 。

⑤∵□ABCD ,∴∠ABC=∠ ,∠BAC=∠ ;理由是: 。

⑥∵□ABCD ,∴AD ∥BC,∴∠ABC+∠BAC= 。

理由是: 。

⑦性质: 1、平行四边形的 相等, 2、平行四边形的 相等。

2、牛刀小试(请注意,第④题是让你学习做题格式和思路,) ①□ABCD 中,∠B=60。

,则∠A= ,∠C= ,∠D= 。

②□ABCD 中∠A+∠C=200°.则:∠A= ,∠B= .∠C= , ③□ABCD 中,∠A=120。

,∠ABD=35。

,则∠C= 。

,∠CBD= 。

.④如右下图,四边形ABCD 是平行四边形。

求: ③图 (1)∠D ,∠BCD 的度数。

3、探索平行四边形对角线性质如4-3图,□ABCD 的两条对角线AC ,BD 相交于点O , (1)图中有哪些三角形是全等的?有哪些线段是相等的?全等三角形有 相等的线段有:结论:平行四边形的性质3:平行四边形的对角线 。

数学表达式:∵□ABCD ,∴A0 C0,B0 D0;理由是( )4、模仿P100例1,完成下面题目如图,在□ABCD 中,BD ⊥AD ,AB=20,AD=16,分别求BC,CD 及OD,AO,AC 的长5、如图1,在□ABCD 中,对角线相交于点O ,AC ⊥CD ,AO = 3,BO = 5,则CO =____,CD=____,AD =6、在□ABCD 中,AB 、BC 、CD 的长度分别为2x +1,3x ,x +4,求□ABCD 的周长___ ____,感觉最顺手的几个题是_ _ _,感觉稍微难的题目是_ _ __,需要提醒才能完成的题目是_ __,经过讨论后发现自己做错的题目是_ ____,至今还有问题的题目是_ ____,如果让你给其他同学做些提醒,你最想提醒的是___ ; 你都和哪些同学交流了你的看法___ __ ___; 给你帮助最大(或你给他帮助)的同学是 __;平行四边形判定定理学案(阅读P103、P105、P106,选择合适判定定理,完成下列题目)①如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,理由是②如图,四边形ABCD中,若AB//CD,AD//BC则四边形ABCD是 ,理由是③四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是④图中的四边形ABCD是平行四边形吗?;理由是⑤在图中,AC=BD=16, AB=CD=EF=15,CE=DF=9。

《平行四边形的性质》教案

《平行四边形的性质》教案

《平行四边形的性质》教案《平行四边形的性质》教案《平行四边形的性质》教案一、教学目的知识技能:掌握平行四边形对角线互相平分这一性质,并会用此性质进展有关的论证和计算. 数学考虑:经历观察、猜测、实验、验证等数学活动,认识平行四边形的性质,开展学生演绎推理才能和发散思维才能. 解决问题:通过多种方法探究平行四边形的性质,体验解决问题策略的多样性,初步形成评价与反思的意识. 情感态度:培养学生勤于理论、勇于探究、合作交流的精神,增强学生学好数学的勇气和信心. 二、教学重难点教学重点:平行四边形的对角线互相平分这一性质的应用. 教学难点:对平行四边形的对角线互相平分这一性质的探究. 三、教学方法与手段采用“创设情境—大胆猜测—实验探究—反思评价”的课堂活动形式,努力营造自主、合作、探究的学习气氛,利用多媒体辅助教学,生动、直观地反映问题情境,使学生在学习中获得愉快的数学体验. 四、教学过程一天,财主巴依遇到阿凡提,想考一考聪明的阿凡提,说给你两块地,一块是平行四边形形状的〔如下列图,AB=10,OA=3,BC=8〕,还有一块是边长是7的正方形EFGH土地,让你来选一下,哪一块面积更大?〔一〕激趣设疑7 GC F E HD O C B A D [老师活动] 老师利用课件展示问题情境. [学生活动] 此时,学生的积极性被调动起来,努力试图寻找各种途径来求平行四边形的面积,但找不到适宜的解决方法. [教学内容] 老师乘机引出课题,明确学习任务. [达成目的与调控措施] 此处创设生动有趣的故事情境,力求更好地激发学生的学习兴趣. 〔二〕深化探究 [教学内容] 请学生观察平行四边形的对角线,并猜测有什么性质. [学生活动] 大多数学生想到了对角线平分,但无视了“互相”两字,也有猜到对角线平分每组对角等错误结论. [老师活动] 此时老师不做解答,但一一记录下学生的各种猜测. [达成目的与调控措施] 学生形形色色的答复,能给他们不同的感受,在锻炼学生的观察及表达才能的同时,并为下一步实验探究指明了方向. [老师活动] 老师将前后四名同学分成一组,学生拿出事先准备好的平行四边形及实验工具〔刻度尺、剪刀、图钉〕,尝试在交流合作中动手探究平行四边形的对角线有何性质. [学生活动] 在探究中,学生使用了以下几种方式.一是大局部学生用刻度尺直接测量,得出结论;二是有一局部学生沿平行四边形的一条对角线将其对折,对折后重叠,也较易得出结论;三是有小局部学生用剪刀将平行四边形沿对角线剪成四个小三角形,尝试能否重叠.用此方法出现了有学生不知道选哪两个三角形重叠,或在重叠时,分不清三角形哪两边是原平行四边形对角线的一半,此时老师提示让学生在各线段上标注字母;四是有个别组将两个形状、大小完全一样的平行四边形,用图钉钉在对角线的交点处将其固定,把其中一个旋转180°.但是个别学生不知道绕交点旋转180°后在什么位置,或不知道重叠后的目的. [老师活动] 这时,老师要引导学生展开议论、交流合作,并以一个参与者、合作者的身份活动在各小组间,鼓励创新,同时关注学生个体差异,施行有效指导. [达成目的与调控措施] 此处为的是更好的突出重点,打破难点,让学生带着问题去探究,感受数学活动充满探究性和创造性,使课堂变成学生探究互助的乐园、师生彰显个性的舞台. [老师活动] 探究完毕后,分组展示结果,老师利用课件展示“旋转法”的实验过程,增强了教学的直观性. [学生活动] 大局部学生会得出对角线互相平分这条性质,也有些学生会得出对角线相等或对角线互相垂直这样的错误结论.老师对学生的错误猜测和结论进展剖析,并让学生反思实验失败的原因:图形画的不准确,或动手操作的误差,或是图形画得过于特殊等等. [达成目的与调控措施] 探究的经历意味着学生要面临很多困惑,甚至失败,也可能花费很多时间和精力后结果还是不够理想,但这些是学生生存、成长、创造所必经的过程,是值得的,因为他们所获得的可能是一生受益无穷的财富. [老师活动] “趁热打铁”,老师又提出: [教学内容] “实验都是有误差的,我们能否对此进展理论证明?” [学生活动] 此问题难度不大. [老师活动] 老师让学生口述证明过程.最后师生共同归纳出“平行四边形的`对角线互相平分”这条性质. [达成目的与调控措施] 猜测与论证的统一,表达知识的系统完好性,开展学生的演绎推理才能. [教学内容]老师再现引课难题. [学生活动] 此问题,这时学生能很容易利用本节课的重点平行四边形对角线互相平分加以解决.请一名学生口答解题过程. [老师活动] 同时老师结合学生的答复板书解题过程. [达成目的与调控措施] 改变例题的呈现方式,体会数学来于生活又效劳于生活,加深对性质的理解与应用. 〔三〕迎接挑战财主不服气,又想考阿凡提,说过点O做一直线EF,交边AD于点E,交BC于点F.直线EF绕点O旋转的过程中〔点E与A、D不重合〕,你能知道这里有多少对全等三角形吗? {挑战一} A E DOADBCO F E BC F [老师活动] 此处组织学生抢答,互相补充完善后,学生答出了全部的全等三角形. [达成目的与调控措施] 此题复习稳固全等三角形的有关知识,进一步应用性质,增强了学生竞争与合作意识. {挑战二} ADBCOEF这时,阿凡提又提出,当EF⊥BD于O,分别交AB、CD于E、F,假设三角形ADE的周长为m,那么平行四边形ABCD的周长是多少?[学生活动] 此题难度稍大,引导学生分组讨论,老师再一次参与到学生的讨论中了来.局部学生想到了利用线段垂直平分线的性质,将DE转化为BE,突破此题难点;对根底稍差的学生有一定困难,但在互相交流后,可达成共识. [达成目的与调控措施] 生生互动、师生互动,表达学生为主体、老师做指导的和谐教学. 正在这时,财主的两个儿子也跑来找阿凡提评理,说父亲偏向,都说对方的地大!聪明的你能帮助解决吗? {挑战三} [学生活动] 此题有多种解法.学生独立考虑.局部学生想到了通过比拟这两个三角形的高;还有一些学生会连接对角线BD,利用平行四边形的对角线的性质,通过面积的分割与拼补得到解决. [老师活动]老师对学生想到的其他正确解法一一肯定并加以鼓励.同时对于没有想到解决问题的学生,老师给予适当提示. [达成目的与调控措施] 一题多解,力求培养学生的发散思维才能.〔四〕开放探究国王听说阿凡提非常聪明,召他进宫,说,我有一块平行四边形的花园〔如上图〕,想在里面种四种不同的花,并且所占的面积一样,你给我设计几个方案. [老师活动] 这是一道开放题.组织学生自己动手设计. [学生活动] 全体学生都能乐于参与,感受问题中蕴涵的宏大乐趣,设计出了非常多的方案.并积极地利用实物投影仪展示自己的设计成果. [达成目的与调控措施] 开放性设计,使不同层次的学生都能答复,进步全体学生的学习数学的自信心. 〔五〕鼓励评价 [学生活动] 我的收获是…… 我感到最困惑的是…… 我最想说的一句话是…… 今后我的学习打算是…… [达成目的与调控措施] 老师鼓励学生自我评价反思,作为本节探究课,老师不必拘泥于学生总结的全面与否、深度如何,只要他们通过学习积累了属于自己的数学活动经历就足够了.老师在学生总结的根底上,进一步总结,强调重点,评价学生的学习表现. 〔六〕反应验收 [教学内容] 必做题:教材练习题:P95 1、2;选做题: 1、设计一道有关平行四边形性质的题目,要求能用上平行四边形的三条性质.2、设计一枚平行四边形的个性邮票. [达成目的与调控措施] 根据因材施教,面向全体的原那么,分必做题和选做题,满足多层次学习的需要,使不同层次的学生都能得到不同的开展. 〔七〕板书设计§19.1.1平行四边形的性质一、平行四边形的性质探究二、例题三、变式四、小结板书设计力求做到条理明晰、重点突出.。

四边形学案02-平行四边形定义及性质学案

四边形学案02-平行四边形定义及性质学案

16.2平行四边行的性质(第1课时)能力.1.平行四边形的定义:(1)定义:两组对边分别平行的四边形是平行四边形;(2)表示:平行四边形用符号“□”来表示。

2.平行四边形性质:(1)边:两组对边分别平行且相等;(2)角:对角相等、邻角互补;(3)对角线:对角线互相平分。

3.两条平行线间的距离的定义:两条平行线中,一条直线上的任意一点到另一条直线的距离叫做这两条平行线间的距离。

4.平行四边形的面积:(1)计算公式:S=底×高;(2)等底等高的平行四边形面积相等,等底等高的三角形面积是平行四边形面积的一半。

能力和发散思维能力成功后的快乐。

课前准备:1、回忆四边形相关知识:指出下四边形的对边、对角、对角线对边定义:____________________________________________________________________ 对角定义: ____________________________________________________________________对角线定义:_______________________________________________________互为对边的是_____________D互为对角的是_____________对角线有:__________________平行四边形的概念1、拼图游戏问题1:小组活动:用两个全等的三角形,能拼出怎样的四边形?拼拼看。

⑴将一个三角形沿对应边对折可拼成_________________________________。

⑵将一个三角形旋转180度后,使对应边生命可拼成___________________。

⑶将每组对应边旋转后重合可拼出_____个____________________________。

问题2:观察拼出的这个四边形的对边有怎样的位置关系?说说你的理由. 归纳小结:1、平行四边形概念:两组 分别 的四边形,叫做平行四边形。

平行四边形的性质教案

平行四边形的性质教案
例4、如图5在□ABCD中. AB=10. AD=8. AC⊥BC.求BC. CD, AC, OA的长,以及□ABCD的面积 。
解:∵四边形是平行四边形。
∴BC=AD=8,CD=AB=10.
∵AC⊥
∴△ABC是直角三角形
由勾股定理AC= 6
图5
又OA=OC.
∴=1/2=3
BC*AC=8*6=48
六、教学过程(45分钟)
(一)回顾旧知 (约4分钟)
师:我们这一章将开始学习平行四边形。平行四边形生活提常见的图形,小区的伸缩门,庭院的竹篱笆载重汽车的防护栏等,都有平行四边形的图形形象, 大家还能举出生活中有平行四边形的例子吗?
生:升降机,楼梯上的扶手,伸缩衣架,梯子
师:所以在生活中我们可以找到许多平行四边形的形状。
师:大家正确找出了两条平行四边形的性质:还有一条还能正确找出来吗?
例2,如图3在口ABCD中,连接AC,BD,并设它们相于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?
OA=OC,OB=OD
证:∵AB∥CD,AD∥BC
∴∠1=∠2,∠3=∠4
图3
图2
又∵AD=BC
∴△ABD≅△CDO(角边角)
∴OA=OC,OD=OB
师:所以我们得出第三条性质是?
生:两条对角线互相平分的四边形是平行四边形。
(师生共同探讨完成)
设计意图:给学生充足时间思考,交流时间。在学生独立完成时给予适应点拨、体现出学生学习的主体地位,教师的主导作用。并使学生增强本节课记忆。
3、得出结论(约5分钟 )
师:由例题1、2我得出哪些结论? (举手回答)
证明:连接AC,在口ABCD中,有AD∥BC,AB∥CD,
∴∠1=∠2,∠3=∠4

人教版平行四边形的性质教案

人教版平行四边形的性质教案

人教版平行四边形的性质教案《平行四边形的性质》选自义务教育课程标准实验教科书《数学》(人教版)八年级下册第十九章第一节.本节课内容是学生在小学阶段初步了解特殊四边形以及学过《三角形》这章的基础上进行的,下面是为大家整理的人教版平行四边形的性质教案5篇,希望大家能有所收获!人教版平行四边形的性质教案1教学内容:义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。

教学目标:1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。

2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。

3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。

教学重、难点:让学生在观察、操作、交流等教学活动中认识平行四边形。

教具准备:一个长方形方框,多媒体课件。

学具准备:每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。

教学过程:一、谈话引入教师:同学们,在以前的学习中我们已经初步认识了平行四边形。

实际上,在我们生活中也经常见到平行四边形。

请看大屏幕。

(课件出示主题图)请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。

)教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢今天这节课老师就和同学们一起来进一步认识平行四边形。

板书课题:平行四边形二、探究新知1、认识平行四边形的特征(1)教师:同学们喜欢看魔术表演吗(喜欢)现在,老师就给同学们表演一个小魔术。

(教师出示一个长方形方框)这个图形大家认识吗(它是长方形)教师:对!这是一个长方形。

老师握着这个长方形方框的两个对角,轻轻地拉一拉。

-平行四边形导学案(全章)

-平行四边形导学案(全章)

18.1.1 平行四边形及其性质(一)学习目标:理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.学习重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.学习难点:运用平行四边形的性质进行有关的论证和计算.学习过程:一、自主预习(10分钟)1.由条线段首尾顺次连接组成的多边形叫四边形;四边形有条边,个角,四边形的内角和等于度;2.如图AB与BC叫边, AB与CD叫边;∠A与∠B叫角,∠D与∠B叫角; 3多边形中不相邻顶点的连线叫对角线,如图四边形ABCD中对角线有条,它们是自学课本1.有两组对边的四边形叫平形四边形,平行四边形用“”表示,平行四边形ABCD记作。

2.如图□ABCD中,对边有组,分别是,对角有_____组,分别是_________________,对角线有______条,它们是___________________。

你能归纳ABCD的边、角各有什么关系吗?并证明你的结论。

二、合作解疑(15分钟)1、如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中一条边AB长为8m,其他三条边各长多少?2、一个平行四边形的一个外角是38°,这个平行四边形的各个内角的度数分别是:3 ABCD有一个内角等于40°,则另外三个内角分别为:4、平行四边形的周长为50cm,两邻边之比为2:3,则两邻边分别为:5、在ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.3:4:4:3C.3:3:4:4D.3:4:3:45、ABCD 的周长为40cm,△ABC的周长为27cm,AC的长为()A.13cmB.3 cmC.7 cmD.11.5cm三、综合应用拓展(5分钟)如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE.四、当堂检测(10分钟)1.在ABCD 中,∠A= 50,则∠B= 度,∠C= 度,∠D= 度.2.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

平行四边形性质导学案

平行四边形性质导学案

19.1 平行四边形及其性质(1)导学案学习目标:1.使学生掌握平行四边形的概念及性质定理,并能运用这些知识进行有关的证明或计算.2.知道解决平行四边形问题的基本思想是化为三角形问题来处理,渗透转化思想;通过推导平行四边形的性质定理的过程,培养学生的推理、论证能力和逻辑思维能力.3.通过要求学生书写规范,培养学生科学严谨的学风;渗透几何方法美和几何语言美及图形内在美和结构美.学习重点:平行四边形性质定理的应用学习难点:在计算或证明中应用平行四边形概念、性质的知识.疑点及解决办法:注重对概念的教学,使学生深刻理解上述概念,搞清它们之间的关系.教学过程:一、自主预习,引入新课。

1、平行四边形是我们常见的图形,庭院的竹篱笆、载重汽车的防护栏、小区的伸缩门等,都是平行四边形的形象。

你能再举出一些例子吗?2、平行四边形的定义:有___________分别_________的_________叫做平行四边形,用符号________表示。

如右图,平行四边形ABCD记作。

3、如右图,由平行四边形的定义,我们知道平行四边形的两组对边分别平行,用符号语言表示为:∵∴二、合作交流,探究性质1、提出问题:平行四边形还有什么性质呢?2、探究:(1)根据定义画一个平行四边形,观察除了“两组对边分别平行”外,它的边、角之间还有什么关系?(2)度量一下,是不是和你的猜想一致?(3)平行四边形具有以下性质:平行四边形的对边____________;平行四边形的对角____________。

(4)你能证明你发现的上述结论吗?(提示:连接对角线把未知问题转化为已知的三角形全等问题)已知:求证:证明:(5)结合上图,用符号语言表示上述性质为:平行四边形的对边相等平行四边形的对角相等∵∵∴∴三、典型例题,初步应用如右图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三边的长各是多少?AB C DAB CD(图3)四、课堂练习,熟练性质1、 ABCD 中,AB=5, BC=3, 则它的周长为_________。

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】

数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。

(2)验证猜想结论,培养学生的论证和逻辑思维能力。

(3)通过开放式教学,培养学生的创新意识和实践能力。

3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。

平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形的性质
练习1(边:平行四边形的对边相等,邻边之和=______周长)
(1)在□ABCD中,AB=8,BC=4,其余各边长为多少?其周长等于多少?
(2)若□ABCD的周长是20,已知AB=6,则BC=________,CD=________。

(3)若□ABCD的周长是24cm,AB比BC长4cm,则AB=________cm,BC=________cm。

(4)若□ABCD的周长是32cm,AB=3BC,则BC=________cm,CD=________cm。

(5)若□ABCD的周长是30cm,AB:BC=3:2,则AD=________cm,CD=________cm。

练习2(角:平行四边形的对角相等,邻角________)
(1)在□ABCD中,∠A=100°,求出其他各角的度数。

(2)□ABCD中,若∠A的外角是50°,那么平行四边形的每个内角是多少度?
(3)□ABCD中,∠A比∠B大30°,则∠A=________,∠D=________。

(4)□ABCD中,∠A=3∠B,则∠B=________,∠C=________。

(5)□ABCD中,∠A:∠B=3:2,则∠B=________,∠C=________。

(6)如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.
(7)如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.
练习3(对角线)
(1)如图,在□ABCD中,BC=10cm,AC=8cm,BD=14cm,则△AOD的周长是________,△DBC比△ABC的周长长________cm。

(2)如图,□ABCD的两条对角线相交于点O,已知AB=6cm,BC=8cm,△BOC的周长是18cm,那么△AOB的周长是________。

(3)如图,□ABCD的对角线AC﹑BD相交于点O,且AC+BD=20,△AOB的周长等于15,则
CD=________。

E D A B C
(4)如图,□ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是________cm 。

(5)如图,平行四边形ABCD 的对角线交于点O ,且AB=5,△OCD 的周长为23,则平行四边形ABCD 的两条对角线的和是( ) A.18 B.28 C.36 D.46
(6)如图,在平行四边形ABCD 中,已知∠ODA=90°,AC=10cm ,BD=6cm ,则AD 的长为________。

(7)如图,在□ABCD 中,AD=5cm ,AB ⊥BD ,点O 是两条对角线的交点,OD=2cm ,则CD=________cm 。

(8)如图,□ABCD 的两条对角线相交于点O ,AD=132cm ,CD=4cm ,BD ⊥AB ,则BD=________cm ,△ABC 比△ABD 的周长长________cm 。

练习4(取值范围:三角形三边关系→两边之和______第三边,两边之差______第三边)
(1)□ABCD 的对角线AC 、BD 交于点O ,AC=10,BD=6,则AB 的取值范围是_________。

(2)□ABCD 的对角线AC 、BD 交于点O ,AB=4,BC=6,则OA 的取值范围是_________。

(3)若平行四边形的一边等于14,则它的两条对角线可能的取值分别是( )
A.4和16
B.6和18
C.8和20
D.10和22
练习5(周长类:线段的拆分、转化、合并)
(1)如图,△ABC 中,∠A=90°,AC=9cm ,BD 平分∠ABC 交AC 于D ,DE ⊥BC 于E ,且CE=3cm ,则△DEC 的周长为________。

(2)如图,在△ABC 中,AB=AC=10,DE 垂直平分AB ,垂足为E ,DE 交AC 于D ,若△BDC 的周长为16,则BC=________。

(3)如图,在△ABC 中,DE 垂直平分AC ,AD=3cm ,△ABE 的周长为13cm ,则△ABC 的周长为________。

(4)在□ABCD 中,AB=6,且AB 的长是□ABCD 周长的4
1,那么BC 的长是________。

(5)如果平行四边形的周长是60cm ,对角线AC ,BD 相交于点O ,△AOB 的周长比△BOC 的周长多10cm ,则边AB=________,BC=________。

(6)如图,在□ABCD 中,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,已知AD=8cm ,CD=4cm ,则△ABE 的周长为( ) A.4cm B.6cm C.10cm D.12cm
(7)如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________。

(8)如图,点E 是□ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF=3,DE=2,则□ABCD 的周长为( ) A.5 B.7 C.10 D.14
(9)如图,□ABCD 中,EF 过对角线的交点O ,AB=4,AD=3,OF=1.3,则四边形BCEF 的周长为________。

(10)如图,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为________。

(11)如图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF=45°,且AE+AF=22,则□ABCD 的周长是________。

(12)如图,□ABCD 与□DCFE 的周长相等,且∠BAD=60°,∠F=110°,则∠DAE 的度数为________。

练习6(面积类)
◆ 平行四边形一条对角线分成____个面积______的三角形,每个三角形S =______平行四边形S ; ◆ 平行四边形两条对角线分成____个面积______的三角形,每个三角形S =______平行四边形S 。

(1)已知O 为□ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )
A.1
B.2
C.3
D.4
(2)已知□ABCD 的面积为16,O 为两对角线的交点,则△COD 的面积是________。

(3)如图所示,在□ABCD 中,对角线AC ,BD 相交于点O ,过点O 的直线分别交AD 、BC 于点M 、N ,若△CON 的面积为2,△DOM 的面积为4,则△AOB 的面积为________。

(4)如图,在□ABCD 中,点E 在AC 上,AE=2EC ,点F 在AB 上,BF=2AF ,若△BEF 的面积为2cm 2,求□ABCD 的面积.
(5)已知□ABCD 的周长为32cm ,AB=6cm ,∠A=30°,则BC=________,□ABCD 的面积是________。

(6)如图,□ABCD 中,AE ⊥BC 于E ,AF ⊥DC 于F ,BC=5,AB=4,AE=3,则AF 的长为________。

(7)平行四边形的周长为25cm ,对边的距离分别为2cm 、3cm ,则这个平行四边形的面积为( )
A.15cm 2
B.25cm 2
C.30cm 2
D.50cm 2
练习7(平行四边形+角平分线=等腰三角形)
(1)如图,□ABCD 中,E 是BA 延长线上一点,A 是BE 的中点,连接CE 交AD 于点F ,若CE 平分∠BCD ,AB=3,则BC 的长为________。

(2)如图,在□ABCD 中,AB=4cm ,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF=________cm 。

(3)如图,在□ABCD 中,AB=2cm ,BC=3cm ,∠B 、∠C 的平分线分别交AD 于F 、E ,则EF 的长为________。

(4)如图,在□ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的长为( )
A. 32
B.34
C.4
D.8
练习8(证明题)
1.如图,在□ABCD中,点E,F分别在AD,BC上,且AE=CF。

求证:BE=DF
2.如图,□ABCD的对角线AC上的两点,DF∥BE。

求证:(1)AF=CE (2)∠ABE=∠CDF
3.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF。

求证:(1)BE=DF (2)BE∥DF
4.在△ABC中,AB=AC,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形。

求证:AD=BF
5.已知:如图1,□ABCD的对角线AC、BD相交于点O,EF过点O与AD、BC分别相交于点E、F。

(1)求证:OE=OF
(2)如图2,若题目中的条件都不变,若将EF向两方延长,与BA边的延长线交于点E,与DC边的延长线交于点F,(1)的结论是否成立?请说明你的理由。

相关文档
最新文档