材料表界面化学第一章绪论
环境化学 课件第一章

近年来,全世界平均每年约发生200多起
严重公害事件。世界瞩目的有下面7起
(1)意大利塞维索化学污染事故。1976年7月10日意大利北部塞维索地区的一家 农药厂爆炸,导致剧毒化学品二恶英的污染,使许多人中毒,附近居民被迫迁走, 几年内当地畸形儿的出生率大为增加。 (2)美国三里岛核电站泄露事故。这次事故发生在1979年3月28日,直接经济 损失达10多亿美元。 (3)墨西哥的液化气爆炸事故。1984年11月19日,墨西哥国家石油公司所属 的液化气供应中心发生爆炸,死亡1000多人,伤400多人,3万多人无家可归。 (4)印度博帕尔农药泄漏事故。1984年12月3日,美国联合碳化物公司设在博 帕尔市的农药厂的剧毒化学品异氰酸甲酯罐爆裂外泄,受害人数20万,死亡 3000人以上。 (5)原苏联切尔诺贝利核电站泄露事故。1986年4月26日位于基辅地区的切尔 诺贝利核电站四号反应堆爆炸,造成重大放射性污染,周围十多万居民被疏散, 伤数百人,死亡31人。 (6)莱茵河污染事故。1986年11月1日,瑞士巴塞赞德兹化学公司的仓库起火, 使大量有毒化学品随灭火用水流进莱茵河,造成西欧10年来最大的污染事故。 (7)海湾战争造成的环境污染。1991年的海湾战争历时42天,期间油井大火昼 夜燃烧,是迄今历史上最大的石油火灾及海洋石油污染事故,也是人类历史上最 严重的一次环境污染,其污染程度超过切尔诺贝利核电站发生的核泄漏事故。这 次战争所造成的环境污染是灾难性的,已给世界带来了影响。
洪灾等。
次生环境问题:人类生产、生活引起生态破坏和环境污染,反过来危
及人类生存和发展的现象,也称第二类环境问题。又包括:环境污染 和生态破坏。目前的环境问题一般都是次生环境问题。
生态破坏:人类活动直接作用于自然生态系统,造成生态系统的生产能力显著 减少和机构显著该变,如草原退化、物种灭绝、水土流失等。
材料化学(第2版)作者曾兆华、杨建文编著第一章课件

Chapter1 Introduction
43
Architec ture material s
Chapter1 Introduction
44
高分子材料(Polymers)
• 高分子是由碳、氢、氧、硅、硫等元素组成的分子量 足够高的有机化合物。 • 天然高分子材料:木材、天然橡胶、棉花、动物皮毛 等。 • 合成高分子材料:塑料、合成橡胶和合成纤维。 • 功能高分子材料:工程塑料、导电高分子、高分子半 导体、光导电高分子、磁性高分子、光功能高分子、 液晶高分子、高分子信息材料、生物医用高分子材料 、反应性高分子、离子交换树脂、高分子分离膜、高 分子催化剂及高分子试剂等。
—— connected with function and, through that function, utilities.
Chapter1 Introduction
11
Distinguish between Chemicals and Materials
• Chemicals:the utility lies primarily in their consumption. • Materials: can be used repeatedly or continuously for an application that does not irreversibly convert them to something else.
复合材料
纳米材料
……
1.2 材料的分类 Classification of Materials
按组成、结构特点分
Metallic Materials Inorganic Materials Polymers Composites
现代仪器分析及材料研究方法(绪论)教材

原料(Raw Materials)与材料
由原料到材料 ※原料一般不是为获得产品,而是生产材料,往往伴随化 学变化。 ※材料的特点往往是为获得产品,一般从材料到产品的转 变过程不发生化学变化。
材料与物质(Materials and Matter)
※ 材料可由一种或多种物质组成。 ※ 同一物质由于制备方法或加工方法不同可以得到用途各异 、类型不同的材料。
现代仪器分析及材料研究方法
第一章 绪论
任祥忠 深圳大学化学与化工学院
1
(一)材料的定义 (Definition)
材料 Materials Material:材料科学 (工科)
物质科学 (理科) •Webster编著的“New International Dictionary(1971年) ”中关于材料(Materials)的定义为:材料是指用来制造某些 有形物体(如:机械、工具、建材、织物等的整体或部分)的 基本物质(如金属、木料、塑料、纤维、陶瓷等) •材料是指具有满足指定工作条件下使用要求的形态和物理性状 的物质。
材料科学的发展趋势
1、从简单物质到复杂物质;随着对材料功能化要求的不断提高,构成材料
的基本物质也越来越倾向于从简单物质到复杂物质。
2、从简单结构到结构控制;对于同种材料,结构上的改变可以带来许多崭新
的功能,而对简单的结构加以调控,才可能使功能得到优化。
3、从粉体材料到器件材料;相对于粉体材料而言,当材料制备成器件后会具
冶炼方法——平炉、转炉、电炉、沸腾炉钢
铸铁 —
灰铸铁 可锻铸铁 球墨铸铁 蠕墨<4.5g/cm2) 铝、镁、纳、钙
• 重金属 (>4.58/cm2) 铜、镍、铅、锌
• 贵金属
金、银、铂、铑
《表面活性剂化学》题集

《表面活性剂化学》题集第一章绪论一、选择题1. 关于界面与表面的定义,下列哪项是正确的?()A. 界面是指不同物质相接触的线,表面是指液体与气体接触的面B. 界面是指不同物质相接触的面,表面是指液体与气体接触的线C. 界面是指不同物质相接触的面,表面是指液体与气体接触的面D. 界面和表面都是指液体与气体接触的面2. 表面张力是以下哪个现象的表现?()A. 液体表面层的分子受到向内的吸引力大于向外的吸引力B. 液体表面层的分子受到向外的吸引力大于向内的吸引力C. 液体表面层的分子受到均匀的吸引力D. 液体表面层的分子受到均匀的排斥力3. 下列哪种物质不属于表面活性剂?()A. 肥皂B. 洗发水中的活性成分C. 食盐D. 洗洁精4. 表面活性剂的HLB值代表的是:()A. 氢键长度B. 氢键能量C. 亲水亲油平衡D. 氢键数量5. 关于表面活性剂的活性,以下哪项描述是正确的?()A. 表面活性剂的活性与其分子量成正比B. 表面活性剂的活性与其分子量成反比C. 表面活性剂的活性与其分子结构无关D. 表面活性剂的活性取决于其在界面上的吸附能力二、填空题1. 界面是指两种不同______相互接触的区域,表面是指液体与气体接触时在液体表面形成的一个______薄层。
2. 表面张力是液体表面层的分子间作用力______液体内部,使液体表面具有______收缩的趋势。
3. 表面活性剂是一类能够显著降低液体表面张力的物质,其分子结构通常具有一个或多个______和一个或多个______。
4. 表面活性剂的HLB值反映了其分子的______程度,HLB值越高,亲水性越______,HLB值越低,亲油性越______。
5. 表面活性剂在生活和工业中有广泛的应用,如______、______、______等。
三、简答题1. 请简述界面张力与表面张力的区别。
2. 为什么液体表面层的分子会表现出比内部分子更大的相互作用力?3. 简述表面活性剂如何通过改变分子结构来降低液体表面张力。
材料化学导论练习与思考题

《材料化学导论》练习与思考题第一章 绪论1. 讨论新材料与材料加工新技术的出现对现代工业的影响。
2. 举例说明新材料如何引导科技进步。
3. 列举几种你常见到过的和心目中的复合材料。
4. 列举几种正处于发展期的新材料。
5. 简述材料的不同分类方法。
6. 何谓航天高聚物?试举例说明之。
7. 我国在东汉制造出了(),她是中国文化的象征,极大地促进了世界文明。
(A)陶瓷(B)瓷器(C)青铜器(D)丝绸8. 从我国河南商遗址出土的司母戊鼎重8750N,是世界上最古老的大型()。
(A)石器(B)瓷器(C)青铜器(D)铁器9. 工程材料一般可分为()等四大类。
(A)金属、陶瓷、塑料、复合材料(B)金属、陶瓷、塑料、非金属材料(C)钢、陶瓷、塑料、复合材料(D)金属、陶瓷、高分子材料、复合材料判断题:10. 金属材料韧性好,应用广泛,是重要的工程材料。
()11. 材料的加工性能有铸造性、压力加工性、焊接性、热处理性能、切削性能、硬度、强度等。
()第二章 晶体学基础1. 为什么14种种点阵型式中有正交底心,而无四方底心,也没有立方底心型式?2. 0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象?3. 方向为[111]的直线通过1/2,0,1/2点,则在此直线上的另外两点的坐标是什么?4. 画出立方晶系中下列晶面和晶向:(010),(011),(111),(231),(321);[010],[011],[111],[231],[321]。
5. 在六方晶体中,绘出常见晶面:(1120),(0110),(1012),(1100),(1012)。
6. (a)在立方体系中,[100]方向和[211]方向的夹角是多少?(b)[011]方向和[111]方向的夹角是多少?7. 一平面与晶体两轴的截距为a=0.5,b=0.75,并且与Z轴平行,则此平面的米勒指标是什么?8. 一平面与三轴的截距为a=1,b=-2/3,c=2/3, 则此平面的米勒指标是什么?9. 立方晶体中的[001]方向是()(A)二次对称轴(B)四次对称轴(C)六次对称轴10. 晶体的特性是()(A)有确定的熔点,无各向异性;(B)有确定的熔点,有各向异性;(B)无确定的熔点,有各向异性;(D)无确定的熔点,无各向异性;11. 名词解释:(1)点群和空间群;(2)空间格子和晶胞第三章金属材料1. 当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少?若(按K+半径不变) 求负离子半径。
界面化学 第1章 液体表面

γ = (dU/dA)S.V.ni= (dH/dA)S.P.ni = ( dF/dA)T.V.ni= ( dG/dA)T.P.ni
恒定所有强度变数条件下,积分上式:
G =Σuidni +γA 在不考虑界面贡献时:
故 γ = (G - G’)/A
G’=Σuidni
即:相同数量分子处于表面上的单位面积自由 能与处于体相单位面积自由能之差
1.7 弯曲液面的表面现象
烧杯水面;毛细管中的液面、气泡、雨滴 液面弯曲的程度 →液体性质 1.7.1弯曲液面下的附加压力
1.7.2 附加压力与曲率半径的关系
曲率=1/R 凸液面>0;凹液面<0;平液面=0 R →R+dR V →V+dV A →A+dA 环境对体系做功: (P0+∆P)dV-P0dV=∆PdV
当分子从液体内部移向表面时,须克服此力作用做 功。使表面分子能量要高于内部分子能量。于是当 液体表面积增加(即把一定数量液体内部分子转变 为表面上分子)体系总能量将随体系表面积增大而 增大。 表面 (过剩)自由能: 对一定量的液体,在恒T.P 下体系增加单位表面积外界所做的功。即增加单 位表面积体系自由能的增量。
故 (dU/dA) T.P.n= ( dG/dA)T.P.n+ T (dS/dA) T.P.n
-P(dV/dA) T.P.n
又 (dV/dA) T.P.n= ( dγ/dP)A.T.n
(dS/dA) T.P.n= ( dγ/dT) A.P.n
于是
(dU/dA) T.P.n = γ-T( dγ/dT) A.P.n
图1-2 一些液体的表面张力-温度关系
通常压力对表面张力影响不大
(dV/dA) T.P.n= ( dγ/dP)A.T.n
环境化学-绪论 PPT课件

环境问题
• 人类生活和生产活动不断影响和改变环境条件,甚至引起环 境污染。
• 工业化过程中的处置失当,特别是对自然资源的不合理开发 利用,造成了全球性的环境污染和生态破坏。 空气、水和土地污染的环境退化现象 臭氧层破坏 气候变化 水资源的短缺和污染 有毒化学品和团体废弃物的危害 生物多样性的损伤
2. 造成环境污染的三因素 物理的
噪声、震动等 化学的
九大类 生物的
大米草、水葫芦、赤藻等
温室效应
酸雨
光化学烟雾
伦敦烟雾事件
臭氧空洞
海洋污染
赤潮
农药污染
3. 认识环境问题的三个阶段
环境问题并非只限于环境污染,人们对现代环境 问题的认识有个发展过程。 第一阶段:在20世纪60年代人们把环境问题只当成一 个污染问题,认为环境污染主要指的是城市和工农业 发展带来的对大气、水质、土壤、固体废弃物和噪声 的污染。对土地沙化、热带森林破坏和野生动物某些 品种的濒危灭绝等并未从战略上予以重视。我国当时 以污染控制为中心进行环境管理,曾对改善城市和人 民生活的环境质量起了重要作用。 存在问题:没有把环境问题与自然生态联系起来,低 估了环境污染的危害性和复杂性,没有把环境污染与 社会因素相联系,未能追根寻源。
每年有600万公顷具有生产力的旱地变成沙漠
有1100多万公顷的森林遭到破坏
在非洲,干旱将3500万人置于危难之中
在印度,博帕尔农药厂化学品泄漏造成两千人死亡
在墨西哥城,液化气罐爆炸使千人遇难
在前苏联,切尔诺贝利核反应堆爆炸使核尘埃遍布欧洲
在瑞士,农用化学品、溶剂和录污染了莱茵河,使数百万 尾鱼被毒死
样是热门课题。
(2)各圈层环境化学
材料结构表征与应用第一章-绪论-课件

1表面成分分析 (可作深度分析)
2表面能带结构分 析
3表面结构定性分 析与表面化学研究
约0.4~2nm(俄歇 约0.5~2.5nm(金属
电子能量
及金属氧化物);
50~2000eV范围内) 约4~10nm(有机化
(与电子能量及样 合物和聚合物)。
品材料有关)
1表面能带结构分 析 2表面结构定性分 析与表面化学研究
第一章 绪论
方法或仪器
分析原理
透射电镜(TEM)透射与衍射
检测信号
基本应用
透射电子与衍 射电子
1形貌分析(显微组织、晶体缺陷) 2晶体结构分析 3成分分析(配附件)
扫描电镜(SEM)电子激发二次 电子;电子吸 收和背散射
二次电子、背 散射电子和吸 收电子
电子探针 (EPMA)
电子激发特征X X光子 射线
第一章 绪论
材料分析是通过对表征材料的物理性质或 物理化学性质参数及其变化(称为测量信号或 表征信息)的检测实现的。即材料分析的基本 原理(或称技术基础)是指测量信号与材料成 分、结构等的特征关系。采用各种不同的测量 信号形成了各种不同的材料分析方法。
材料结构的表征(或材料的分析方法)就 其任务来说,主要有三个,即成分分析、结构 测定和形貌观察。
7、拉曼光谱分析:是一种散射光谱分析方法。
第一章 绪论
分析方法
基本分析项目与应用
原子发射光谱分析 (AES)
原子吸收光谱分析 (AAS) X射线荧光光谱分析 (XFS) 紫外、可见(分子) 吸收光谱分析(UV、 VIS)
元素定性、半定量、定量分析。对 于无机物分析是最好的定性、半定 量分析方法。 元素定量分析
约0.4~2.0nm(光 电子能量 10~100eV范围内)。
胶体与表面化学课程大纲及重点

胶体与表面化学第一章绪论(2学时)1.1胶体的概念什么是胶体,胶体的分类1.2胶体化学发展简史1.3胶体化学的研究对象表面现象,疏液胶体,缔合胶体,高分子溶液。
重点:胶体、分散系统、分散相、分散介质的概念。
难点:胶体与表面化学在矿物加工工程中的作用及意义。
教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。
第二章胶体与纳米材料制备(4学时)2.1胶体的制备胶体制备的条件和方法,凝聚法原理。
2.2胶体的净化渗析、渗透和反渗透。
2.3单分散溶胶单分散溶胶的定义及制备方法。
2.4胶体晶体胶体晶体的定义及制备方法2.5纳米粒子的制备什么是纳米材料,纳米粒子的特性及制备方法重点:胶体的制备、溶胶的净化、胶体晶体的制备。
难点:胶体制备机理。
教学方法建议:用多媒体教学,注重理论联系实际。
第三章胶体系统的基本性质(8学时)3.1溶胶的运动性质扩散、布朗运动、沉降、渗透压和Donnan平衡。
3.2溶胶的光学性质丁道尔效应和溶胶的颜色。
3.3溶胶的电学性质电动现象、双电层结构模型和电动电势(。
电势)3.4溶胶系统的流变性质剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。
3.5胶体的稳定性溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。
3.6显微镜及其对胶体粒子大小和形状的测定显微镜的类型及基本作用重点:沉降、渗透压、电泳、电渗、。
电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。
难点:双电层结构模型。
教学方法建议:多媒体教学和板书教学相结合。
第四章表面张力、毛细作用与润湿作用(6学时)4.1表面张力和表面能净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的测定方法。
4.2液-液界面张力Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。
4.3毛细作用与Laplace公式和Kelvin公式毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。
胶体与界面化学

生长过程消耗溶质量大,易形成大沉淀。 5、电动现象:①电泳:在外电场的作用下,带电胶粒在介质中定向移动②电渗:外电场作用下,分散介质通过 多孔膜或极细的毛细管而运动。 6、胶体表面电荷的来源:①电离②离子吸附③离子不等量溶解④晶格取代⑤摩擦带电 7、双电层理论:胶核的静电作用把溶液中的反离子吸附到其周围。①表面电势:②Stern 电势:stern 面的电势 ③电动电势:当分散相粒子和液体介质相对运动时,产生的电位差 8、 电势的影响因素:①无机盐浓度②PH③交换性阳离子 9、胶体的稳定性:DLVO 理论:①范得华引力势能②斥力势能 10、影响聚结稳定性的因素:反离子的价数:电解质的聚沉能力与反离子的 6 次方成反比。离子的大小:离子 半径越小,越易靠近颗粒表面,聚沉能力越强 11、空间稳定理论:颗粒表面高聚物的存在,会使颗粒间产生一种新的斥力势能,阻止胶粒聚集,称空间稳定 作用 第五章表面活性剂 1、亲水基:离子头、极性基团、EO 链。亲油基:烷基、PO 链、酯基 2、SAa 简述:I.阴离子 SAa:A:羧酸盐 B:磺酸盐 C:硫酸脂盐 D:磷酸脂盐 II.阳离子 SAaA:季铵盐 B:吡啶盐 9、临界胶团浓度是表面活性剂溶液开始大量形成胶团的浓度 10、同系物中,疏水链长增加,cmc↓ 11、无机盐使离子型 SAa 的 cmc 显著降低(反离子与胶团结合,电性的排斥作用削弱)对非离子型 SAa 的 cmc 影响不如对离子型 SAa 明显,电解质浓度较高时才产生可觉察效应。 12、HLB 值的概念:亲水亲油平衡值 (1)基团数法或基数法:HLB 值是由表面活性剂分子中各种结构基团贡献的总和,则每个基团对 HLB 值的贡献可 用数值表示,此数值称为 HLB 基团数(group number)或基数。 HLB=∑(亲水基团 HLB)-∑(亲油基团 HLB)+7 (2)质量分数法:对聚氧乙烯基的非离子型表面活性剂。计算式为: 亲水基质量 HLB= 20 亲水基质量 亲油基质量 13、Saa 的重要作用:加溶作用、润湿作用、乳化和破乳作用、分散和絮凝作用。
材料表界面 第一章 绪论

表、界面现象 肥皂和洗涤剂(表面活性剂) 乳化剂和稳定剂(非表面活性剂) 除草剂和杀虫剂 织物软化剂 润滑、粘接、泡沫、润湿和防水 三次采油、制糖、烧结 呼吸、关节润滑、液体输送中的毛 细现象、动脉硬化
41
绪论
表面化学基本原理对登月计划的成败产生如此举足
轻重的影响,表界面研究的重要性由此可见一斑
42
吸附有外来原子的表面称为吸附表面,吸附原子可以形成无 序的或有序的覆盖层。
1
27
2.材料表面
物理表面通常限于表面以下两三个原子层及 其上的吸附层, 而材料科学研究的表面包括各种表面作用和 过程所涉及的区域, 其空间尺度和状态决定 于作用影响范围的大小和材料与环境条件的 特性。
1
28
最常见的材料表界面类型
表界面通常有五类:
气-液界面(表面) 气-固界面(表面) 液-液界面 液-固界面 固-固界面
12
表界面例子:
(1)气-液界面
13
(2)气-固界面
14
(3)液-液界面
15
(4)液-固界面
16
(5)固-固界面
17
Question:
• 贴了膜的手机表面滴了一滴油水混合物,其中的界面有哪些?
L-G
➢第6章至第9章讲述高分子材料、无机非金属材料和复合 材料的表界面。
4
第一章 绪论
1.1 表界面的基本概念 1.2表界面科学研究的发展过程 1.3表界面研究的重要性
5
生活中的表界面现象
轮胎打滑:
6
荷叶表面:
•荷花具有出污泥而不染 的气节。
8
荷叶表面:
9
1. 1 表界面的基本概念
1.1.1表界面的定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理吸附的作用力是范德华力,包括:定向力/偶极力、诱导力、 色散力;作用力。其本质为静电相互作用力.吸附热约为:4.2 KJ/mol,一般在较低的温度下才能发生,无激活能,无选择。 物理吸附的作用力是范德华力和氢键,包括:定向力/偶极力、 诱导力、色散力;作用力。
12
(b) 化学吸附: 外来原子在固体表面上形成吸附层由化学键作用 力引起,则此吸附称为化学吸附。特点:表面形成 化学键;有选择性;需要激活能;吸附热高(21- 42 KJ/mol)。吸附的物种可以是有序(order)也可以是 无序(disorder)吸附在表面,也可以是单层 (monolayer),也可以是多层(multiplayer)吸附。因 表面的性质和被吸附的物种而定。
13
吸附表面:吸附有外来原子的表面,吸附 原子可形成有序或无序的覆盖层。覆盖层 可以具有和基体相同的结构,也可以形成 重构表面层。当吸附原子和基体原子之间 相互作ห้องสมุดไป่ตู้很强时,则形成表面合金或表面 化合物。覆盖层结构中也存在缺陷,且随 温度发生变化。
1.1.2 材料表面
与物理表面区别: 物理表面限于表面以下两三个原子层及其上吸附层。 而材料表面包括各种表面作用和过程所涉及的区域, 其空间尺度和状态决定于作用影响范围的大小和材 料与环境条件的特性。 按形成途径划分: 机械作用界面:受机械作用而形成的界面如切削、研磨、 抛光、喷砂、变形和磨损等 化学作用界面:由于表面反应、粘接、氧化、腐蚀等化 学作用形成 固体结合界面:两个固体相直接接触,通过真空、加热、 加压、界面扩散和反应等途径所形成的界面。
表 面
界面
表界面区的结构、能量、组成等都呈现 连续的梯度变化,非几何平面而是结构 复杂、厚度约几个分子线度的准三维区 域。 Interface Interphase Interlayer
1.1.1 物理表面 三维规整点阵到体外空间之间的过渡区域
1.
2.
理想表面:指除了假设确定的一套边界条件外,不 发生任何变化的表面。 清洁表面:指不存在任何污染的化学纯表面,即不 存在吸附、催化反应或杂质扩散等物理化学效应的 表面。(相对环境气氛污染的表面而言,吸附质浓 度低需经特殊处理如高温热处理、离子轰击加退火、 真空解离、真空沉积等且在1.33*10-10Pa保存) 表面上会发生与体内结构和成分不同的变化,如: 驰豫、重构、台阶化、偏析和吸附等。
第一章
绪言
材料科学、信息科学 和生命科学是当前新技术革 命中的三大前沿科学,材料的表界面在材料科学中有 重要的地位 (材料表面与内部本体的结构、组成相同吗?) 材料表界面对材料整体性能具有决定性影响,因此 从物理学角度讲,研究材料表界面现象具有重要意义。 材料的腐蚀、老化、硬化、破坏、印刷、涂膜、粘 结、复合等等,无不与材料的表界面密切有关。
1.
2.
3.
4.
5.
液相或气相沉积界面:物质以原子尺寸形 态从液态或气相析出而在=固体表面形成的 膜层或块体称之 凝固共生界面:两个固体同时从液相中凝 固析出,且共同生长所形成的界面。 粉末冶金界面:通过粉末工艺将粉末材料 转变为块体所形成的界面。 粘结界面:由无机或有机粘结剂使两个固 体相结合而形成的界面。 熔焊界面:固体表面造成熔体相,两者在 凝固过程中形成冶金结合的界面。
1.1 表界面的定义
定义:
表界面是由一个相过渡到另一个相的过渡区域。
实际应用中,表界面研究的对象为具有多相性的不 均匀体系,即体系中存在两个或以上不同性能的相。
Interface Interphase Interlayer
表界面通常分为以下五类:
1.固-气 2.液-气 3.固-液 4.液-液 5.固-固
表面附近的点阵常数发生 明显的变化。
NaCl晶体的表面弛豫
表面处离子排列发生中断,体 积大的负离子间的排斥作用, 使 C1- 向外移动,体积小的 Na+ 则被拉向内部,同时负离子易 被极化,屏蔽正离子电场外露 外移,结果原处于同一层的Na+ 和C1-分成相距为0.020 nm的两 个亚层,但晶胞结构基本没有 变化,形成了弛豫。
水
表面张力(surface tension)
( a)
( b)
U=Q+W
dU=TdS-pdV dH=Td+Vdp dF=-SdT-pdV dG=-dT+Vdp
H=U+PV F=U-TS
G=H-TS
1.2表界面科学发展史
1875~1878 Gibbs定律; 1913~1942 Langmuir的贡献; 20世纪40年代前 表面化学成果大量应用生产; 50年代,微型化、IT发展促进表面化学发展; 60年代~,表面现象向微观领域发展。
表面现象
它们为什么可以 漂在水面上
ps
水在毛细管中为 什么会上升
7
(b)重构(rebuilding):表面原子重新排列,形成不
同于体相内部的晶面
8
c)
偏析又称偏聚或分凝(segregation) 指化学组成在 表面区域的变化但结构不变。
9
d) 台阶化(steps) 表面附近的点阵常数不变,晶 体结构也不变,而形成相梯度表面。
10
吸附(adsorption) 指表面存在周围环境中的 物种。分类:物理吸附和化学吸附
e)
(f) 形成化合物 指表面化学组成和结构都发生 改变,在表面有新相生成
11
吸附分类:物理吸附和化学吸附
( a) 物理吸附:外来原子在固体表面上形成吸附层,由范德华力 (Van der Waals)作用力引起,则此吸附称为物理吸附。 特点:物理吸附过程中没有没有电子转移、没有化学键的生成和 破坏,没有原子重排等等,产生吸附的只是范德华力。