大学物理光学复习课件
合集下载
《大学物理光学》PPT课件(2024)
16
干涉仪和衍射仪使用方法
干涉仪使用方法
通过分束器将光源发出的光波分成两束,再经过反射镜反射后汇聚到一点,形成干涉图样。通过调整反射镜的位 置和角度,可以观察不同干涉现象。
衍射仪使用方法
将光源发出的光波通过衍射光栅或单缝等衍射元件,观察衍射现象。通过调整光源位置、衍射元件参数等,可以 研究光电效应、康普顿效应等 现象表明光具有粒子性, 即光量子(光子)。
波粒二象性的统一
光既具有波动性又具有粒 子性,二者是统一的。在 不同条件下,光表现出不 同的性质。
4
光的传播速度与介质关系
真空中的光速
在真空中,光的传播速度最快,约为 3×10^8 m/s。
光速与波长、频率的关系
2024/1/30
24
光学存储技术原理及应用
光学存储技术的分类
只读型、一次写入型和可重写型
光学存储技术的原理
利用激光束在存储介质上形成微小坑点来记录信息
光学存储技术的应用
数字音频、视频、图像和计算机数据的存储
2024/1/30
光学存储技术的优缺点及发展前景
容量大、保存时间长,但读写速度相对较慢
25
应用
透镜广泛应用于摄影、望远镜、 显微镜等光学仪器中,用于实现 物体的放大、缩小和成像等功能 。
10
反射镜成像原理及应用
成像原理
反射镜通过反射光线来改变光线的传 播方向,从而形成像。反射镜的成像 规律遵循光的反射定律和光路可逆原 理。
应用
反射镜广泛应用于天文望远镜、激光 测距仪、光学干涉仪等光学系统中, 用于实现光线的反射、聚焦和成像等 功能。
光学传感器种类及工作原理
光学传感器的分类
光电传感器、光纤传感器、光谱传感器等
干涉仪和衍射仪使用方法
干涉仪使用方法
通过分束器将光源发出的光波分成两束,再经过反射镜反射后汇聚到一点,形成干涉图样。通过调整反射镜的位 置和角度,可以观察不同干涉现象。
衍射仪使用方法
将光源发出的光波通过衍射光栅或单缝等衍射元件,观察衍射现象。通过调整光源位置、衍射元件参数等,可以 研究光电效应、康普顿效应等 现象表明光具有粒子性, 即光量子(光子)。
波粒二象性的统一
光既具有波动性又具有粒 子性,二者是统一的。在 不同条件下,光表现出不 同的性质。
4
光的传播速度与介质关系
真空中的光速
在真空中,光的传播速度最快,约为 3×10^8 m/s。
光速与波长、频率的关系
2024/1/30
24
光学存储技术原理及应用
光学存储技术的分类
只读型、一次写入型和可重写型
光学存储技术的原理
利用激光束在存储介质上形成微小坑点来记录信息
光学存储技术的应用
数字音频、视频、图像和计算机数据的存储
2024/1/30
光学存储技术的优缺点及发展前景
容量大、保存时间长,但读写速度相对较慢
25
应用
透镜广泛应用于摄影、望远镜、 显微镜等光学仪器中,用于实现 物体的放大、缩小和成像等功能 。
10
反射镜成像原理及应用
成像原理
反射镜通过反射光线来改变光线的传 播方向,从而形成像。反射镜的成像 规律遵循光的反射定律和光路可逆原 理。
应用
反射镜广泛应用于天文望远镜、激光 测距仪、光学干涉仪等光学系统中, 用于实现光线的反射、聚焦和成像等 功能。
光学传感器种类及工作原理
光学传感器的分类
光电传感器、光纤传感器、光谱传感器等
大学物理光学课件 (PDF格式)
k=+2 k=+1
2.干涉明暗条纹的位置 2.1 波程差的计算
p
1
x
d δ
θ
r
·x
x
r
2
o D
S*
S1 *
k= 0
I
设实验在真空(或空气)中进行,则波程差为:
S2 *
k=-1 k=-2
δ = r2 − r1 ≈ d sin θ ≈ d tg θ = d ⋅
x D
2.2 明暗条纹条件
δ = r2 −r1 ≈d sinθ ≈ d tgθ = d ⋅
r
B
(4)
E
(5)
,条纹的移动: k一 定, e ↑ → i ↑ → rk 膜厚变化时, • 膜厚变化时 : 波长对条纹的影响: • 波长对条纹的影响
k, e 一 定, λ ↑ → i ↓→ rk ↓
利用薄膜干涉使反射光减小, 这样的薄膜称为增透膜。
2 、多层高反射膜
H L H ZnS MgF 2 ZnS MgF 2
AD = AC sin i
δ = 2 n2 AB − n1 AD +
P Q
sin i n2 = sin r n1
n1 n2 n2 > n1
e λ = 2n2 ⋅ − n1 ⋅ 2e ⋅ tan r sin i + cos r 2
= 2e λ ( n − n sin r sin i ) + cos r 2 1 2 2e sin i λ = ( n − n sin 2 r )+ cos r 2 1 sin r 2
2 2 = 2e n2 2 − n1 sin i + λ / 2
δ = 2 n 2 AB − n1 AD + λ 2
2.干涉明暗条纹的位置 2.1 波程差的计算
p
1
x
d δ
θ
r
·x
x
r
2
o D
S*
S1 *
k= 0
I
设实验在真空(或空气)中进行,则波程差为:
S2 *
k=-1 k=-2
δ = r2 − r1 ≈ d sin θ ≈ d tg θ = d ⋅
x D
2.2 明暗条纹条件
δ = r2 −r1 ≈d sinθ ≈ d tgθ = d ⋅
r
B
(4)
E
(5)
,条纹的移动: k一 定, e ↑ → i ↑ → rk 膜厚变化时, • 膜厚变化时 : 波长对条纹的影响: • 波长对条纹的影响
k, e 一 定, λ ↑ → i ↓→ rk ↓
利用薄膜干涉使反射光减小, 这样的薄膜称为增透膜。
2 、多层高反射膜
H L H ZnS MgF 2 ZnS MgF 2
AD = AC sin i
δ = 2 n2 AB − n1 AD +
P Q
sin i n2 = sin r n1
n1 n2 n2 > n1
e λ = 2n2 ⋅ − n1 ⋅ 2e ⋅ tan r sin i + cos r 2
= 2e λ ( n − n sin r sin i ) + cos r 2 1 2 2e sin i λ = ( n − n sin 2 r )+ cos r 2 1 sin r 2
2 2 = 2e n2 2 − n1 sin i + λ / 2
δ = 2 n 2 AB − n1 AD + λ 2
《大学物理课件:光学篇》
大学物理课件:光学篇
这是一份关于光学的大学物理课件,将带你探索光的本质与特性,光波与光 粒子,光的传播规律,光的反射与折射以及物体成像原理等等内容。
光的本质与特性
波粒二象性
光既可以表现出波动性,也可以表现出粒子性。
速度与频率关系
光在介质中传播速度与频率有着密切的关系。
吸收、反射和折射
光在与物质相互作用时会发生吸收、反射和折 射。
光的色散
不同频率的光在介质中传播速度不同,导致光 发生色散现象。
光的传播规律
1
直线传播
光在均匀介质中沿直线传播。
2
光的衍射
光通过孔隙或遇到边缘时发生衍射现象。
3
光的干涉
两束相干光叠加会产生干涉现象。
Hale Waihona Puke 光的反射与折射反射定律 折射定律 全反射 光密介质与光疏介质
光线从界面上反射时,入射角等于反射角。
凸透镜
凹透镜能够使光线发散,产生减弱的、直立的虚像。 凸透镜能够使光线汇聚,产生放大的、倒立的实像。
光干涉、衍射和偏振
光的干涉
光的干涉是两束光叠加产生明 暗条纹的现象。
光的衍射
光通过物体或孔隙时改变传播 方向和波前形状。
光的偏振
光的偏振是指光中的振动方向 只沿特定方向进行的现象。
阿贝理论和光学仪器
光电子学基础
光电子学研究光与电子的相互作用,包括光电效应、光电二极管和光电倍增 管等。
光学材料和光学设计
光学玻璃
光学玻璃具有良好的光学性能, 用于制造透镜、棱镜和光学器 件。
半导体材料
半导体材料在光电子领域广泛 应用,例如激光器和光敏器件。
光学设计
光学设计利用光的传播规律和 光学元件进行非常精确的光学 系统设计。
这是一份关于光学的大学物理课件,将带你探索光的本质与特性,光波与光 粒子,光的传播规律,光的反射与折射以及物体成像原理等等内容。
光的本质与特性
波粒二象性
光既可以表现出波动性,也可以表现出粒子性。
速度与频率关系
光在介质中传播速度与频率有着密切的关系。
吸收、反射和折射
光在与物质相互作用时会发生吸收、反射和折 射。
光的色散
不同频率的光在介质中传播速度不同,导致光 发生色散现象。
光的传播规律
1
直线传播
光在均匀介质中沿直线传播。
2
光的衍射
光通过孔隙或遇到边缘时发生衍射现象。
3
光的干涉
两束相干光叠加会产生干涉现象。
Hale Waihona Puke 光的反射与折射反射定律 折射定律 全反射 光密介质与光疏介质
光线从界面上反射时,入射角等于反射角。
凸透镜
凹透镜能够使光线发散,产生减弱的、直立的虚像。 凸透镜能够使光线汇聚,产生放大的、倒立的实像。
光干涉、衍射和偏振
光的干涉
光的干涉是两束光叠加产生明 暗条纹的现象。
光的衍射
光通过物体或孔隙时改变传播 方向和波前形状。
光的偏振
光的偏振是指光中的振动方向 只沿特定方向进行的现象。
阿贝理论和光学仪器
光电子学基础
光电子学研究光与电子的相互作用,包括光电效应、光电二极管和光电倍增 管等。
光学材料和光学设计
光学玻璃
光学玻璃具有良好的光学性能, 用于制造透镜、棱镜和光学器 件。
半导体材料
半导体材料在光电子领域广泛 应用,例如激光器和光敏器件。
光学设计
光学设计利用光的传播规律和 光学元件进行非常精确的光学 系统设计。
《光学复习课》课件
光学在生活中的应用
01
02
03
04
照明
利用光学原理设计的灯具,提 供舒适、高效的照明。
显示技术
电视、电脑显示器等利用光学 技术实现图像显示。
光学通信
光纤技术用于高速、大容量的 数据传输。
摄影
记录生活点滴,分享美好时刻 。
光学在科技中的应用
量子光学
研究光与物质相互作用中的量 子现象,为量子计算和量子通
信等领域提供基础。
光刻技术
用于集成电路制造,是现代电 子工业的基础。
光学传感
检测物理、化学和生物等参数 ,广泛应用于环境监测、医疗 诊断等领域。
光学信息处理
利用光学原理实现快速、高效 的信息处理,应用于图像识别
、语音识别等领域。
THANKS FOR WATCHING
感谢您的观看
光的干涉和衍射
总结词
光的波动性质
详细描述
光的干涉是指两束或多束光波在空间某些区域相遇时,相互叠加产生加强或减弱的现象。而光的衍射 是指光波在传播过程中遇到障碍物时,光波发生弯曲的现象。这两种现象都是光波动性的表现。
02 光的干涉
干涉现象
光的干涉是指两束或多束相干 光波在空间某些区域相遇时, 相互叠加产生加强或减弱的现 象。
干涉现象是光学中的重要现象 ,在光学仪器、信息光学、量 子光学等领域有广泛应用。
干涉现象的发现和研究为光的 波动理论提供了重要的实验证 据。
干涉条件
相干性
参与干涉的光波必须是相干的,即具 有相同的频率、振动方向和相位关系 。
平行性
稳定性
光波传播过程中,光程差的变化必须 足够慢,以保证干涉现象的稳定。
《光学复习课》ppt课件
物理光学复习课课件
光波干涉的必要条件: 1. 频率相同; 2. 有相同方向的振动; 3. 具有稳定的相位差。
常见的获得相干光的基本方法
(1)分波阵面法:从一次发光的波面上取出几部分—分割 波前再相遇, 满足相干条件; (2)分振幅法:采用一个或几个反射面,使光在其表面一 部分反射,一部分折射,以此获得相干光
28
双光束干涉强度公式 I r I1 I2 2 I1I2 cos
13
例:当一束光射在两透明介质的界面上时, 会发生只有透射而无反射的情况吗?如果有 ,在什么条件下发生?
答:会。对于振动方向在入射面内的p波,存在
。 振幅反射率的 rp 0 情况,即 p 分量波全透过, 这种现象称为布儒斯特现象,相应的入射角称为
布儒斯特(Brewster)角,用 B表示,且满足
δ=π/2
π>δ>-π/2
δ=π
26
主要题型
• 求两个振动方向相同的单色波叠加的复振 幅表达式、强度分布等;
• 两个振动方向互相垂直、频率相同的单色 波叠加,判断偏振状态;
• 有关复杂波的分解
27
第三章 光的干涉
光的干涉问题包括光源、干涉装置和干涉图形三个要素 之间的关系,即从两个已知的要素求出第三个要素。
B 2 90 。布儒斯特角的计算
tgB
n2。
n1
14
反射、折射能流比与光强比
s
A1s A1s
2
rs2
sin2 (1 sin2 (1
2 ) 2 )
2
s
A2 s A1s
n2 cos2 n1 cos1
n2 cos2 n1 cos1
ts2
n2 cos2 n1 cos1
4 sin2 2 cos2 1 sin2 (1 2 )
常见的获得相干光的基本方法
(1)分波阵面法:从一次发光的波面上取出几部分—分割 波前再相遇, 满足相干条件; (2)分振幅法:采用一个或几个反射面,使光在其表面一 部分反射,一部分折射,以此获得相干光
28
双光束干涉强度公式 I r I1 I2 2 I1I2 cos
13
例:当一束光射在两透明介质的界面上时, 会发生只有透射而无反射的情况吗?如果有 ,在什么条件下发生?
答:会。对于振动方向在入射面内的p波,存在
。 振幅反射率的 rp 0 情况,即 p 分量波全透过, 这种现象称为布儒斯特现象,相应的入射角称为
布儒斯特(Brewster)角,用 B表示,且满足
δ=π/2
π>δ>-π/2
δ=π
26
主要题型
• 求两个振动方向相同的单色波叠加的复振 幅表达式、强度分布等;
• 两个振动方向互相垂直、频率相同的单色 波叠加,判断偏振状态;
• 有关复杂波的分解
27
第三章 光的干涉
光的干涉问题包括光源、干涉装置和干涉图形三个要素 之间的关系,即从两个已知的要素求出第三个要素。
B 2 90 。布儒斯特角的计算
tgB
n2。
n1
14
反射、折射能流比与光强比
s
A1s A1s
2
rs2
sin2 (1 sin2 (1
2 ) 2 )
2
s
A2 s A1s
n2 cos2 n1 cos1
n2 cos2 n1 cos1
ts2
n2 cos2 n1 cos1
4 sin2 2 cos2 1 sin2 (1 2 )
大学物理课件光学
如量子密钥分发、量子隐形传态 等。
超快激光技术及应用领域
超快激光技术的发展历程
从纳秒到飞秒,再到阿秒的超快激光脉冲的产生和应用。
超快激光技术的应用领域
包括超快光谱学、超快化学动力学、超快生物医学成像等。
超快激光技术的挑战与前景
如提高脉冲能量、压缩脉冲宽度、拓展应用领域等。
纳米光子学及前景展望
纳米光子学的基本概念
偏振光
光振动在某一特定方向的光,在垂直于传播方向的平面 上,只沿某个特定方向振动。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过检偏器后透射光强与检偏器透振方向夹角的关系,即透射光强与夹角的余弦值的平方成正比。
布儒斯特角
当自然光在两种各向同性媒质分界面上反射、折射时,反射光和折射光都是部分偏振光。反射光中垂直振动多于 平行振动,折射光中平行振动多于垂直振动。当入射角满足某种条件时,反射光中垂直振动的光完全消失,只剩 下平行振动的光,这种光是线偏振光,而此时的入射角叫做布儒斯特角。
03 光的折射定律
光从一种介质斜射入另一种介质时,传播方向发 生改变,折射光线和入射光线分别位于法线的两 侧,且折射角与入射角满足一定的关系。
波动光学基础
光的干涉现象
当两束或多束相干光波在空间某 一点叠加时,其振幅相加而产生 的光强分布现象。干涉现象表明
了光具有波动性。
光的衍射现象
光在传播过程中遇到障碍物或小孔 时,会偏离直线传播路径而绕到障 碍物后面继续传播的现象。衍射现 象也是光波动性的表现。
衍射法测波长实验原理及操作过程
实验原理
当单色光通过单缝或小孔时, 会发生衍射现象,形成明暗相 间的衍射条纹。通过测量衍射 角或衍射条纹间距,可以计算 出单色光的波长。
超快激光技术及应用领域
超快激光技术的发展历程
从纳秒到飞秒,再到阿秒的超快激光脉冲的产生和应用。
超快激光技术的应用领域
包括超快光谱学、超快化学动力学、超快生物医学成像等。
超快激光技术的挑战与前景
如提高脉冲能量、压缩脉冲宽度、拓展应用领域等。
纳米光子学及前景展望
纳米光子学的基本概念
偏振光
光振动在某一特定方向的光,在垂直于传播方向的平面 上,只沿某个特定方向振动。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过检偏器后透射光强与检偏器透振方向夹角的关系,即透射光强与夹角的余弦值的平方成正比。
布儒斯特角
当自然光在两种各向同性媒质分界面上反射、折射时,反射光和折射光都是部分偏振光。反射光中垂直振动多于 平行振动,折射光中平行振动多于垂直振动。当入射角满足某种条件时,反射光中垂直振动的光完全消失,只剩 下平行振动的光,这种光是线偏振光,而此时的入射角叫做布儒斯特角。
03 光的折射定律
光从一种介质斜射入另一种介质时,传播方向发 生改变,折射光线和入射光线分别位于法线的两 侧,且折射角与入射角满足一定的关系。
波动光学基础
光的干涉现象
当两束或多束相干光波在空间某 一点叠加时,其振幅相加而产生 的光强分布现象。干涉现象表明
了光具有波动性。
光的衍射现象
光在传播过程中遇到障碍物或小孔 时,会偏离直线传播路径而绕到障 碍物后面继续传播的现象。衍射现 象也是光波动性的表现。
衍射法测波长实验原理及操作过程
实验原理
当单色光通过单缝或小孔时, 会发生衍射现象,形成明暗相 间的衍射条纹。通过测量衍射 角或衍射条纹间距,可以计算 出单色光的波长。
《大学物理光学》PPT课件 (2)
• 注意区分:
界面;入射面;振动面
n1
E P 光矢量的p分量-平行于入射面振动 n2
E S 光矢量的s分量-垂直于入射面振动
i1 i1'
i2
r—是在界面上的任一点的位置矢量。
图1.2-3 光在两种介质分界面上的反射与折射
1 波动光学基础
1.5.1 光在介质界面的反射与折射
E1s E1's E2s
A 1 s e i ( k x 1 r p t ) A ] 1 's [ e i ( k x 1 ' r p 1 't ) A ] 2 [ s e i ( k x 2 r p 2 t )] [
1. 1 1' 2
2.
k1rk1 ' rk2r
(k1' k1) r 0 (k2 k1) r 0
1、rp、r
均为复数
s
rp rs 1, RP RS 1
S 0 p,P 0 p 2、1 C时,s p 0,不改变偏振态 1 C时,s p 0 p,改变偏振态
二、倏逝波
1、等幅面是平行于界面的平面, 等相面是垂直于界面的平面。
2、入射波透入介质2约一个波长的深度, 透射波沿界面传播约半个波长, 然后返回介质1。
R
wp
0
0
30
1.5.5 反射光与透射光的半波损失(相位突变)
结论: ① 自然光自疏(快)介质向密(慢)介质入射时,反射光相对入射光 存在半波损失(p 相位突变),反之不存在。
② 透射光在任何情况下都不存在半波损失。
1 波动光学基础
1.5.6 全反射现象与应用
1.5.6 全反射现象与应用
• 一、反射系数及反射相移
物理光学基础知识ppt课件
04
光源与光谱分析
光源类型及特性
1 2 3
热辐射光源
通过加热物体产生光辐射,如白炽灯、黑体辐射 源等。具有连续的光谱分布,色温与发光体温度 相关。
气体放电光源
利用气体放电产生光辐射,如荧光灯、钠灯等。 光谱分布与放电物质及条件有关,可实现特定波 长的光输出。
激光光源
通过受激辐射产生相干光,具有单色性、方向性 和高亮度等特点。广泛应用于科研、工业、医疗 等领域。
光谱分析原理及方法
光谱分析原理
01
不同物质具有不同的光谱特征,通过对物质发射、吸收或散射
的光进行分析,可以了解物质的成分、结构等信息。
光谱分析方法
02
包括发射光谱分析、吸收光谱分析、拉曼光谱分析、荧光光谱
分析等。各种方法具有不同的特点和适用范围。
光谱仪器
03
常用的光谱仪器有分光光度计、光谱仪、原子发射光谱仪等。
衍射现象
单缝衍射
单色光通过单缝时,在屏幕上形成中央亮纹、两侧明暗相 间的衍射条纹,表明光在传播过程中遇到障碍物或小孔时 会发生偏离直线传播的现象。
圆孔衍射
单色光通过小圆孔时,在屏幕上形成明暗相间的圆环状衍 射条纹,揭示了光的波动性。
泊松亮斑
当单色光照射到不透光的小圆板上时,在圆板后面的屏幕 上会出现一个亮斑,即泊松亮斑,这是光的衍射现象的一 个著名实例。
于携带和使用。
智能化
结合人工智能和机器学习技术 ,实现光学设备的自动化和智 能化操作。
多功能化
将多种光学功能集成在一个设 备上,提高设备的综合性能。
高精度化
提高光学设备的测量精度和稳 定性,满足高精度测量和实验
需求。
06
总结与展望
《大学物理物理光学》PPT课件
第九章 波动光学
(Wave optics)
Introduction
Review of history
The period of Ancient optics
The period of geometric optics The period of wave optics The period of quantum optics
橙 622~597 4 .8 110 ~ 45 .0 110 4 610
黄 597~577 5 .0 110 ~ 45 .4 110 4 570
绿 577~492 5 .4 110 ~ 46 .1 110 4 540
青 492~470 6 .1 110 ~ 46 .4 110 4 480
相干条件:
(1)振动方向相同
(2)频率相同
(3)有恒定的位精相选pp差t
14
相干光的获得
分波阵面法:
在光源发出的 同一波阵面上 取两个点光源, 该两个点光源 发出的光为相 干光(杨氏实 验)
波阵面分割法
s1
光源 *
s2
精选ppt
15
分振幅法:
利用反射或 折射把一束 光的振幅分 成两部分, 这两部分光 为相干光 (薄膜干涉)
独立性:各原子各次发光相互独立,各波列互不相干.
非相干(不同原子发的光)
非相干(同一原子先后发的光)
精选ppt
11
激光属于受激辐射
• E2 • E1
2.激光
波列
E 2 E 1 /h
光波的相位、频率、振动方向以及传播方向都和原 来的入射光相同,即它们具有好
谱线宽度
例:普通单色光
: 10-2 10 0A
0
(Wave optics)
Introduction
Review of history
The period of Ancient optics
The period of geometric optics The period of wave optics The period of quantum optics
橙 622~597 4 .8 110 ~ 45 .0 110 4 610
黄 597~577 5 .0 110 ~ 45 .4 110 4 570
绿 577~492 5 .4 110 ~ 46 .1 110 4 540
青 492~470 6 .1 110 ~ 46 .4 110 4 480
相干条件:
(1)振动方向相同
(2)频率相同
(3)有恒定的位精相选pp差t
14
相干光的获得
分波阵面法:
在光源发出的 同一波阵面上 取两个点光源, 该两个点光源 发出的光为相 干光(杨氏实 验)
波阵面分割法
s1
光源 *
s2
精选ppt
15
分振幅法:
利用反射或 折射把一束 光的振幅分 成两部分, 这两部分光 为相干光 (薄膜干涉)
独立性:各原子各次发光相互独立,各波列互不相干.
非相干(不同原子发的光)
非相干(同一原子先后发的光)
精选ppt
11
激光属于受激辐射
• E2 • E1
2.激光
波列
E 2 E 1 /h
光波的相位、频率、振动方向以及传播方向都和原 来的入射光相同,即它们具有好
谱线宽度
例:普通单色光
: 10-2 10 0A
0
【精品】物理光学PPT课件(完整版)
物理光学
绪论
1. 物理光学的研究对象和内容
光学是研究光的本性,光的传播以及它和物质相互作 用的学科。
光学
几何光学 物理光学 现代光学
波动光学 量子光学
几何光学:基于“光直线传播”的概念讨论光的传播规律 几何光学三个基本定律(直线传播,折射、反射定律)。
是光波衍射规律的短波近似。
它们在方法上是几何的,在物理上不涉及光的本质。
f ( ) 1 cos Ts ( )
在三个坐标轴方向上方向的空间频率为:
fx
cos
fy
cos
fz
cos
f x , f y , fz 又称为三维简谐波固有空间频率 f 的坐标轴分量。
f
2 x
f
2 y
f
2 z
1
2
f
2
光波的空间频率分量反映了波的传播方向, 所以可以根据光的波长和空间频率分量写出 波函数:
I A2 E(r ) E*(r )
此公式也适用于非单色光。
x 2π
O
0 y
-2π
共轭光波,也就是与原复振幅共轭的复振幅所描述的光波。 以图1.5的情形为例,z=0平面上的复振幅为:
E(r ) Aexp(ikx sin )
其中的γ也是入射光波的入射角。 其共轭为:
E*(r) Aexp(ikxsin ) Aexpikxsin( )
波面为球面的波被称为球面波。
理想点光源发出的波为球面波。
一个在真空或各向同性介质中的 理想点光源,它向外发射的光波 是球面光波,等相位面是以点光 源为中心、随着距离的增大而逐 渐扩展的同心球面。
1.3.1 球坐标系中的波动微分方程
球面波具有球对称性,在球坐标系中,球面波的波
绪论
1. 物理光学的研究对象和内容
光学是研究光的本性,光的传播以及它和物质相互作 用的学科。
光学
几何光学 物理光学 现代光学
波动光学 量子光学
几何光学:基于“光直线传播”的概念讨论光的传播规律 几何光学三个基本定律(直线传播,折射、反射定律)。
是光波衍射规律的短波近似。
它们在方法上是几何的,在物理上不涉及光的本质。
f ( ) 1 cos Ts ( )
在三个坐标轴方向上方向的空间频率为:
fx
cos
fy
cos
fz
cos
f x , f y , fz 又称为三维简谐波固有空间频率 f 的坐标轴分量。
f
2 x
f
2 y
f
2 z
1
2
f
2
光波的空间频率分量反映了波的传播方向, 所以可以根据光的波长和空间频率分量写出 波函数:
I A2 E(r ) E*(r )
此公式也适用于非单色光。
x 2π
O
0 y
-2π
共轭光波,也就是与原复振幅共轭的复振幅所描述的光波。 以图1.5的情形为例,z=0平面上的复振幅为:
E(r ) Aexp(ikx sin )
其中的γ也是入射光波的入射角。 其共轭为:
E*(r) Aexp(ikxsin ) Aexpikxsin( )
波面为球面的波被称为球面波。
理想点光源发出的波为球面波。
一个在真空或各向同性介质中的 理想点光源,它向外发射的光波 是球面光波,等相位面是以点光 源为中心、随着距离的增大而逐 渐扩展的同心球面。
1.3.1 球坐标系中的波动微分方程
球面波具有球对称性,在球坐标系中,球面波的波
大学物理复习几何光学ppt课件
科学家们认为光的本质研究已完成---光是一种电磁波
4
随着技术的发展和实验条件的完善,发现了光电效应, 康普顿效应,利用波动光学无法解释,1900年普朗克提出 量子假说,1905年爱因斯坦提出光子学说。解释了光电效 应。
目前关于光的本质(光是什么)只能讲:
光具有波粒二象性,既是粒子,也是波。
5
光在某些条件下表现出粒子性, 在另一些条件 下表现出波动性。
7
第16章 几何光学
几何光学(Geometrical Optics):又称射线光学, 描述光的直线传播规律。 ——采用几何方法研究光在介质中的传播及其应 用。
8
§16.1 几何光学的基本规律
一、光的直线传播定律 光在均匀的介质中沿直线传播。
2009.7.22四川省遂宁市 大英县观察到的日全食
9
二、光的独立传播定律
3
惠更斯提出光的波动理论,认为光是在一种特殊介质 中传播的机械波。解释了光的反射、折射、衍射。 托马斯.杨和菲涅尔(在十九世纪初)透过实验和进一 步的理论工作,验证了光的波动理论,成功地解释了光的干 涉、衍射。
波动光学存在不足,把光看作是机械波,光在真空中 传播需要媒质,于是臆想出“以太”,认为真空中充满了 “以太”,但找不到。 十九世纪六十年代,麦克斯韦建立了电磁场理论,预言 电磁波存在,1887年赫兹通过实验,发现了电磁波,电磁波 的速度等于光速,认为光是电磁波。
13
13
§16.2 共轴理想光学系统的成像
一、 费马原理(Fermat Principle)
两种表述: (1)光线在两点间的实际路径是 使所需的传播时间为极值的路径。
(2)两点间光线的实际路径,是 光程取极值的路径。
14
光从S到P所用时间—— s3 s1 s2 t
4
随着技术的发展和实验条件的完善,发现了光电效应, 康普顿效应,利用波动光学无法解释,1900年普朗克提出 量子假说,1905年爱因斯坦提出光子学说。解释了光电效 应。
目前关于光的本质(光是什么)只能讲:
光具有波粒二象性,既是粒子,也是波。
5
光在某些条件下表现出粒子性, 在另一些条件 下表现出波动性。
7
第16章 几何光学
几何光学(Geometrical Optics):又称射线光学, 描述光的直线传播规律。 ——采用几何方法研究光在介质中的传播及其应 用。
8
§16.1 几何光学的基本规律
一、光的直线传播定律 光在均匀的介质中沿直线传播。
2009.7.22四川省遂宁市 大英县观察到的日全食
9
二、光的独立传播定律
3
惠更斯提出光的波动理论,认为光是在一种特殊介质 中传播的机械波。解释了光的反射、折射、衍射。 托马斯.杨和菲涅尔(在十九世纪初)透过实验和进一 步的理论工作,验证了光的波动理论,成功地解释了光的干 涉、衍射。
波动光学存在不足,把光看作是机械波,光在真空中 传播需要媒质,于是臆想出“以太”,认为真空中充满了 “以太”,但找不到。 十九世纪六十年代,麦克斯韦建立了电磁场理论,预言 电磁波存在,1887年赫兹通过实验,发现了电磁波,电磁波 的速度等于光速,认为光是电磁波。
13
13
§16.2 共轴理想光学系统的成像
一、 费马原理(Fermat Principle)
两种表述: (1)光线在两点间的实际路径是 使所需的传播时间为极值的路径。
(2)两点间光线的实际路径,是 光程取极值的路径。
14
光从S到P所用时间—— s3 s1 s2 t