热水供热系统管道水力计算表

合集下载

室内热水供暖系统的水力计算

室内热水供暖系统的水力计算

确定立管1的管径
立管1与管段3~10并联。同理,资用压力
立管选用最小管径DN15*15。
计算结果,立管1总压力损失为3517pa。
不平衡率24.3%,超过允许值,剩余压头用立管阀门消除。
通过上述计算可以看出:
例题1与例题2的系统热负荷,立管数,热媒参数和供热半径都相同,机械循环系统的作用压力比重力循环系统大地多,系统的管径就细很多。
根据并联环路节点平衡原理(管段15,16与管段1,14为并联管路),通过第二层管段15,16的资用压力为
确定通过立管1第二层散热器环路中各管段的管径
求平均比摩阻
管段15,16的总长度为5,平均比摩阻为
根据同样方法,按15和16管段的流量G及Rpj,确定管段的d,将相应的R,v值列入表中。
根据各管段的热负荷,求接近Rpj的管径。 将查出的d,R,v,G值列入表中。
2
确定长度压力损失
01
将每一管段R与l相乘,列入水力计算表中
02
根据系统图中管路的实际情况,列出各管段局部阻力管件名称。利用附录表,将其阻力系数 记于表中,最后将各管段总局部阻力系数 列入表中。
由于机械循环系统供回水干管的R值选用较大,系统中各立管之间的并联环路压力平衡较难。例题2中,立管1,2,3的不平衡率都超过 ±15% 的允许值。在系统初调节和运行时,只能靠立管上的阀门进行调节,否则例题2的异程式系统必然回出现近热远冷的水平失调。如系统的作用半径较大,同时又采用异程式布置管道,则水平失调现象更难以避免。
进行第一种情况的水力计算时,可以预先求出最不利循环环路或分支环路的平均比摩阻 。
01
Pa/m
02
式中 ——最不利循环环路或分支环路的循环作用压力,Pa; ——最不利循环环路或分支环路的管路总长度,m; ——沿程损失约占总压力损失的估计百分数

供热工程第四篇室内热水供暖系统水力计算课件

供热工程第四篇室内热水供暖系统水力计算课件
建立能效管理制度,对供暖系统进行定期维护和保养,确保系统高 效运行。
政策支持与市场驱动
政府出台相关政策支持绿色供暖技术的发展,同时鼓励企业加大研 发投入,推动可持续发展。
THANK YOU
感谢聆听
供热工程第四篇室内热水供暖 系统水力计算课件

CONTENCT

• 室内热水供暖系统概述 • 水力计算基本原理 • 室内热水供暖系统水力计算实例 • 常见问题与解决方案 • 发展趋势与展望
01
室内热水供暖系统概述
系统组成与工作原理
系统组成
室内热水供暖系统主要由热源、散热设备、管网和控制系统等部 分组成。
工作原理
通过热水在管网中循环流动,将热量传递给散热设备,再由散热 设备将热量散发到室内,达到供暖的目的。
系统分类与特点
系统分类
根据供热方式的不同,室内热水供暖系统可分为单管系统、双管系统和混合系 统等类型。
系统特点
单管系统简单、造价低,适用于较小面积的住宅;双管系统供热调节灵活,适 用于大面积的住宅和公共建筑;混合系统则结合了单、双管系统的优点,但设 计和施工较为复杂。
定义
水力计算是供热工程中用于确定 热水供暖系统各管段流量、压力 损失等参数的过程,是设计和优 化供暖系统的关键环节。
重要性
准确的水力计算能够确保供暖系 统的正常运行,提高系统的能效 和稳定性,降低运行成本和维护 难度。
水力计算的基本公式与参数
基本公式
水力计算的基本公式包括伯努利方程、连续性方程和能量方 程等,用于描述流体在管道中的运动状态和能量转换关系。
03
室内热水供暖系统水力计算实例
系统模型建立与参数设定
模型简化与假设
为简化计算,假设系统为稳态流动,忽略热损失和 动态效应,将实际供暖系统抽象为数学模型。

采暖供热管道水力计算表

采暖供热管道水力计算表

注:
1.各立管删减散热器时,请从最后一组(每组三行)整
2.如增加散热器,整行(三行)拷贝,从干管行(灰色
3.从各立管回水温度计算值可验证操作是否正确。

4.增加环路时,由计算人复制并修改“环路阻力叠加”
采暖管径计算(适用于采用钢管
请从最后一组(每组三行)整行删除。

三行)拷贝,从干管行(灰色)前插入,需修改立管总负荷(D列)计算公式及干管“环路阻力叠加”栏公式。

值可验证操作是否正确。

复制并修改“环路阻力叠加”和“不平衡率计算”栏公式,计算总阻力时,可人为判断最不利环路。

用钢管的一般(竖向)单管系统)
环路阻力叠加”栏公式。

最不利环路。

暖通水力计算

暖通水力计算

热网水力计算的一般要求1.计算热负荷时应按近期热负荷计算,并应考虑计入发展热负荷,对于分期建设设计热负荷,可以留有余地或考虑增设设计管网的可能性。

2.管网水力计算时,应绘管道平面图、简易计算系统图,在图中注明各热用户和管段的集合展开长度及计算温度、管道附件、补偿器、流量孔板、阀门等。

热水管网还应注明各管段的始、标高。

3.在进行热水水力计算时,应注意提高整个供热系统的水力稳定性,为防止水力失调可以采取如下措施:1)减小管网干管的压力损失,宜取较小的比压降,适当增大管径;2)增大热用户系统的压力损失,一般在热用户入口处安装手动调节阀或平衡阀、调压孔板,控制和调节入口压力;3)高温水采暖系统的热源内部压力损失,对管网的水力稳定性也有影响,一般在热源内部留有一定的富裕压头,在正常情况下,富裕压头消耗在循环泵的出口阀门上。

当管网流量发生变化引起热源出口放入压力变化时,可调整循环水泵出口阀门的开度,使出口压力保持稳定。

4)供热主管网的管径DN,不论热负荷多少,均不小于50mm,而通向单体建筑物(热用户)的管径一般不宜小于如下尺寸:蒸汽管网25 mm热水管网32 mm5)在供热管网计算中,有的点出现静压超过允许极限值时,一般从此点与其它系统分开,设置独立的供热系统。

6)热水采暖管网,宜采用双管闭式系统,其供回水应采取系统的管径。

主要设备选择1.热网循环水泵热网循环水泵应按供热系统的调节方式来选择(1)供热系统采用中央质调节热循环水泵的总流量按向热用户提供的热水总流量的110%选取,数量不少于两台。

热网循环水泵扬程H按下式计算:H=1.2(H1+ H2+ H3+ H4+ H5)式中H:热水循环水泵扬程,mH2O(10kpa);H1:热水通过供热站中锅炉或热网加热器的流动阻力,mH2O(10kpa);H2,H3:热水通过供、回水热网管道的流动阻力,mH2O(10kpa);H4:热水在热用户(或热力站)的压力损失,mH2O(10kpa);H5:热源系统内部其它损失(如过滤器,阀门等处),mH2O(10kpa);(2)供热系统采用中央质-量调节(连续变流量调节)热网循环水水泵的流量、台数、扬程可参照中央质调节的选择方法。

供热系统水力计算

供热系统水力计算

p -压强水头,(压力能水头)表明流体在断面压强作用 g
下,测压管上升的高度。
Z -位置水头,相对于基准面的高度。
2 -流速水头,(动能水头)以初速度铅直上升射流时的
2g
理论高度
总水头:
H p Z 2
g
2g
即压力能水头、位置水头之和动能水
头三者之和
总水头线(A-B线)
测压管水头线——水压线(C-D线)
管道直径(如何计算?) 管段压力损失(实际值) 管道流量(管径、管段允许压降已知)
◆水力计算有什么用处?
一、热水网路水力计算基本公式
2、管段的压力 (能量) 损失包括 哪两部分?
沿程阻力损失 p y 局部阻力损失 p j
○总阻力损失 p p y p j
一、热水网路水力计算基本公式
3、管段的沿程损失计算公式?
问题思考
请问:教材P36例2-4中各供暖热用户与 外网可采取何种连接方式?
用户1: 用户2:? 用户3:? 用户4:
To be continued
§4.4热网水泵的选择
一、热网循环水泵的选择方法 1、选择参数的确定 1)流量的确定
流速与质量流量的关系?
3.实际中往往不修正的原因是什么? (P23例子)
§4.2水力计算的方法与步骤
简述水力计算步骤?
0
+2
Q2=1.05×106 W
F2
P3=2.0×104 Pa
+4
+2 60m
0
h3=33m -2 -3
-5
-8
A 150m
B
160m
C
200m D 3
100m
Q3=0.69×106 W P3=1.45×104 Pa

《供热工程》第5章热水供暖系统的水力计算

《供热工程》第5章热水供暖系统的水力计算

P SG2
S Aξ zh
A

900
2
1 2d
4

2
zh d
l
d

5.3.1 热水管路阻力数的计算
串联管路的阻力数
P P1 P2 P3
SchG2 S1G2 S2G2 S3G2
Sch S1 S2 S3
在串联管路中,管路的总阻力数为各串联管段阻力数之和
G1 : G2 : G3 (1/ s1)0.5 : (1/ s2 )0.5 : (1/ s3 )0.5 a1 : a2 : a3 在并联管路上,各分支管段的流量分配与其通导数成正比, 与其阻力数成反比
5.3.2 不等温降水力计算方法和步骤
不等温降水力计算方法
系统中各并联环路的温度降不必相等,而是根据并联环路 平衡要求的压力损失确定环路流量,再由流量来计算环路 的温度降,最后确定散热器面积的水力计算方法
由远及近计算其他环路
先确定计算环路的平均比摩阻Rpj
Rpj

0.5Pi l
计 是算 与环 其路 并的 联作 的用 最压 不头 利, 环路Pa的各管段的压力损失总和
根据计算的Rpj 值和各管段设计流量值,查水力计算表, 得到设计流量下各管段的管径d和实际比摩阻R值,并计 算该环路的总压力损失
较核计算环路的总压力损失与其作用压头的不平衡率
Δ ΔPi ΔHi 100% 15% ΔPi
5.2.1 异程式供暖系统的水力计算
例题
确定如图所示机械循环垂直单管顺流式热水供暖系统管路 的管径。 热媒参数:供水温度tg=95oC;th=70oC。 系统与外网连接,在用户引入口处的供回水压差为30kPa。 图中所示为系统两个支路中的一个支路,楼层高为3m。

供热工程第四章室内热水供暖系统的水力计算

供热工程第四章室内热水供暖系统的水力计算

第三节 机械循环单管热水供暖系统 管路的水力计算方法循环室内热水供暖系统入口处 的循环作用压力已经确定,可根据入口 处的作用压力求出各循环环路的平均比 摩阻,进而确定各管段的管径。
2、如果系统入口处作用压力较高时,必然 要求环路的总压力损失也较高,这会使 系统的比摩阻、流速相应提高。
二、当量局部阻力法和当量长度法
在实际工程设计中,为了简化计算,也 有采用所谓“当量局部阻力法”或“当量长 度法”进行管路的水力计算。
当量局部阻力法(动压头法) 当量局部阻 力法的基本原理是将管段的沿程损失转变为 局部损失来计算。
当量长度法 当量长度法的基本原理是 将管段的局部损失折合为管段的沿程损失来 计算。
不等温降法在计算垂直单管系统时,
将各立管温降采用不同的数值。它是在 选定管径后,根据压力损失平衡的要求, 计算各立管流量,再根据流量计算立管 的实际温降,最后确定散热器的面积。 不等温降法有可能在设计上解决系统的 水平失调问题,但设计过程比较复杂。
第二节 重力循环双管系统管路 水力计算方法和例题
3.确定最不利环路各管段的管径d。
(1)求单位长度平均比摩阻
(2)根据各管段的热负荷,求出各管段的流量
(3)根据G、Rpj,查附录表4—1,选择最接近Rpj 的管径。选用的Rpj越大,需要的管径越小,会降
低系统的基建投资和热损失,但系统循环水泵的投 资和运行电耗会随之增加。所以需要确定一个经济 比摩阻,使得在规定的计算年限内总费用为最小。 机械循环热水供暖系统推荐选用的经济平均比摩阻 一般为60~120Pa/m。
(3)求通过底层与第二层并联环路的压降不平衡率。
10.确定通过立管I第三层散热器环路上各管段 的管径,计算方法与前相同。计算结果如下:

供热工程第九章热水网络的水力计算和水压图

供热工程第九章热水网络的水力计算和水压图

(1)、横坐标表示供热系统的管段单程长度,以米为单位。
下半部:表示供热系统的纵向标高,包括管网,散热器,
循环水泵,地形及建筑物的标高.对于室外热水
供热系统,当纵坐标无法将供热系统组成表示
(2)、纵坐标
清楚时,可在水压图的下部标出供热系统示意图.
上半部:供热系统的测压管水头线,包括动水压线(表示供
热系统在运行状态下的压力分布)和静水压线(在
(4)画动水压线
O点处的压头不论在系统工作时还是停止运 行时,都是不变的,等于膨胀水箱的高度, 那么动压线的起点与静压线在此处重合, 即图中的O点。当系统工作时,由于水泵驱 动水在系统中循环流动,A点的测压管水头 必然高于O点的测压管水头,两者之间的差 值就是OA的压力损失,这样A点的测压管 水头就确定了,即图中的点,同理可以确 定其它各点的测压管水头高度。
二、绘制热水网路水压图的步骤和方法
1、以网路循环水泵的中心线的高度(或其它方便的高度) 为基准面,一定的比例尺作出标高的刻度。
2、选定静水压曲线的位置。 静水压曲线是网路循环水泵停止工作时,网络上
各点的测压管水头的连接线,是一条水平的直线,静 水压曲线的高度必须满足下列的技术要求: (1)、在与热水网路直接连接的用户系统内,底层散热 器的所承受的静水压力不应超过散热器的承压能力。 (2)、热水网路及与它直接连接的用户系统内,不会出 现汽化和倒空。
一、热水网路压务状况的基本技术要求
1、在与热水网路直接连接的用户系统内,压 力不应超过该用户系统用热设备及其管道 构件的承压能力。(保证设备不压坏)
如柱形铸铁散热器的承压能力 4 105为Pa, 作用在该用户系统最底层散热器的表压力, 无论在网络运行或停止运行时都不得超过 Pa。 4 105

供热工程第9章 热水网路的水力计算和水压图

供热工程第9章 热水网路的水力计算和水压图

第二节 热水网络水力计算方法和例题
热水网络水力计算所需资料: 1.网路的平面布置图(平面图上应标明管道所有的附 件和配件); 2.热用户热负荷的大小; 3.热源的位置以及热媒的计算温度。
热水网路的水力计算方法及步骤:
1、确定热水网路中各个管段的计算流量
管段的计算流量就是该管段所负担的各个用户的计算 流量之和,以此计算流量确定管段的管径和压力损失。
2 利用水压图分析系统中管路的水力工况
① 利用水压曲线,可以确定管道中任何一点的压力 (压头)值。
管道中任意点的压头就等于该点测压管水头高 度和该点所处的位置高度之间的高差。
② 利用水压曲线,可表示出各管段的压力损失值。
p1
g
Z1
p2
g
Z2
H 1 2
③ 利用水压曲线,确定管段的单位管长平均 压降 。 水压曲线越陡,单位管长的平均压降 就越大。
第一节 热水网路水力计算的基本公式
热水网路的水流量通常以吨/小时(t/h)表示。表达每米管 长的沿程损失(比摩阻)R、管径d和水流量G的关系式,可改 写为
R
6.25102
Gt2 d5
Pa / m
式中 R —每米管长沿程损失(比摩阻),Pa / m;
R 6.88103 K 0.25 Gt2
d 5.25
2、确定热水网路的主干线及其沿程比摩阻
热水网路水力计算是从主干线开始计算。网路 中平均比摩阻最小的一条管线称为主干线。在一 般情况下,热水网路各用户要求预留的作用压差 是基本相等的,所以通常从热源到最远用户的管 线是主干线。在一般情况下,热水网路主干线的 设计平均比摩阻可取30~70Pa/m。
3、根据网路主干线各段的计算流量和初步选用的 平均比摩阻R值,利用附录9-1的水力计算表,确 定主干线各管段的标准管径和相应的实际比摩阻。

采暖管道水力计算(精)

采暖管道水力计算(精)

K ——管壁的当量绝对粗糙度(m),室内闭式采暖热水管路K =0.2×103m ,室外供热管网

K =0.5×103m ;
v ——热媒在管内的流速,根据热量和供回水温差计算确定(m/s);
,根据供回水平均温度按按本院技术措施表A. 2.1取值。 γ——热媒的运动粘滞系数(m2/s)
λ={
d j ⎡
1.4 热水采暖的垂直双管系统各层支管之间重力水头H z
H z =
2
h (ρh −ρg g (Pa ) 3
式中 h ——计算环路散热器中心之间的高差 (m;
1.5 单管跨越式系统水温降
1.5.1 单管跨越式系统的散热器和跨越管流量分配
1 单管跨越式系统散热器支路和跨越管支路的流量通过以下2式求得:
=G
t si ——第i 组散热器的出水温度(℃); t i ——第i 组散热器与之后的管道温度(℃); t i-1——第i 组散热器之前的管道温度(℃)。 ∑Q, G,t 0
i-1
si
ki
si i h
1.6 散热器数量N
N =N ' ⋅β1⋅β2⋅β3=
Q
β1⋅β2⋅β3 (1.6) n
C ⋅Δt s
N ’——设计工况下散热器数量(长度或片数);
表7:适用于采用钢管的一般垂直单管系统;(包括立管及干管,计算至建筑热力入口与室外干线连接处。为提高计算速度,本表管道摩擦阻力系数λ采用阿里特苏里公式) 2.1.4 室外供热管道
表8:适用于采用钢管的室外供热管道。
2.2 双管系统
2.2.1 住宅等水平双管系统
1、 一般最远端散热器支路为该户最不利环路。
1.3.3 室外热水供热管网局部阻力按与沿程阻力的比值计算确定,见下表:

供热管网水力平衡计算及分析

供热管网水力平衡计算及分析

供热管网水力平衡计算及分析1 问题的提出中南建筑设计院西区(生活区)集中低温热水采暖系统于1991年完成设计及施工,并于当年年底投入运行。

系统运行至今已有十年,大大改善了我院职工的生活条件。

但该热水采暖系统自运行之初起,就存在着热力失衡问题。

后随着用户的增加,管网作用半径的增大,随着燃煤蒸汽锅炉、汽-水换热器、热水循环泵运行效率的降低,也随着采暖系统阀件及沿程管道性能的弱化,采暖系统运行效率降低,热力失衡问题越来越严重,具体表现在管网末端用户的采暖效果越来越差。

为配合我院沿街开发的形势,院西区两栋临街多层住宅拆除,由于采暖用户(以下均指单栋或单元建筑)减少采暖外网须相应调整,此举可部分程度缓解采暖系统效果恶化情况,但热力管网水力失衡问题尚未得到解决。

2 管网水力计算及平衡分析基于上述原因,我们对院西区采暖热网进行水力计算及分析,拟采取水力平衡阀等技术措施对该采暖热网进行水力平衡,以期改善西区整体采暖效果。

2.1 计算条件已知条件(1)外网各环路管段管径及沿程长度,各单位采暖设计热负荷及总设计热负荷。

各环路用户采暖热负荷说“表1”表一1,34,7北大28单29单幼儿幼儿用户名称单元单元单元单元单元板元元园南园北热负荷126.1 126.1 160.0 51.0 33.6 44.1 38.0 70.7 70.7 78.2 (kw) 续表一3334357,1011,14中南海15,21用户名称 23户中单单元单元单元单元单元单元热负荷(kw) 55.7 60.9 60.9 155.8 184.7 184.7 527.6 115.0(2)各环路用户室采暖水系统所需资用压头,由各单体采暖设计图纸及资料获得,参见“表四”及“表五”中“用户所需资用压头”项。

假定条件:(1)由于锅炉及换热器效率的降低,根据该系统运行经验采暖供水最高温度为80?,最大供回水温差15,18?。

采暖供回水温度取80/60?。

(2)由于系统运行多年外管内壁粗糙度增大,外管内壁粗糙度取K=0.5mm。

采暖系统水力计算汇总

采暖系统水力计算汇总
在《供热工程》P97和P115有下面两段话:可以看出对于单元立管平均比摩阻的选择需要考虑重力循环自然附加压力的影响,试参照下面实例,分析对于供回水温60/50℃低温热水辐射供暖系统立管比摩阻的取值是多少?
实例:
附件6.2关于地板辐射采暖水力计算的方法和步骤(天正暖通软件辅助完成)
6.2.1水力计算界面:
根据施工图
“供水方式”选择“下供下回”
接着再根据施工图:
“立管形式”选择“双管”
“立管关系”选择“异程”
勾选“分户计量”
“采暖形式”选择“地板采暖”
点击“确定”
2.第二步在【设置】菜单中的【生成框架】完成下列内容:
楼层数:6层
系统分支数:1
分支1样式
分支2样式
本住宅楼样式同分支1,所以系统分支数为“1”
b、如右图:一个环路可能承担两个或两个以上房间,如果是这样,计算此环路所带负荷的时候,应该把所承担的房间负荷进行累加,假如某环路承担的是某个整个房间和另一个房间的一部分,如图中环路3,既承担客厅又承担部分餐厅,这时该环路负荷取那个整个房间的负荷与那个承担部分房间的部分负荷(可以用相对盘管面积,相对负荷的原则,按他们所占的面积进行取值。如果这部分靠近外围护结构,应该把其适当的放大,比如乘以1.2的修正系数,以减少实际情况与理论分析的误差。)
每支分支立管数:2
每楼层用户数:2
每用户分支数:3
(见下图单元盘管图)
3.第三步【设置】菜单中“设计条件”
4.第四步在【生成框架】对话框中点击“生成”,如下图
5.第五步在树视图中依次打开“立管1”、“楼层6”、“户1”,如下图:
6.第六步在上图中完成以下几项内容的输入:
1)负荷:指某盘管分支(环路)热媒提供的热量。

常压热水锅炉供暖系统水力计算及应用_于逢川

常压热水锅炉供暖系统水力计算及应用_于逢川

常压热水锅炉供暖系统水力计算及应用于逢川马有江(北京科技大学)(航天总公司067基地,西安710000)1引言常压热水锅炉具有成本低、使用寿命长和运行安全可靠的优点。

但对常压热水锅炉在低温热水供暖系统中应用的利与敝问题,目前还有不同看法。

一种认为常压热水锅炉供暖系统的根本缺点是循环水泵要承担系统高度的静水压力,电能消耗约为有压热水锅炉的2~7倍,楼层越高倍数越大,在实际工程中难以采用。

另一种看法是常压热水锅炉能够从根本上消除锅炉爆炸可能带来的人身伤亡及直接或间接经济损失,这些优点比增加一些能耗更为重要。

以上两种观点的主要分歧在于对常压热水锅炉供暖系统电能消耗的看法不一致。

因此本文对常压热水锅炉供暖系统与承压锅炉供暖系统水力计算方法进行比较,给出上述两种供暖系统电能消耗的计算式,进一步计算出常压热水锅炉供暖系统比承压热水锅炉供暖系统增加的电能(以下称为附加损失),同时提出减少能耗的措施。

2热水锅炉供暖系统水力计算常压热水锅炉供暖系统与承压热水锅炉供暖系统的水力计算主要区别在于其水力循环方式不同。

常压热水锅炉供暖系统的水力循环方式为开式(锅炉内液体表面直接承受大气压力的作用),而承压热水锅炉供暖系统的水力循环方式为封闭式循环(锅炉内液体承受循环水泵出口压力)。

因此,两者的水力计算方法有所不同。

为便于分析比较,现将以上两种供暖系统的水力计算简述如下。

2.1承压热水锅炉供暖系统水力计算从承压热水锅炉供暖系统水压图(见图1)可以清楚的看出:(1)承压热水锅炉供暖系统循环水泵出口压力H ch计算式为:H c h=H y+H d(1)式中:H ch-循环水泵出口压力(Pa);H y-供暖循环水泵扬程(Pa);H d-供暖循环水泵定压(Pa)。

H d的作用在于能够保证供暖系统最不利点的压力,不论系统在运行或停止工作时,都必须大于大气压力。

显而易见,在能满足上述条件的前提下,系统定压越小,供暖系统承受压力就越小,安全系数就越大。

供热热网的水压图及水力、热力调节15

供热热网的水压图及水力、热力调节15

二、水压图——绘制
静水压线的基本要求
(1).不超压 在直接连接的用户系统内,压力不应超过 用热设备及其管道构件的承压能力。如供暖用户系统一 般常用的柱形铸铁散热器,其承压能力为4bar ,因此 ,作用在该用户系统最底层散热器的表压力,无论在网 路运行或停止运行时都不得超过4bar 。 (2).不汽化 在高温水网路和用户系统内,水温超过 100℃的地方,热媒压力不低于该水温下的汽化压力。
动水压曲线的位置
由于假设定压点位置设在网路循环水泵 的吸入端,回水管动水压线全部高出静水压 线j-j,所以供水管内热水不会出现汽化现象。 网路供、回水管之间的资用压差,在网路末 端最小,因此,只要选定网路末端用户入口 或热力站处所要求的作用压头,就可确定网 路供水主干线末端的动水压线的水位高度。 根据供水干管的平均比压降或根据热网供水 干管的水力计算结果,可绘出供水主干管的 动水压曲线。 供热工程 第九 章 第四 节
静水压线高度保持的措施——定压,高位 膨胀水箱即是一种定压方式,其他方式还 有补水泵变频定压等
静水压线
G’’ Bo G’
Zo
A B
0
O
0
22
二、水压图——绘制
5.确定回水管动压线 原则:压力最低位置不吸气、不倒空;压力最高位置不超 压。 满足上述原则时取最低的。 具体的绘制方法:从定压点开始,按各回水管段计算阻力 损失绘制。 6.确定供水管动压线 原则:压力最低位置不汽化、保证循环资用压差; 具体的绘制方法:确定最远用户的资用压力后,按各供水 管段计算阻力损失绘制。
动水压曲线的位置
假设末端用户4资用压差为10H2O,供 水干管动水压曲线在末端C点的标高为 35+10=45m,供水干管总压力损失与回水干 管相等,即10mH2O,在热源出口处D点, 供水管动水压曲线的标高为45+12=57m。

【精品】塑料采暖管道快速水力计算表

【精品】塑料采暖管道快速水力计算表

【关键字】精品耐热聚乙烯管道快速水力计算表刘学来1,2 李永安1 李继志21、山东建筑大学2、中国石油大学摘要:根据塑料管道的特点,阐述了采暖塑料管道的选择原则及注意事项。

对塑料采暖管道水力计算进行了数学描述,通过计算机编程计算编制了耐热聚乙烯管道的水力计算表。

工程技术人员在实际工作中可以快速查询,方便应用。

关键词:塑料管材水力计算分级体系采暖Plastic Heating Tubes Quick Hydraulic Calculating TableLiu Xue-lai1 Li Yong-an1 Li Ji-zhi21. 2.ChinaAbstract According to plastic tubes characteristic, elaborated the heating plastic tubes selection principle and the matters needing attention. Has carried on mathematics description to the heating plastic tubes water power computation and has established the commonly used plastic tubes water power computation table through the computer programming computation. The tables may be used to the engineering personnel in practice.Keywords plastic tubing ; hydraulic calculating ; graduation system ; heating1、引言塑料管道具有不锈蚀、施工简单、不结垢、环保、无污染、沿程阻力小等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档