电容器失效模式和失效机理
铝电解电容失效
![铝电解电容失效](https://img.taocdn.com/s3/m/14e04103b207e87101f69e3143323968001cf459.png)
铝电解电容器的失效模式主要有以下几种:
漏液:铝电解电容器的电解液泄露会导致设备性能下降甚至失效。
这通常是由于密封不佳、橡胶老化、龟裂或者长时间工作等因素引起的。
爆炸:当铝电解电容器在工作电压中交流成分过大,或氧化膜介质有较多缺陷,或存在氯根、硫酸根之类有害的阴离子,以致漏电流较大时,电解作用产生的气体的速率较快,工作时间愈长,漏电流愈大,壳内气体愈多,温度愈高,就有可能发生爆炸。
击穿:工艺缺陷、机械应力的施加、引出线与铝箔铆接不实等原因都可能导致铝电解电容器的击穿。
烧毁:铝电解电容器的烧毁主要是由于过电压、纹波电流过大、施加反向电压、频繁充放电、施加交流电等因素引起的。
开路:引出线与铝箔接触不良、腐蚀、氯离子的侵入等原因可能导致铝电解电容器的开路。
短路:氧化膜劣化、金属微粒附着、引线毛刺等原因可能导致铝电解电容器的短路。
容量下降:阳极箔容量减少、阴极箔容量减少、电解液干涸等原因可能导致铝电解电容器的容量下降。
损耗上升:阳极箔容量减少、阴极箔容量减少、电解液干涸等原因可能导致铝电解电容器的损耗上升。
在应用中,需要避免在过电压、过电流、过热等极端条件下使用铝电解电容器,以避免其失效。
同时,也需要注意选择质量可靠的产品,并在使用过程中进行适当的维护和保养,以延长其使用寿命。
细叙各类电子元器件的失效模式与机理
![细叙各类电子元器件的失效模式与机理](https://img.taocdn.com/s3/m/6159222cbed5b9f3f90f1c6a.png)
细叙各类电子元器件的失效模式与机理
电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。
对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。
硬件工程师调试爆炸现场
所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。
下面分类细叙一下各类电子元器件的失效模式与机理。
电阻器失效模式与机理失效模式:各种失效的现象及其表现的形式。
失效机理:是导致失效的物理、化学、热力学或其他过程。
1、电阻器的主要失效模式与失效机理为1) 开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。
2) 阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。
3) 引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。
4) 短路:银的迁移,电晕放电。
2、失效模式占失效总比例表
(1)、线绕电阻
失效模式占失效总比例开路90%阻值漂移2%引线断裂7%其它1%
(2)、非线绕电阻
失效模式占失效总比例开路49%阻值漂移22%引线断裂17%其它7%
3、失效机理分析
电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。
(1)、导电材料的结构变化
薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。
按热力。
电容的主要失效模式、失效原理及预防措施
![电容的主要失效模式、失效原理及预防措施](https://img.taocdn.com/s3/m/035594b7524de518964b7de0.png)
产生电化学离解
固体钽电 短路
解
氧化膜缺陷、钽块与阳极引出线产生相对位 移、阳极引出钽丝与氧化膜颗电容器粒接触
开裂
热应力、机械应力
瓷介电容 短路
介质材料缺陷、生产工艺缺陷、银电极迁移
器
低 电 压 失 低电压失效介质内部存在空洞、裂纹和气孔
效
等缺陷工作条件类别
预防措施及注意事项
应确保不含卤素,在采用此类材料前应注意
助焊剂已完全干透
(7)使用清洁剂以后必须充分干燥,采用免洗
型助焊剂也需充分干燥
(8)确保电容的封口位置不受压
(9)当采用胶黏剂或其它材料固定元件时,应
小心不要让此类材料完全覆盖电容器的封
口,同时应确保电容器的完全阀不被封闭
储存
(1)电容器应储存在正常的温度、湿度条件 下。避免受到阳光直射
式和失效机理
类别
失效模式 失效原理
密封不佳、橡胶老化龟裂、高温高压下电解
漏液
液挥发,密封工艺不佳、阳极钽丝表面粗糙、
负极镍引线焊接不当液体
工作电压中交流成分过大、氧化膜介质缺陷、
炸裂
存在氯离子或硫酸根之类的有害离子、内气
压高
铝电解电 开路
容
电化学腐蚀、引出箔片和阳极接触不良、阳 极引出箔片和焊片的铆接部分氧化
类别
工作条件 预防措施及注意事项
(1)确定工作温度及纹波电流在规定范围内
工 作 温 度 纹波电流
及 纹 波 电 (2)当并联两个或更多电容时,需注意接线电
流 铝电解电
容
阻应计算在内 (3)注意电容工作时的热能导致设备内部温 度的提升
(1)注意电容的正负极,不应施加反向电压或
常见的电子元器件失效机理与分析
![常见的电子元器件失效机理与分析](https://img.taocdn.com/s3/m/a6060d8ec281e53a5802ffee.png)
常见的电子元器件失效机理与分析电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。
对于硬件工程师来讲电子元器件失效是个非常麻烦的事情,比如某个半导体器件外表完好但实际上已经半失效或者全失效会在硬件电路调试上花费大把的时间,有时甚至炸机。
硬件工程师调试爆炸现场所以掌握各类电子元器件的实效机理与特性是硬件工程师比不可少的知识。
下面分类细叙一下各类电子元器件的失效模式与机理。
电阻器失效失效模式:各种失效的现象及其表现的形式。
失效机理:是导致失效的物理、化学、热力学或其他过程。
电阻器的失效模式与机理▶开路:主要失效机理为电阻膜烧毁或大面积脱落,基体断裂,引线帽与电阻体脱落。
▶阻值漂移超规范:电阻膜有缺陷或退化,基体有可动钠离子,保护涂层不良。
▶引线断裂:电阻体焊接工艺缺陷,焊点污染,引线机械应力损伤。
▶短路:银的迁移,电晕放电。
失效模式占失效总比例表▶线绕电阻:▶非线绕电阻:失效模式机理分析电阻器失效机理是多方面的,工作条件或环境条件下所发生的各种理化过程是引起电阻器老化的原因。
▶导电材料的结构变化:薄膜电阻器的导电膜层一般用汽相淀积方法获得,在一定程度上存在无定型结构。
按热力学观点,无定型结构均有结晶化趋势。
在工作条件或环境条件下,导电膜层中的无定型结构均以一定的速度趋向结晶化,也即导电材料内部结构趋于致密化,能常会引起电阻值的下降。
结晶化速度随温度升高而加快。
电阻线或电阻膜在制备过程中都会承受机械应力,使其内部结构发生畸变,线径愈小或膜层愈薄,应力影响愈显著。
一般可采用热处理方法消除内应力,残余内应力则可能在长时间使用过程中逐步消除,电阻器的阻值则可能因此发生变化。
结晶化过程和内应力清除过程均随时间推移而减缓,但不可能在电阻器使用期间终止。
可以认为在电阻器工作期内这两个过程以近似恒定的速度进行。
与它们有关的阻值变化约占原阻值的千分之几。
电负荷高温老化:任何情况,电负荷均会加速电阻器老化进程,并且电负荷对加速电阻器老化的作用比升高温度的加速老化后果更显著,原因是电阻体与引线帽接触部分的温升超过了电阻体的平均温升。
电容失效分析
![电容失效分析](https://img.taocdn.com/s3/m/70afdeaca26925c52cc5bfe4.png)
陶瓷电容失效分析:多层片状陶介电容器由陶瓷介质、端电极、金属电极三种材料构成,失效形式为金属电极和陶介之间层错,电气表现为受外力(如轻轻弯曲板子或用烙铁头碰一下)和温度冲击(如烙铁焊接)时电容时好时坏。
多层片状陶介电容器具体不良可分为:1、热击失效2、扭曲破裂失效3、原材失效三个大类(1)热击失效模式:热击失效的原理是:在制造多层陶瓷电容时,使用各种兼容材料会导致内部出现张力的不同热膨胀系数及导热率。
当温度转变率过大时就容易出现因热击而破裂的现象,这种破裂往往从结构最弱及机械结构最集中时发生,一般是在接近外露端接和中央陶瓷端接的界面处、产生最大机械张力的地方(一般在晶体最坚硬的四角),而热击则可能造成多种现象:第一种是显而易见的形如指甲狀或U-形的裂縫第二种是隐藏在内的微小裂缝第二种裂缝也会由裸露在外的中央部份,或陶瓷/端接界面的下部开始,并随温度的转变,或于组装进行时,顺着扭曲而蔓延开来(见图4)。
第一种形如指甲狀或U-形的裂縫和第二种隐藏在内的微小裂缝,两者的区别只是后者所受的张力较小,而引致的裂缝也较轻微。
第一种引起的破裂明显,一般可以在金相中测出,第二种只有在发展到一定程度后金相才可测。
(2)扭曲破裂失效此种不良的可能性很多:按大类及表现可以分为两种:第一种情况、SMT阶段导致的破裂失效当进行零件的取放尤其是SMT阶段零件取放时,取放的定中爪因为磨损、对位不准确,倾斜等造成的。
由定中爪集中起来的压力,会造成很大的压力或切断率,继而形成破裂点。
这些破裂现象一般为可见的表面裂缝,或2至3个电极间的内部破裂;表面破裂一般会沿着最强的压力线及陶瓷位移的方向。
真空检拾头导致的损坏或破裂﹐一般会在芯片的表面形成一个圆形或半月形的压痕面积﹐并带有不圆滑的边缘。
此外﹐这个半月形或圆形的裂缝直经也和吸头相吻合。
另一个由吸头所造成的损环﹐因拉力而造成的破裂﹐裂缝会由组件中央的一边伸展到另一边﹐这些裂缝可能会蔓延至组件的另一面﹐并且其粗糙的裂痕可能会令电容器的底部破损。
陶瓷电容失效模式和失效机理_概述说明以及解释
![陶瓷电容失效模式和失效机理_概述说明以及解释](https://img.taocdn.com/s3/m/5f0ec49832d4b14e852458fb770bf78a65293a81.png)
陶瓷电容失效模式和失效机理概述说明以及解释1. 引言1.1 概述陶瓷电容是一种常见且广泛应用于电子设备中的元件。
它具有体积小、重量轻、稳定性高、温度特性好等优点,因此在各个领域都有着广泛的应用。
然而,陶瓷电容在使用中也会出现失效现象,导致其功能无法正常发挥或完全失去功能。
了解陶瓷电容的失效模式和失效机理对于设计和维护电子设备至关重要。
1.2 文章结构本文将首先对陶瓷电容进行概念和应用领域的介绍,接着对其失效模式进行分类和定义,并简要介绍相关的失效机理。
随后,我们将分别详细探讨两种常见失效模式及其相关要点,并提供实际示例加以说明。
最后,本文将总结研究成果并展望未来的研究方向。
1.3 目的本文旨在提供一个系统且全面的概述,以帮助读者更好地了解陶瓷电容的失效模式和失效机理。
通过清晰地描述每种失效模式及其相关要点,并给出实例以加深理解,读者将能够发现并解决陶瓷电容在实际应用中可能出现的问题,并提供改进和优化的方向。
此外,本文也为未来相关研究提供了参考和展望。
以上是“1. 引言”部分的内容,希望对你的长文撰写有所帮助。
2. 陶瓷电容失效模式和失效机理概述2.1 陶瓷电容概念和应用领域陶瓷电容是一种广泛使用于电子产品中的passives 元件,其主要由导体和绝缘体构成。
导体常采用金属,例如银或钨,并具有可靠的电导性能。
绝缘体通常采用陶瓷材料,如硬陶瓷(多为氧化铁、氧化锰、二氧化硅等),以提供良好的介电性。
由于其优异的特性,陶瓷电容被广泛应用于各种电子设备中,包括通信设备、计算机及消费类电子产品等。
它们常用于储存与释放电能、稳定电流和阻抗匹配等功能。
2.2 失效模式分类和定义对于陶瓷电容而言,失效模式指元件在使用过程中可能出现的故障或损坏类型。
这些失效模式可以基于不同因素进行分类,如环境条件、操作方式和设计问题等。
常见的陶瓷电容失效模式包括但不限于以下几种:a) 短路:陶瓷电容内部存在导体间接触或导体与外壳产生直接短路现象。
失效模式 失效原因 失效机理 定义
![失效模式 失效原因 失效机理 定义](https://img.taocdn.com/s3/m/98b749b585868762caaedd3383c4bb4cf6ecb75d.png)
失效模式失效原因失效机理定义失效模式、失效原因和失效机理是在工程领域中常用的概念,用于描述系统、设备或组件在使用过程中出现故障或失效的情况。
本文将分别对失效模式、失效原因和失效机理进行详细阐述。
一、失效模式失效模式指的是系统、设备或组件在使用过程中出现的故障或失效的方式或形式。
不同的系统、设备或组件可能会有不同的失效模式。
例如,某个机械设备可能会出现断裂、磨损、短路等失效模式;而某个电子设备可能会出现电路故障、芯片失效、元器件老化等失效模式。
失效模式是通过对失效事件的观察和分析得出的,可以通过对大量失效事件的统计和分析,找出失效模式的规律和特征。
对失效模式的深入了解可以帮助我们更好地预防和解决类似的失效问题。
二、失效原因失效原因是导致系统、设备或组件出现失效的根本原因或因素。
失效原因可以是多种多样的,包括设计缺陷、制造质量问题、使用不当、环境变化等。
设计缺陷是导致失效的常见原因之一。
在产品设计阶段,如果没有考虑到各种使用条件和环境因素,就有可能导致失效。
例如,某个电子产品在高温环境下无法正常工作,这可能是因为设计时未考虑到高温环境对元器件的影响。
制造质量问题也是导致失效的常见原因之一。
如果制造过程中存在材料选择不当、加工工艺不合理、装配过程中存在疏忽等问题,就可能导致产品在使用过程中出现失效。
例如,某个机械设备的零件加工尺寸超过了允许的公差范围,导致装配后无法正常运转。
使用不当也是导致失效的常见原因之一。
如果用户在使用产品时没有按照说明书的要求使用,就可能导致产品失效。
例如,某个电子设备在使用时需要保持通风良好,但用户将其放置在封闭的空间中使用,导致设备过热而失效。
环境变化也可能导致失效。
例如,某个电子设备在工作时需要稳定的电源供应,但如果供电电压波动较大,就可能导致设备无法正常工作。
三、失效机理失效机理是指导致系统、设备或组件失效的具体物理、化学或电学过程。
不同的失效模式可能有不同的失效机理。
电容失效模式和失效机理
![电容失效模式和失效机理](https://img.taocdn.com/s3/m/6ef6865f5e0e7cd184254b35eefdc8d377ee1461.png)
电容失效模式和失效机理
电容器是一种常见的电子元件,它们在电子设备中起着储存电荷和滤波的重要作用。
然而,电容器也会出现失效,主要有以下几种模式和机理:
1. 电容漏电流增加,电容器在使用过程中,由于介质老化或者制造过程中的缺陷,会导致电容器的绝缘性能下降,从而使得电容器的漏电流增加。
这种失效模式会导致电路中的电流泄露,影响整个电路的性能。
2. 电容器内部短路,电容器内部的金属层或电介质层可能会出现短路现象,导致电容器无法正常工作。
这种失效模式会导致电路中的电压异常,甚至损坏其他元件。
3. 电容器老化,随着使用时间的增加,电容器的性能会逐渐下降,如电容值减小、损耗角正切值增大等,最终导致电容器失效。
这种失效模式是由于电容器内部材料的老化和疲劳造成的。
4. 电容器机械损坏,在运输、安装或使用过程中,电容器可能会受到机械振动或冲击,导致内部连接不良或元件损坏,从而引起
电容器失效。
总的来说,电容器的失效主要是由于材料老化、制造缺陷、外部环境等因素引起的。
为了延长电容器的使用寿命,可以采取合适的工作条件、定期检测和维护等措施,以确保电容器的可靠性和稳定性。
多层瓷介电容常见失效模式及机理
![多层瓷介电容常见失效模式及机理](https://img.taocdn.com/s3/m/d4312d5b640e52ea551810a6f524ccbff121cae6.png)
多层瓷介电容常见失效模式及机理多层瓷介电容器是一种常见的电子元件,广泛应用于电子设备中的电源滤波、信号耦合、阻隔和信号耦合等电路中。
然而,由于一些外部因素或者内部因素的影响,多层瓷介电容器可能会出现失效情况。
以下是多层瓷介电容器常见的失效模式及机理:1.电容值下降:多层瓷介电容器的电容值一般是在制造过程中通过氧化物的添加精确控制的。
然而,由于一些外部因素(如温度、湿度等)或内部因素(如电场应力、材料老化等)的影响,电容值可能会下降。
例如,当电容器暴露在高温环境下,氧化物可能会发生渐进性脱溶,导致电容值下降。
2.漏电流增加:多层瓷介电容器的漏电流也可能会增加。
漏电流是指在正常工作条件下,绝缘材料内部的电流。
漏电流的增加可能是由于绝缘材料的老化、微小裂纹的扩展、结构松散等造成的。
例如,当电容器在高温环境下长时间工作,绝缘材料可能会老化,导致漏电流增加。
3.短路:在一些极端情况下,多层瓷介电容器可能会发生短路。
短路可能是由于多层瓷介电容器的内部结构松散,导致不同电极之间的直接接触。
此外,如果电容器在电压过高的情况下工作,也可能导致短路。
4.温升:多层瓷介电容器在正常工作中会产生一定的热量,但是如果电容器的散热不良,温度可能会升高。
高温可能会导致电容器内部材料的老化,从而引发其他失效模式。
以上是多层瓷介电容器常见的失效模式及机理。
需要注意的是,不同的厂家可能有不同的设计和制造工艺,因此,失效模式和机理可能会有一定的差异。
此外,电容器的使用条件也会对失效模式和机理产生影响。
因此,在实际应用中,需要根据具体情况评估多层瓷介电容器的失效风险,并采取必要的预防措施。
钽电容失效模式及失效机理
![钽电容失效模式及失效机理](https://img.taocdn.com/s3/m/3fbb158b112de2bd960590c69ec3d5bbfd0adaa4.png)
钽电容失效模式及失效机理钽电容这小玩意儿,在电子设备里可算是个不大不小的角色。
咱先聊聊它的失效模式,就像人会生病一样,钽电容也有自己的毛病。
一种失效模式是短路。
这就好比家里的电线突然搭一块儿了,电流一下子就乱套了。
钽电容短路呢,有可能是内部的钽粉和电解液之间发生了些不该发生的反应。
钽粉要是受潮了,就像面粉沾了水结成块,它的性能就变了,可能就导致短路。
还有就是在生产的时候,如果有杂质混进去了,那也像是在一锅好汤里掉进了苍蝇,整个钽电容的电气性能就被破坏了,短路就很容易发生。
再说说开路这种失效模式。
想象一下,一条好好的路突然断了,车都没法走了。
钽电容开路就类似这样,有可能是它的引脚断了。
这引脚就像人的手脚,断了就没法正常工作了。
在使用过程中,如果受到外力的拉扯或者撞击,引脚就可能断掉。
还有啊,内部的连接部分如果因为长时间的使用,像金属疲劳那样,也会断开,导致开路。
钽电容的失效机理其实还和温度有很大关系。
温度过高的时候,钽电容就像是在火上烤的红薯,内部的各种成分都受不了。
电解液可能会干涸,就像水被烤干了一样。
钽粉也会因为高温发生结构的变化,性能就大打折扣了。
而且高温还会加速化学反应,本来可以稳定存在的东西,在高温下就变得不稳定了,就更容易出现短路之类的问题。
从另一个角度看,电压要是过高,对钽电容来说也是个大灾难。
这就好比人能承受一定的压力,压力太大就受不了了。
过高的电压会让钽电容内部的电场变得特别强,强到超出它的承受范围,这时候就很容易出现各种问题,比如介质被击穿,这一击穿,电容就没法正常工作了。
我觉得钽电容虽然小,但是在电子设备里的作用可不小。
它的失效模式和失效机理提醒我们在使用和设计电路的时候要特别小心。
在生产钽电容的时候,要严格控制环境,避免杂质混入,也要注意封装,防止钽粉受潮。
在使用钽电容的设备里,要控制好温度和电压,就像照顾一个脆弱的小生命一样。
只有这样,才能让钽电容更好地发挥它的作用,让整个电子设备稳定运行。
失效模式及失效机理分析
![失效模式及失效机理分析](https://img.taocdn.com/s3/m/fd715a9fd05abe23482fb4daa58da0116d171f69.png)
失效模式及失效机理分析失效模式及失效机理分析是一种通过对产品、系统或材料的失效模式、失效机理进行详细研究和分析,以揭示失效原因和发展规律的方法。
本文将介绍失效模式及失效机理分析的基本概念、步骤和应用,以及在工程领域中的重要性。
一、概述失效模式及失效机理分析是一种系统的工程手段,用于了解产品、系统或材料的可能的失效模式及其发展机理。
通过对失效模式和失效机理的分析,人们可以深入了解失效的根本原因,进而进行相应的改进和预防措施,以提高产品、系统或材料的可靠性和性能。
二、失效模式分析的步骤1. 收集相关信息:首先,需要收集与失效相关的各种信息,如产品手册、设计文件、实验数据等,以了解产品或系统的设计特点、工作条件和应用环境等。
2. 定义失效模式:在收集了足够的信息后,需对可能的失效模式进行分类和定义,即根据失效的表现形式和特点,将其归为不同的类型,并明确每种类型的定义和描述。
3. 分析失效机理:针对每种失效模式,需要进一步分析其可能的失效机理。
失效机理是指导致产品或系统失效的根本原因,通过深入研究和探究失效机理,可以揭示失效的本质和规律。
4. 实施试验和测试:为了验证对失效模式和失效机理的分析结果,需要进行相应的试验和测试。
通过实验和测试,可以模拟实际工作条件下的失效情况,并获取相关的数据和结果。
5. 数据分析和结果展示:通过对试验和测试数据的分析,可以得出关于失效模式和失效机理的结论,并将其以适当的方式进行展示,如图表、曲线等。
这些结果可以提供给工程师和设计师,以便他们进行相应的改进和优化。
三、失效模式及失效机理分析的应用失效模式及失效机理分析在工程领域中有着广泛的应用。
以下是几个常见的应用示例:1. 产品设计和改进:通过对产品的失效模式和失效机理进行分析,可以提供给设计师有关产品性能和可靠性的重要信息,指导产品的设计和改进工作。
2. 故障预防和维修指导:通过对系统或设备的失效模式和失效机理进行分析,可以帮助工程师预测和防止可能出现的故障,并提供相应的维修和保养指导。
电容失效分析
![电容失效分析](https://img.taocdn.com/s3/m/b4b238abb307e87100f69687.png)
编辑版pppt
29
陶瓷电容
• 银迁移引起边缘漏电和介质内部漏电
编辑版pppt
30
第三讲 微电子器件失效机理
编辑版pppt
31
失效模式的概念和种类
• 失效的表现形式叫失效模式 • 按电测结果分类:开路、短路或漏电、
参数漂移、功能失效
编辑版pppt
32
失效机理的概念
• 失效的物理化学根源叫失效机理。例如
• 改进措施建议:改善供电电网,加保护 电路
编辑版pppt
42
失效分析的受益者
• 元器件厂:获得改进产品设计和工艺的依据
• 整机厂:获得索赔、改变元器件供货商、改进 电路设计、改进电路板制造工艺、提高测试技 术、设计保护电路的依据
• 整机用户:获得改进操作环境和操作规程的依 据
• 提高产品成品率和可靠性,树立企业形象,提 高产品竞争力
• 内容:从室温算起,温度每升高10度, 寿命减半。
• 应用举例:推算铝电解电容寿命 105C,寿命1000h(标称值)
55C, 寿命1000X2E5=32000h 35C,寿命1000X2E7=128000h
=128000/365/24=14.81年
编辑版pppt
19
小结
失效物理的定义:研究电子元器件失效机 理的学科
编辑版pppt
3
失效物理的概念
• 定义:研究电子元器件失效机理的学科 • 失效物理与器件物理的区别 • 失效物理的用途
义
• 定义:研究电子元器件失效机理的学科 • 失效机理:失效的物理化学根源 • 举例:金属电迁移
编辑版pppt
5
金属电迁移
• 失效模式:金属互连线电阻值增大或开路 • 失效机理:电子风效应 • 产生条件:电流密度大于10E5A/cm2
钽电容失效模式及失效机理
![钽电容失效模式及失效机理](https://img.taocdn.com/s3/m/cd98133a9a6648d7c1c708a1284ac850ad0204f7.png)
钽电容失效模式及失效机理哎呀,说起钽电容失效这事儿,那可真是让电子工程师们头疼不已!就像我之前遇到过的一个真实案例,有一次我们公司接了一个重要的项目,需要用到大量的钽电容来保证电路的稳定运行。
在前期的测试阶段,一切都看似完美无缺,大家都信心满满地觉得这次项目肯定能顺利完成。
可谁能想到,当产品进入实际使用阶段没多久,问题就接二连三地出现了。
一些设备开始出现故障,经过仔细排查,发现原来是钽电容失效了!这可把我们整个团队急坏了。
那钽电容为啥会失效呢?这就得好好说道说道它的失效模式和失效机理了。
先说这短路失效模式吧。
有时候钽电容内部的绝缘层可能会因为各种原因受到破坏,比如过高的电压或者电流冲击,这就好比是家里的电线外皮破了,电流就乱了套,直接导致短路。
就像那次我们项目中的情况,可能是在某个瞬间,电路中的电压突然飙升,超过了钽电容的承受能力,它的绝缘层就“扛不住”了,瞬间短路。
还有一种常见的失效模式是开路失效。
这就好比是一条路突然断了,电流过不去。
造成开路失效的原因可能是钽电容内部的电极材料出现了断裂或者脱落。
比如说在制造过程中,如果工艺不够精细,电极的连接不够牢固,在长期使用或者受到外界振动等因素的影响下,就有可能断开。
再来说说漏电失效模式。
想象一下,钽电容就像是一个水桶,如果桶壁有了小缝隙,水就会慢慢渗出来。
钽电容漏电也是类似的道理,可能是由于电容内部的介质存在缺陷,或者是在使用过程中受到了高温、高湿等恶劣环境的影响,导致绝缘性能下降,从而出现漏电现象。
而导致钽电容失效的机理也是多种多样的。
其中一个重要的原因就是热失效。
电子设备在工作时会产生热量,如果散热不好,钽电容长时间处于高温环境中,内部的材料性能就会发生变化,从而影响其正常工作。
就像人在炎热的夏天长时间暴晒会中暑一样,钽电容也会“中暑”失效。
另外,机械应力也是导致钽电容失效的一个不容忽视的因素。
比如说在设备的安装或者运输过程中,如果受到了剧烈的振动或者冲击,钽电容内部的结构可能会受到损伤,从而引发失效。
MLCC电容器裂纹失效的机理与改善方法
![MLCC电容器裂纹失效的机理与改善方法](https://img.taocdn.com/s3/m/84e516f04bfe04a1b0717fd5360cba1aa8118c97.png)
产品强度对比
产品抗弯曲强度对比
根据以上机械强度对比图可看出:
X7R小容值产品机械强度较差,而 COG材质均很优异。但COG材质 因其介电常数极低,仅能制备容值 较低的产品,且因材料较贵而不适 宜替代同规格X7R产品。
波峰焊设备的制造商和用户现在能更好地掌控产生热冲击 的源头,大部分的波峰焊机器具有足够的预热控制且已经把裂 纹源头最小化(除大规格尺寸外,如1812(4525)以上,或是 厚型产品,厚度大于1.25mm)。
失效机理二:弯曲裂纹
产品断裂的另一主要原因是产品应用时受到了弯
曲应力的作用,使得产品形成微裂纹并随时间或二次 应力扩展,最终断裂。
如何解决?
产品断裂问题不能仅依靠元件厂家 来解决,根本解决办法在客户端的 控制。
常用改善方法
针对X7R小容值产品断裂问题,常采用: ①增加产品厚度; ②增加产品内部层数; ③更改强度更高的材料; ④采用所谓的三明治结构设计,加强保护层。
等多个方向来改善产品强度,以提高产品的生产使用 适应性,但从抗弯曲对比图看,增加产品厚度和层数 对产品的抗弯曲改善幅度较小,且因小容值产品本身 容量低,层数增加空间有限。
MLCC产品电性能优良,具有容量体积 比值大,适合SMT自动化工艺等优点,广 泛应用于各种电子产品中。
但因陶瓷材料本身较脆,且其电极和
瓷介质交替的内部结构,在使用时常因使 用时作业不当,容易导致产品漏电、无容 值、短路甚至烧毁等问题。
我司经过长期对该类问题的分析,确认 导致以上不良的失效模式为产品裂纹。
钽电容失效机理
![钽电容失效机理](https://img.taocdn.com/s3/m/3d9e8334bdd126fff705cc1755270722192e5976.png)
钽电容失效机理简单一点说是这样的。
1)钽电容的失效模式是短路形式。
故而在可靠性要求高的场合,如军品,宇航,汽车级电路中一般限制使用。
如星上就不用。
NASA好像也是规定不能用。
2)铝电解质电容其ESR可以做的很小的,如果我没有记错的话,可以到毫欧级。
文摘1:ESR(等效串联电阻),应该注意的问题前两天我负责的一个LDO测试工程师上电后发现输出振荡了。
我做的时候没有振荡,对照下来,输出电容不一样,我用的是10u的铝电解,他用的是钽电容。
因为我以前对这两种电容有过测试,所以,把他用的电容拿过来在Fluke,RCL测量仪上测试,ESR高达13欧姆(10kHz),而我以前的测试的10u钽电容一般只有0.5欧姆左右。
所以换成ESR=0.5欧姆的电容就没有振荡了。
在很多的电容介绍中,只是偶尔提到ESR这个概念,而没有具体说明数值,也许是种类繁多不好概括吧。
ESR与制作材料,频率,温度和电容值都有关。
一般来说,对同一种工艺、同一厂家生产的同一种电容,电容值与ESR 的乘积接近常数。
上面说的13欧姆的电容显然是有问题的(但没标准,只能按照经验判断了).,由于没做过系统,对各种电容的ESR不了解,最好请哪位大侠能公布各种电容的ESR作参考。
不过最好的办法是使用前量一下。
文摘2:关于使用固钽和液体钽电容的浅释彭宝霞(航天511所)摘要:本文对液体钽电容和固体钽电容的失效原因作了具体分析。
对这两种产品的使用提出自己的看法和建议。
关键词:液钽固钽可靠性钽电容器分为固体钽电容器和液体钽电容器。
它们在军用整机中大量使用。
例如:液体钽电容器在84年只有529厂和502所两个单位使用,用量不到2000只。
而95年五院各厂所的液体钽订货量将近1万只。
固体钽电容器更是大量使用。
随着固体钽电容器和液体钽的大量使用。
先后暴露的质量问题也不少。
我们了解到早期有单位禁止使用液钽,而近期的单位禁止使用固钽,这是怎么回事?一、早期某些单位禁用液钽,禁用的理由:1.液体钽电容器的漏液问题液体钽电容器工作电解质为酸性液体,如果产品密封不好,出现漏液。
陶瓷电容器失效模式与机理分析
![陶瓷电容器失效模式与机理分析](https://img.taocdn.com/s3/m/31a446af541810a6f524ccbff121dd36a32dc4be.png)
跡。)
C. 應對措施: 1.素子外觀(擴散﹑側邊沾銀)管控﹔ 2.助焊劑液面控管適中﹐及瓷片浸入深度控管﹔ 3.及時徹底清理錫槽中的錫渣等雜質﹔ 4.涂料的絕緣品質証﹔ 5.涂料包封及固化工序品質保証。
引線短裂
1.化學腐蝕﹔ 2.機械損傷﹔ 3.疲勞斷裂。
(五)﹑重測合格
溫度循環 破壞檢查
檢漏
特性量測
不合格
失效模式分類
合格
溫度特性量測
不合格
合格
解剖
高溫老化﹑高溫 高濕存放
1.內部開路﹑半開路 2.內部擊穿﹑短路﹑半短路 3.電性能退化
量測瓷片之溫 度特性
特性量測
不合格
合格
解剖量測內部瓷片 電性
合格品
陶瓷電容器耐壓失效模式解析
陶瓷電容器耐壓失效模式有以下三種典型模式﹕ 第1 種模式﹕電極邊緣瓷片貫穿(擊穿點在銀面邊緣位置)﹔ A.可能原因:
1. 粉末及其配制問題 2. 素地邊緣的致密性不佳
陶瓷體
銀電極
B. 失效模式在制程中的具體表現﹕ 1. 銀面邊緣位置針孔 2. 銀面邊緣位置針孔﹐同時此位置部份陶瓷炸裂。 3. 裂痕(先針孔后裂痕﹐素子表面有燒蝕碳化之小黑點﹐裂痕為新痕跡。
C. 應對措施: 信息及時反饋前段制程﹐要求其改善提升素地整體耐壓水准
第2 種模式﹕瓷片延邊導通或瓷片邊緣破裂破損(擊穿點在素子側面)﹔
A.可能原因: 1. 素地表面有污點﹐如銀﹑助焊劑﹑油質﹑焊錫渣等 2. 涂料中有導電雜質 3. 涂料中有氣泡 4. 涂料致密性不佳 5. 涂料包封層固化不充分
失效模式 失效机理
![失效模式 失效机理](https://img.taocdn.com/s3/m/de931a09842458fb770bf78a6529647d272834de.png)
失效模式失效机理
失效模式和失效机理是在工程和可靠性领域中用于描述系统、零部件或设备无法正常运行的原因的术语。
它们有助于分析和预测系统的可靠性,以采取相应的维护和改进措施。
1.失效模式(Failure Mode):失效模式是指系统、部件或设备在其设计寿命内无法继续执行其预期功能的方式。
失效模式通常描述了系统产生问题的具体表现或状态。
例如,电子设备的失效模式可能包括电路短路、元件断裂等。
2.失效机理(Failure Mechanism):失效机理是指导致失效模式发生的根本原因或物理过程。
它是失效模式背后的机制或过程,描述了为何系统或部件会出现无法正常运行的情况。
失效机理可能涉及材料疲劳、化学腐蚀、电路元件老化等。
在工程中,深入了解失效模式和失效机理可以帮助工程师采取预防性措施,以延长系统的寿命、提高可靠性,并进行更有效的维护。
这种分析也是可靠性工程的一部分,有助于设计更可靠、安全的系统。
mos失效模式和失效机理
![mos失效模式和失效机理](https://img.taocdn.com/s3/m/dd8dc65cfd4ffe4733687e21af45b307e971f97b.png)
mos失效模式和失效机理
MOS失效模式与失效机理是指金属氧化物半导体场效应晶体管(MOSFET)出现故障的模式和原因。
MOSFET是一种常见的半导体器件,广泛应用于数字电路、功率放大器和开关等领域。
常见的MOS失效模式之一是漏电流增加。
这可能是由于氧化层中的缺陷或杂质引起的。
当漏电流增加时,MOSFET的性能会下降,可能导致电路的不稳定性和故障。
另一个常见的MOS失效模式是氧化层的损坏。
这种损坏可以由电流过大、过压或过温等因素引起。
当氧化层损坏时,会导致漏电流增加、介质击穿和电路断路等问题。
除此之外,MOS失效还可能表现为栅极永久损坏、源极和漏极短路以及脆裂等。
这些失效模式通常由设计缺陷、材料质量或制造过程中的问题引起。
MOS失效的机理可以归结为物理、电化学和热力学等因素的相互作用。
例如,漏电流增加可以由氧化层中的缺陷和杂质导致的势垒诱导或空穴增强效应引起。
而氧化层的损坏则涉及氧化层与电子之间的冲击和电子流的能量耗散。
为了提高MOSFET的可靠性,减少失效和延长寿命,有必要对失效模式和失效机理进行深入的研究和分析。
这可以帮助优化设备设计、材料选择和制造工艺,以提高器件的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属化纸介电容器在高湿环境中工作时,电容器正端引线根部会遭到严重腐蚀,这种电解性腐蚀导致引线机械强度降低,严重时可造成引线断裂失效.
(6)、铝电解电容器的失效机理
铝电解电容器正极是高纯铝,电介质是在金属表面形成的三氧化二铝膜,负极是黏稠状的电解液,工作时相当一个电解槽.铝电解电容器常见失效模式有:漏液、爆炸、开路、击穿、电参数恶化等,有关失效机理分析如下.
产生低电平失效的原因主要在于电容器引出线与电容器极板接触不良,接触电阻增大,造成电容器完全开路或电容量幅度下降.
精密聚苯乙烯薄膜电容器一般采用铝箔作为极板,铜引出线与铝箔极板点焊在一起.铝箔在空气中极易氧化;极板表面生成一层氧化铝半导体薄膜,在低电平条件下氧化膜层上的电压不足以把它击穿,因而铝箔间形成的间隙电容量的串联等效容量,间隙电容量愈小,串联等效容量也愈小.因此,低电平容量取决于极板表面氧化铝层的厚薄,氧化铝层愈厚,低电平条件下电容器的电容量愈小.此外,电容器在交流电路中工作时,其有效电容量会因接触电阻过大而下降,接触电阻很大时有效电容量可减小到开路的程度.即使极板一引线间不存在导电不良的间隔层,也会产生这种后果.
② 电解液沿引线渗漏,使引线遭受化学腐蚀;
③ 引线在电容器制造过程中受到机械损伤;
④ 引线的机械强度不够.
(6) 引起电容器绝缘子破裂的主要原因
① 机械损伤;
② 玻璃粉绝缘子烧结过程中残留热力过大;
③ 焊接温度过高或受热不均匀.
(7) 引起绝缘子表面飞弧的主要原因
① 绝缘了表面受潮,使表面绝缘电阻下降;
⑧ 在机械应力作用下电介质瞬时短路.
(2) 引起电容器开路的主要失效机理
① 引线部位发生“自愈“,使电极与引出线绝缘;
② 引出线与电极接触表面氧化,造成低电平开路;
③ 引出线与电极接触不良;
④ 电解电容器阳极引出箔腐蚀断裂;
⑤ 液体工作台电解质干涸或冻结;
⑥ 机械应力作用下电介质瞬时开路.
金属化纸介电容器在低于额定工作电压的条件下工作时,自愈能量不足,电容器纸中存在的导电杂质在电场作用于下形成低阻通路,也可导致电容器绝缘电阻降低和损耗增大.
电容器纸是多孔性的极性有机介质材料,极易吸收潮气.电容器芯子虽浸渍处理,但如果工艺不当或浸渍不纯,或在电场作用下工作相当时间后产生浸渍老化现象,则电容器的绝缘电阻将因此降低,损耗也将因此增大.
电容器的常见失效模式有:击穿、开路、电参数变化(包括电容量超差、损耗角正切值增大、绝缘性能下降或漏电流上下班升等)、漏液、引线腐蚀或断裂、绝缘子破裂或表面飞弧等.引起电容器失效的原因是多种多样的.各类电容器的材料、结构、制造工艺、性能和使用环境各不相同,失效机理也各不一样.
各种常见失效模式的主要产生机理归纳如下.
电容器的低电平失效是20世纪60年代以来出现的新问题.低电平失效是指电容器在低电压工作条件下出现的电容器开路或容量下降超差等失效现象.60年代以来半导体器件广泛应用,半导体电路电压比电子管电路低得多,使电容器的实际工作电压在某些电路中仅为几毫伏,引起电容器低电平失效,具体表现是电容器完全丧失电容量或部分丧失电容量.对于低电平冲击,使电容器的电容量恢复正常.
① 电场作用下浸渍料分解放气使壳内气压一升;
② 电容器金属外壳与密封盖焊接不佳;
③ 绝缘了与外壳或引线焊接不佳;
④ 半密封电容器机械密封不良;
⑤ 半密封电容器引线表面不够光洁;
⑥ 工作电解液腐蚀焊点.
(5) 引起电容器引线腐蚀或断裂的主要原因
① 高温度环境中电场作用下产生电化学腐蚀;
电容量超差失效产金属化纸介电容器的一种失效形式.在高温条件下储存时金属化纸介电容器可能因电容量增加过多而失效,在高温条件下加电压工作时又可能因电容量减少过多而失效.高温储存时半密封型金属化纸介电容器免不了吸潮,水是强极性物质,其介电常数接近浸渍电容器介电常数的20倍.因此,少量潮气侵入电容器芯子,也会引起电容量显著增大.烘烤去湿后电容呈会有所下降.如果电容器在高温环境中工作,则水分和电场的共同作用会使金属膜电极产生电解性腐蚀,使极板有效面积减小与极板电阻增大,导致电容量大幅度下降.如果引线与金属膜层接触部位产生腐蚀,则接触电阻增大,电容器的有效电容量将更进一步减小.个别电容器的电容量可降到接近于开路的程度.
⑤ 潮气进入电容器芯子,氧化腐蚀焊点,使接触电阻增大.
引起云母电容器低电平失效的具体因素归纳如下:
① 银电极和引出铜箔之间以及铜箔和引线卡之间存在一层很薄的地腊薄膜.低电平条件下,外加电压不足以击穿这层绝缘膜,产生间隙电容,并使接触电阻增大;
② 银电极和铜箔受到有害气体侵蚀,使接触电阻增大.在潮湿的硫气环境中银和铜容易硫化,使极板与引线间的接触电阻上升.
(3) 引起电容器电参数恶化的主要失效机理
① 受潮或表面污染;
② 银离子迁移;
③ 自愈效应;
④ 电介质电老化与热老化;
⑤ 工作电解液挥发和变稠;
⑥ 电极腐蚀;
⑦ 湿式电解电容器中电介质腐蚀;
⑧ 杂质与有害离子的作用;
⑨ 引出线和电极的接触电阻增大.
(4) 引起电容器漏液的主要原因
银离子迁移可严重破坏正电极表面银层,引线焊点与电极表面银层之间,间隔着具有半导体性质的氧化银,使无机介质电容器的等效串联电阻增大,金属部分损耗增加,电容器的损耗角正切值显著上升.
由于正电极有效面积减小,电容器的电容量会因此而下降.表面绝缘电阻则因无机介质电容器两电极间介质表面上存在氧化银半导体而降低.银离子迁移严重时,两电极间搭起树枝状的银桥,使电容器的绝缘电阻大幅度下降.
(4)、高频精密电容器的低电平失效机理
云母是一种较理想的电容器介质材料,具有很高的绝缘性能,耐高温,介质损耗小,厚度可薄达25微米.云母电容器的主要优点是损耗小,频率稳定性好、分布电感小、绝缘电阻大,特别适合在高频通信电路中用做精密电容器.但是,云母资源有限,难于推广使用.近数十年内,有机薄膜电容器获得迅速发展,其中聚苯乙烯薄膜电容器具有损耗小、绝缘电阻大、稳定性好、介质强度高等优点.精密聚苯乙烯电容器可代替云母电容器用于高频电路.需要说明的是:应用于高频电路中的精密聚苯乙烯电容器,一般采用金属箔极板,以提高绝缘电阻与降低损耗.
此外,以二氧化钛为主的陶瓷介质中,负荷条件下还可能产生二氧化钛的还原反应,使钛离子由四价变为三价.陶瓷介质的老化显著降低了电容器的介电强度,可能引起电容器击穿.因此,这种陶瓷电容器的电解击穿现象比不含二氧化钛的陶瓷介质电容器更加严重.
银离子迁移使电容器极间边缘电场发生严重畸变,又因高湿度环境中陶瓷介质表面凝有水膜,使电容边缘表面电晕放电电压显著下降,工作条件下产生表面极间飞弧现象.严重时导致电容器表面极间飞弧击穿.表面击穿与电容结构、极间距离、负荷电压、保护层的疏水性与透湿性等因素有关.主要就是边缘表面极间飞弧击穿,原因是介质留边量较小,在潮湿环境中工作时银离子迁移和表面水膜形成使电容器边缘表面绝缘电阻显著下降,引起电晕放电,最终导致击穿.高湿度环境中尤其严重.由于银离子迁移的产生与发展需要一段时间,所以在耐压试验初期,失效模式以介质击穿为主,直到试验500h以后,主要失效模式才过渡为边缘表面极间飞弧击穿.
(3)、高湿度条件下陶瓷电容器击穿机理
半密封陶瓷电容器在高湿度环境条件下工作时,发生击穿失效是比较普遍的严重问题.所发生的击穿现象大约可以分为介质击穿和表面极间飞弧击穿两类.介质击穿按发生时间的早晚又可分为早期击穿与老化击穿两种.早期击穿暴露了电容介质材料与生产工艺方面存在的缺陷,这些缺陷导致陶瓷介质电强度显著降低,以致于在高湿度环境中电场作用下,电容器在耐压试验过程中或工作初期,就产生电击穿.老化击穿大多属于电化学击穿范畴.由于陶瓷电容器银的迁移,陶瓷电容器的电解老化击穿已成为相当普遍的问题.银迁移形成的导电树枝状物,使漏电流局部增大,可引起热击穿,使电容器断裂或烧毁.热击穿现象多发生在管形或圆片形的小型瓷介电容器中,因为击穿时局部发热厉害,较薄的管壁或较小的瓷体容易烧毁或断裂.
(5)、金属化纸介电容失效机理
金属化纸介电容器的极板是真空蒸发在电容器纸表面的金属膜
A、电参数恶化失效
“自愈”是金属化电容器的一个独特优点,但自愈过程颇为复杂,自愈虽能避免电容器立即因介质短路而击穿,但自愈部位肯定会出现金属微粒迁移与介质材料受热裂解的现象.电容器纸由纤维组成,纤维素是碳水化合物类的高分子物质.在高温下电容器纤维素解成游离状态的碳原子或碳离子,使自愈部位表面导电能力增加,导致电容器电阻下降、损耗增大与电容减小.严重时可使电容器因电参数恶化程度超过技术条件许可范围而失效.
(2)、银离子迁移的后果
无机介质电容器多半采用银电极,半密封电容器在高温条件下工作时,渗入电容器内部的水分子产生电解.在阳极产生氧化反应,银离子与氢氧根离子结合生成氢氧化银.在阴极产生还原反应、氢氧化银与氢离子反应生成银和水.由于电极反应,阳极的银离子不断向阴极还原成不连续金属银粒,靠水膜连接成树状向阳极延伸.银离子迁移不仅发生在无机介质表面,银离子还能扩散到无机介质内部,引起漏电流增大,严重时可使两个银电极之间完全短路,导致电容器击穿.
引起精密聚苯乙烯电容器低电平失效的具体因素归纳如下:
① 引线表面氧化或沾层太薄,以致焊接不牢;
② 引线与铝箔点焊接不良,没有消除铝箔表面点焊处的氧化铝膜层;
③ 单引线结构的焊点数过少,使出现低电平失效的概率增大;
④ 粗引线根部打扁部分接触面积虽然较大,但点焊后焊点处应力也较大,热处理或温循过程中,可能损伤接触部位,恶化接触情况;
1、常见的七种失效模式
(1) 引起电容器击穿的主要失效机理
① 电介质材料有疵点或缺陷,或含有导电杂质或导电粒子;
② 电介质的电老化与热老化;
③ 电介质内部的电化学反应;