初中数学章节考点梳理数的开方章节涉及的12个必考点全梳理
数的开方知识点及复习
数的开方知识点及复习知识点一:平方根(1)平方根的定义:如果一个数的平方等于a ,这个数就叫做a 的平方根。
(2)开平方:求一个数a 的平方根的运算叫做开平方.(3)平方根的表示:a 的平方根记作:a 2±±或a 。
a 叫做被开方 (4)求一个数的平方根的方法:利用平方和开平方互为逆运算(5)平方根的性质①一个正数有两个平方根,它们互为相反数②0有一个平方根,它是0本身③负数没有平方根。
(6)算术平方根的定义:非负数a 的正的平方根。
(7)算术平方根表示:一个非负数a 的平方根用符号表示为:“a ”,读作:“根号a ”,其中a 叫做被开方数 (8)算术平方根的性质:①正数a 的算术平方根是一个正数;②0的算术平方根是0;③负数没有算术平方根。
注1)算术平方根是非负数,具有非负数的性质;(a≥0)是一个非负数, 即≥0;2)若两数的平方根相等或互为相反数时,这两数相等;反之,若两非负数相等时,它们的平方根相等或互为相反数; 3)平方根等于本身的数只有0,算术平方根等于本身的数有0、1; 4).非负数的算术平方根再平方仍得这个数,即:()2=a(a≥0);5).某数的平方的算术平方根等于某数的绝对值,即 =|a|=6).平方根有三种表示形式:±a ,a ,-a ,它们的意义分别是:非负数a 的平方根,非负数a 的算术平 方 根,非负数a 的负平方根。
要特别注意: a ≠±a7).平方根与算术平方根的区别与联系:区别:①定义不同 ②个数不同: ③ 表示方法不同:联系:①具有包含关系: ②存在条件相同: ③ 0的平方根和算术平方根都是0。
知识点二、立方根:(1)立方根的定义:如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫三次方根)。
如果x3=a ,则x 叫做a 的立方根。
记作:3a x = ,读作“三次根号a ” 。
(2)开立方:求一个数的立方根的运算叫做开立方(3)求一个数的立方根的方法:利用立方和开立方互为逆运算 (4)立方根的性质①一个正数有一个正的立方根,即若a>0,则03>a ②一个负数有一个负的立方根,即若a<0,则03<a ③0的立方根是0,即若a=0,则03=a 。
五四制初一数学下册第六章知识点
五四制初一数学下册第六章知识点摘要:一、前言二、知识点概述1.数的开方2.二次根式的性质3.二次根式的运算4.二次根式的化简5.分式6.分式的性质7.分式的运算8.分式的化简9.二次根式与分式的关系三、结论正文:一、前言本章内容主要涉及五四制初一数学下册第六章的知识点,包括数的开方、二次根式的性质、二次根式的运算、二次根式的化简、分式以及分式的性质、分式的运算、分式的化简和二次根式与分式的关系等内容。
二、知识点概述1.数的开方数的开方是指求一个数的平方根和立方根。
平方根是一个数的二次方等于该数的正数根,立方根是一个数的三次方等于该数的正数根。
2.二次根式的性质二次根式的性质主要包括二次根式的加减运算、乘除运算以及二次根式的性质定理等。
3.二次根式的运算二次根式的运算主要包括加减运算、乘除运算以及乘方运算等。
4.二次根式的化简二次根式的化简是将复杂的二次根式通过因式分解、合并同类项等方法化简为最简二次根式。
5.分式分式是指一个数被另一个非零数除的运算,分式的基本性质包括分式的加减运算、乘除运算以及分式的性质定理等。
6.分式的性质分式的性质主要包括分式的加减运算、乘除运算以及分式的性质定理等。
7.分式的运算分式的运算主要包括加减运算、乘除运算以及乘方运算等。
8.分式的化简分式的化简是将复杂分式通过因式分解、合并同类项等方法化简为最简分式。
9.二次根式与分式的关系二次根式与分式有着密切的关系,二次根式可以看作是分式的一种特殊形式,分式也可以通过有理化转化为二次根式。
七年级数学下册开方知识点
七年级数学下册开方知识点开方是初中数学下册的一个重要知识点,也是较为基础的数学概念,今天我们就来介绍一下七年级数学下册中关于开方的知识点。
一、基础概念开方是指求一个数的平方根,表示为√a。
其中a被称为被开方数,√为根号符号,开根号的结果通常有两个值,一个为正数,一个为负数。
但是在初中数学中,我们只学习正数的平方根,因为负数的平方根将在高中数学中学习。
二、分解因数求平方根分解因数法是开方的一个基础方法,适用于求小于100以内的平方根。
这个方法是将被开方数分解成主要因数和次要因数两部分,再将主要因数和次要因数分别抽出来,依次取主要因数和次要因数的平方根,最后将两个根号里面的值相乘即可得到结果。
例如:求√72,72=2×2×2×3×3,得到√72=√2×2×2×3×3=2×√2×3=6√2。
三、无理数和有理数在进行开方的时候,我们会遇到有理数和无理数的概念。
有理数是能够表示为两个整数之比的数,即通过有限位数的小数或分数形式来表示。
而无理数则不能表示为有理数的数,如π、√2等。
在开方的过程中,如果被开方数为有理数,则结果也必为有理数;反之被开方数为无理数,则结果也为无理数。
四、简化根式简化根式是将根号中的因数分解成最简形式,使得根号下的数尽可能地小。
简化根式的方法是分解因数法,将根号中的数进行分解,再用最简形式表示出来。
例如:√50=√2×5×5=5√2,√108=√2×2×3×3×3=6√3。
五、乘法公式乘法公式的作用是将根式中含有多个根号的乘积合并成一个根式,便于计算和化简。
几个常用的乘法公式如下:①√a×√b=√ab;②√a÷√b=√a/b;③√a×2√b= 2√ab;④√a÷ 2√b= √a/2b。
七年级数学每章知识点
七年级数学每章知识点作为七年级的学生,数学是必修的一门课程。
在学习的过程中,每一章的知识点都是必须掌握的,否则会对后续的学习带来很大的困难。
接下来,本文将依次介绍七年级数学每章的知识点。
第一章:数的概念这一章是数学学科中最基础的部分,主要是对数的认知。
在这一章学习中,我们会学习到数字的读法以及大小比较,自然数、整数、有理数、无理数等数的概念。
在学习过程中,还要了解阿拉伯数字的历史起源。
第二章:整数的加减运算这一章是接下来学习的基础,因为在接下来的学习中,整数的运算会很频繁。
在这一章学习中,我们会学习整数的加减法,同样也会有正整数、负整数的概念,同时还要掌握整数之间的大小关系。
第三章:整数的乘法与除法在前两章的基础上,本章重点学习整数的乘法与除法。
在学习过程中,我们要学习运算法则,如乘法分配律、乘法交换律、乘法结合律等,并且还要掌握除法的概念和算术性质。
第四章:分数的概念与运算在这一章中,学习的主要是分数的概念和运算。
在学习过程中,我们要学习分数的概念和意义,并且还要掌握分数的加减乘除运算,以及分数之间的大小比较。
第五章:分数的化简与比较大小这一章和第四章有些相似,但是这一章更侧重于如何化简分数和分数的大小比较。
在学习过程中,我们要掌握分数的化简方法和技巧,并且要学会比较分数的大小。
第六章:小数的概念和运算小数在我们日常生活中经常出现,这一章中我们主要学习小数的概念和运算。
在学习的过程中,我们要认识小数的意义和性质,学习小数的加减乘除运算,以及学习小数的化分数和分数的化小数。
第七章:数字的应用在数学的学习中,我们不能仅仅停留在理论层面上,还要学会将所学习的理论应用于实际生活中。
在这一章的学习中,我们将学习到数字的应用,例如利息、百分数、平均数、比例等等。
第八章:图形的认知图形在我们生活中也经常出现,学习图形的概念和差异性也是数学学科的一部分。
在这一章的学习中,我们需要掌握各类图形的形态和定义,例如点、线、面、圆等。
八年级数学个章知识点汇总
八年级数学个章知识点汇总八年级数学各章知识点汇总数学是一门很重要的学科,它会在我们日常生活中发挥很大的作用。
而在八年级,数学的学习变得更加深入和具体,所以逐渐把各种知识点逐渐分块归纳整理,这样有利于加深记忆,也有利于更好地复习巩固。
本文主要对八年级数学各章知识点进行一个汇总:一、有理数1.有理数的定义和表示2.有理数的比较和大小关系3.有理数加减法的基本性质4.有理数的乘除法法则5.有理数的混合运算6.实数的分类二、代数式和方程1.代数式和多项式的定义2.基本多项式的因式分解3.一元一次方程的定义4.一元一次方程的解法5.方程的实际问题三、平面几何基础1.线段、射线、直线的定义和表示2.几何图形中的基本概念3.平面内角度的计算4.三角形的定义和性质5.相似三角形的性质四、解析几何1.平面直角坐标系的建立2.点的坐标及其性质3.线段的斜率及其计算4.间距公式的推出5.直线、圆的方程的推导和应用五、数据的整理与分析1.统计调查的概念和方法2.统计图形的绘制和分析3.平均数和中位数的求法4.相关系数与回归直线六、三角函数1.三角函数的定义及性质2.正弦、余弦、正切函数的图像和变化规律3.特殊角的三角函数值的计算4.三角函数的运算和应用七、圆的相关知识1.圆的定义和性质2.圆周角和圆内角的关系3.弧度制的概念4.弧长和扇形面积的计算八、立体几何1.三棱锥、四棱锥和棱台的定义和性质2.正交多面体的定义和性质3.尺规作图这些知识点是八年级数学的基础,掌握好这些知识对于学习数学和应用数学都有很大的帮助。
所以我们要细心认真地学习这些知识点,同时还要对这些知识点进行深入的理解和思考,这样才能够真正地学好数学,为自己的未来打下坚实的基础。
数学开方知识点总结
数学开方知识点总结一、整数的平方根1、定义对于一个非负整数a,如果存在一个非负整数b,使得b * b = a,那么b就是a的平方根。
通常用符号√a来表示a的平方根。
2、性质(1)非负整数的平方根是一个非负整数。
即如果a是一个非负整数,那么它的平方根一定是一个非负整数。
(2)如果a是一个非负整数,那么a的平方根存在且唯一。
即对于任意一个非负整数a,存在唯一的一个非负整数b,使得b * b = a。
(3)如果a和b是两个非负整数,且a = b * b,那么a的平方根就是b。
3、计算方法(1)试除法试除法是一种通过逐步增大的方式逐个尝试所有可能的非负整数来找到a的平方根的方法。
这种方法比较原始,但是对于小的非负整数还是比较有效的。
(2)牛顿迭代法牛顿迭代法是一种通过不断逼近的方式来计算a的平方根的方法。
该方法利用函数的导数和函数值来不断逼近函数的零点,从而找到a的平方根。
这种方法通常比试除法更加高效,尤其对于大的非负整数。
4、应用整数的平方根在实际生活中有很多应用,比如在工程领域中,用来计算各种物理量的大小,比如速度、加速度、功率等。
在数学领域中,整数的平方根也有很多应用,比如在代数、几何等方面的应用。
二、实数的平方根1、定义对于一个非负实数a,如果存在一个非负实数b,使得b * b = a,那么b就是a的平方根。
同样地,通常用符号√a来表示a的平方根。
2、性质(1)非负实数的平方根是一个非负实数。
即如果a是一个非负实数,那么它的平方根一定是一个非负实数。
(2)如果a是一个非负实数,那么a的平方根存在且唯一。
即对于任意一个非负实数a,存在唯一的一个非负实数b,使得b * b = a。
(3)如果a和b是两个非负实数,且a = b * b,那么a的平方根就是b。
3、计算方法(1)试除法试除法也适用于计算非负实数的平方根,但是由于实数的数量级比较大,那么这种方法通常比较低效。
(2)牛顿迭代法和整数的平方根一样,牛顿迭代法也适用于计算非负实数的平方根。
华东师大初中数学八年级上册《数的开方》全章复习与巩固--知识讲解(基础)
《数的开方》全章复习与巩固—知识讲解(基础):【学习目标】1.了解平方根、立方根的概念,会用根号表示数的平方根、立方根;了解开方与平方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;2.理解无理数和实数的概念,知道实数与数轴上的点一一对应,了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化;3.能用适当的有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点一:平方根和立方根要点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数, 如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点的对应关系数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应,即实数与数轴上的点一一对应. 3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、平方根与立方根1、在①2;②2;③2;④2的立方中,正确的结论有几个( )A .1个B .2个C .3个D .4个【思路点拨】根据立方根平方根的定义分别求出2的平方根与立方根,则可求得答案. 【答案】B ; 【解析】解:∵2,2∴②③正确,①④错误;∴正确的结论有2个. 【总结升华】此题主要考查了平方根与立方根的定义和性质.注意熟记定义是解此题的关键. 举一反三:【变式】(2015春•潍坊期中)已知2a ﹣1的平方根是±3,3a+b ﹣1的立方根是4,求a+b 的平方根. 【答案】解:∵2a ﹣1的平方根是±3,∴2a﹣1=9, ∴a=5,∵3a+b﹣1的立方根是4, ∴3a+b﹣1=64, ∴b=50, ∴a+b=55,∴a+b 的平方根是±.210.1==若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01的小数点向左移动2位变成1.0201,它的平方根的小数点向左移动1位,变成1.01,注意符号;0.3670的小数点向右移动3位变成367,它的立方根的小数点向右移动1位,变成7.16【总结升华】一个数的小数点向左移动2位,它的平方根的小数点向左移动1位;一个数的小数点向右移动3位,它的立方根的小数点向右移动1位.类型二、实数的概念与运算3、把下列各数填入相应的集合: -1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ };(2)无理数集合{ }; (3)正实数集合{ }; (4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案与解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、22-}; (3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、22-}. 【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式. 举一反三:π227,0.3,其中无理数有( ) A .1个 B .2个 C .3个 D .4个【答案】B ;π.4、计算(1)233)32(1000216-++ (2)23)451(12726-+- (3)32)131)(951()31(--+【思路点拨】先逐个化简后,再按照计算法则进行计算.【答案与解析】解:(1)233)32(1000216-++=226101633++=(2)23)451(12726-+-1113412=-+=-(3)32)131)(951()31(--+=1112133333+=+=-=-.【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根. 举一反三:【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726----()0.20.06=-- 29150=-(2) ()223323)3()21()4()4(2--⨯-+-⨯-()184434=-⨯+-⨯- 321336=---=-.5、(2016•阳泉模拟)已知5+与5﹣的小数部分分别是a 和b ,求(a +b )(a ﹣b )的值.【思路点拨】先估算出的大小,然后用含的式子表示出a 、b 最后代入计算即可.【答案与解析】解:∵2<<3,∴7<5+<8,2<5﹣<3,∴a=5+﹣7=﹣2,b=5﹣﹣2=3﹣ ∴原式=(﹣2+3﹣)(﹣2﹣3+)=1×(2﹣5)=2﹣5.【总结升华】本题主要考查的是估算无理数的大小,求得a 、b 的值是解题的关键. 举一反三:【变式】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是:; -1a【答案】21a a a a<<<-; 类型三、实数综合应用6、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案与解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式,≈(米).12.247由题意可得扩建后的正方形鱼池的边长为(12.247+6)米,18.247≈333.0(平方米).所以扩建后鱼池的面积为2答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:m,池深1.5m,求这个水池的底边长.【变式】一个底为正方形的水池的容积是4863【答案】解:设水池的底边长为x,由题意得2 1.5486x⨯=2324x=x=18答:这个水池的底边长为18m.。
(完整版)初中数学各章节详细知识点
各章节知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则(6分)9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则(6分)14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法(3分)17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则(6分)第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)(6分)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图(3分)5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线(3分)15.余角的概念16.补角的概念17.余角(补角)的性质(3分)七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定(3分)11.平行线的性质(3分)12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质(3分)第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征(3分)第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理(3分)9.等腰三角形的性质10.等边三角形的性质11.直角三角形的性质(6分)12.多边形及其相关概念(多边形、对角线、正多边形)13.多边形的内角和定理14.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)(6分)4.二元一次方程的应用(6分)5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质(3分)6.一元一次不等式的解法(3分)7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法(6分)第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)(6分)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)(6分)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定(SSS,SAS,ASA,AAS)(6分)5.直角三角形的判定(HL)6.角平分线的性质7.角平分线的判定(6分)第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质(6分)5.线段垂直平分线的判定(6分)6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定(6分)11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质(6分)第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质(3分)4.立方根的概念5.立方根的性质(3分)6.实数的概念7.实数的分类8.实数的相反数、绝对值(3分)9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质(7分)6.一次函数的解析式7.一次函数的图象及其性质(7分)8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式(3分)2.幂的乘方公式(3分)3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则(3分)6.平方差公式7.完全平方公式(3分)8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)(6分)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质(3分)3.约分与通分4.最简分式5.分母有理化(3分)6.分式乘除的法则7.分式加减的法则8.整数指数幂的运算性质(3分)9.分式方程的概念10.分式方程的解法(6分)11.分式方程的应用(7分)第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质(7分)3.反比例函数的应用第十八章《勾股定理》1.勾股定理(6分)2.勾股定理的逆定理(3分)第十九章《四边形》1.平行四边形的概念2.平行四边形的性质(7分)3.平行四边形的判定(7分)4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质(7分)8.菱形的概念9.菱形的性质(7分)10.菱形的判定11.正方形的概念12.正方形的性质与判定(7分)13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定(7分)第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数(3分)4.方差第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式(3分)3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则(6分)6.最简二次根式7.二次根式的加减法法则(3分)九年级上册第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)(6分)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)(6分)第二十三章《二次函数》1. 一元二次方程的概念2. 二次函数的基本形式3. 二次函数图象的平移4. 二次函数图像的画法5. 二次函数图像的性质(7分)6. 二次函数图像的表示方法7. 二次函数图像的图像与各项系数之间的关系(7分)8. 二次函数图象的对称9. 二次函数与一元二次方程(7分)10. 函数的应用第二十四章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质(6分)3.中心对称的相关概念(中心对称、对称中心、对称点)(6分)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征(3分)第二十五章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论(6分)3.弧、弦、圆心角、弦心距之间的关系定理(6分)4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质(3分)8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念(7分)12.切线的性质及判定定理(7分)13.切线长定理(7分)14.圆与圆的位置关系及其相关概念(7分)15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式(7分)17.圆锥及圆柱的侧面积及表面积(7分)第二十六章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式(3分)5.用列表法、树形图计算概率(7分)6.频率与概率的关系第二十七章《相似》1. 有关相似形的概念2. 比例的性质3. 平行线分线段成比例定理(3分)4. 相似三角形(判定,性质,应用)(7分)5. 位似第二十八章《解直角三角形》1. 直角三角形的性质(3分)2. 直角三角形的判定(6分)3. 锐角三角函数的概念4. 解直角三角形(7分)第二十九章《投影与视图》1. 平行投影2. 中心投影3. 正投影。
(完整版)最新华东师大版八年级数学上册知识点总结
角形,等腰大于等边)
②等边三角形的三条边相等
判定:①定义:三条边都相
等的三角形是等边三角形
③等边三角形的三个角相等,都为 60º。
③有一个角等于 60º的等腰
三角形是等边三角形
3
② 三 个 角都 相 等的 三角 形
是等边三角形
第十四章:勾股定理
知识点
内容
备注
等边三角形
①等腰三角形的两腰相等
②等腰三角形的两底角相等
③等腰三角形“三线合一”(顶角的平分线,
底边上的中线,底边上的高重合)
④等腰三角形是轴对称图形,只有一条对称轴
⑤等腰三角形的两底角的平分线相等(两条腰
上的中线相等,两条腰上的高相等)
考点:
①若∆, = ,则说明
∆是等腰三角形
②等腰三角形“三线合一”
A
①定义法:在同一三角形中,有两条边相等的
三角形是等腰三角形。
②判定定理:在同一三角形中,有两个角相等
的三角形是等腰三角形(简称:等角对等边)。 B
性质定理:线段垂直平分线上的点到线段两端
点的距离相等
已知:若 EF⊥ ,垂足为点 C,AC=BC,点 D 是直
线 EF 上任意一点
()=
()=
备注
+
逆用:
= ×
例:+ = ×
逆用: = ( ) = ( )
例: = ( ) = ( )
逆用: = ()
例(
( ×
)
)
×(
的一个因式
多项式除于单项式
多项式除于单项式,先用这个
(完整版)数的开方知识点汇总
7、实数与数轴的关系
任意一个数对应了数轴上的一个点,数轴上任意一上 点对应了一个实数,因此实数与数轴上的点是—对 应关系。
iii:算术平方根非负即当a>0时-,a>0
4、立方根
(1、)定义:如果一个数的立方等于a那么这个数就 叫做a的立方根。即如果x3=a那么x就是a的立方根。
(2、)立方根的表示方法:
一数a的立方根表示为3a,读作三次根号a其中3叫做根指数,a叫被开方数。
(当根指数是2时可以省略,是3或其数时不能省略) (3、)立方根的性质:
(3)算术平方根的性质:
1正数有一个正的算术平方根。
20的算术平方根是0
3负数没有平方根,当然也没有算术平方根。
(4), a的双重非负性
1首先,石要有意义,首先被开方数必须是一个非 负数。
2其次,心表示一个非数的算术平方根,它的值不 可能是一个负数,即它的值是一个非负数。
综上:,a中a>0,a>0
(5)初中所学的三类非负数i:绝对值非负即|a|>0丘:偶次方非负即a偶次>0
数的开方知识点汇总
安皋二中八年级数学组
一、平方根、算术平方根
1、平方根的定义:如果一个数的平方等于a那么这个数就叫做数a的平方根。即如果x2= a那么x就是a有平方根。
2、平方根的性质:
(1)正数有两个平方根,它们互为相反数。
(2)0的平方根是0
(3)负数没有平方根(因为任何数的平方都是一个非负数)
3、平方根的表示方法
一个非负数a的平方根可表示为土..a,读作正负根号a
其实它的完整写法是土2a我们称2是根指数,a叫做
被开方数,、叫根号,我们平常省略了根指数2。
数的开方知识点与复习
数的开方知识点与复习一、平方根1、定义如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
也就是说,如果\(x^2 = a\),那么\(x\)叫做\(a\)的平方根。
例如,因为\((\pm 2)^2 = 4\),所以\(\pm 2\)是\(4\)的平方根。
2、表示方法一个正数\(a\)的平方根记为“\(\pm\sqrt{a}\)”,读作“正负根号\(a\)”,其中\(\sqrt{a}\)叫做\(a\)的算术平方根。
例如,\(9\)的平方根表示为\(\pm\sqrt{9} =\pm 3\),其中\(\sqrt{9} = 3\)。
3、性质(1)一个正数有两个平方根,它们互为相反数。
(2)\(0\)的平方根是\(0\)。
(3)负数没有平方根。
二、算术平方根1、定义正数\(a\)的正的平方根叫做\(a\)的算术平方根,\(0\)的算术平方根是\(0\)。
2、性质(1)算术平方根具有非负性,即\(\sqrt{a} \geq 0\)(\(a \geq 0\))。
(2)\((\sqrt{a})^2 = a\)(\(a \geq 0\))。
例如,\(\sqrt{4} = 2\),\((\sqrt{5})^2 = 5\)。
三、立方根1、定义如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
即如果\(x^3 = a\),那么\(x\)叫做\(a\)的立方根。
例如,因为\(2^3 = 8\),所以\(2\)是\(8\)的立方根。
2、表示方法数\(a\)的立方根记为“\(\sqrt3{a}\)”,读作“三次根号\(a\)”。
例如,\(8\)的立方根表示为\(\sqrt3{8} = 2\)。
3、性质(1)正数的立方根是正数。
(2)负数的立方根是负数。
(3)\(0\)的立方根是\(0\)。
四、开方运算1、开平方运算求一个数的平方根的运算叫做开平方。
例如,求\(16\)的平方根,即\(\pm\sqrt{16} =\pm 4\)。
七年级数学数的开方知识点
七年级数学数的开方知识点数的开方是初中数学的一项重要内容,对于七年级的学生来说,掌握数的开方知识点不仅有助于提高数学成绩,还可以在后续学习中发挥重要作用。
本文将从什么是数的开方、算数平方根、整式平方根、二次根式等几个方面,深入阐述七年级数学中的数的开方知识点。
一、什么是数的开方数的开方,就是求一个数的平方根的运算,可表示为√x,即表示为 x 的平方根。
其中,x 为任意实数。
数的开方可以分为算数平方根、整式平方根和二次根式三种类型。
二、算数平方根算数平方根是指形如√a的开方式中,a 为正实数的情况。
算数平方根可以通过公式计算,即√a的值等于b,b乘以 b等于 a。
例如,√9等于3,因为3乘以3等于9。
在七年级的数学课堂上,学生们需要掌握算数平方根的求解方法,并能熟练地进行计算。
算数平方根的求解可以利用数轴和试探法两种方法。
通过数轴法,可以直观地找到求解数的位置,提高精确度;试探法则是将可能的解代入公式进行验证,较为简单有效。
在应用计算时,还需要注意保留适当的位数和有效数字,以避免误差的产生。
三、整式平方根整式平方根是指形如√(ax^2 + bx + c)的开方式中,a、b、c均为实系数的情况。
相对于算数平方根,整式平方根公式较为复杂,但也有一些套路可循。
对于一元二次方程式ax^2 + bx + c = 0,如果 a、b、c 必须满足b^2 - 4ac > 0,那么它有两个不相等的实数根,此时√(b^2 - 4ac)是一个正实数。
因此,整式平方根的求解可以利用求根公式进行计算。
同时,还需要注意判别式的大小关系,判断方程式有几个实数根。
四、二次根式二次根式是指形如√a + √b的开方式中,a、b 均为正实数的情况。
相比于算数平方根和整式平方根,二次根式的处理较为复杂,需要运用化简和基本公式等技巧。
对于二次根式的计算,有两种化简方法。
第一种是将区间合并,把同类项结合,化为√m、√n 和 c 三种项之和。
初中数学全部知识点总结
初中数学全部知识点总结
初中数学是中学阶段的基础学科,其知识体系较为丰富。
为了帮助同学们更好地掌握初中数学知识,本文将对初中数学的全部知识点进行总结。
一、数与代数
1.有理数的概念、性质和运算
- 有理数的分类:正数、0、负数
- 有理数的性质:相反数、倒数、绝对值
- 有理数的运算:加法、减法、乘法、除法、乘方
2.二元一次方程及其解法
- 二元一次方程的概念
- 解法:代入法、消元法
3.不等式及其解法
- 一元一次不等式的解法
- 一元一次不等式组的解法
4.函数的概念及性质
- 函数的定义
- 函数的性质:单调性、奇偶性、周期性
- 一次函数、二次函数、反比例函数、正比例函数
二、几何
1.平面几何图形及其性质
- 点、线、面的基本概念
- 三角形、四边形、圆的性质
2.平面几何的证明
- 证明方法:综合法、分析法、反证法
- 几何定理:勾股定理、相似三角形的性质、圆周角定理等3.解析几何
- 坐标系的概念
- 直线、圆的方程
- 点与直线、圆的位置关系
三、概率与统计
1.随机事件及其概率
- 随机事件的定义
- 概率的计算:古典概型、几何概型
2.统计图与统计表
- 条形图、折线图、饼图、频数分布直方图
- 平均数、中位数、众数、方差
四、综合应用
1.解决实际问题的方法
- 列方程
- 画图象
- 构造辅助线
2.数学建模
- 建立数学模型
- 求解数学模型
通过以上总结,相信同学们对初中数学的知识点有了更全面的了解。
数的开方知识点与复习
数的开方知识点与复习在数学的世界里,数的开方是一个重要的概念,它在解决各种数学问题和实际应用中都有着广泛的用途。
接下来,让我们一起深入了解数的开方的相关知识,并进行系统的复习。
一、平方根平方根,简单来说,如果一个数的平方等于 a,那么这个数就叫做a 的平方根。
用数学符号表示,如果 x²= a,那么 x 就叫做 a 的平方根。
例如,因为 2²= 4,(-2)²= 4,所以 4 的平方根是 ±2。
正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
在求平方根时,我们可以使用一些方法。
对于一些简单的数,我们可以通过心算或简单的计算得出。
比如 9 的平方根是 ±3,16 的平方根是 ±4。
但对于一些复杂的数,我们可能需要使用计算器或者通过逐步逼近的方法来求解。
二、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作√a。
例如,4 的算术平方根是 2,记作√4 = 2。
算术平方根具有非负性,即√a ≥ 0(a ≥ 0)。
三、立方根如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
用数学符号表示,如果 x³= a,那么 x 就叫做 a 的立方根。
例如,因为 2³= 8,所以 8 的立方根是 2。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0。
四、开方运算的性质1、√(a²) =|a|2、√ab =√a × √b (a ≥ 0,b ≥ 0)3、√(a/b) =√a /√b (a ≥ 0,b > 0)五、数的开方的应用1、在几何中,计算图形的边长、面积和体积等问题时经常会用到数的开方。
比如,已知正方形的面积为 16 平方厘米,求其边长。
因为正方形的面积等于边长的平方,所以边长=√16 = 4 厘米。
2、在实际生活中,也有很多应用。
例如,计算建筑物的高度、测量两地之间的距离等。
干货|初中数学数的开方知识点梳理
干货|初中数学数的开方知识点梳理本章内容课标的要求● 1.了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
● 2.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算会求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。
● 3.了解实数和无理数的概念,知道实数与数轴上的点一一对应,能求实数的相反数和绝对值。
● 4.能用有理数估计一个无理数的大致范围。
● 5.了解近似数,在解决实际问题中,能用计算器进行近似计算,并会按问题的要求对结果取近似值。
如何落实课标的要求◆ 加强对平方根、算术平方根、立方根、实数和无理数的概念的理解。
在中学数学基础知识中,数学概念是最基本的内容,也是最普遍的形式。
所谓数学概念,是指数学名词和术语,尤其是数学名词。
学习数学最有意义的是对概念、定理、公式等结论的发现和抽象概括过程,我们把这些需要探究的概念、定理和公式纳入“探究”系列之中。
如:通过以下的填空题来加强对平方根、算术平方根、立方根的理解。
◆ 让学生根据平时学习的经验,熟记1-20的数的平方,1-9的数的立方。
◆ 对本章的知识点进行综合训练数学是一门系统科学,数学知识是由概念和原理组成的系统。
每个概念总是与其他概念有关系,每个概念都包含在某个系统中。
有时也可以用类比的方法来进行辨析,类比是根据两个或“两类”对象之间有部分属性相同,从而推出它们在某些方面的某种属性也可能相同的一种逻辑推理的方法。
包括从特殊到一般,从一般到特殊的推理。
其特点是:利用一些客观事物的相似性,以一个系统的研究为手段,获取另一个系统的信息。
请认真完成上述题目查看答案请下翻!。
数的开方知识点归纳doc
第12章《数的开方》知识点一、知识点:1、平方根:如果一个数的平方等于a,那么这个数叫做a的平方根。
正数a有两个平方根,它们互为相反数,记作±a,a称为被开方数.0的平方根只有一个,就是0,记作0=0.负数没有平方根。
2、算术平方根:正数a的正的平方根,叫做a的算术平方根,记作a,读作“根号a”.3、开平方:求一个非负数的平方根的运算,叫做开平方.将一个正数开平方,关键是找出它的一个算术平方根.4、立方根:如果一个数的立方等于a,那么这个数叫做a的立方根。
任何数(正数、负数或零)都有且仅有一个立方根.数a的立方根,记作3a,读作“三次根号a”,a称为被开方数,3称为根指数。
5、开立方:求一个数的立方根的运算,叫做开立方。
6、无理数:无限不循环小数叫做无理数。
7、实数:有理数与无理数统称为实数。
8、实数与数轴上的点一一对应.二、知识点应用:1、49的平方根是,算术平方根是 .2、5是的平方根,-9的平方根 .3、1是的立方根,-1是的立方根.4、-27的立方根是,0的立方根是 .5、若某数的一个平方根是2,则这个数是,它的另一个平方根是 .6、若某数的立方根是-3,则这个数是 .7、如果一个实数有且只有一个平方根,那么这个数是 .8、如果一个实数有且只有一个立方根,那么这个数是 .9、数轴上表示5-的点与原点的距离是________;10、2-的相反数是,3的倒数是,13-的相反数是;11、81的平方根是______,4的算术平方根是_______,210-的算术平方根是;12、计算:_______10_________,112561363=-=--,2224145-=;13、若一个数的平方根是8±,则这个数的立方根是;14、当______m时,m-3有意义;当______m时,33-m有意义;15、若一个正数的平方根是12-a和2+-a,则____=a,这个正数是;16、已知)3(122=++-ba,则=332ab;17、在实数0、3、6-、236.2、π、723、14.3中无理数的个数是()A、1B、2C、3D、418、36的平方根是()(A)6 (B)±6(C)6(D)6±19、一个数的平方根是它本身,则这个数的立方根是().(A) 1 (B) 0 (C) -1 (D)1,-1或020、数3.14,2,π,0.323232…,71,9,21+中,无理数的个数为().(A)2个(B)3个(C)4个(D)5个21、下列等式:①81161=,②()2233-=-,③()222=-,④3388-=-⑤416±=,⑥24-=-;正确的有()个.(A)4 (B)3 (C)2 (D)1。
初中数学各章节详细知识点汇总
初中数学各章节详细知识点汇总初中数学各章节详细知识点汇总一、第一章整数 1.1 正整数、负整数及其运算正整数是带有正号的非零整数,表示大于0的概念;负整数是带有负号的非零整数,表示小于0的概念。
在整数的加法运算中,两个正数相加得正数,两个负数相加得负数;在整数的减法运算中,正数减去正数或负数减去负数,结果仍为正数或负数;在整数的乘法运算中,两个整数相乘,结果为正数或负数;在整数的除法运算中,被除数为正数,除数为正数时,商为正数;被除数为负数,除数为正数时,商为负数;被除数和除数都是负数时,商为正数。
1.2 整数的应用整数的应用包括:(1)根据问题的实际情况,选择合适的正负数;(2)利用整数的加减乘除运算,解决实际问题;(3)利用整数的比较大小,解决实际问题;(4)利用整数的平方根运算,解决实际问题;(5)利用整数的乘方运算,解决实际问题。
二、第二章分数 2.1 分数的定义分数是由分子和分母组成的数,它表示一个数值所占的部分。
分子是一个正整数,表示的是一个数的实际数量;分母是一个正整数,表示的是一个数的总量。
分数的大小可以用两个分数对比来判断,“>”表示大于,“<”表示小于,“=”表示等于。
2.2 分数的运算(1)加法运算:相同分母的分数相加,先将分子相加,然后将分子和分母相同的形式;不同分母的分数相加,需要先将分母相同,然后将分子相加,最后将分子和分母相同的形式。
(2)减法运算:相同分母的分数相减,先将分子相减,然后将分子和分母相同的形式;不同分母的分数相减,需要先将分母相同,然后将分子相减,最后将分子和分母相同的形式。
(3)乘法运算:相同分母的分数相乘,先将分子相乘,然后将分子和分母相同的形式;不同分母的分数相乘,需要先将分母相乘,然后将分子相乘,最后将分子和分母相同的形式。
(4)除法运算:相同分母的分数相除,先将分子相除,然后将分子和分母相同的形式;不同分母的分数相除,需要先将分子和分母互换,然后将分子相除,最后将分子和分母相同的形式。
初二数学必备知识点:数的开方
初二数学必备知识点:数的开方开方是数学运算的一种,指求一个数的方根的运算,是乘方的逆运算。
下面是店铺收集整理的初二数学《数的开方》的必备知识点以供大家学习。
初二数学必备知识点:数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.3.平方根的表示方法:a的平方根表示为和 .注意:可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0.5.三个重要非负数:a2≥0 ,|a|≥0 ,≥0 .注意:非负数之和为0,说明它们都是0.6.重要公式:(a≥0)7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:(1)a叫x的立方数;(2)a的立方根表示为 ;即把a开三次方.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.9.立方根的特性: .10.无理数:无限不循环小数叫做无理数.注意:?和开方开不尽的数是无理数.11.实数:有理数和无理数统称实数.12.实数的分类:(1) (2) .13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆初二数学必备知识点:分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式。
2.有理式:整式与分式统称有理式。
3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。
初中数学必考知识点的整理总结
初中数学必考知识点的整理总结
初中数学是学生研究数学的关键阶段,掌握好必考知识点对于提高数学成绩至关重要。
以下是初中数学必考知识点的整理总结:
代数
- 整式的加减乘除运算
- 一元一次方程与一元一次不等式
- 平方根与整式的因式分解
- 二次根式与二次方程
- 一元一次方程组
几何
- 多边形的面积和周长计算
- 三角形与四边形的面积计算
- 同位角与对顶角
- 平行线与相交线
- 三角形的相似与全等
概率与统计
- 事件的概率计算
- 抽样调查与频率分布
- 数据的收集、整理与表示- 数据的描述性统计
数与式
- 有理数与运算
- 乘方与根号
- 初等函数与函数的概念- 序列与等差数列
实数
- 有理数的性质
- 实数与数轴
- 无理数与实数的运算
- 实数的大小比较
上述知识点是初中数学考试中经常涉及的重要内容。
学生在备
考过程中应重点掌握这些知识点,通过练题和题集的训练来提升解
题能力。
同时,也要注意理解概念和掌握解题方法,做到灵活运用。
祝您在初中数学考试中取得优异成绩!
Note: The above document is approximately 200 words long.。
中考数学考点梳理 数的开方章节涉及的12个必考点全梳理(精编Word)---10.24
考点梳理:数的开方章节涉及的12个必考点全梳理(精编Word)考点1 平方根与立方根的定义解决此类问题关键是掌握一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方 根有2个;任意一个数的立方根只有1个.例题1 下列说法中,正确的是( )A .﹣5是(﹣5)2的算术平方根B .16的平方根是±4C .2是﹣4的算术平方根D .27的立方根是±3【分析】利用平方根、立方根的性质判断即可. 【解析】A 、5是(﹣5)2的算术平方根,不符合题意; B 、16的平方根是±4,符合题意; C 、2是4的算术平方根,不符合题意; D 、27的立方根是3,不符合题意. 故选:B .【小结】此题考查了立方根,平方根,以及算术平方根,熟掌握各自的性质是解本题的关键.变式1 下列结论中,其中正确的是( )A .√81的平方根是±9B .√100=±10C .立方根等于本身的数只有0.1D .√−63=−√63【分析】根据平方根,立方根的定义逐项计算可判断求解.【解析】A .∵√81=9,9的平方根为±3,∴√81的平方根为±3,故原说法错误; B .√100=10,故原说法错误;C .立方根等于本身的数只有0,﹣1,1,故原说法错误;D .√−63=−√63,故原说法正确. 故选:D .【小结】本题主要考查平方根,立方根,根据平方根及立方根的定义逐项计算可判断求解.变式2 下列说法:①±3都是27的立方根;②116的算术平方根是±14;③−√−83=2;④√16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( ) A .1个B .2个C .3个D .4个【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可. 【解析】①3是27的立方根,原来的说法错误;②116的算术平方根是14,原来的说法错误; ③−√−83=2是正确的;④√16=4,4的平方根是±2,原来的说法错误; ⑤9是81的算术平方根,原来的说法错误. 故其中正确的有1个. 故选:A .【小结】考查立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.变式3 下列说法正确的是( )A .若√a 2=−a ,则a <0B .若√a 2=a ,则a >0C .√a 4b 8=a 2b 4D .3的平方根是√3【分析】根据平方根和算术平方根的定义分别对每一项进行分析,即可得出答案. 【解析】A 、若√a 2=−a ,则a ≤0,故本选项错误; B 、若√a 2=a ,则a ≥0,故本选项错误; C 、√a 4b 8=a 2b 4,故本选项正确; D 、3的平方根是±√3,故本选项错误; 故选:C .【小结】此题考查了平方根和算术平方根,熟练掌握平方根和算术平方根定义是解本题的关键.考点2 算术平方根的小数点移动规律解决此类问题关键是掌握一个被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位;例题2由√3≈1.732,得√300≈17.32,则√0.03≈,√30000≈.从以上结果可以发现,被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动1位.【分析】根据算术平方根的定义进行解答即可.【解析】∵√300≈17.32,∴√0.03≈0.1732,√30000≈173.2,从以上结果可以发现,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位;故答案为:0.1732,173.2,两.【小结】此题考查了算术平方根的定义,掌握算术平方根的定义是本题的关键.变式4如表所示,被开方数a的小数点位置移动和它的算术平方根√a的小数点位置移动规律符合一定的规律,若√a=180,且−√3.24=−1.8,则被开方数a的值为.a…0.0000010.011100100001000000…√a…0.0010.11101001000…【分析】根据题意和表格中数据的变化规律,可以求得a的值.【解析】∵√a=180,且−√3.24=−1.8,∴√3.24=1.8,∴√32400=180,∴a=32400,故答案为:32400.【小结】本题考查算术平方根,解答本题的关键是明确算术平方根的定义,求出相应的a的值.变式5若√25.36=5.036,√253.6=15.906,则√253600=()A.50.36B.503.6C.159.06D.1.5906【分析】根据已知等式,利用算术平方根定义判断即可得到结果.【解析】∵√=5.036,∴√=√×√10000=5.036×100=503.6,故选:B.【小结】本题考查了算术平方根.解题的关键是掌握算术平方根的定义以及算术平方根的被开方数小数点移动的规律.变式6设√5=m,√7=n,则√0.056可以表示为()A.mn25B.mn20C.mn15D.mn10【分析】首先把小数化为分数,为便于开方根据分数基本性质,分子分母同时扩大10倍,再根据二次根式的性质与化简,即可求得结论.【解析】√0.056=√561000=√56010000=√560100=√16×5×7100=4×√5×√7100=mn25;故选:A.【小结】本题考查了二次根式的性质与化简,解决本题的关键是二次根式化简时把小数化为分数,注意尝试怎样拆分数据可简便运算.考点3 算术平方根的非负性解决此类问题关键是掌握算术平方根,绝对值,偶次乘方均具有非负性.例题3若实数x,y满足|x﹣3|+√y−1=0,则(x+y)3的平方根为()A.4B.8C.±4D.±8【分析】利用绝对值的性质以及二次根式的性质得出x,y的值,进而利用平方根的定义得出答案.【解析】∵|x﹣3|+√y−1=0,∴x﹣3=0,y﹣1=0,∴x=3,y=1,则(x+y)3=(3+1)3=64,64的平方根是:±8.故选:D.【小结】此题主要考查了算术平方根以及绝对值的性质,正确把握相关定义是解题的关键.变式7已知实数x和y满足√x2−4+(y3+8)2=0,则x+y的值为()A.0B.﹣4C.0或﹣4D.±4【分析】根据非负数的性质即可求出答案.【解析】由题意可知:x2﹣4=0,y3+8=0,∴x=±2,y=﹣2,∴x+y=0或﹣4,故选:C.【小结】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.变式8已知(2a+b)2与√3b+12互为相反数,则b a=.【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解析】由题意得,(2a+b)2+√3b+12=0,则2a+b=0,3b+12=0,解得,a=2,b=﹣4,则b a=(﹣4)2=16,故答案为:16.【小结】本题考查了非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.变式9已知:实数a、b满足关系式(a﹣2)2+|b+√3|+√2009−c=0,求:b a+c+8的值.【分析】根据算术平方根,绝对值,偶次方的非负性求解a,b,c的值,再代入计算即可求解.【解析】由题意得a−2=0,b+√3=0,2009−c=0,解得a=2,b=−√3,c=2009,∴b a+c+8=(−√3)2+2009+8=2020.【小结】本题主要考查算术平方根,绝对值,偶次方的非负性,代数式求值,求解a,b,c的值是解题的关键.考点4 利用平方根与立方根性质解方程解决此类问题关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.例题4 计算下列各式的x 的值:(1)12x 2=8;(2)13(x +1)3=﹣9.【分析】(1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义化简即可求出解. 【解析】(1)方程变形得:x 2=16,开方得:x =±4;(2)方程变形得:(x +1)3=﹣27,开立方得:x +1=﹣3,解得:x =﹣4. 【小结】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.变式10 求下列各式中x 的值(1)25x 2=4; (2)(x +1)3=﹣27.【分析】(1)根据等式的性质,可得平方的形式,根据开方运算,可得答案; (2)根据开立方运算,可得一元一次方程,根据解方程,可得答案. 【解析】(1)方程两边都除以25,得 x 2=425,开方得,x =±25;(2)开立方得,x +1=﹣3,移项得,x =﹣4.【小结】本题主要考查立方根和平方根的知识点,解答本题的关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.变式11 求下列各式中的x :(1)4(x +2)2﹣16=0; (2)(2x ﹣1)3+2627=1. 【分析】(1)先求出(x +2)的值,然后解方程即可; (2)求出(2x ﹣1)的值,解方程即可得出x 的值. 【解析】(1)由题意得,4(x +2)2=16, ∴(x +2)2=4,∴x +2=±2, 解得x =0或﹣4;(2)由题意得,(2x ﹣1)3=127, ∴2x ﹣1=13,∴x =23.【小结】此题考查了平方根的知识,属于基础题,解答本题的关键是掌握一个正数的平方根有两个,不要漏解.变式12 解方程:(1)(x ﹣4)2=6; (2)13(x +3)3−9=0.【分析】(1)根据平方根的定义解答即可;(2)把方程整理为(x +3)3=27,再根据立方根的定义解答即可. 【解析】(1)(x ﹣4)2=6, x −4=±√6,∴x =4+√6或x =4−√6;(2)13(x +3)3−9=0,13(x +3)3=9, (x +3)3=27, x +3=√273, x +3=3, ∴x =0.【小结】本题主要考查了平方根与立方根,注意一个正数有两个平方根,它们互为相反数.考点5 平方根与立方根性质的运用解决此类问题关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根式0.例题5已知4a+1的平方根是±3,b﹣1的算术平方根为2.(1)求a与b的值;(2)求2a+b﹣1的立方根.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a的值是多少;然后根据b﹣1的算术平方根为2,可得:b﹣1=4,据此求出b的值是多少即可.(2)把(1)中求出a与b的值代入2a+b﹣1,求出算术的值是多少,进而求出它的立方根是多少即可.【解析】(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2;∵b﹣1的算术平方根为2,∴b﹣1=4,解得b=5.(2)∵a=2,b=5,∴2a+b﹣1=2×2+5﹣1=8,3=2.∴2a+b﹣1的立方根是:√8【小结】此题主要考查了立方根、平方根、算术平方根的含义和求法,要熟练掌握.变式13已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.【分析】(1)运用立方根和算术平方根的定义求解.(2)根据平方根,即可解答.【解析】(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.【小结】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的定义.变式14已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出4a﹣5b+8的值,然后根据立方根的定义求解.【解析】∵2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,∴2a+1=9,3a+2b﹣4=﹣8,解得a=4,b=﹣8,∴4a﹣5b+8=4×4﹣5×(﹣8)+8=64,∴4a﹣5b+8的立方根是4.【小结】本题考查了平方根,立方根的定义,列式求出a、b的值是解题的关键.变式15已知3a+4a+5a+6a+7a+8a=165,且a+11的算术平方根是m,5a+2的立方根是n.求n m的平方根.【分析】先由3a+4a+5a+6a+7a+8a=165,即33a=165得出a=5,再结合a+11的算术平方根是m,5a+2的立方根是n得出m、n的值,代入求解可得.【解析】∵3a+4a+5a+6a+7a+8a=165,即33a=165,∴a=5,又a+11的算术平方根是m,即16的算术平方根是m,∴m=4,∵5a+2的立方根是n,即27的立方根是n,∴n=3,则n m=34=81的平方根为±9.【小结】本题主要考查立方根,解题的关键是掌握立方根、平方根及算术平方根的定义.考点6 无理数的概念解决此类问题关键是掌握无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.例题6 在以下实数227,3.14159265,√93,√36,π3中,无理数的个数为( ) A .1个B .2个C .3个D .4个【分析】根据无理数是无限不循环小数,可得答案.【解析】227是分数,属于有理数;3.14159265是有限小数,属于有理数; √36=6,是整数,属于有理数;无理数有:√93,π3共2个.故选:B .【小结】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.变式16 在√16,−π2,﹣5.1⋅8⋅,−√93,47,0.317311731117…,这几个数中,无理数的个数是( )A .1B .2C .3D .4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】√16=4,是整数,属于有理数;−5.1.8.是循环小数,属于无理数;47是分数,属于有理数; 无理数有:−π2,−√93,0.317311731117…共3个.故选:C .【小结】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.变式17如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为√3时,输入值x为3或9;②当输入值x为16时,输出值y为√2;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③【分析】根据运算规则即可求解.【解析】①x的值不唯一.x=3或x=9或81等,故①说法错误;②输入值x为16时,√16=4,√4=2,即y=√2,故②说法正确;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①③.故选:D.【小结】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.变式18如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为;(2)是否存在输入有意义的x值后,却输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)当输出的y值是√3时,判断输入的x值是否唯一,如果不唯一,请写出其中的两个.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据运算法则,进行逆运算即可求得无数个满足条件的数.【解析】(1)当x=16时,√16=4,√4=2,故y值为√2.故答案为:√2;(2)当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)x的值不唯一.x=3或x=9.【小结】本题考查了二次根式有意义的条件,正确理解给出的运算方法是关键.考点7 估算无理数的大小解决此类问题关键是掌握无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.例题7下列整数中,与6−√11最接近的是()A.2B.3C.4D.5【分析】用逼近法即可进行无理数大小的估算.【解析】∵9<11<16,∴3<√11<4,∵3.52=12.25>11,∴3<√11<3.5∴2.5<6−√11<3.∴与6−√11最接近的是3.故选:B.【小结】本题考查了估算无理数的大小,估算无理数大小要用逼近法.变式19若a<√28−√7<a+1,其中a为整数,则a的值是()A.1B.2C.3D.4【分析】先把√28−√7化简,再估算√7的范围即可.【解析】√28−√7=2√7−√7=√7,∵22<7<32,∴2<√7<3,∵a<√28−√7<a+1,其中a为整数,∴a=2.故选:B.【小结】此题主要考查了估算无理数的大小,正确估算√7的范围是解答本题的关键.变式20阅读下面的文字,解答问题,例如:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).请解答:(1)√17的整数部分是,小数部分是.(2)已知:5−√17小数部分是m,6+√17小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值.【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)直接利用(1)中所求即可得出m,n的值,进而得出x的值.【解析】(1)∵√16<√17<√25,∴4<√17<5,∴√17的整数部分是:4,小数部分是:√17−4;故答案为:4,√17−4;(2)∵5−√17小数部分是m,6+√17小数部分是n,∴m=5−√17,n=6+√17−10=√17−4,∴m+n=1,∴(x+1)2=1,解得:x=0或﹣2.【小结】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.变式21阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若√13的整数部分为a,小数部分为b,求a2+b−√13的值.(2)已知:10+√3=x+y,其中x是整数,且0<y<1,求x﹣y的值.【分析】(1)先估算出√13的范围,求出a、b的值,再代入求出即可;(2)先估算出√3的范围,再求出x、y的值,再代入要求的式子进行计算即可.【解析】(1)∵3<√13<4,∴a=3,b=√13−3,∴a2+b−√13=32+√13−3−√13=6;(2)∵1<√3<2,又∵10+√3=x+y,其中x是整数,且0<y<1,∴x=11,y=√3−1,∴x﹣y=11﹣(√3−1)=12−√3.【小结】本题考查了估算无理数的大小,能估算出√13,√3的范围是解此题的关键.考点8 实数与数轴的对应关系例题8如图,在数轴上,AB=AC,A,B两点对应的实数分别是√3和﹣1,则点C对应的实数是()A.2√3B.2√3−2C.√3+1D.2√3+1【分析】求出AB的距离,再求出点C所表示的数.【解析】AB=√3−(﹣1)=√3+1,∵AB=AC,A所表示的实数为√3,点C在点A的右侧,∴点C所表示的数为:√3+(√3+1)=2√3+1,故选:D.【小结】考查数轴表示数的意义,理解绝对值的意义是解决问题的前提,变式22如图,3,√11在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.−√11B.3−√11C.√11−3D.6−√11【分析】设点A表示的数是x,再根据中点坐标公式即可得出x的值.【解析】设点A表示的数是x,∵数轴上表示3、√11的对应点分别为C、B,点C是AB的中点,∴√11+x2=3,解得x=6−√11.故选:D.【小结】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.变式23在数轴上,点A表示实数3,以点A为圆心,2+√5的长为半径画弧,交数轴于点C,则点C 表示的实数是()A.5+√5B.1−√5C.√5−1或5+√5D.1−√5或5+√5【分析】在数轴上利用左减右加的规律计算点C表示的实数.【解析】根据题意得:3+2+√5=5+√5,3﹣(2+√5)=1−√5,则点C表示的实数是5+√5或1−√5,故选:D.【小结】此题考查了实数与数轴,熟练掌握左减右加的规律是解本题的关键.变式24 如图,一只蚂蚁从点A 沿数轴向右直爬2个单位长度到达点B ,点A 表示−√2,设点B 所表示的数为m . (1)求m 的值. (2)求|m ﹣1|+m +6的值.【分析】(1)根据正负数的意义计算;(2)根据绝对值的意义和实数的混合运算法则计算.【解析】(1)由题意A 点和B 点的距离为2,A 点的坐标为−√2,因此B 点坐标m =2−√2. (2)把m 的值代入得:|m ﹣1|+m +6 =|2−√2−1|+2−√2+6, =|1−√2|+8−√2, =√2−1+8−√2, =7.【小结】本题考查了数轴、绝对值和实数的混合运算,熟练掌握数轴的意义和实数的运算法则是解题的关键.考点9 实数大小比较例题9 比较下列实数的大小(填上>、<或=).①π 3.14159;②√5034;③√22 √33.【分析】根据实数大小比较的法则进行比较即可.【解析】①π>3.14159; ②∵4=√643∴√503<4;③(√22)2=12,(√33)2=13, ∵12>13, ∴√22>√33. 故答案为:>;<;>.【小结】此题主要考查了实数的比较大小,关键是掌握正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.变式25 5−√2,2+√52,2+√2的大小关系是( )A .2+√2>2+√52>5−√2 B .5−√2>2+√52>2+√2C .2+√52>5−√2>2+√2 D .5−√2>2+√2>2+√52【分析】先根据√52<√2,利用不等式的性质可以判断第2个和第3个数的大小,最后由作差法可得第一个数和第3个数的大小.【解析】∵5<8, ∴√5<√8,∴√52<√2, ∴2+√52<2+√2,∵(5−√2)﹣(2+√2)=3﹣2√2>0, ∴5−√2>2+√2>2+√52;故选:D .【小结】本题考查了实数大小的比较,先观察每个数的特点,常利用作差法,不等式的性质,作商法,数轴法等比较两个数的大小.变式26 已知0<x <1,则√x 、1x、x 2、x 的大小关系是( )A .√x <x 2<x <1xB .x <x 2<1x <√xC .x 2<x <√x <1x D .1x<√x <x 2<x【分析】根据0<x <1,可得:0<x 2<x <√x <1,1x >1,据此判断即可.【解析】∵0<x <1,∴0<x 2<x <√x <1,1x >1,∴x 2<x <√x <1x .故选:C .【小结】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.变式27已知min{√x,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{√x,x2,x}=min{√9,92,9}=3﹒当min{√x,x2,x}=116时,则x的值为()A.116B.18C.14D.12【分析】本题分别计算√x=116,x2=116,x=116的x值,找到满足条件的x值即可.首先从x的值代入来求,由x≥0,则x=01,2,3,4,5,则可知最小值是0,最大值是6.【解析】当√x=116时,x=1256,x<√x,不合题意;当x2=116时,x=±14,当x=−14时,x<x2,不合题意;当x=14时,√x=12,x2<x<√x,符合题意;当x=116时,x2=1256,x2<x,不合题意,故选:C.【小结】本题主要考查实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.考点10 实数的混合运算在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.例题10计算﹣12﹣(﹣2)3×18+√−273×|−13|+|1−√3|【分析】直接利用立方根以及对值的性质分别化简得出答案.【解析】原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.【小结】此题主要考查了实数运算,正确化简各数是解题关键.变式28计算:3×(√4−√3)×√1−19 273−|√3−2|【分析】直接利用立方根的性质、二次根式的性质分别化简得出答案.【解析】原式=3×(2−√3)×23−(2−√3)=4﹣2√3−2+√3=2−√3.【小结】此题主要考查了实数运算,正确化简各数是解题关键.变式29 计算:(﹣1)2020+(﹣2)3×18−√−273×(−√19).【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 【解析】(﹣1)2020+(﹣2)3×18−√−273×(−√19) =1+(﹣8)×18−(﹣3)×(−13) =1﹣1﹣1 =﹣1.【小结】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.变式30 计算:√−83−√1−1625+|2−√5|+√(−4)2 【分析】直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案.【解析】原式=﹣2−35+√5−2+4=−35+√5.【小结】此题主要考查了实数运算,正确化简各数是解题关键.考点11 实数中的定义新运算例题11 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =√a+ba−b ,如:3⊕2=√3+23−2=√5,那么12⊕4= .【分析】先依据定义列出算式,然后再进行计算即可. 【解析】12⊕4=√12+412−4=√2.故答案为:√2.【小结】本题主要考查的是算术平方根的性质,根据定义运算列出算式是解题的关键.变式31对于能使式子有意义的有理数a,b,定义新运算:a△b=3a+ba−3b.如果|x+1|+√+|xz+2|=0,则x△(y△z)=.【分析】先根据绝对值、二次根式的非负性,求出x、y、z的值,再根据新运算的规定计算x△(y△z)的值.【解析】∵|x+1|≥0,√y−3≥0,|xz+2|≥0,又∵|x+1|+√y−3+|xz+2|=0,∴|x+1|=0,√y−3=0,|xz+2|=0.∴x+1=0,y﹣3=0,xz+2=0.∴x=﹣1,y=3,z=2.∵y△z=3y+z 3−3z=−11 3.x△(y△z)=﹣1△(−11 3)=3×(−1)−113−1−3×(−113)=−203 10=−2 3.故答案为:−2 3.【小结】本题考查了绝对值、二次根式的非负性及实数的混合运算,理解并运用新定义运算的规定是解决本题的关键.变式32对任意两个实数a,b定义两种运算:a⊕b={a(若a≥b)b(若a<b),a⊗b={b(若a≥b)a(若a<b),并且定义运算顺序仍然是先做括号内的,例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=2.那么(√5⊕2)⊗√273等于()A.3√5B.3C.√5D.6【分析】直接利用已知运算公式进而分析得出答案.【解析】(√5⊕2)⊗√273=√5⊗√273=√5⊗3=√5.故选:C.【小结】此题主要考查了实数运算,正确运用公式是解题关键.变式33对实数a、b,定义“★”运算规则如下:a★b={b(a≤b)√a2−b2(a>b),则√7★(√2★√3)=()A.1B.2C.﹣1D.﹣2【分析】先依据法则知√2★√3=√3,据此得出原式=√7★√3,再次利用法则计算可得.【解析】∵√2<√3,∴√2★√3=√3,则原式=√7★√3=√(√7)2−(√3)2=√7−3=√4=2,故选:B.【小结】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则及对新定义的理解.考点12 实数的性质综合例题12如图①是由8个同样大小的立方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图②,使得点A与﹣1重合,那么点D在数轴上表示的数为.【分析】(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小正方体的边长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A表示的数减去边长即可得解.【解析】(1)设魔方的棱长为x,则x3=8,解得:x=2;(2)∵棱长为2,∴每个小立方体的边长都是1,∴正方形ABCD的边长为:√2,∴S正方形ABCD=(√2)2=2;(3)∵正方形ABCD的边长为√2,点A与﹣1重合,∴点D在数轴上表示的数为:﹣1−√2,故答案为:﹣1−√2.【小结】本题主要考查实数与数轴、立方根的综合应用,解决此题的关键是能求出每个小正方形的边长.变式34如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数√8.【分析】(1)根据面积求出正方形的边长,再根据边长的长和面积公式即可求出答案;(2)根据勾股定理和正方形的面积公式即可画出图形,利用圆规,以O为圆心,正方形的边长为半径画弧可得实数√8的位置.【解析】(1)正方形的边长是:√,面积为:√5×√5=5.(2)见图:在数轴上表示实数√8,【小结】本题考查了三角形的面积,实数与数轴,用到的知识点是勾股定理,以及勾股定理的应用,在直角三角形中,两直角边的平方和等于斜边的平方.变式35如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm3.(1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD放置在数轴上,如图乙所示,使得点A与数1重合,则D在数轴上表示的数为.【分析】(1)魔方是个正方体,正方体的体积等于棱长的三次方;(2)这个正方形ABCD的边长是小立方体一个面的对角线的长度;(3)点D表示的数是负数,它的绝对值比正方形ABCD的边长少1.【解析】(1)设魔方的棱长为acm,根据题意得a3=64∴a=4故答案为4.(2)设小正方体的棱长为bcm,根据题意得8b3=64∴b=2∴所以根据勾股定理得CD2=22+22∴CD=√8答:这个正方形的边长是√8cm.(3)由(2)知,AD=√8∴点D对应的数的绝对值是√8-1,∵点D对应的数是负数∴点D对应的数是1﹣√8故答案为1﹣√8.【小结】本题考查了正方体的体积、实数与数轴之间的关系和勾股定理.正方体的体积=棱长的立方.实数与数轴上的点是一一对应的关系,要在数轴上表示一个实数,要知道这个实数的正负性和绝对值.变式36如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的边长为.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是.(3)如图3,网格中每个小正方形的边长为1,若能把阴影部分剪拼成一个新的正方形,求新的正方形的面积和边长.【分析】(1)设拼成的正方形的边长为a,根据总面积列方程可解答;(2)结合(1),并根据圆中半径相等,结合数轴上点的特点可解答;(3)根据图形求出阴影部分的面积,即为新正方形的面积,开方即可求出边长.【解析】(1)设拼成的正方形的边长为a,则a2=5,a=√5,即拼成的正方形的边长为√5,故答案为:√5;(2)由(1)得点A表示的数为√5−1,故答案为:√5−1;(3)根据图形得:S阴影=2×2×2×12+2×2×12=4+2=6,即新的正方形的面积为6,新正方形的边长为√6.【小结】此题考查了实数、数轴、几何图形及算术平方根,熟练掌握算术平方根的定义是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1 平方根与立方根的定义解决此类问题关键是掌握一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方 根有2个;任意一个数的立方根只有1个.例题1 下列说法中,正确的是( )A .﹣5是(﹣5)2的算术平方根B .16的平方根是±4C .2是﹣4的算术平方根D .27的立方根是±3【分析】利用平方根、立方根的性质判断即可. 【解析】A 、5是(﹣5)2的算术平方根,不符合题意; B 、16的平方根是±4,符合题意; C 、2是4的算术平方根,不符合题意; D 、27的立方根是3,不符合题意. 故选:B .【小结】此题考查了立方根,平方根,以及算术平方根,熟掌握各自的性质是解本题的关键.变式1 下列结论中,其中正确的是( )A .√81的平方根是±9B .√100=±10C .立方根等于本身的数只有0.1D .√−63=−√63【分析】根据平方根,立方根的定义逐项计算可判断求解.【解析】A .∵√81=9,9的平方根为±3,∴√81的平方根为±3,故原说法错误; B .√100=10,故原说法错误;C .立方根等于本身的数只有0,﹣1,1,故原说法错误;D .√−63=−√63,故原说法正确. 故选:D .【小结】本题主要考查平方根,立方根,根据平方根及立方根的定义逐项计算可判断求解.变式2 下列说法:①±3都是27的立方根;②116的算术平方根是±14;③−√−83=2;④√16的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有( ) A .1个B .2个C .3个D .4个【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可. 【解析】①3是27的立方根,原来的说法错误;②116的算术平方根是14,原来的说法错误; ③−√−83=2是正确的;④√16=4,4的平方根是±2,原来的说法错误; ⑤9是81的算术平方根,原来的说法错误. 故其中正确的有1个. 故选:A .【小结】考查立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.变式3 下列说法正确的是( )A .若√a 2=−a ,则a <0B .若√a 2=a ,则a >0C .√a 4b 8=a 2b 4D .3的平方根是√3【分析】根据平方根和算术平方根的定义分别对每一项进行分析,即可得出答案. 【解析】A 、若2=−a ,则a ≤0,故本选项错误; B 、若√a 2=a ,则a ≥0,故本选项错误; C 、√a 4b 8=a 2b 4,故本选项正确; D 、3的平方根是±√3,故本选项错误; 故选:C .【小结】此题考查了平方根和算术平方根,熟练掌握平方根和算术平方根定义是解本题的关键.考点2 算术平方根的小数点移动规律解决此类问题关键是掌握一个被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位;例题2由√3≈1.732,得√300≈17.32,则√0.03≈,√30000≈.从以上结果可以发现,被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动1位.【分析】根据算术平方根的定义进行解答即可.【解析】∵√300≈17.32,∴√0.03≈0.1732,√30000≈173.2,从以上结果可以发现,被开方数的小数点向左或向右移动两位,它的算术平方根的小数点就相应地向左或向右移动1位;故答案为:0.1732,173.2,两.【小结】此题考查了算术平方根的定义,掌握算术平方根的定义是本题的关键.变式4如表所示,被开方数a的小数点位置移动和它的算术平方根√a的小数点位置移动规律符合一定的规律,若√a=180,且−√3.24=−1.8,则被开方数a的值为.a…0.0000010.011100100001000000…√a…0.0010.11101001000…【分析】根据题意和表格中数据的变化规律,可以求得a的值.【解析】∵√a=180,且−√3.24=−1.8,∴√3.24=1.8,∴√32400=180,∴a=32400,故答案为:32400.【小结】本题考查算术平方根,解答本题的关键是明确算术平方根的定义,求出相应的a的值.变式5若√25.36=5.036,√253.6=15.906,则√253600=()A.50.36B.503.6C.159.06D.1.5906【分析】根据已知等式,利用算术平方根定义判断即可得到结果.【解析】∵√=5.036,∴√=√×√10000=5.036×100=503.6,故选:B.【小结】本题考查了算术平方根.解题的关键是掌握算术平方根的定义以及算术平方根的被开方数小数点移动的规律.变式6设√5=m,√7=n,则√0.056可以表示为()A.mn25B.mn20C.mn15D.mn10【分析】首先把小数化为分数,为便于开方根据分数基本性质,分子分母同时扩大10倍,再根据二次根式的性质与化简,即可求得结论.【解析】√0.056=√561000=√56010000=√560100=√16×5×7100=4×√5×√7100=mn25;故选:A.【小结】本题考查了二次根式的性质与化简,解决本题的关键是二次根式化简时把小数化为分数,注意尝试怎样拆分数据可简便运算.考点3 算术平方根的非负性解决此类问题关键是掌握算术平方根,绝对值,偶次乘方均具有非负性.例题3若实数x,y满足|x﹣3|+√y−1=0,则(x+y)3的平方根为()A.4B.8C.±4D.±8【分析】利用绝对值的性质以及二次根式的性质得出x,y的值,进而利用平方根的定义得出答案.【解析】∵|x﹣3|+√y−1=0,∴x﹣3=0,y﹣1=0,∴x=3,y=1,则(x+y)3=(3+1)3=64,64的平方根是:±8.故选:D.【小结】此题主要考查了算术平方根以及绝对值的性质,正确把握相关定义是解题的关键.变式7已知实数x和y满足√x2−4+(y3+8)2=0,则x+y的值为()A.0B.﹣4C.0或﹣4D.±4【分析】根据非负数的性质即可求出答案.【解析】由题意可知:x2﹣4=0,y3+8=0,∴x=±2,y=﹣2,∴x+y=0或﹣4,故选:C.【小结】本题考查非负数的性质,解题的关键是熟练运用非负数的性质,本题属于基础题型.变式8已知(2a+b)2与√3b+12互为相反数,则b a=.【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解析】由题意得,(2a+b)2+√3b+12=0,则2a+b=0,3b+12=0,解得,a=2,b=﹣4,则b a=(﹣4)2=16,故答案为:16.【小结】本题考查了非负数的性质和相反数,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.变式9已知:实数a、b满足关系式(a﹣2)2+|b+√3|+√2009−c=0,求:b a+c+8的值.【分析】根据算术平方根,绝对值,偶次方的非负性求解a,b,c的值,再代入计算即可求解.【解析】由题意得a−2=0,b+√3=0,2009−c=0,解得a=2,b=−√3,c=2009,∴b a+c+8=(−√3)2+2009+8=2020.【小结】本题主要考查算术平方根,绝对值,偶次方的非负性,代数式求值,求解a,b,c的值是解题的关键.考点4 利用平方根与立方根性质解方程解决此类问题关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.例题4 计算下列各式的x 的值:(1)12x 2=8;(2)13(x +1)3=﹣9.【分析】(1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义化简即可求出解. 【解析】(1)方程变形得:x 2=16,开方得:x =±4;(2)方程变形得:(x +1)3=﹣27,开立方得:x +1=﹣3,解得:x =﹣4. 【小结】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.变式10 求下列各式中x 的值(1)25x 2=4; (2)(x +1)3=﹣27.【分析】(1)根据等式的性质,可得平方的形式,根据开方运算,可得答案; (2)根据开立方运算,可得一元一次方程,根据解方程,可得答案. 【解析】(1)方程两边都除以25,得 x 2=425,开方得,x =±25;(2)开立方得,x +1=﹣3,移项得,x =﹣4.【小结】本题主要考查立方根和平方根的知识点,解答本题的关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.变式11 求下列各式中的x :(1)4(x +2)2﹣16=0; (2)(2x ﹣1)3+2627=1. 【分析】(1)先求出(x +2)的值,然后解方程即可; (2)求出(2x ﹣1)的值,解方程即可得出x 的值. 【解析】(1)由题意得,4(x +2)2=16, ∴(x +2)2=4,∴x +2=±2, 解得x =0或﹣4;(2)由题意得,(2x ﹣1)3=127, ∴2x ﹣1=13,∴x =23.【小结】此题考查了平方根的知识,属于基础题,解答本题的关键是掌握一个正数的平方根有两个,不要漏解.变式12 解方程:(1)(x ﹣4)2=6; (2)13(x +3)3−9=0.【分析】(1)根据平方根的定义解答即可;(2)把方程整理为(x +3)3=27,再根据立方根的定义解答即可. 【解析】(1)(x ﹣4)2=6, x −4=±√6,∴x =4+√6或x =4−√6;(2)13(x +3)3−9=0,13(x +3)3=9, (x +3)3=27, x +3=√273, x +3=3, ∴x =0.【小结】本题主要考查了平方根与立方根,注意一个正数有两个平方根,它们互为相反数.考点5 平方根与立方根性质的运用解决此类问题关键是注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根式0.例题5已知4a+1的平方根是±3,b﹣1的算术平方根为2.(1)求a与b的值;(2)求2a+b﹣1的立方根.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a的值是多少;然后根据b﹣1的算术平方根为2,可得:b﹣1=4,据此求出b的值是多少即可.(2)把(1)中求出a与b的值代入2a+b﹣1,求出算术的值是多少,进而求出它的立方根是多少即可.【解析】(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2;∵b﹣1的算术平方根为2,∴b﹣1=4,解得b=5.(2)∵a=2,b=5,∴2a+b﹣1=2×2+5﹣1=8,3=2.∴2a+b﹣1的立方根是:√8【小结】此题主要考查了立方根、平方根、算术平方根的含义和求法,要熟练掌握.变式13已知4a+7的立方根是3,2a+2b+2的算术平方根是4.(1)求a,b的值;(2)求6a+3b的平方根.【分析】(1)运用立方根和算术平方根的定义求解.(2)根据平方根,即可解答.【解析】(1)∵4a+7的立方根是3,2a+2b+2的算术平方根是4,∴4a+7=27,2a+2b+2=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴6a+3b=6×5+3×2=36,∴6a+3b的平方根为±6.【小结】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的定义.变式14已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出4a﹣5b+8的值,然后根据立方根的定义求解.【解析】∵2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,∴2a+1=9,3a+2b﹣4=﹣8,解得a=4,b=﹣8,∴4a﹣5b+8=4×4﹣5×(﹣8)+8=64,∴4a﹣5b+8的立方根是4.【小结】本题考查了平方根,立方根的定义,列式求出a、b的值是解题的关键.变式15已知3a+4a+5a+6a+7a+8a=165,且a+11的算术平方根是m,5a+2的立方根是n.求n m的平方根.【分析】先由3a+4a+5a+6a+7a+8a=165,即33a=165得出a=5,再结合a+11的算术平方根是m,5a+2的立方根是n得出m、n的值,代入求解可得.【解析】∵3a+4a+5a+6a+7a+8a=165,即33a=165,∴a=5,又a+11的算术平方根是m,即16的算术平方根是m,∴m=4,∵5a+2的立方根是n,即27的立方根是n,∴n=3,则n m=34=81的平方根为±9.【小结】本题主要考查立方根,解题的关键是掌握立方根、平方根及算术平方根的定义.考点6 无理数的概念解决此类问题关键是掌握无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.例题6 在以下实数227,3.14159265,√93,√36,π3中,无理数的个数为( ) A .1个B .2个C .3个D .4个【分析】根据无理数是无限不循环小数,可得答案.【解析】227是分数,属于有理数;3.14159265是有限小数,属于有理数; √36=6,是整数,属于有理数;无理数有:√93,π3共2个.故选:B .【小结】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.变式16 在√16,−π2,﹣5.1⋅8⋅,−√93,47,0.317311731117…,这几个数中,无理数的个数是( )A .1B .2C .3D .4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解析】√16=4,是整数,属于有理数;−5.1.8.是循环小数,属于无理数;47是分数,属于有理数; 无理数有:−π2,−√93,0.317311731117…共3个.故选:C .【小结】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.变式17如图是一个无理数生成器的工作流程图,根据该流程图,下面说法:①当输出值y为√3时,输入值x为3或9;②当输入值x为16时,输出值y为√2;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y;④存在这样的正整数x,输入x之后,该生成器能够一直运行,但始终不能输出y值.其中错误的是()A.①②B.②④C.①④D.①③【分析】根据运算规则即可求解.【解析】①x的值不唯一.x=3或x=9或81等,故①说法错误;②输入值x为16时,√16=4,√4=2,即y=√2,故②说法正确;③对于任意的正无理数y,都存在正整数x,使得输入x后能够输出y,如输入π2,故③说法错误;④当x=1时,始终输不出y值.因为1的算术平方根是1,一定是有理数,故④原说法正确.其中错误的是①③.故选:D.【小结】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.变式18如图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为;(2)是否存在输入有意义的x值后,却输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)当输出的y值是√3时,判断输入的x值是否唯一,如果不唯一,请写出其中的两个.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据运算法则,进行逆运算即可求得无数个满足条件的数.【解析】(1)当x=16时,√16=4,√4=2,故y值为√2.故答案为:√2;(2)当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)x的值不唯一.x=3或x=9.【小结】本题考查了二次根式有意义的条件,正确理解给出的运算方法是关键.考点7 估算无理数的大小解决此类问题关键是掌握无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.例题7下列整数中,与6−√11最接近的是()A.2B.3C.4D.5【分析】用逼近法即可进行无理数大小的估算.【解析】∵9<11<16,∴3<√11<4,∵3.52=12.25>11,∴3<√11<3.5∴2.5<6−√11<3.∴与6−√11最接近的是3.故选:B.【小结】本题考查了估算无理数的大小,估算无理数大小要用逼近法.变式19若a<√28−√7<a+1,其中a为整数,则a的值是()A.1B.2C.3D.4【分析】先把√28−√7化简,再估算√7的范围即可.【解析】√28−√7=2√7−√7=√7,∵22<7<32,∴2<√7<3,∵a<√28−√7<a+1,其中a为整数,∴a=2.故选:B.【小结】此题主要考查了估算无理数的大小,正确估算√7的范围是解答本题的关键.变式20阅读下面的文字,解答问题,例如:∵√4<√7<√9,即2<√7<3,∴√7的整数部分为2,小数部分为(√7−2).请解答:(1)√17的整数部分是,小数部分是.(2)已知:5−√17小数部分是m,6+√17小数部分是n,且(x+1)2=m+n,请求出满足条件的x的值.【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)直接利用(1)中所求即可得出m,n的值,进而得出x的值.【解析】(1)∵√16<√17<√25,∴4<√17<5,∴√17的整数部分是:4,小数部分是:√17−4;故答案为:4,√17−4;(2)∵5−√17小数部分是m,6+√17小数部分是n,∴m=5−√17,n=6+√17−10=√17−4,∴m+n=1,∴(x+1)2=1,解得:x=0或﹣2.【小结】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.变式21阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:(1)若√13的整数部分为a,小数部分为b,求a2+b−√13的值.(2)已知:10+√3=x+y,其中x是整数,且0<y<1,求x﹣y的值.【分析】(1)先估算出√13的范围,求出a、b的值,再代入求出即可;(2)先估算出√3的范围,再求出x、y的值,再代入要求的式子进行计算即可.【解析】(1)∵3<√13<4,∴a=3,b=√13−3,∴a2+b−√13=32+√13−3−√13=6;(2)∵1<√3<2,又∵10+√3=x+y,其中x是整数,且0<y<1,∴x=11,y=√3−1,∴x﹣y=11﹣(√3−1)=12−√3.【小结】本题考查了估算无理数的大小,能估算出√13,√3的范围是解此题的关键.考点8 实数与数轴的对应关系例题8如图,在数轴上,AB=AC,A,B两点对应的实数分别是√3和﹣1,则点C对应的实数是()A.2√3B.2√3−2C.√3+1D.2√3+1【分析】求出AB的距离,再求出点C所表示的数.【解析】AB=√3−(﹣1)=√3+1,∵AB=AC,A所表示的实数为√3,点C在点A的右侧,∴点C所表示的数为:√3+(√3+1)=2√3+1,故选:D.【小结】考查数轴表示数的意义,理解绝对值的意义是解决问题的前提,变式22如图,3,√11在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.−√11B.3−√11C.√11−3D.6−√11【分析】设点A表示的数是x,再根据中点坐标公式即可得出x的值.【解析】设点A表示的数是x,∵数轴上表示3、√11的对应点分别为C、B,点C是AB的中点,∴√11+x2=3,解得x=6−√11.故选:D.【小结】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.变式23在数轴上,点A表示实数3,以点A为圆心,2+√5的长为半径画弧,交数轴于点C,则点C 表示的实数是()A.5+√5B.1−√5C.√5−1或5+√5D.1−√5或5+√5【分析】在数轴上利用左减右加的规律计算点C表示的实数.【解析】根据题意得:3+2+√5=5+√5,3﹣(2+√5)=1−√5,则点C表示的实数是5+√5或1−√5,故选:D.【小结】此题考查了实数与数轴,熟练掌握左减右加的规律是解本题的关键.变式24 如图,一只蚂蚁从点A 沿数轴向右直爬2个单位长度到达点B ,点A 表示−√2,设点B 所表示的数为m . (1)求m 的值. (2)求|m ﹣1|+m +6的值.【分析】(1)根据正负数的意义计算;(2)根据绝对值的意义和实数的混合运算法则计算.【解析】(1)由题意A 点和B 点的距离为2,A 点的坐标为−√2,因此B 点坐标m =2−√2. (2)把m 的值代入得:|m ﹣1|+m +6 =|2−√2−1|+2−√2+6, =|1−√2|+8−√2, =√2−1+8−√2, =7.【小结】本题考查了数轴、绝对值和实数的混合运算,熟练掌握数轴的意义和实数的运算法则是解题的关键.考点9 实数大小比较例题9 比较下列实数的大小(填上>、<或=).①π 3.14159;②√5034;③√22 √33.【分析】根据实数大小比较的法则进行比较即可.【解析】①π>3.14159; ②∵4=√643∴√503<4;③(√22)2=12,(√33)2=13, ∵12>13, ∴√22>√33. 故答案为:>;<;>.【小结】此题主要考查了实数的比较大小,关键是掌握正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.变式25 5−√2,2+√52,2+√2的大小关系是( )A .2+√2>2+√52>5−√2 B .5−√2>2+√52>2+√2C .2+√52>5−√2>2+√2 D .5−√2>2+√2>2+√52【分析】先根据√52<√2,利用不等式的性质可以判断第2个和第3个数的大小,最后由作差法可得第一个数和第3个数的大小.【解析】∵5<8, ∴√5<√8,∴√52<√2, ∴2+√52<2+√2,∵(5−√2)﹣(2+√2)=3﹣2√2>0, ∴5−√2>2+√2>2+√52;故选:D .【小结】本题考查了实数大小的比较,先观察每个数的特点,常利用作差法,不等式的性质,作商法,数轴法等比较两个数的大小.变式26 已知0<x <1,则√x 、1x、x 2、x 的大小关系是( )A .√x <x 2<x <1xB .x <x 2<1x <√xC .x 2<x <√x <1x D .1x<√x <x 2<x【分析】根据0<x <1,可得:0<x 2<x <√x <1,1x >1,据此判断即可.【解析】∵0<x <1,∴0<x 2<x <√x <1,1x >1,∴x 2<x <√x <1x .故选:C .【小结】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.变式27已知min{√x,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{√x,x2,x}=min{√9,92,9}=3﹒当min{√x,x2,x}=116时,则x的值为()A.116B.18C.14D.12【分析】本题分别计算√x=116,x2=116,x=116的x值,找到满足条件的x值即可.首先从x的值代入来求,由x≥0,则x=01,2,3,4,5,则可知最小值是0,最大值是6.【解析】当√x=116时,x=1256,x<√x,不合题意;当x2=116时,x=±14,当x=−14时,x<x2,不合题意;当x=14时,√x=12,x2<x<√x,符合题意;当x=116时,x2=1256,x2<x,不合题意,故选:C.【小结】本题主要考查实数大小比较,算术平方根及其最值问题,解决此题时,注意分类思想的运用.考点10 实数的混合运算在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.例题10计算﹣12﹣(﹣2)3×18+√−273×|−13|+|1−√3|【分析】直接利用立方根以及对值的性质分别化简得出答案.【解析】原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.【小结】此题主要考查了实数运算,正确化简各数是解题关键.变式28计算:3×(√4−√3)×√1−19 273−|√3−2|【分析】直接利用立方根的性质、二次根式的性质分别化简得出答案.【解析】原式=3×(2−√3)×23−(2−√3)=4﹣2√3−2+√3=2−√3.【小结】此题主要考查了实数运算,正确化简各数是解题关键.变式29 计算:(﹣1)2020+(﹣2)3×18−√−273×(−√19).【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 【解析】(﹣1)2020+(﹣2)3×18−√−273×(−√19) =1+(﹣8)×18−(﹣3)×(−13) =1﹣1﹣1 =﹣1.【小结】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.正确化简各数是解题关键.变式30 计算:√−83−√1−1625+|2−√5|+√(−4)2 【分析】直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案.【解析】原式=﹣2−35+√5−2+4=−35+√5.【小结】此题主要考查了实数运算,正确化简各数是解题关键.考点11 实数中的定义新运算例题11 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =√a+ba−b ,如:3⊕2=√3+23−2=√5,那么12⊕4= .【分析】先依据定义列出算式,然后再进行计算即可. 【解析】12⊕4=√12+412−4=√2.故答案为:√2.【小结】本题主要考查的是算术平方根的性质,根据定义运算列出算式是解题的关键.变式31对于能使式子有意义的有理数a,b,定义新运算:a△b=3a+ba−3b.如果|x+1|+√+|xz+2|=0,则x△(y△z)=.【分析】先根据绝对值、二次根式的非负性,求出x、y、z的值,再根据新运算的规定计算x△(y△z)的值.【解析】∵|x+1|≥0,√y−3≥0,|xz+2|≥0,又∵|x+1|+√y−3+|xz+2|=0,∴|x+1|=0,√y−3=0,|xz+2|=0.∴x+1=0,y﹣3=0,xz+2=0.∴x=﹣1,y=3,z=2.∵y△z=3y+z 3−3z=−11 3.x△(y△z)=﹣1△(−11 3)=3×(−1)−113−1−3×(−113)=−203 10=−2 3.故答案为:−2 3.【小结】本题考查了绝对值、二次根式的非负性及实数的混合运算,理解并运用新定义运算的规定是解决本题的关键.变式32对任意两个实数a,b定义两种运算:a⊕b={a(若a≥b)b(若a<b),a⊗b={b(若a≥b)a(若a<b),并且定义运算顺序仍然是先做括号内的,例如(﹣2)⊕3=3,(﹣2)⊗3=﹣2,((﹣2)⊕3)⊗2=2.那么(√5⊕2)⊗√273等于()A.3√5B.3C.√5D.6【分析】直接利用已知运算公式进而分析得出答案.【解析】(√5⊕2)⊗√273=√5⊗√273=√5⊗3=√5.故选:C.【小结】此题主要考查了实数运算,正确运用公式是解题关键.变式33对实数a、b,定义“★”运算规则如下:a★b={b(a≤b)√a2−b2(a>b),则√7★(√2★√3)=()A.1B.2C.﹣1D.﹣2【分析】先依据法则知√2★√3=√3,据此得出原式=√7★√3,再次利用法则计算可得.【解析】∵√2<√3,∴√2★√3=√3,则原式=√7★√3=√(√7)2−(√3)2=√7−3=√4=2,故选:B.【小结】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则及对新定义的理解.考点12 实数的性质综合例题12如图①是由8个同样大小的立方体组成的魔方,体积为8.(1)求出这个魔方的棱长;(2)图①中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)把正方形ABCD放到数轴上,如图②,使得点A与﹣1重合,那么点D在数轴上表示的数为.【分析】(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小正方体的边长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A表示的数减去边长即可得解.【解析】(1)设魔方的棱长为x,则x3=8,解得:x=2;(2)∵棱长为2,∴每个小立方体的边长都是1,∴正方形ABCD的边长为:√2,∴S正方形ABCD=(√2)2=2;(3)∵正方形ABCD的边长为√2,点A与﹣1重合,∴点D在数轴上表示的数为:﹣1−√2,故答案为:﹣1−√2.【小结】本题主要考查实数与数轴、立方根的综合应用,解决此题的关键是能求出每个小正方形的边长.变式34如图,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的顶点上);并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数√8.【分析】(1)根据面积求出正方形的边长,再根据边长的长和面积公式即可求出答案;(2)根据勾股定理和正方形的面积公式即可画出图形,利用圆规,以O为圆心,正方形的边长为半径画弧可得实数√8的位置.【解析】(1)正方形的边长是:√,面积为:√5×√5=5.(2)见图:在数轴上表示实数√8,【小结】本题考查了三角形的面积,实数与数轴,用到的知识点是勾股定理,以及勾股定理的应用,在直角三角形中,两直角边的平方和等于斜边的平方.变式35如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm3.(1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD放置在数轴上,如图乙所示,使得点A与数1重合,则D在数轴上表示的数为.【分析】(1)魔方是个正方体,正方体的体积等于棱长的三次方;(2)这个正方形ABCD的边长是小立方体一个面的对角线的长度;(3)点D表示的数是负数,它的绝对值比正方形ABCD的边长少1.【解析】(1)设魔方的棱长为acm,根据题意得a3=64∴a=4故答案为4.(2)设小正方体的棱长为bcm,根据题意得8b3=64∴b=2∴所以根据勾股定理得CD2=22+22∴CD=√8答:这个正方形的边长是√8cm.(3)由(2)知,AD=√8∴点D对应的数的绝对值是√8-1,∵点D对应的数是负数∴点D对应的数是1﹣√8故答案为1﹣√8.【小结】本题考查了正方体的体积、实数与数轴之间的关系和勾股定理.正方体的体积=棱长的立方.实数与数轴上的点是一一对应的关系,要在数轴上表示一个实数,要知道这个实数的正负性和绝对值.变式36如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的边长为.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是.(3)如图3,网格中每个小正方形的边长为1,若能把阴影部分剪拼成一个新的正方形,求新的正方形的面积和边长.【分析】(1)设拼成的正方形的边长为a,根据总面积列方程可解答;(2)结合(1),并根据圆中半径相等,结合数轴上点的特点可解答;(3)根据图形求出阴影部分的面积,即为新正方形的面积,开方即可求出边长.【解析】(1)设拼成的正方形的边长为a,则a2=5,a=√5,即拼成的正方形的边长为√5,故答案为:√5;(2)由(1)得点A表示的数为√5−1,故答案为:√5−1;(3)根据图形得:S阴影=2×2×2×12+2×2×12=4+2=6,即新的正方形的面积为6,新正方形的边长为√6.【小结】此题考查了实数、数轴、几何图形及算术平方根,熟练掌握算术平方根的定义是解本题的关键.。