小升初数学:典型应用题知识点
(完整版)人教版小升初数学应用题归纳
![(完整版)人教版小升初数学应用题归纳](https://img.taocdn.com/s3/m/6b8f5292fc0a79563c1ec5da50e2524de518d027.png)
(完整版)人教版小升初数学应用题归纳小升初数学应用题归纳1、果园里桃树的棵数相当于梨树棵数的53,相当于苹果树棵数的73。
如果梨树比苹果树少180棵,这个果园里有桃树、梨树、苹果树多少棵?(用方程思想解题)2、小明在商店买了苹果和梨,苹果的个数是梨的54,小明吃了10个苹果,8个梨,则剩下的苹果个数是剩下的梨的75。
求小明买的苹果核梨各有多少个?(用方程思想解题)3、顺风运输队包运1万只瓷碗,每100只运费1.5元,如果损坏一只碗,不但不给运费,还要赔偿0.2元,完成包运任务后,这个运输队共得运费146.56元。
求运输中损坏了几只碗?(用方程思想解题)4、一件玩具,第一天按原价出售,没人来买,第二天降价20%出售,仍没人来买,第三天再降价20元,仍没人来买,第四天在第三天价格的基础上再降价20%,终于售出,已知售出价格是原价的48%。
问原价是多少?(用方程思想解题)5、王飞到山上图书馆借书,他上山每小时行3千米,从原路返回,每小时行6千米。
求他上、下山的平均速度。
(路程速度时间问题)6、某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?(鸡兔同笼问题)7、两列火车从甲、乙两地同时开始相对开出,4小时后在距离中点48千米处相遇。
已知慢车速度是快车的75,快车和慢车的速度各是多少?甲、乙两地相距多少米?(相遇问题)(用方程思想解题)8、A 车和B 车同时从甲、乙两地相向开出,经过5小时相遇。
然后,它们又各自按照原速度方向继续行驶3小时,这时A 车离乙地还有135千米,B 车离甲地还有165千米。
甲、乙两地相距多少千米?(相遇问题)9、A 、B 两地相距1000米,甲、乙两人分别从A 、B 两地同时出发,在A 、B 两地间往返散步。
两人第一次相遇时距离AB 中点100米,那么两人第二次相遇时距离第一次相遇的地点多少米?(相遇问题)10、有一项工程需要完成,甲队单独做需要20天完成,乙队单独做需要30天完成。
小升初数学必考知识点:应用题解答思路解析,不分版本(附例题)(2)
![小升初数学必考知识点:应用题解答思路解析,不分版本(附例题)(2)](https://img.taocdn.com/s3/m/fd0c17d4b8f67c1cfbd6b826.png)
小升初数学必考知识点:应用题解答思路解析,不分版本(附例题)(2)(二)分数和百分数的应用1分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。
找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3分数除法应用题:求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。
“一个数”是比较量,“另一个数”是标准量。
求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。
关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。
已知一个数的几分之几(或百分之几),求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。
4出勤率发芽率=发芽种子数/试验种子数×100%小麦的出粉率=面粉的重量/小麦的重量×100%产品的合格率=合格的产品数/产品总数×100%职工的出勤率=实际出勤人数/应出勤人数×100%5工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。
它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。
2020年小升初数学专题复习训练—拓展与提高:典型应用题(1)(知识点总结+同步测试) 通用版
![2020年小升初数学专题复习训练—拓展与提高:典型应用题(1)(知识点总结+同步测试) 通用版](https://img.taocdn.com/s3/m/9bcbb860102de2bd9705888e.png)
A.3
B.4
C.9
7.弟弟原来有 5 本故事书,哥哥给弟弟 3 本后,哥哥的本数是弟弟的 2 倍,哥哥原来有( )本书.
A.7
B.16
C.19
D.14
8.哥哥的钱数是妹妹的两倍,如果哥哥拿 4 元钱给妹妹,那么兄妹俩的钱数就一样多.妹妹原来有( )
元钱.
A.2
B.4
C.8
D.16
二.填空题(共 8 小题)
【命题方向】
例 1:如果把一根木料锯成 3 段要用 9 分,那么用同样的速度把这根木料锯成 4 段,要用 13.5 分. 分析:这是一个和生活相关的问题,存在这样一个关系:锯的次数=锯成的段数-1;锯成 3 段, 要锯 2 次,锯成 4 段要锯 3 次, 那么本题就可以改成,锯 2 次要 9 分钟,那么锯 3 次要几分钟?先求锯 1 次要几分钟,用除法 即 9÷2=4.5(分),再求锯 3 次要几分钟,用乘法,即 4.5×3=13.5(分)
解:(8+16)÷(3-1) =24÷2 =12(千克) 12+8=20(千克) 答:两桶油原来各有 20 千克. 点评:本题考查了差倍问题,关键是得出 48 千克时是甲桶取出后的 2 倍.
同步测试
一.选择题(共 8 小题) 1.王大伯今年栽了桃树和梨树(如图),算一算他今年栽的果树中有梨树(
)棵.
三.和倍问题
【知识点归纳】
公式: 两数和÷份数和=小数 小数×倍数=大数 或 两数和-小数=大数 和倍问题的特点是利用大小两个数的和与它们的倍数关系,求大小两个数各是多少的应用题,
解答和倍应用题的最好助手是,采用画线段图的方法来表示两种量间的数量关系,以便找到解 题的途径.
【命题方向】
苏教版小升初数学13种典型应用题详细解析
![苏教版小升初数学13种典型应用题详细解析](https://img.taocdn.com/s3/m/d9bf32499e31433238689388.png)
小升初数学13 种典型应用题详细解析在数学试卷中,应用题是组成试卷必不可少的一部分,同时也是占分比例比较中的一部分。
那么什么叫做典型应用题呢?典型应用题指的是具有独特的结构特征的和特定的解题规律的复合应用题。
下面是典型应用题分类的详细分析。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。
数量关系式:数量之和*数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式(部分平均数X权数)的总和十(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)-2=小数应得数最大数与各数之差的和*总份数= 最大数应给数最大数与个数之差的和十总份数=最小数应得数。
例:一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。
求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。
此题可以把甲地到乙地的路程设为“1”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+=, 汽车的平均速度为2-=75(千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。
又称“单归一。
” 两次归一问题,用两步运算就能求出“单一量”的归一问题。
又称“双归一。
” 正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
小升初复习:知识点19鸡兔同笼问题
![小升初复习:知识点19鸡兔同笼问题](https://img.taocdn.com/s3/m/6d45f1f55ebfc77da26925c52cc58bd63186938c.png)
第十九节:典型应用题(四)鸡兔同笼问题列表法和画图法【例1】鸡兔同笼,有10个头,26条腿,笑笑用取中列表法在下面填了一次就找出答案了。
你怎么样使用表格法,求出鸡、兔各多少只呢?请解答。
鸡的只数兔的只数腿的总条数⨯+⨯=55525430思路引导一只鸡有2条腿,一只兔子4条腿。
已知鸡和兔子一共有10只,根据“鸡的只数×2+兔的只数×4=腿的总条数”用列表法计算。
表中已经列出腿的总条数是30条,比26条多4条。
把一只鸡当作兔子,腿数就多算了2条。
4÷2=2(只),则鸡的只数需要加上2,兔的只数减去2,这样腿的总条数就是26条。
正确解答:鸡的只数兔的只数腿的总条数⨯+⨯=55525430737×2+3×4=26答:鸡有7只,兔有3只。
本题考查鸡兔同笼问题。
要理解“把一只鸡当作兔子,腿数就多算了2条”,从而得出多算的4条腿是把2只鸡当作兔来算。
【变式1】(2021五下·浙江丽水)1. 五年级1班48名同学去公园划船,每条大船限坐6人,每条小船限坐4人,他们一共租了10条船,每条船都坐满。
大船租了几条?小船租了几条?(用列表法解决)总人数大船小船【例2】鸡、兔关在同一笼子里,共有10个头,28条腿,笼里有几只鸡几只兔?(用画图法)我们用“○”表示头,画10个“○”;用“|”表示腿,鸡有两条腿,兔子有四条腿,鸡的腿数比兔子的少。
先全画成鸡:从图中可以看出,10只鸡只有20条腿,而条件说“共有28条腿”,显然少了28﹣20﹦8(条)腿,这样,在鸡图上一只加两条腿,把它变成兔子,8条腿添改4次即可。
正确解答:由图可知,有6只鸡,4只兔。
答:笼里有6只鸡,4只兔。
数据较小时,可以用画图法解答,画图时一定要注意结合题意,及时调整。
【变式2】(2022六下·山西临汾)2. 一辆自行车有2个轮子,一辆三轮车有3个轮子.车棚里放着自行车和三轮车共10辆,数数车轮共有26个.问自行车几辆,三轮车几辆?假设法【例3】鸡兔同关在一只笼里,共48个头,100只脚。
小升初数学列方程解应用题知识点归纳
![小升初数学列方程解应用题知识点归纳](https://img.taocdn.com/s3/m/c10be23e19e8b8f67d1cb966.png)
小升初数学列方程解应用题知识点归纳
小升初数学列方程解应用题知识点归纳
1、列方程解应用题的意义
用方程式去解答应用题求得应用题的未知量的方法。
2、列方程解答应用题的步骤
弄清题意,确定未知数并用x表示;
找出题中的数量之间的相等关系;
列方程,解方程;
检查或验算,写出答案。
3、列方程解应用题的方法
综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。
这是从部分到整体的一种思维过程,其思考方向是从已知到未知。
分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的'未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
4、列方程解应用题的范围
小学范围内常用方程解的应用题:
a一般应用题;
b和倍、差倍问题;
c几何形体的周长、面积、体积计算;
d分数、百分数应用题; e比和比例应用题。
小升初数学:分数除法应用题知识点
![小升初数学:分数除法应用题知识点](https://img.taocdn.com/s3/m/22c84565f8c75fbfc67db25a.png)
小升初数学:分数除法应用题知识点:为了大家能够更好地学习、复习,小编为大家整理了小升初数学:分数除法应用题知识点,供大家参考。
分数除法应用题:求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。
“一个数”是比较量,“另一个数”是标准量。
求分率或百分率,也就是求他们的倍数关系。
解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。
甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。
关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。
已知一个数的几分之几(或百分之几) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。
解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。
总结:小升初数学:分数除法应用题知识点就为大家介绍到这儿了,希望小编的整理可以帮助到大家,祝大家学习进步。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。
小编推荐:这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
小升初数学总复习(八)---应用题之其它8类常考(解析版)全国通用版
![小升初数学总复习(八)---应用题之其它8类常考(解析版)全国通用版](https://img.taocdn.com/s3/m/eec8110e81c758f5f71f6704.png)
小升初数学专题突破8应用题之其它8类常考一.盈亏问题1.华校给思维训练课老师发洗衣粉.如果给男老师每人3包,女老师每人4包,那么就会多出8包;如果给男老师每人4包,女老师每人5包,那么就会少7包.已知男老师比女老师多1人,那么共有多少包洗衣粉?画龙点睛:“男老师每人3包,女老师每人4包”到“男老师每人4包,女老师每人5包”每位老师增加1包,共用去了8+7=15包,说明有15位老师,其中男老师8位,女老师7位.要求共有多少包洗衣粉,列式为3×8+4×7+8,计算即可.答案与解析:老师人数:8+7=15(人),其中男老师8位,女老师7位.共有洗衣粉:3×8+4×7+8,=24+28+8,=60(包).答:共有60包洗衣粉.2.一种商品随季节出售,如果按现价降低10%,每件仍可盈利200元;如果按现价降低20%,则每件亏损220元.这种商品每件的进价是多少元?画龙点睛:要求这种商品的进价是多少元,应先求出这种商品的定价,根据前后价格之差和分率之差即可求出定价,即从降价10%到降价20%,商品的销售就从每件盈利200元到每件亏损220元,相差200+220=420(元),每件现价为420÷10%=4200(元),再由每件现价的(1﹣10%)减去盈利的200元就是每件进价了.答案与解析:(200+220)÷(20%﹣10%)=420÷10%=4200(元)4200×(1﹣10%)﹣200=4200×90%﹣200=3780﹣200=3580(元)答:这种商品每件的进价是3580元.3.一个旅游团去旅馆住宿,若6人一间,多2个房间;若4人一间又少2个房间.旅游团共有多少人?画龙点睛:若6人一间,多2个房间,即不足6×2=12人;若4人一间又少2个房间,即盈4×2=8人;两次分配的差为6﹣4,根据盈亏问题公式可知共有房间(12+8)÷(6﹣4)=10间,则旅游团共有6×(10﹣2)人.答案与解析:(6×2+4×2)÷(6﹣4)=(12+8)÷2=20÷2=10(间)6×(10﹣2)=6×8=48(人)答:旅游团共有48人.4.李师傅做一批零件,如果他平均每天做24个,将比计划推迟一天完成,如果他平均每天做40个,将比计划提前一天完成,为了按计划完成,他平均每天要做多少个零件?画龙点睛:每天做24个,迟一天完成,说明时间到时还有24个没有完成;每天做40个,提前一天完成,说明时间到时还可以多做40个,64个就是每天做24个和40个的差别.所以规定时间为(24×1+40×1)÷(40﹣24)=4(天),有零件24×(4+1)=120(个),或40×(4﹣1)=120(个),按时完成每天做120÷4=30(个).答案与解析:①规定时间为(24×1+40×1)÷(40﹣24),=64÷16,=4(天);②按时完成每天做24×(4+1)÷4,=120÷4,=30(个).答:他平均每天要做30个零件.5.用一根绳子测量一口枯井的深度,把绳子对折一次量,井外多6米,把绳子对折两次量,井外多1米.井深多少米?绳子长多少米?画龙点睛:由题意可知,绳子长度的12比井深多6米,长度的14比井深多1米,所以绳长的12比它的14多5米,因此绳长:5÷(12−14)=20(米);井深:20×12−6,计算即可. 答案与解析:绳长:(6﹣1)÷(12−14) =5÷14=20(米);井深:20÷2﹣6=10﹣6=4(米);答:井深4米,绳子长20米.6.一只白山狐滑雪橇从山顶到山脚参加雪山动物联欢会.如果它每分钟行250米,预计15分钟到达,但滑行到35路程时,雪橇突然出了故障,急忙停下来修理,用了1.2分钟才修好,之后它继续前进,如果它要在原来预定的时间内到达山脚,那么余下的路程它每分钟必须比原来多行多少米?画龙点睛:由题意,滑行到35路程时,雪橇突然出了故障,急忙停下来修理,则剩下的路程为250×15×25=1500(米),还剩下的时间为:15×(1−35)﹣1.2=4.8(分钟),根据速度=路程÷时间可求得后来的速度,再减去原来的速度即可得解.答案与解析:剩下的路程:250×15×25=1500(米)剩下的时间:15×(1−35)﹣1.2=6﹣1.2=4.8(分钟)每分钟必须比原来多行:1500÷4.8﹣250312.5﹣250=62.5(米)答:余下的路程它每分钟必须比原来多行62.5米.二.归一归总问题7.李师傅开车从郑州去距离680km的地方运送物资.货车每100km耗油20L,按照这个耗油量,出发时加满100L油,途中还需要加油吗?请写出判断过程.画龙点睛:已知货车每100千米耗油20升,根据“等分”除法的意义,用除法可以求出货车每行1千米耗油多少升,再根据乘法的意义,用乘法再求出行680千米耗的油多少升,然后与100升进行比较,如果行驶680千米的耗油量等于或小于100升,说明不用加油,否则就需要加油.据此解答.答案与解析:20÷100×680=0.2×680=136(升)136>100答:途中需要加油.8.张师傅要加工120个零件,2.5小时加工了15个,照这样的速度,完成任务一共需要多少个小时?画龙点睛:用15除以2.5,求每小时加工零件的个数,再用零件总数除以每小时加工的零件数即可。
小升初数学百分数的应用知识点+应用题
![小升初数学百分数的应用知识点+应用题](https://img.taocdn.com/s3/m/abf94af3294ac850ad02de80d4d8d15abe2300c1.png)
小升初数学总复习『百分数的应用——知识点+应用题』一、知识梳理商店降价出售商品,叫做打折扣销售,俗称“打折”几折就表示十分之几,也就是百分之几十。
农业收成,经常用“成数”来表示。
几成就表示十分之几,也就是百分之几十。
应纳税额与各种收入的比率叫做税率。
不同税种,税率不同。
单位时间内的利息与本金的比率叫做利率。
利息=本金×利率×存期二、例题解析折扣 成数税率利率 百分数1.一个果园里去年产了4800千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?解:4800×(1+20%)=5760(千克)答:今年产了5760千克苹果。
2.有一台冰箱,原价2000元,降价后卖1800元,降了百分之几?解:(2000-1800)÷2000=10答:降了10%。
小升初数学总复习『百分数的应用——知识点+应用题』二、例题解析3.有一个公园原来的门票是100元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?解:100×(1-0.8)=20(元)20÷100=20%答:每张门票能节省16元,相当于降价了80%。
4.南山小学共占地6000平方米,其中绿地面积占65%,其余为教学楼和道路等,南山小学的绿地面积有多少平方米?教学楼和道路等有多少平方米?解:6000×65%=3900(平方米)6000-3900=2100(平方米)或:6000×(1-65%)答:南山小学的绿地面积有3900平方米,学楼和道路等有2100平方米。
5.实验小学六年级的女生人数占全年级的48.25%,男生占全年级人数的百分之几?如果男生人数比女生人数多14人,那么实验小学六年级人数共有多少人?解:1-48.25%=51.75%14÷(51.75%-48.25%)=400(人)答:男生占全年级人数的51.75%,实验小学六年级人数共有400人。
小升初数学典型应用题——19“牛吃草”问题
![小升初数学典型应用题——19“牛吃草”问题](https://img.taocdn.com/s3/m/318a9f63a216147916112820.png)
19 “牛吃草”问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。
这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】草总量=原有草量+草每天生长量×天数【解题思路和方法】解这类题的关键是求出草每天的生长量。
例1一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。
问多少头牛5天可以把草吃完?解草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。
求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:(1)求草每天的生长量因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以1×10×20=原有草量+20天内生长量同理1×15×10=原有草量+10天内生长量由此可知(20-10)天内草的生长量为1×10×20-1×15×10=50因此,草每天的生长量为50÷(20-10)=5(2)求原有草量原有草量=10天内总草量-10内生长量=1×15×10-5×10=100(3)求5 天内草总量5 天内草总量=原有草量+5天内生长量=100+5×5=125(4)求多少头牛5 天吃完草因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。
因此5天吃完草需要牛的头数125÷5=25(头)答:需要5头牛5天可以把草吃完。
例2 一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。
如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。
求17人几小时可以淘完?解这是一道变相的“牛吃草”问题。
与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。
2020年小升初数学专题复习训练—拓展与提高:典型应用题(4)(知识点总结+同步测试) 通用版
![2020年小升初数学专题复习训练—拓展与提高:典型应用题(4)(知识点总结+同步测试) 通用版](https://img.taocdn.com/s3/m/0e567814804d2b160b4ec0cf.png)
2020年小升初数学专题复习训练—拓展与提高典型应用题(4)知识点复习一.代换问题【知识点归纳】1.代换问题内容:“等量代换”是解决数学问题的一种常用方法.即两个相等的量,可以互相代换.等量代换的思想用等式的性质来体现,就是等式的传递性:如果a=b,b=c,那么a=c.这种数学思想方法不仅有着广泛的应用,而且是进一步学习数学的基础.2.代换主要方法:(1)列表消元法(2)等价条件代换.【命题方向】分析:依题意A-3B=51,A+2B=111,然后用第二个算式减去第一个,就变成只含有B的方程,由此解决问题.解:A-3B=51,①A+2B=111,②由②-①可得:5B=60,解得B=12,A=51+12×3=87.故答案为:87,12.点评:这类问题的关键是:把其中的一个未知数消去,变成只含有一个未知数的方程.例2:假如20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换600只兔子.分析:先用兔子的数量代换出1只羊的数量,再代换出1头猪的数量,从而找出1头牛和兔子数之间的关系,进而求出5头牛的数量.解:20只兔子=2只羊,那么:1只羊=10只兔子,9只羊=3头猪,那么:9×10只兔子=3头猪,90只兔子=3头猪,即30只兔子=1头猪,8头猪=2头牛,那么:8×30只兔子=2头牛,240只兔子=2头牛,即:120只兔子=1头牛,那么5头牛就是:120×5=600(只);故答案为:600.点评:把羊和猪的数量看成中间量,都用兔子的数量代替,找到兔子和牛之间的关系,再求解.二.周期性问题【知识点归纳】1.周期性问题内容:在日常生活中,有一些按照一定的规律不断重复出现.如:人的12生肖,一年有春夏秋冬四个季节,一个星期有七天等等.像这些问题,我们称为“简单周期问题”.2.周期性问题解决方法:这一类问题一般要利用余数的知识来解答.这就要求我们对题目要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果.【命题方向】例1:蜗牛从一个枯井网上爬,白天向上爬110厘米,夜里向下滑40厘米,若要第五天的白分析:由题意知蜗牛1天爬110-40=70厘米,那么4天就是70×4=280厘米,又因为到第5天的白天,晚上不算在内,要保证第5天白天爬出井口,则第4天一定不能爬出井口.井深至少比第四天能够爬出的高度多1厘米.所以这口井的深度是:(110-40)×3+110+1.解:(110-40)×3+110+1=210+110+1=321(厘米)故答案为:321.点评:此题属于周期性问题,在列式时要特别注意是“第五天的白天爬到井口”.问“至少”,所以第5天白天爬完1厘米就结束了.三.简单统计问题【知识点归纳】【命题方向】四.最优化问题【知识点归纳】最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容.下面我们就最优化问题做出汇总分析.最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处.但解决这类问题需要的基础知识相当广泛,很难做到一一列举.【命题方向】例1:星期日,红红想帮奶奶做下面的事情:用全自动洗衣机洗衣服30分,扫地擦地15分,洗菜8分,经过合理安排,做完这些事情至少要()分.A、45B、38C、30分析:根据题干分析可得,用全自动洗衣机洗衣服需要30分钟,同时可以扫地擦地和洗菜,据此即可解答问题.解:根据题干分析可得,用全自动洗衣机洗衣服需要30分钟,同时可以扫地擦地和洗菜,所以最小需要30分钟即可完成.故选:C.点评:较大此类问题要奔着各项工作不相互冲突,又能节约时间的思想设计工作程序.例2:汽水买5送1,某班30名同学秋游路上想买水喝,只需要买()甁汽水.A、30B、25C、28D、24分析:根据“买5送1”可知买5瓶实际得到6瓶,30名同学可以买(30÷6)5个5瓶,送1×5=5瓶,所以只买:30-5=25瓶,据此解答.解:30-1×[30÷(5+1)],=30-5,=25(瓶);答:只需要买25汽水.故选:B.点评:本题关键是求出买30瓶能送几瓶汽水.同步测试一.选择题(共8小题)1.某品牌的饮料促销方式如下:甲店打七五折,乙店“满三送一”,丙店“每满100元减30元”.李老师要买30瓶标价9元的这种品牌的饮料,在()店购买更省钱.A.甲B.乙C.丙D.无法确定2.公园门口的售票牌上写着:门票4元一张,每20人的团体票享受8折优惠,小明一行去了28人,怎样购票省钱()A.买4元一张的票B.买团体票C.买20人团体票8人4元一张的票D.买25人团体票3人买4元票3.已知买3本本子、2支钢笔、4支圆珠笔需要33.4元,买2本本子、3支钢笔、1支圆珠笔需要40.6元,问买1本本子、1支钢笔、1支圆珠笔需要()元.A.12.8B.13.8C.14.8D.15.84.爸爸去家电商城购买电风扇.A、B两家家电商城都有优惠,且标价都是250元,A商城打八折,B商城满100元减20元,在哪个商城购买更省钱?()A.A商城B.B商城C.一样省钱D.无法确定5.小时候我们用手指练习数数,一个小朋友按如图所示的规则练习数数,数到2006时对应的指头是(各指头的名称依次为大拇指、食指、中指、无名指、小指)()A.食指B.中指C.无名指D.小指6.甲、乙、丙共有100本.甲的本数除以乙的本数,丙的本数除以甲的本数,商都是5,余数也都是1.那么乙有()本书.A.3B.4C.5D.67.一个数值转换器原理如图所示,若输入x的值是13,则第一次输出的结果是16为奇数,第二次输出的结果是8,……则第2015次输出的结果是()A.1B.2C.4D.88.一个循环小数本来有两个循环点,聪聪不小心擦掉了其中一个循环点,变成了0.98765432,原来循环小数的小数点后第21位上的数字是5,那么这个循环小数的另一个循环点在数字()上.A.5B.6C.7D.8二.填空题(共8小题)9.我爱学数学我爱学数学……第32个字是.10.每次最多能烙2张饼,两面都要烙,每面4分钟,如果要烙5张饼,最少需要分钟.11.已知:〇=△+△+△,〇+△=24.那么:〇=,△=.12.有黑棋子和白棋子,按照下面的顺序排列……第2019个棋子是色的.13.如果2双袜子和5双手套一共68元,5双袜子和5双手套80元.那么一双手套元,一双袜子元.14.如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12…第2009次输出的结果为.15.下图是五名学生一分钟跳绳成绩统计表:姓名李军王涛赵娜李可王迪成绩152********(1)这组数据的平均数是.(2)这组数据的中位数是.(3)用代表这五名学生跳绳的一般水平更合适.16.某超市一种品牌的香油共有三种规格.小瓶200g售价8.5元、中瓶400g售价16元、大瓶600g售价24.9元.请你算一算,要在这家超市买800g这种品牌的香油最少要花元钱.三.判断题(共5小题)17.下面有一排字母:A、T、E、N、A、T、E、N…照此规律,第25个字母是A.(判断对错)18.三种主食,5种蔬菜,选一种主食和一种蔬菜搭配,共有8种不同的搭配方法.(判断对错)19.妈妈买了一件原价为540元的衣服,这件衣服在G商场打六折优惠,在M商场买则是满100元送40元购物券,由此可见,在M商场买更划算.(判断对错)20.今年六一儿童节是周一,7月4日放暑假是周日..(判断对错)21.甲、乙、丙三人用相同的钱数去买体育用品,甲买了3个足球,乙买了4个篮球,丙买了1个足球、1个篮球、2个排球.如果足球每个是4x元,那么排球每个是2.5x元.(判断对错)四.应用题(共6小题)22.小明的妈妈买了6个杯子和6个盘子,一共花了180元,已知一个盘子的价格是一个杯子的2倍,一个杯子和一个盘子的价格各是多少元?23.用3辆大货车和5辆小货车共运货33吨,小货车的载重量是大货车的,两种货车的载重量各是多少吨?24.同学们在公园划船,如果每条船都坐满,可以怎样租船?25.学校要购买一些办公用品,其中需要单价3元的彩色粉笔30盒.去哪家文具店购买合算?26.12个同学围成一圈做传手绢的游戏,如图.(1)从1号同学开始,顺时针传100次,手绢应在谁手中?(2)从1号同学开始,逆时针传100次,手绢又在谁手中?(3)从1号同学开始,先顺时针传156次,然后从那个同学开始逆时针传143次,再顺时针传107次,最后手绢在谁手中?27.(黑白珠子按前面规律排列)(1)第4006个珠子是什么颜色?(列式计算)(2)如果共有3700个珠子,那么这3700个珠子中共有多少颗黑珠子?(列式计算)五.解答题(共2小题)28.下表是二(1)班同学喜欢吃的蔬菜情况统计表,根据统计表回答问题.萝卜西红柿茄子青椒人数(人)10155(1)喜欢吃青椒的人数是喜欢吃茄子的5倍,喜欢吃青椒的有多少人?(2)填一填、涂一涂,完成统计图.(3)你还能提出什么数学问题,请列式计算.29.下面是某电器商场2006年上半年每月销售电视机台数的折线图.①根据折线统计图,完成下面的统计表.某电器商场2006年上半年每月销售电视机台数统计表月份一二三四五六销售量(台)②月的销售量最多,月的销售量最少.③2006年上半年平均每月销售电视机多少台?参考答案与试题解析一.选择题(共8小题)1.【分析】甲店打七五折:是指现价是原价的75%,把原价看成单位“1”,用原价9元乘75%求出每瓶的现价,再乘30瓶,即可求出在甲店需要的钱数;乙店“满三送一”:是指买4瓶饮料只需要付3瓶的钱,先用30瓶除以4,求出里面最多有几个4瓶,还余几瓶,从而求出需要付钱的瓶数,再乘9元,即可求出在乙店需要的钱数;丙店“每满100元减30元”:是指每100元可以减免30元,先用30瓶乘9元,求出原价一共是多少钱,再除以100,求出总钱数里面有多少个100元,就是可以减免多少个30元,再用乘法求出可以减免的钱数,然后用原总价减去可以减免的钱数,从而求出丙店需要的钱数,再比较即可求解.【解答】解:甲店:9×75%×30=6.75×30=202.5(元)乙店:30÷(3+1)=30÷4=7 (2)(7×3+2)×9=23×9=207(元)丙店:30×9=270(元)270÷100=2 (70)270﹣2×30=270﹣60=210(元)202.5<207<210答:在甲店购买更省钱.故选:A.【点评】解决本题关键是理解三家商店不同的优惠政策,分别找出求现价的方法,求出现价,再比较.2.【分析】方法一:单独购买28张门票,没有优惠,用28元乘上4人就是全部的钱数;方法二:购买20张门票,可以按照8折优惠,先求出20张门票的原价,然后再乘上80%,然后再加上剩下的8人需要按照原价购买,需要:4×8=32元,再相加就是需要的钱数;比较两种方法需要的钱数即可求解.【解答】解:28×4=112(元)(28﹣8)×4×80%+4×8=64+32=96(元)112>96所以买20人团体票8人4元一张的票最省钱;故选:C.【点评】此题主要考查了最优化问题的应用,解答此题的关键是求出每种情况的优惠价是多少.3.【分析】已知买3本本子、2支钢笔、4支圆珠笔需要33.4元,买2本本子、3支钢笔、1支圆珠笔需要40.6元,则可列出两个等式,两个等式的左边加左边当然等于右边加右边,左边加起来刚好是5个本子、5支钢笔、5支圆珠笔等于右边33.4加40.6,两边同时除以5,即可得解.【解答】解:3本本子+2支钢笔+4支圆珠笔=33.4元,2本本子+3支钢笔+1支圆珠笔=40.6元,所以5本本子+5支钢笔+5支圆珠笔=33.4元+40.6元=74元,1本本子+1支钢笔+1支圆珠笔=74元÷5=14.8元;答:买1本本子、1支钢笔、1支圆珠笔需要14.8元;故选:C.【点评】此题考差了代换问题,关键是看出左边相加刚好是要求量的5倍,不必逐个量求解,直接除以5即可得解.4.【分析】A商场:打八折,是指现价是原价的80%,把原价看成单位“1”,用原价乘上80%就是现价;B商场:“满100减20元”,250元可以减去2个20元,用250元减去20×2元就是B商场应付的钱数,最后比较即可求出哪个商场更省钱即可.【解答】解:250×80%=200(元)250﹣2×20=210(元)200<210,A商城便宜.答:在A个商城购买更省钱.故选:A.【点评】本题关键是理解打折以及“满100减20元”的含义,分别求出现价,从而得解.5.【分析】从左手拇指开始数,拇指为1,9,17,…,可以发现,从左数到右,回来时数到食指,这就算一个周期了,因为下个又是拇指,一共数了8下.8就是周期,所以,左手拇指为8n+1,食指为8n+2和8n,中指为8n+3和8n+7,无名指为8n+4和8n+6,小指为8n+5.用2006除以8求出余数,即可求解.【解答】解:2006÷8=250 (6)答:数到2006时对应的指头是无名指.故选:C.【点评】解决本题关键是根据先找出每个指头上数字变化的规律,然后再利用这个变化规律再回到问题中去解决问题.6.【分析】由题可知:甲=5乙+1,丙=5甲+1=5(5乙+1)+1=25乙+6,所以100=甲+乙+丙=(5乙+1)+乙+(25乙+6)=31乙+7=100,得乙=3;据此解答.【解答】解:甲=5乙+1,丙=5甲+1=5(5乙+1)+1=25乙+6,所以100=甲+乙+丙=(5乙+1)+乙+(25乙+6)=31乙+7=100,所以乙=3;故选:A.【点评】此题也可以利用数字特性法解答:甲+乙+丙=100,那么(甲﹣1)+(丙﹣1)+=98﹣乙,由题意知道两左边是5的倍数,且是100内最大的只有95,可以知道乙是等于3,所以甲为16,丙为81.7.【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化,找出规律,然后利用规律进行求解.【解答】解:第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是×8=4,第4次输出的结果是×4=2,第5次输出的结果是×2=1,第6次输出的结果是3×1=4,第7次输出的结果是×4=2,第8次输出的结果是×2=1,……所以,从第3次开始,每3次输出为一个循环组依次循环,(2015﹣2)÷3=671,所以,第2015次输出的结果是1.故选:A.【点评】本题考查了代数式求值,根据数值转换器求出从第3次开始,每3次输出为一个循环组依次循环是解题的关键.8.【分析】由于0.987654321现有9个小数,5处于倒数第五个数,又小数点后的第21位上的数字是5,设循环节内共有x位小数,根据循环小数的意义可知,9≥x≥5,21位上是5,则第25位上是1,由此可得9+nx=25,即nx=16,所以x只能为8.【解答】解:设循环节内小数共有x位,由题意可知,9≥x≥5,21位上是5,则第25位上是1,由此可得9+nx=25,即nx=16,n是正整数,16=1×16=2×8=4×4,由于循环节最小是5位,所以不能是4×4,所以只能是2×8=16所以x只能为8.即这个循环小数是0.9765432.答:这个循环小数的另一个循环点在数字8上.故选:D.【点评】根据小数点后的第21位上的数字是5明确循环节内的小数位数最少不少于5位是完成本题的关键.二.填空题(共8小题)9.【分析】(北京市第一实验小学学业考)观察题干可知,这组汉字的排列规律是:5个汉字一个循环周期,分别按照“我爱学数学”的顺序依次循环排列,据此求出第32个汉字是第几个循环周期的第几个即可.【解答】解:“我爱学数学”为5个字32÷5=6…2,余数是2所以第32个字“爱”.故答案为:爱.【点评】根据题干得出这组汉字的排列规律是解决本题的关键.10.【分析】烙5张饼:先同时烙两张,正反面共需2×4=8分钟;再烙后三张,先烙第一张与第二张的正面需4分钟,然后烙第一张的反面与第三张的正面需要4分钟,最后烙第二张的反面与第三张的反面需4分钟,烙完3张共需3×4=12分钟,5张共需8+12=20分钟.【解答】解:先同时烙两张,正反面共需2×4=8(分钟)再交替烙3张共需3×4=12(分钟)5张共需8+12=20(分钟)答:如果要烙5张饼,最少需要20分钟.故答案为:20.【点评】此题考查了学生的利用统筹思想进行合理安排事情的能力,抓住锅内始终有2张饼在烙是本题的关键.11.【分析】把〇=△+△+△代入〇+△=24求出△的值,再进一步求出〇的值即可.【解答】解:把〇=△+△+△代入〇+△=24可得:△+△+△+△=244×□=24△=6〇=6×3=18故答案为:18;6.【点评】此题考查简单的等量代换,解决此题的关键是用△替代〇.12.【分析】根据题干分析可得,这组棋子的排列规律是:12个图形一个循环周期,分别按照〇●●〇〇〇●〇〇●●●的顺序依次循环排列,据此计算出第2019个棋子是第几个循环周期的第几个棋子即可解答.【解答】解:2019÷12=168 (3)所以第2019个棋子是第169周期的第3个棋子,是●,即是黑的.答:第2019个棋子是黑色的.故答案为:黑.【点评】根据题干得出棋子的循环周期是解决此类问题的关键.13.(北京市第一实验小学学业考)把条件“2双袜子和5双手套一共68元”与条件“5双袜子和5双手套80元”相比可得:手套的数量不变,那么5﹣2=3双袜子需要80﹣68=12元,由此用12除以3求出每双袜子的单价;然后再根据“2双袜子和5双手套一共68元”,用5双手套的总价除以5即可求出每双手套的单价.【解答】解:(80﹣68)÷(5﹣2)=12÷3=4(元)(68﹣4×2)÷5=60÷5=12(元)答:一双手套12元,一双袜子4元.故答案为:12;4.【点评】本题考查了等量代换问题,关键是把其中一个未知量作为中间量消去,再进一步解答.14.【分析】由图示知,当输入的数x为偶数时,输x;当输入的数x是奇数时,输出x+3.按此规律计算即可求解.【解答】解:由设计的程序,知依次输出的结果是24,12,6,3,6,3…,发现从6开始循环.则2009﹣3=2006,2006是2的倍数,故第2009次输出的结果是6.故答案为:6.【点评】此类题主要是能够正确发现循环的规律,根据循环的规律进行推广.该题中除前三次不循环外,后边是2个一循环.15.【分析】(1)根据“总成绩÷人数=平均成绩”进行计算即可;(2)中位数是将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数;(3)根据本组数据的个别数据偏大,用中位数来描述该组数据的集中趋势就比较合;【解答】解:(1)(152+70+78+89+76)÷5,=465÷5,=93;(2)152,89,78,76,70;中位数为78;(3)根据本组数据的个别数据偏大,用中位数来描述该组数据的集中趋势就比较合;故答案为:93,78,中位数.【点评】解答此题应结合题意,根据平均数、中位数的异同进行解答即可.16.【分析】小瓶200g售价8.5元,用8.5元除以200克,求出小瓶每克需要的钱数,同理求出中瓶和大瓶每克需要的钱数,然后比较得出哪种最便宜,那么买800克首先选择这一种包装的,再进一步根据总价=单价×数量求解.【解答】解:8.5÷200=0.0425(元)16÷400=0.04(元)24.9÷600=0.0415(元)0.04<0.0415<0.0425买中瓶的最便宜800÷400=2(瓶)16×2=32(元)答:要在这家超市买800g这种品牌的香油最少要花32元钱.故答案为:32.【点评】解决本题先根据单价=总价÷数量求出每种的单价,再比较得出哪种的最便宜,然后得出需要购买的瓶数,进而根据总价=单价×数量求解.三.判断题(共5小题)17.【分析】由字母按照A、T、E、N的顺序依次排列,可知每4个字母一循环,25÷4=6…1,由此可知第25个字母为A,据此解答即可.【解答】解:每4个字母一循环,因为25÷4=6…1,所以第25个字母与第一个字母相同为A,所以原题说法正确.故答案为:√.【点评】解此类题关键是看看是怎么循环的,循环周期是什么,求第几个字母,就用这个数除以周期,余几就是一周期中的第几个字母.18.【分析】从三种主食中选一种有三种选法、从5种蔬菜中选一种有5种选法,根据乘法原理,共有3×5=15种不同的搭配方法.据此判断.【解答】解:3×5=15(种)答:共有15不同的搭配方法.原说法错误.故答案为:×.【点评】本题需要用乘法原理去考虑问题即做一件事情,完成它需要分成n个步骤,做第一步有M1种不同的方法,做第二步有M2种不同的方法,…,做第n步有M n种不同的方法,那么完成这件事就有M1×M2×…×M n种不同的方法.19.【分析】根据题意,这件衣服在G商场打六折优惠即540×60%=324(元),在M商场买则是满100元送40元购物券即优惠5×40=200(元),现价540﹣200=340(元),比较现价进而作出判断.【解答】解:在G商场现价为:540×60%=324(元),在M商场优惠5×40=200(元),现价为:540﹣200=340(元),324<340,故在在G商场买更划算.故答案为:×.【点评】解决此题的关键是求出该商品在两家商场的现价是多少,比较现价即可解决问题.20.【分析】先求6月1日到7月4日经过了多少天,再求这些天里有几周,还余几天,再根据余数判断即可.【解答】解:30﹣1+4=33(天)33÷7=4(周)…5(天)1+5=6即,7月4日放暑假是周六,所以原题说法错误.故答案为:×.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.21.【分析】由甲、丙可知:3个足球(3个足球的价钱,简称3个足球,下同)=1个足球+1个篮球+2个排球,因此,2个足球=1个篮球+2个排球,由此得到2个排球=2个足球﹣1个篮球①;由乙、丙可知:4个篮球=1个足球+1个篮球+2个排球,因此,3个篮球=1个足球+2个排球,由此得到2个排球=3个篮球﹣1个足球②.由①、②可知,2个足球﹣1个篮球=3个篮球﹣1个足球,又知足球每个是4x元,由此可求出1个篮球的钱数,再由①或②即可求出每个排球的钱数.【解答】解:由甲、丙可知:3个足球=1个足球+1个篮球+2个排球(为了便于叙述,3个足球的钱数,叙述为3个足球,下同)所以2个足球=1个篮球+2个排球由此得到2个排球=2个足球﹣1个篮球……①由乙、丙可知:4个篮球=1个足球+1个篮球+2个排球所以3个篮球=1个足球+2个排球由此得到2个排球=3个篮球﹣1个足球……②由①、②可知:2个足球﹣1个篮球=3个篮球﹣1个足球已知每个足球为4x元所以8x﹣1个篮球=3个篮球﹣4x8x+4x﹣1个篮球=3个篮球﹣4x+4x12x﹣1个篮球=3个篮球12x﹣1个篮球+1个篮球=3个篮球+1个篮球12x=4个篮球12x÷4=4个篮球÷43x=1个篮球即1个篮球=3x把一个篮球=3x,一个足球=4x代入①2个排球=2×4x﹣3x2个排球=5x2个排球÷2=5x÷21个排球=2.5x答:排球每个是2.5x元.故答案为:√.【点评】此题较麻烦,关键是根据等量代换,通过解方程的方法先求出每个篮球的钱数,进而求出每个排球的钱数.四.应用题(共6小题)22.【分析】根据题意利用等量代换法,用杯子的价格代替盘子的价格,则相当于180元买了6+6×2=18(个)杯子,然后求一个杯子的价格,再求盘子价格即可.【解答】解:180÷(6+6×2)=180÷(6+12)=180÷18=10(元)10×2=20(元)答:一个杯子10元,一个盘子20元.【点评】本题主要考查和倍问题,关键利用等量代换法计算.23.【分析】小货车的载重量是大货车的,那么每辆大货车的载质量就是小货车的2倍,3辆大货车就可以转化成3×2=6辆小货车,这样3辆大货车和5辆小货可以看成6+5=11辆小货车一共运货33吨,用33除以11,即可求出每辆小货车运货的吨数,进而求出每辆大货车运货的吨数.【解答】解:1÷=233÷(3×2+5)=33÷11=3(吨)3×2=6(吨)答:小货车的载重量是3吨,大货车的载重量是6吨.【点评】解决本题先根据大货车和小货车载重量之间的关系,用其中的一种车代换另一种车,再根据一共运货的质量求解.24.【分析】根据图文中信息可知一共24人,小船限坐4人,大船限坐6人,要想每条船都坐满,租船方案有三种,分别写出方案,进行计算即可.【解答】解:因为一共24人,小船限坐4人,大船限坐6人,所以每条船都坐满,可以有三种方案:方案一:租用6条小船,6×4=24(人);方案二:租用4条大船,4×6=24(人);方案三:两条大船,三条小船,6×2+3×4=12+12=24(人);答:可以租用6条小船,或者租用4条大船,或者两条大船,三条小船.【点评】此题考查图文应用题,明确题意,从图文中获取解答问题的信息是解答本题的关键,注意方案要写全.25.【分析】根据各家商店的优惠政策,分别计算所需钱数,A店:买5赠一,就是每六个中有一个不用花钱,所以只需买:30÷(5+1)=5(组),(30﹣5×1)×3=75(元);B店:把原价看作单位“1”,则有关系式:售价=原价×,把数代入求所需钱数:3×30×=81(元);C店:先计算总钱数中有几个50元,然后去掉优惠的钱数:3×30=90(元),90>50,90×(1﹣)=72(元).然后进行比较,即可得出结论.【解答】解:A店:30÷(5+1)=30÷6=5(组)(30﹣5×1)×3=25×3=75(元)B店:3×30×=81(元)C店:3×30=90(元)90>5090×(1﹣)=90×=72(元)72<75<81答:去C文具店购买合算.【点评】本题主要考查最优化问题,关键计算各商店所需钱数.26.【分析】(1)从1号同学开始,顺时针传一次到2号,传两次到3号…以此类推,传十二次到1号,然后又从1号开始传递,所以一个周期为12次,100÷12=8……4,那么传8圈之后,再传4次,手绢在5号手中.(2)从1号同学开始,逆时针传一次到12号,传两次到11号…以此类推,传十二次回到1号,然后又从1号开始传递,所以一个周期为12次,100÷12=8……4,那么传8圈之后,再传4次,手绢在9号手中.(3)根据第(1)(2)小题的分析,顺时针传156次,156÷12=13,没有余数,刚好13圈,在1号手中;逆时针传143次,143÷12=11……11,传11圈之后再传11次,传到2号手中;再顺时针传107次,107÷12=8……11,传8圈之后再传11次,注意是从2号顺时针传11次,最后在1号手中【解答】(1)100÷12=8……4,在5号手中(2)100÷12=8……4,在9号手中(3)156÷12=13,在1号手中;143÷12=11……11,在2号手中;107÷12=8……11,最后在1号手中【点评】本题运用周期解决问题,总数÷周期数=周期个数……余数,余几就从周期开始的数,往后数几个27.【分析】(1)把“”这样的4个图形看成一组,求出4006里面有几个4,还余几,再根据余数进行推算;(2)求出3700里面有几个4,还余几,再根据余数进行推算共有多少颗黑珠子即可.【解答】解:(1)4006÷4=1001 (2)第4006个图形是第1002组的第2个是黑珠子;答:第4006个珠子是黑珠子.(2)3700÷4=9252×925=1850(颗)答:这3700个珠子中共有1850颗黑珠子.【点评】解决这类问题往往是把重复出现的部分看成一组,先找出排列的周期性规律,再根据规律求解.五.解答题(共2小题)28.【分析】喜欢吃青椒的人数是:5×5=25(人),根据实际情况确定每个横格代表5人,然后根据各项具体数画条形统计图,最后根据图中数据提出相应的问题并解决.【解答】解:(1)5×5=25(人),(2)完成统计图如下图:萝卜西红柿茄子青椒人数(人)1015525。
小升初数学应用题必考题型
![小升初数学应用题必考题型](https://img.taocdn.com/s3/m/2c52614017fc700abb68a98271fe910ef12daefa.png)
小升初数学应用题是指在小学毕业升入初中的数学考试中常见的涉及实际问题的应用题。
以下是一些小升初数学考试中必考的应用题型:
1. 集合与分类问题:
-对一组事物进行分类,要求学生根据给定条件将事物进行分组或分类。
-例如:有红、黄、蓝三种颜色的球,其中红球和蓝球的总数是12个,黄球的数量是红球的2倍,请计算红球的数量。
2. 比例与比率问题:
-要求学生根据两个或多个量之间的比例关系,解决实际问题。
-例如:小明每分钟能跑200米,小李每分钟能跑150米,两人同时从同一起点出发,问他们什么时候会相距1000米?
3. 时间与速度问题:
-考察学生对时间、速度和距离之间的关系的理解。
-例如:A列车从A地开往B地,以每小时60公里的速度行驶,B列车从B地开往A地,以每小时80公里的速度行驶,两列车同时出发,请问多少小时后两列车相遇?
4. 钱币与交换问题:
-要求学生根据给定的货币面值和数量,计算货币之间的兑换关
系。
-例如:小明有30枚1元硬币和20张5元纸币,请问他一共有多少元钱?
5. 增减变化问题:
-考察学生对数量增减、变化规律的理解。
-例如:小华身高为120厘米,每年增长5厘米,那么10年后他身高是多少厘米?
这些应用题涉及到数学知识在实际问题中的应用,要求学生能够分析和理解问题,并运用所学的数学知识进行解答。
在备考过程中,建议学生多做练习题,熟悉不同类型的应用题,掌握解题方法和技巧,提高解决实际问题的能力。
2021-2022六年级数学小升初知识点总结—数与代数:应用题(2)
![2021-2022六年级数学小升初知识点总结—数与代数:应用题(2)](https://img.taocdn.com/s3/m/fc2be5e10912a2161579292b.png)
小升初数学专题复习训练——数与代数应用题(2)知识点复习一.百分数的实际应用【知识点归纳】①出勤率=出勤人数÷总人数×100%发芽率=发芽种子数÷试验种子数×100%小麦的出粉率=面粉的重量÷小麦的重量×100%产品的合格率=合格的产品数÷产品总数×100%职工的出勤率=实际出勤人数÷应出勤人数×100%②纳税问题:缴纳的税款叫应纳税款应纳税额与各种收入的比率叫做税率税款=应纳税金×税率③利息问题:存入银行的钱叫本金;取款时,银行多支付的钱叫做利息利息与本金的比值叫做利率利息=本金×利率×时间【命题方向】常考题型:例1:某公司开会,有25人缺席,有100人出席,这个会议的出席率是()A、80% B、75% C、100%答:出席率是80%;故选:A.点评:此题属于百分率问题,计算的结果最大值为100%,都是用一部分数量(或全部数量)除以全部数量乘以百分之百.例2:某商店同时卖出两件商品,每件各得60元,但其中一件赚20%,另一件亏本20%,这个商店卖出这两件商品是赚钱还是亏本?分析:可以这样想,赚了20%,亏本20%是和谁比较呢?是与原价比较,因此原价是单位“1”,赚了20%就是说原价的(1+20%)是60元,求原价,用除法,60÷(1+20%)=50(元),同理亏本20%就是说原价的(1-20%)是60元,求原价,用除法,60÷(1-20%)=75(元).解:[60÷(1+20%)+60÷(1-20%)]-60×2=[50+75]-120;=125-120;=5(元);答:这两件商品亏了5元.点评:解决这个问题的关键是正确确定单位“1”,找出对应关系.二.分数、百分数复合应用题【知识点归纳】含有三个已知条件的两步计算的应用题,有两个或两个以上的基本数量关系组成的,通常叫做复合应用题;分数、百分数复合应用题,运算按照分数和百分数的运算法则进行运算即可,通常是将分数化成百分数.【命题方向】=200(米).答:这捆电线长200米.三.简单的工程问题【知识点归纳】探讨工作总量、工作效率、工作时间三个数量之间相互关系的一种应用题.解题关键:把工作总量看做单位“1”,工作效率就是工作时间的倒数,然后,根据题目的具体情况,灵活运用公式.数量关系式:工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率合作时间=工作总量÷工作效率和【命题方向】常考题型:间=工作总量÷工作效率即可求得两人合打需要的时间,由此即可进行选择.故选:A.点评:此题考查了工作时间=工作总量÷工作效率在实际问题中的灵活应用,把工作总量看做单位“1”得出甲和乙的工作效率是解决本题的关键.例2:要装配210台电脑,已经装了6天,每天装配15台,剩下的每天装配20台,还要几天才能装完?分析:我们运用要装配电脑的台数减去已经装的台数,除以剩下的每天装配的台数,就是要用的天数.解:(210-15×6)÷20=120÷20=6(天);答:还要6天才能装完.点评:本题运用“工作总量÷工作效率=工作时间”进行解答即可.四.简单的归一应用题【知识点归纳】已知相互关联的两个量,其中一个量在改变,另一个量也随之改变,其变化的规律是相同的,这种问题称之为归一问题.归一问题可以分为一次归一问题、两次归一问题.一次归一问题:用一步运算就能求出单一量的归一问题,又称单归一两次归一问题:用两步运算才能求出单一量的归一问题,又称双归一归一问题还可以分为正归一问题、反归一问题.正归一问题:用等分除法求出单一量之后,再用乘法计算结果的归一问题反归一问题:用等分除法求出单一量之后,再用除法计算结果的归一问题解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后,以它为标准,根据题目的要求算出结果.数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=分数(反归一)【命题方向】常考题型:分析:先算出平均每小时做多少个零件,再算出3小时做多少个零件,把40件零件看做单位“1”,进一步求出3小时做的占40件得几分之几.解:平均每小时做的零件数:40÷5=8(个),故选:A.点评:解答此题的关键是先求得单一量,再由不变的单一量求得总量,进一步得出答案.例2:3台织布机4小时织布336米,照这样计算,1台织布机8小时织布多少米?分析:照这样计算,说明每台织布机,每小时织布量不变,先用336除以3台,求出每台4小时的织布量,再除以4小时,求出每台每小时的织布量,然后乘上8小时即可求解.解:336÷3÷4×8,=112÷4×8,=28×8,=224(米);答:1台织布机8小时织布224米.点评:解答此题的关键是先求得单一量,再由不变的单一量求得总量.五.简单的归总应用题【知识点归纳】是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量,求得单位数量的个数(或单位数量).特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过,变化的规律相反,和反比例算法彼此相通.数量关系式:单位数量×单位个数÷另一个单位数量=另一个单位数量.“归一”与“归总”的区别:“归一”先求出单一量,再求总量;“归总”是先出总量,再求单一量.【命题方向】常考题型:例1:小明打算16天看完一本故事书,平均每天看15页.现在要10天看完,平均每天应看多少页?分析:先求出这本书共有多少页,再把这些页数平均分到10天.解:16×15÷10,=240÷10,=24(页);答:平均每天应看24页.点评:本题先求出不变的总量,再根据总量求解.六.归一、归总加条件的三步应用题【知识点归纳】1.理解题意,分析出是归一还是归总题型.2.理解乘除与加减混合的三步运算式题的运算顺序,并能正确地计算.【命题方向】常考题型:例1:3名工人5小时加工零件90件,要在10小时完成540个零件的加工,需要工人9人.分析:由“3名工人5小时加工零件90件”,可知每人每小时加工零件90÷5÷3=6(个);要在10小时完成540个零件,那么每小时完成540÷10=54(个),因此需要工人54÷6=9(人).解:540÷10÷(90÷5÷3),=54÷6,=9(人);答:需要工人9人.故答案为:9.点评:此题解答的关键是先求出每人每小时加工的零件个数,然后再求10小时完成540个零件需要的人数.例2:在图书室借阅图书的期限为10天,10天后超过的天数要按每册0.5元收取延时服务费.小明借了一本故事书,如果每天看5页,16天才能全部看完.请你帮他算一算,他至少每天多看几页才能准时归还而不交延时服务费?分析:要想能准时归还而不交延时服务费,就必须10天看完这本书,所以要先求出这本书一共有多少页,就是求16个5页是多少,用乘法,即16×5;然后用总页数除以10天,就是他每天要看的页数,即16×5÷10;用这个页数减去5,就是每天要多看的页数,即16×5÷10-5.解:16×5÷10-5=80÷10-5=8-5=3(页)答:他至少每天多看3页才能准时归还而不交延时服务费.点评:本题还可以用逆推法,要求他至少每天多看几页才能准时归还而不交延时服务费,就要先求出他应看的页数,他应看的页数就要用总页数÷10天,总页数又是原来每天看的页数×16天.七.简单的行程问题【知识点归纳】计算路程,时间,速度的问题,叫做行程问题.解题关键及规律:同时同地相背而行:路程=速度和×时间同时相向而行:两地的路程=速度和×时间同时同向而行(速度慢的在前,快的在后):追及问题=路程÷速度差同时同地同向而行(速度慢在后,快的在前):路程=速度差×时间.故选:C.点评:本题主要考查学生时间、路程、速度差的掌握情况.。
小升初数学复习资料:小学数学必考经典应用题汇总-共20题含答案【典型题】
![小升初数学复习资料:小学数学必考经典应用题汇总-共20题含答案【典型题】](https://img.taocdn.com/s3/m/dc6885b46394dd88d0d233d4b14e852459fb394b.png)
小升初数学复习资料: 小学数学必考经典应用题汇总,共20题一.解答题(共20题, 共118分)1.-1与0之间还有负数吗? -/与0之间呢? -/和0之间呢?如果有, 请你举出例子来。
2.小红在书店买了两本打八折出售的书, 共花了42元, 小红买这两本书便宜了多少钱?3.修路队把一条6米宽的道路改造成了8米宽, 这条道路拓宽了百分之几?4.出租车司机小王某天下午营运是在东西走向的人民大道上进行的, 如果规定向东为正, 向西为负, 这天下午他的行程(单位:千米)如下:+5 -2 +8 -10 -3 -4 +7 +2 -9 +6小王最后是否能回到出发点?5.下图是根据乐乐今天的早餐制作的统计图。
(1)乐乐今天的早餐是按怎样的比搭配的?如果乐乐今天早餐吃了50克鸡蛋, 则他早餐一共吃了多少克食物?(2)乐乐的妈妈按同样的比大约吃了420克早餐, 算算妈妈今天的早餐中各种食物大约分别吃了多少?6.笑笑看一本180页的故事书, 第一周看了全书的40%, 第二周看了全书的25%。
两周共看了多少页?7.电视机厂九月份生产电视机580台, 比原计划增产80台, 增产了百分之几?8.小明的体重去年下降了2千克, 记作-2, 今年他的体重从50千克变为45千克, 那么体重的变化应该记作?9.右图是丁丁家4月份支出统计图, 已知丁丁家4月份的教育支出是300元。
(1)这个月总支出多少元?(2)伙食支出比水电通讯支出多多少元?10.一个圆柱形玻璃容器的底面直径是10厘米, 把一块铁块从这个容器的水中取出后, 水面下降2厘米, 这块铁块的体积是多少?11.解答题。
(1)一台冰箱, 打八折比打九折少花320元, 这台冰箱原价多少元?(2)一种洗衣机加价二成五后售价为980元, 这种商品的进价是多少元?12.请你在表格中用正、负数记录学校图书馆某一天借阅图书的情况。
13.一个圆柱形钢材, 截去10厘米长的一段后, 表面积减少了314平方厘米, 体积减少了多少立方厘米?14.张叔叔想买一台空调, 去了下面的三个商场, 发现这台空调的原价都是7200元, 但是优惠方式不同。
小升初典型应用题精练行程问题学生版
![小升初典型应用题精练行程问题学生版](https://img.taocdn.com/s3/m/d5b30278302b3169a45177232f60ddccda38e6dd.png)
领航小升初专题四行程问题一、知识点1、路程、时间、速度是行程问题的三个基本量,它们之间的关系如下:路程=时间×速度,时间=路程÷速度,速度=路程÷时间。
2、在行程问题中有一类“流水行船”问题,在利用路程、时间、速度三者之间的关系解答这类问题时,应注意各种速度的含义及相互关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,静水速度=(顺流速度+逆流速度)÷2,水流速度=(顺流速度-逆流速度)÷2。
此处的静水速度、顺流速度、逆流速度分别指船在静水中、船顺流、船逆流的速度。
3、相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
二、习题精练1 、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
已知每辆车长5米,两车间隔10米。
问:这个车队共有多少辆车?2、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。
如果希望中午12点到,那么应以怎样的速度行进?3 、划船比赛前讨论了两个比赛方案。
第一个方案是在比赛中分别以米/秒和米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以米/秒和米/秒的速度各划行比赛时间的一半。
这两个方案哪个好?4 、小明去爬山,上山时每小时行千米,下山时每小时行4千米,往返共用时。
问:小明往返一趟共行了多少千米?5、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50,20,40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米?6 、两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
7、甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
小升初数学复习应用题(一)
![小升初数学复习应用题(一)](https://img.taocdn.com/s3/m/317c8c2db14e852459fb57ad.png)
第二阶段一、一般复合应用题【知识梳理】1.审清题意;找出已知条件和所求问题。
2.根据题目里的数量关系;确定先算什么;再算什么。
3.图解法;有些题目用线段来表示它们的数量关系显得更加清楚明白。
4.假设法;根据题目中的条件或结论;先做出某种假设或设想;然后根据设想进行推算。
【例题精讲】例1.某化肥厂要生产一批化肥;原计划每月生产120吨化肥;要生产6个月完成;结果提前一个月完成;实际每月生产多少吨?例2.在一个停车场上;共有48辆车;其中汽车有4个轮子;摩托车有3个轮子;这些车工有172个轮子;那么三轮摩托车有多少辆?例3.奶奶今年64岁;孙女今年13岁;多少年后奶奶的年龄等于孙女年龄的4倍?【课堂练习】1.甲、乙两个队合铺一条长135千米的公路;两队每天共铺12.5千米;8天后乙队调走;剩下的由甲队5天铺完;甲队平均每天铺多少千米?2.电视机厂计划用50天生产1500台彩电;实际每天的产量比原计划每天的产量的2倍少20台;生产这批彩电实际用了多少天?3.6筐苹果核6筐梨共360千克;已知每筐梨比每筐苹果轻5千克;求每筐苹果核每筐梨各重多少千克?4.学校买来6张办公桌和8把椅子;共付294.4元;每张桌子比每把椅子贵1.2元。
每把椅子多少元?5.父亲今年49岁;女儿今年23岁;几年前父亲的岁数是女儿的3倍?6.一架飞机以同样的速度飞行;第一天飞行3360千米;第二天飞行2730千米;第二天比第一天少飞行1.5小时;第二天飞行多少小时?7.王阿姨想买2袋米(每袋35.4元);15.3元的牛肉;6.8元的蔬菜和13.7元的面粉。
王阿姨带了100元;够吗?8.甲桶油25千克;如果从甲桶油取出5千克放入乙桶;这时甲桶还比乙桶多6千克;乙桶原有油多少千克?9.用一只杯子盛满水向一个水壶里灌水;倒进了后;连水壶共重0.85千克;如果灌满水壶要倒进5杯水;这时连水壶共重1.25千克。
每杯水重多少千克?二、一次归一应用题【知识梳理】1.归一问题的特点是;在一组已知的对应量中;隐藏着一个固定不变的“单一量”。
六年级下数学知识点讲解-小升初总复习 典型应用题(四)——比和比例问题
![六年级下数学知识点讲解-小升初总复习 典型应用题(四)——比和比例问题](https://img.taocdn.com/s3/m/783c3f0280eb6294dd886cfa.png)
第6课时 典型应用题(四)——比和比例问题考点一 比例尺应用题比例尺应用题中,三者之间关系式:图上距离∶实际距离=比例尺;图上距离=实际距离×比例尺;实际距离=图上距离÷比例尺。
注意:在计算中,要注意各种量的单位在算式中必须统一。
考点二 按比例分配应用题按比例分配的应用题,是把一个数量按照一定的比分配成几部分。
关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题来解答。
考点三 正比例和反比例应用题1.正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例关系式:x y =k(一定)。
2.反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
反比例关系式:xy =k(一定)。
在一幅比例尺是1∶200000的地图上,量得甲、乙两地相距20厘米。
如果在另一幅地图上,甲、乙两地相距10厘米,另一幅地图的比例尺是多少?【解】 20÷1200000=4000000(厘米)104000000=1400000答:另一幅地图的比例尺是1∶400000。
两个书架,甲书架存书的14等于乙书架存书的25,甲书架比乙书架多存120本,乙书架存书多少本?【解】 由条件可知,甲×14=乙×25即甲∶乙=25∶14=8∶5120÷(8-5)×5=200(本)答:乙书架存书200本。
一个长方体的棱长总和是104厘米,长、宽、高的比例是7∶2∶4,这个长方体的体积是多少厘米?【解】 104÷4=26(厘米) 7+2+4=13长:26×713=14(厘米)宽:26×213=4(厘米)高:26×413=8(厘米)14×4×8=448(立方厘米)答:这个长方体的体积是448立方厘米。
[全]小升初数学专题复习训练-典型应用题分析
![[全]小升初数学专题复习训练-典型应用题分析](https://img.taocdn.com/s3/m/438b6ff8ed630b1c58eeb533.png)
小升初数学专题复习训练-典型应用题分析知识点复习一.归一归总问题【知识点归纳】1.归一应用题分为两类.(1)直进归一:求出一个单位量后,再用乘法求出结果.(2)逆转归一:求出一个单位量后,再用包含除法求出结果.从应用题的结构上看,给了单一量和数量,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的,然后根据总数量求出每份数,份数.总数量÷份数=每份数,总数量÷每份数=份数.归一问题应用题中必有一种不变的量.如汽车的速度不变,拖拉机每小时耕地的公顷数不变.在归一问题应用题中,常常用“照这样计算”、“用同样的…”等词句来表达不变的量,我们要抓准题中数量的对应关系.归一应用题分为正归一应用题、反归一应用题两类.正、反归一问题的相同点是:一般情况下,第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量.2.归总问题:(1)定义:在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题.这类应用题叫做归总应用题.(2)解决方法:归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份.【命题方向】例1:如果把一根木料锯成3段要用9分,那么用同样的速度把这根木料锯成4段,要用 13.5分.分析:这是一个和生活相关的问题,存在这样一个关系:锯的次数=锯成的段数-1;锯成3段,要锯2次,锯成4段要锯3次,那么本题就可以改成,锯2次要9分钟,那么锯3次要几分钟?先求锯1次要几分钟,用除法即9÷2=4.5(分),再求锯3次要几分钟,用乘法,即4.5×3=13.5(分)解:3-1=2(次)9÷2=4.5(分)4-1=3(次)4.5×3=13.5(分)故答案为:13.5点评:这是生活实际问题,锯1次就可以锯成2段,存在这个关系:锯的次数=锯成的段数-1.二.和差问题【知识点归纳】公式:(和+差)÷2=大数(和-差)÷2=小数.【命题方向】例1:甲、乙两数的平均数是18.4,甲比乙多4,则甲是()A、20.4B、22.4C、16.4分析:根据题意,甲、乙两数的平均数是18.4,那么它们的和是18.4×2=36.8,又甲比乙多4,也就是它们的差是4,然后再根据和差公式进一步解答.解:18.4×2=36.8;(36.8+4)÷2=20.4.答:甲是20.4.故选:A.点评:根据题意,求出两个数的和与差,由和差公式进一步解答.三.和倍问题【知识点归纳】公式:两数和÷份数和=小数小数×倍数=大数或两数和-小数=大数和倍问题的特点是利用大小两个数的和与它们的倍数关系,求大小两个数各是多少的应用题,解答和倍应用题的最好助手是,采用画线段图的方法来表示两种量间的数量关系,以便找到解题的途径.【命题方向】例1:学校数学小组和语文小组共有学生60人,数学小组的人数是语文小组的1.5倍,两个小组各有多少人?分析:设语文小组有x人,则数学小组就有1.5x人,根据等量关系:数学小组和语文小组共有60人,列出方程即可解决问题.解:设语文小组有x人,则数学小组就有1.5x人,根据题意可得方程:x+1.5x=60,2.5x=60,x=24,1.5×24=36(人),答:数学小组有36人,语文小组有24人.点评:此题是典型的和倍问题,一般都是用倍数的等量关系设出未知数,用和的等量关系列出方程即可解决此类问题.四.差倍问题【知识点归纳】含义:差倍问题即已知两数之差和两数之间的倍数关系,求出两数.公式:差÷(倍数-1)=小数;小数+差或小数×倍数=大数.差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题.【命题方向】例1:甲、乙两桶油重量相等,如果甲桶取出8千克,乙桶加入16千克,这时乙桶油的重量是甲桶油重量的3倍.两桶油原来各有油多少千克?分析:甲、乙两桶油重量相等.从甲桶取走8千克油,乙桶加入16千克油,这时,甲桶比乙桶多24千克,乙桶油的重量是甲桶油重量的3倍,所以24千克是甲桶取出后的2倍,用除法可得甲桶取出后的油的重量,再加8即可得两桶油原来的千克数.解:(8+16)÷(3-1)=24÷2=12(千克)12+8=20(千克)答:两桶油原来各有20千克.点评:本题考查了差倍问题,关键是得出48千克时是甲桶取出后的2倍.同步测试一.选择题(共8小题)1.王大伯今年栽了桃树和梨树(如图),算一算他今年栽的果树中有梨树()棵.A.340 B.360 C.3802.淘气零花钱有128元,笑笑零花钱有110元,淘气给笑笑()元,他们的零花钱就同样多了.A.18 B.9 C.83.买2件上衣和8条裤子一共用了800元.已知上衣的单价是裤子单价的4倍.一件上衣()A.160元B.320元C.200元D.240元4.小玲写数时少写一个零,结果比原数少45000,原数是()A.450000 B.50000 C.4500 D.50005.张宁和王晓星一共有画片86张.王晓星给张宁8张后,两人画片数同样多,王晓星原来有()张画片.A.35 B.51 C.746.明明有25张画片,东东有17张画片,东东送给明明()张画片后,明明的画片就是东东的2倍.A.3 B.4 C.97.弟弟原来有5本故事书,哥哥给弟弟3本后,哥哥的本数是弟弟的2倍,哥哥原来有()本书.A.7 B.16 C.19 D.148.哥哥的钱数是妹妹的两倍,如果哥哥拿4元钱给妹妹,那么兄妹俩的钱数就一样多.妹妹原来有()元钱.A.2 B.4 C.8 D.16二.填空题(共8小题)9.李叔叔要录一份稿件,计划每分录入60个字,需要12分录完.实际录完只用了9分,平均每分录入个字.10.食堂运来豆角和茄子共116千克,其中豆角的重量是茄子的3倍,运来茄子千克.11.两个相邻自然数的和是197,这两个自然数数分别是和.12.小飞有5颗糖,小红给小飞3颗糖后,小红糖的颗数就是小飞的2倍,小红原来有颗糖.13.一架玩具飞机比一辆玩具汽车贵50元,一架玩具飞机的价格是一辆玩具汽车的3倍,一架玩具飞机的价格是元.14.学校图书室有图书60000本,其中科技书的本数是故事书的1.5倍,科技书有本15.有红、黄两种颜色的气球,共40个.其中红气球比黄气球少4个,黄气球有个,红气球有个.16.四(1)班和四(2)班共有128本图书,四(1)班如果给四(2)班12本,两个班的图书就一样多了,那么四(1)班原来有本图书,四(2)班原来有本图书.三.判断题(共5小题)17.书柜的上层有20本书,下层有16本,从上层拿4本到下层两层就同样多..(判断对错)18.甲数是乙数和丙数的和的2倍,甲数是60,乙数比丙数多4,丙数是多少?列式为:(60÷2﹣4)÷2.(判断对错)19.一束花里有百合和玫瑰共24枝,百合的枝数是玫瑰的3倍,百合有18枝.(判断对错)20.小军把320毫升水倒入4个小杯和1个大杯,正好都倒满,小杯的容量是大杯的则大杯的容量是160毫升..(判断对错)21.一个小数扩大3倍后得到的数比原数大7.2,原来的小数是3.6..(判断对错)四.应用题(共8小题)22.有甲、乙两袋球,甲袋里有39个,乙袋里有27个,如果小刚每次从甲袋里取出4个,从乙袋里取出2个,那么取几次后,甲、乙袋里剩下的球的个数相等?23.果园里有龙眼树和荔枝树共240棵,其中龙眼树的棵数是荔枝树的3倍.龙眼树和荔枝树各有多少棵?24.一分钟口算题比赛,张华和李硕一共做出了120道题,张华比李硕多做了16道题,两人各做了多少道题?25.甲筐和乙筐内原来分别放有63个和81个乒乓球,若要使甲筐内的乒乓球个数是乙筐内乒乓球个数的3倍,那么应从乙筐内取出多少个乒乓球放入甲筐?26.张大伯今年栽了桃树和梨树共640棵,梨树比桃树多80棵.张大伯今年栽的桃树和梨树各有多少棵?(先把已知条件在线段图上表示出来,再解答)27.某纺织车间要织7200匹布,前4天织了3600匹.按照这样计算,加工7天后,还剩多少匹布没有织完?28.某水果店上周卖出香蕉和苹果共70箱,其中苹果箱数正好是香蕉箱数的1.5倍,苹果和香蕉各卖出多少箱?29.旅游公司原有12辆面包车,一天可收出租费3600元.按照这样计算,如果希望每天多收出租费2400元,应有多少辆面包车?参考答案与试题解析一.选择题(共8小题)1.【分析】观察图可知:梨树比桃树少40棵,梨树和桃树一共720棵,可知两数之和是720,两数之差是40,根据和差公式“(和﹣差)÷2=较小数”可求得梨树的棵数.【解答】解:(720﹣40)÷2=680÷2=340(棵)答:梨树有340棵.故选:A.【点评】此题主要考查了和差公式的应用,即:(和+差)÷2=较大数,(和﹣差)÷2=较小数,或和﹣较大数=较小数.2.【分析】根据题意,淘气有128元,笑笑有110元,淘气比笑笑多:128﹣110=18(元),淘气应该给笑笑:18÷2=9(元),二人就一样多了.【解答】解:(128﹣110)÷2=18÷2=9(元)答:淘气给笑笑9元,他们的零花钱就同样多了.故选:B.【点评】解决本题的关键是淘气应该给笑笑的钱,是淘气比笑笑多的钱数的一半,而不是全部.3.【分析】根据题意,设一条裤子的价格是x元,则一件上衣的价钱是4x元,有关系式:2件上衣价钱+8条裤子的价钱=800元,列方程求解可得裤子价格,再求上衣价钱即可.【解答】解:设一条裤子x元,则一件上衣4x元,2×4x+8x=80016x=800x=5050×4=200(元)答:一件上衣200元.故选:C.【点评】本题是典型的和倍问题,一般都是用倍数的等量关系设出未知数,用和的等量关系列出方程即可解决此类问题.4.【分析】少写一个零,结果比原数少45000,则45000就是新数的9倍,用45000除以9就是新数,再乘10就是原数;据此解答.【解答】解:45000÷9×10=5000×10=50000答:原数是50000.故选:B.【点评】解答此题关键是明确少的45000就是新数的9倍.5.【分析】根据王晓星给张宁8张后,两人画片数同样多,可知王晓星比张宁多8×2=16张,用总张数加上多的张数再除以2,即可求出王晓星原有的张数.【解答】解:(86+8×2)÷2=(86+16)÷2=102÷2=51(张)答:王晓星原有51张画片.故选:B.【点评】此题主要考查了和差公式的应用,即:(和+差)÷2=大数,(和﹣差)÷2=小数,或和﹣大数=小数.6.【分析】先求出明明和东东一共多少张,然后再根据除法的意义求得后来东东的张数:(25+17)÷(2+1),然后用东东原来的数量减去后来东东的数量即可求出东东送给明明的数量.【解答】解:17﹣(25+17)÷(2+1)=17﹣14=3(张)答:东东送给明明3张画片后,明明的画片就是东东的2倍;故选:A.【点评】完成本题时,也可先求出明明和东东一共多少张,然后再根据除法的意义求得后来东东的张数:(25+17)÷(2+1).7.【分析】根据题意可知:弟弟现在有:5+3=8(本),哥哥现在有:8×2=16(本),所以哥哥给弟弟前有:16+3=19(本).据此解答.【解答】解:(5+3)×2+3=8×2+3=16+3=19(本)答:哥哥原来有19本书.故选:C.【点评】本题主要考查和倍问题,关键根据现在弟弟的故事书本数,求哥哥原来的本数.8.【分析】根据题意,利用差倍问题公式:差÷(倍数﹣1)=较小数;较小数+差=较大数.把数代入计算即可.【解答】解:4×2÷(2﹣1)=8÷1=8(元)答:妹妹原来有8元钱.故选:C.【点评】本题主要考查差倍问题,关键知道兄妹俩的钱数相差多少.二.填空题(共8小题)9.【分析】用60乘12求出总字数,再除以实际的时间9分钟,就是实际平均每分录入的个数.【解答】解:60×12÷9=720÷9=80(个)答:平均每分录入80个字.故答案为:80.【点评】在解答这一类应用题时,先求出总数是多少(归总),再求出单一量.10.【分析】根据题意可得到等量关系式:豆角的重量+茄子的重量=116千克,可设运来茄子x千克,那么豆角的重量有3x千克,把未知数代入等量关系式进行解答即可得到答案.【解答】解:设运来茄子的重量是x千克,那么豆角大米的重量有3x千克,3x+x=1164x=116x=29答:运来茄子29千克.故答案为:29.【点评】解答此题的关键是找准等量关系式,然后再方程解答即可.11.【分析】因为相邻的两个自然数相差1,根据和差问题,运用关系式:(和﹣差)÷2=小数,先求出小数,再求大数.【解答】解:(197﹣1)÷2=196÷2=9898+1=99答:这两个自然数是98和99.故答案为:98,99.【点评】此题属于和差问题,运用了关系式:(和﹣差)÷2=小数,和﹣小数=大数.12.【分析】根据题意,“小飞有5颗糖,小红给小飞3颗糖后”,小飞有糖:5+3=8(颗),这时小红有:8×2=16(颗),所以小红原理有:16+3=19(颗).【解答】解:(5+3)×2+3=8×2+3=16+3=19(颗)答:小红原来有19颗糖.故答案为:19.【点评】本题主要考查差倍问题,关键根据题意求出小红现在糖的颗数.13.【分析】本题属于差倍问题,根据题意,玩具汽车的数量较少,为较小数,玩具飞机的数量较多,为较大数.利用差倍问题个数:差÷(倍数﹣1)=较小数;较小数+差=较大数.把数代入计算即可.【解答】解:50÷(3﹣1)=50÷2=25(元)25+50=75(元)答:一架玩具飞机的价格是75元.故答案为:75.【点评】本题考查了差倍问题,关键是得出50元是一辆玩具汽车价格的3﹣1=2倍.14.【分析】设故事书有x本,则科技书有1.5x本,根据等量关系:科技书的本数+故事书的本数=60000本,列方程解答即可得出故事书的本数,再求科技书得本数.【解答】解:设故事书的本数有x本,科技书的本数为1.5x本,1.5x+x=600002.5x=60000x=240001.5×24000=36000(本)答:科技书有36000本.故答案为:36000.【点评】本题考查了列方程解应用题,关键是根据等量关系:科技书的本数+故事书的本数=60000本列方程.15.【分析】根据题意,本题属于和差问题,利用和差问题公式:(和+差)÷2=较大数;(和﹣差)÷2=较小数.把数代入计算即可.【解答】解:(40+4)÷2=44÷2=22(个)(40﹣4)÷2=36÷2=18(个)答:黄气球有22个,红气球有18个.故答案为:22;18.【点评】根据题意,找出两个数的和与差,由和差公式进一步解答.16.【分析】根据题意,四(1)班如果给四(2)班12本,两个班的图书就一样多了,说明四(1)班原来比四(2)班多12×2=24(本),利用和差问题公式:(和+差)÷2=较大数,(和﹣差)÷2=较小数.把数代入计算即可.【解答】解:(128+12×2)÷2=152÷2=76(本)128﹣76=52(本)答:四(1)班原来有76本图书,四(2)班原来有52本图书.故答案为:76;52.【点评】根据题意,利用两个数的和与差,由和差公式进一步解答.三.判断题(共5小题)17.【分析】书柜的上层原有20本书,拿出4本后,还剩20﹣4=16本,下层原有16本,再加4本后,为16+4=20本,据此判断即可.【解答】解:20﹣4=16(本),16+4=20(本),16≠20,所以从上层拿4本到下层两层就同样多,是错误的.故答案为:×.【点评】本题考查了差倍问题,关键是得出从上层拿4本到下层后,上下层的本数.18.【分析】甲数是60,根据倍数关系可得乙数与丙数的和是60÷2=30;又知乙数比丙数多4,即乙、丙两数的差是4,然后乙数减少4,那么乙、丙两数就相等了,根据和差公式即可求出丙数,再与算式:(60÷2﹣4)÷2比较即可.【解答】解:乙数与丙数的和是:60÷2=30乙、丙两数的差是:4根据和差公式可得丙数是:(60÷2﹣4)÷2=26÷2=13所以原题说法正确.故答案为:√.【点评】此题属于和差问题,关键是要分清楚数量之间的关系,运用关系式:(和﹣差)÷2=较小数,(和+差)÷2=较大数.19.【分析】百合的枝数是玫瑰的3倍,百合和玫瑰共24枝是玫瑰的3+1=4倍,用除法即可得玫瑰的枝数,再求百合的枝数,再判断即可.【解答】解:24÷(3+1)=24÷4=6(枝),24﹣6=18(枝),答:百合有18枝,本题说法正确.故答案为:√.【点评】本题考查了和倍问题,关键是得出百合和玫瑰共24枝是玫瑰的3+1=4倍.20.【分析】根据“小杯的容量是大杯的”,知道1大杯的容量相当于4个小杯的容量,由此知道320毫升的水正好都倒满2个大杯,进而求出大杯的容量.【解答】解:320÷2=160(毫升),答:大杯的容量是160毫升.故答案为:√.【点评】解答此题的关键是根据题意找出小杯的容量与大杯容量的关系,用大杯的容量代换小杯的容量,将两个未知数变成一个未知数由此解决问题.21.【分析】由题意得出现在的数是原来的数的3倍;现在的数与原来的数相差7.2,由此利用差倍公式解决问题.【解答】解:7.2÷(3﹣1)=7.2÷2=3.6答:原来的小数是3.6;故答案为:√.【点评】本题主要考查了差倍公式{差÷(倍数﹣1)=小数,小数×倍数=大数,(或小数+差=大数)}的应用.四.应用题(共8小题)22.【分析】甲袋里有39个,乙袋里有27个,那么甲比乙多39﹣27=12个;小刚每次从甲袋里取出4个,从乙袋里取出2个,那么每次甲比乙多取出4﹣2=2个;12个里面有几个2,那么就取几次,甲乙剩下的个数就相等,据此解答.【解答】解:(39﹣27)÷(4﹣2)=12÷2=6(次)答:取6次后,甲、乙袋里剩下的球的个数相等.【点评】本题关键是求出甲乙两袋之间的个数差以及每次取出的个数差,然后再根据除法的意义进行解答.23.【分析】果园里有龙眼树和荔枝树共240棵,其中龙眼树的棵数是荔枝树的3倍,那么总棵数就是荔枝树的3+1=4倍,用240除以4求出荔枝树的棵数,然后再进一步解答.【解答】解:240÷(3+1)=240÷4=60(棵)60×3=180(棵)答:龙眼树有180棵,荔枝树有60棵.【点评】已知两个数的和与倍数关系,根据和倍公式:和÷(倍数+1)=较小数,较小数×倍数=较大数进行解答.24.【分析】张华和李硕一共做出了120道题,张华比李硕多做了16道题,如果李硕多做16道就和张华一样多,这时他们就一共做了120+16=136道,然后再除以2就是张华做的,然后再用张华做的减去16,就是李硕做的.【解答】解:(120+16)÷2=136÷2=68(道)68﹣16=52(道)答:张华做了68道,李硕做了52道.【点评】已知两个数的和与差关系,根据和差公式:(和+差)÷2=较大数,进行解答.25.【分析】根据题意,乒乓球的总数不变,所以当“甲筐内的乒乓球个数是乙筐内乒乓球个数的3倍”时,甲筐内乒乓球的个数为:(63+81)÷(3+1)×3=108(个),计算甲筐多的个数就是从乙筐放入的个数.【解答】解:(63+81)÷(3+1)×3﹣63=144÷4×3﹣63=108﹣63=45(个)答:应从乙筐内取出45个乒乓球放入甲筐.【点评】本题主要考查差倍问题,主要根据和不变做题.26.【分析】观察图可知:梨树比桃树多80棵,梨树和桃树一共640棵,可知两数之和是640,两数之差是80,根据和差公式“(和﹣差)÷2=较小数”可求得梨树的棵数.【解答】解:(640﹣80)÷2=560÷2=280(棵)280+80=360(棵)答:张大伯今年栽的桃树有280棵;梨树有360棵.【点评】此题主要考查了和差公式的应用,即:(和+差)÷2=较大数,(和﹣差)÷2=较小数,或和﹣较大数=较小数.27.【分析】“按照这样计算”说明每天加工的数量相同,先用3600匹除以4天,求出平均每天加工多少匹布,再乘7,就是已经织布多少匹,再用总量减去已经织布的匹数,就是还剩多少匹布没有织完.【解答】解:3600÷4×7=900×7=6300(匹)7200﹣6300=900(匹)答:还剩900匹布没有织完.【点评】解决本题先根据工作量÷工作时间=工作效率求出不变的工作效率,再根据工作量=工作效率×工作时间,求出7天加工的量,进而求解.28.【分析】把香蕉的箱数看作一倍的量,那么香蕉和苹果的总箱数(70箱),就相当于香蕉箱数的1+1.5=2.5倍,用除法即可求出香蕉的箱数,再与70作差即可求出苹果的箱数.【解答】解:70÷(1+1.5)=70÷2.5=28(箱)70﹣28=42(箱)答:苹果卖出了42箱;香蕉卖出了28箱.【点评】此题属于和倍问题,运用关系式:和÷(倍数+1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).关键是找到数量和与它对应的倍数和.29.【分析】“按照这样计算”说明每辆面包车收费是相同的,先用3600除以12,求出每辆汽车出租的费用,再用2400元除以每辆汽车出租的费用,求出需要增加的辆数,再加上12辆即可求解.【解答】解:2400÷(3600÷12)=2400÷300=8(辆)12+8=20(辆)答:应有20辆面包车.【点评】解决本题先根据除法平均分的意义求出每辆车每天的收入,再根据除法的包含意义求出需要多出的费用,进而求解.知识点复习一.植树问题【知识点归纳】为使其更直观,用图示法来说明.树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题.一、在线段上的植树问题可以分为以下三种情形.1、如果植树线路的两端都要植树,那么植树的棵数应比要分的段数多1,即:棵数=间隔数+1.2、如果植树线路只有一端要植树,那么植树的棵数和要分的段数相等,即:棵数=间隔数.3、如果植树线路的两端都不植树,那么植树的棵数比要分的段数少1,即:棵数=间隔数-1.4、如果植树路线的两边与两端都植树,那么植树的棵数应比要分的段数多1,再乘二,即:棵树=段数+1再乘二.二、在封闭线路上植树,棵数与段数相等,即:棵数=间隔数.三、在正方形线路上植树,如果每个顶点都要植树.则棵数=(每边的棵数-1)×边数.1 非封闭线路上的植树问题主要可分为以下三种情形:(1)如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1全长=株距×(株数-1)株距=全长÷(株数-1)(2)如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数.【命题方向】例1:杨老师从一楼办公室到教室上课,每走一层楼有24级台阶,一共走了72级台阶,杨老师到 4楼教室上课?分析:把楼层与楼层之间的24个台阶看做1个间隔;先求得一共走过了几个间隔:72÷24=3,一楼没有台阶,所以杨老师走到了1+3=4楼.解:72÷24+1=3+1=4(楼)答:杨老师去4楼上课.故答案为:4.点评:因为1楼没有台阶,所以楼层数=1+间隔数.例2:有48辆彩车排成一列.每辆彩车长4米,彩车之间相隔6米.这列彩车共长多少米?分析:根据题意,可以求出车与车的间隔数是48-1=47(个),那么所有的彩车之间的距离和是:47×6=282(米),因为每辆彩车长4米,所有的车长度和是:4×48=192(米),把这两个数加起来就是这列彩车的长度.解:车与车的间隔数是:48-1=47(个),彩车之间的距离和是:47×6=282(米),所有的车长度和是:4×48=192(米),这列彩车共长:282+192=474(米).答:这列彩车共长474米.点评:根据题意,按照植树问题求出彩车的长,因为每辆彩车还有车长,还要加上所有彩车的车身长,才是这列彩车的总长.二.方阵问题【知识点归纳】将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题.数量关系:(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数×每边人数空心方阵:总人数=(外边人数)2-(内边人数)2内边人数=外边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4.【命题方向】例1:四年级共选49位同学参加校运会开幕式,他们排成一个方阵.这个方阵的最外层一共有多少人?分析:先根据方阵总人数=每边人数×每边人数,求出这个方阵的每边人数,再利用方阵最外层四周人数=每边人数×4-4计算出最外层四周人数即可.解:因为7×7=49,所以49人组成的方阵的每边人数是7人,7×4-4,=28-4,=24(人);答:这个方阵的最外层有24人.点评:此题考查了方阵问题中:总点数=每边点数×每边点数;最外层四周点数=每边点数×4-4的灵活应用.三.年龄问题【知识点归纳】年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;解题规律:抓住年龄差是个不变的数(常数),而倍数却是每年都在变化的这个关键.解答年龄问题的一般方法是:几年后年龄=大小年龄差÷倍数差-小年龄几年前年龄=小年龄-大小年龄差÷倍数差.【命题方向】例1:儿子今年6岁,父亲10年前的年龄等于儿子20年后的年龄.当父亲的年龄恰好是儿子年龄的2倍时是在公元哪一年?分析:根据题意,可知儿子20年后是6+20=26岁,父亲今年26+10=36岁.根据年龄增长是一样的,找出等量关系列出方程解答即可.解:儿子20年后是6+20=26岁,父亲今年26+10=36岁.设x年后,父亲的年龄恰好是儿子年龄的2倍.由题意得36+x=2(x+6)36+x=2x+12x=24由今年是公元2011年,则2011+24=2035,故当父亲的年龄恰好是儿子年龄的2倍时是公元2035年.点评:本题主要是考查年龄问题,首先要把题意弄清,再根据等量关系列出方程解答即可.四.鸡兔同笼【知识点归纳】方法:假设法,方程法,抬腿法,列表法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学:典型应用题知识点:查字典数学网的小编为大家整理了小升初数学:典型应用题知识点,供大家参考,希望小编的总结可以帮助到大家,祝大家在查字典数学网学习愉快。
典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。
数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。
求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。
此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+ = , 汽车的平均速度为2 ÷ =75 (千米)(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。
又称“单归一。
”两次归一问题,用两步运算就能求出“单一量”的归一问题。
又称“双归一。
”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例一个织布工人,在七月份织布4774 米,照这样计算,织布6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。
693 0 ÷( 477 4 ÷ 31 ) =45 (天)(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量= 另一个单位数量单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例修一条水渠,原计划每天修800 米,6 天修完。
实际4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长度。
所以也把这类应用题叫做“归总问题”。
不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。
80 0 × 6 ÷ 4=1200 (米)(4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数大数-差=小数(和-差)÷2=小数和-小数= 大数例某加工厂甲班和乙班共有工人94 人,因工作需要临时从乙班调46 人到甲班工作,这时乙班比甲班人数少12 人,求原来甲班和乙班各有多少人?分析:从乙班调46 人到甲班,对于总数没有变化,现在把乙数转化成2 个乙班,即9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出46 人之前应该为41+46=87 (人),甲班为9 4 - 87=7 (人)(5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。
求出倍数和之后,再求出标准的数量是多少。
根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数标准数×倍数=另一个数例:汽车运输场有大小货车115 辆,大货车比小货车的 5 倍多7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多7 辆,这7 辆也在总数115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆。
列式为( 115-7 )÷( 5+1 ) =18 (辆),18 × 5+7=97 (辆)(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数标准数×倍数=另一个数。
例甲乙两根绳子,甲绳长63 米,乙绳长29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。
列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度,17 × 3=51 (米)…甲绳剩下的长度,29-17=12 (米)…剪去的长度。
(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例甲在乙的后面28 千米,两人同时同向而行,甲每小时行16 千米,乙每小时行9 千米,甲几小时追上乙?分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面28 千米(追击路程),28 千米里包含着几个( 16-9 )千米,也就是追击所需要的时间。
列式 2 8 ÷( 16-9 ) =4 (小时)(8)流水问题:一般是研究船在“流水”中航行的问题。
它是行程问题中比较特殊的一种类型,它也是一种和差问题。
它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速逆速=船速-水速解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。
解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2流水速度=(顺流速度逆流速度)÷2路程=顺流速度×顺流航行所需时间路程=逆流速度×逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行28 千米,到乙地后,又逆水航行,回到甲地。
逆水比顺水多行2 小时,已知水速每小时4 千米。
求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。
已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。
列式为284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。
(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。
若需要先算加减法,后算乘除法时别忘记写括号。
例某小学三年级四个班共有学生168 人,如果四班调3 人到三班,三班调6 人到二班,二班调 6 人到一班,一班调2 人到四班,则四个班的人数相等,四个班原有学生多少人?分析:当四个班人数相等时,应为168 ÷ 4 ,以四班为例,它调给三班3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。
四班原有人数列式为168 ÷ 4-2+3=43 (人)一班原有人数列式为168 ÷ 4-6+2=38 (人);二班原有人数列式为168 ÷ 4-6+6=42 (人) 三班原有人数列式为168 ÷4-3+6=45 (人)。
(10)植树问题:这类应用题是以“植树”为内容。
凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树棵树=段数+1 棵树=总路程÷株距+1 株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)沿周长植树棵树=总路程÷株距株距=总路程÷棵树总路程=株距×棵树例沿公路一旁埋电线杆301 根,每相邻的两根的间距是50 米。
后来全部改装,只埋了201 根。
求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。
列式为50 ×( 301-1 )÷( 201-1 ) =75 (米)(11 )盈亏问题:是在等分除法的基础上发展起来的。
他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。