2016年3月14日SAT官方每日一题---数学选择
美国“高考”SAT考试的数学题
美国“高考”SAT考试的数学题数学第一部分时间(25分钟)16个问题说明:这部分包含有两种类型的问题。
你将有25分钟时间来完成他们.对于1-8,在所给选项中选出一个最佳答案,然后再答题卡上填上相应的圆圈,你可以使用任何可用的草稿纸空间。
注释:1、可以使用计算器。
2、所有使用的数字均为实数。
3、在测试中,问题中所提供的数字或图表都包含一定的信息,这对于解题很有帮助。
所有图表都是比较准确的,除非在某些具体问题中,图表没有按比例绘制。
所有数字都呈现于平面上,除非另有说明。
4、除非另有规定,对于任何函数f 的值域都是所有实数x 的集合,并使得f(x) 是实数。
可能用到的公式:1、If 4(t+u)+ 3 =19,then t+u=如果4(t+u)+ 3 =19, 那么t+u=A 3B 4C 5D 6E 72、如图,三条直线相交于一点。
如果f=85,e=25,那么a 的值是多少?A 60B 65C 70D 75E 853、如果玛丽开车行驶n 英里用了t 小时,那么下列哪个可以表示她行驶的平均速度,英里/小时?A n/tB t/nC 1/ntD ntE n²t4、如果a 是一个奇数,b 是一个偶数,那么选项中哪一个是奇数?A 3bB a+3C 2(a+b)D a+2bE 2a+b5、在平面坐标内,F(—2,1),G(1,4),H(4,1)在以P为圆心的圆上,那么点P的坐标是什么?A(0,0)B(1,1)C(1,2)D(1,—2)E(2.5,2.5)6、如图,如果-3≤x≤6,那么x 有几个值,使得f(x)=2?A 零B 一个C 两个D 三个E 三个以上7、如果t 和t+2 的算术平均值是x, t 和t-2的算术平均值是y,那么x 和y 的算术平均值是多少?A 1B 1/2C tD t+1/2E 2t8、对于任何数x 和y,假设x△y=x²+xy+y²,那么(3△1)△1等于多少?A 5B 13C 27D 170E 1839、摩根的植物在一年之内从42厘米长到57厘米。
上海市2016届高三数学3月月考试题(理,有答案)AKMAHM
上海市2016届高三数学3月月考试题 理考生注意:1.本试卷共4页,23道试题,满分150分,考试时间120分钟.2.本考试分设试卷和答题纸. 作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.一、填空题(本大题共有14题,满分56分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1. 已知集合{}{}032,lg 2<--===x x x B x y x A ,则A B =I _______________. 2.复数(1i)(1i)a ++是实数,则实数a =_______________. 3. 方程22log (x 1)2log (x 1)-=-+的解集为_________. 4.已知圆锥的轴与母线的夹角为3π,母线长为3,则过圆锥顶点的轴截面面积的最大值为_________. 5.已知0y x π<<<,且tan tan 2x y ⋅=,1sin sin 3x y ⋅=,则x y -= . 6. 设等差数列{}n a 的前n 项和为n S ,若7=42S ,则237a a a ++= .7.圆22(2)4C x y -+=:, 直线1:3l y x =,2:1l y kx =-,若12,l l 被圆C 所截得的弦的长度之比为1:2,则k 的值为_________.8.设正三棱柱的所有顶点都在一个球面上,且该正三棱柱的底面边长为3,侧棱长为2,则该球的表面积为_________. 9. 已知()ln()f x x a x=+-,若对任意的R m ∈,均存在00x >使得0()f x m =,则实数a 的 取值范围是 .10.直线=(1)(0)y k x k +>与抛物线2=4y x 相交于,A B 两点,且,A B 两点在抛物线的准线 上的射影分别是,M N ,若2BN AM =,则k 的值是 . 11.在极坐标中,直线sin 3ρθ=被圆4sin ρθ=截得的弦长为 .12.一射手对靶射击,直到第一次中靶为止.他每次射击中靶的概率是0.9,他有3颗弹子,射击结束后尚余子弹数目ξ的数学期望E ξ= . 13. 已知ABC ∆,若存在111A B C ∆,满足111cos cos cos 1sin sin sin A B CA B C ===,则称111A B C ∆是ABC ∆的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是_______:(请写出符合要求的条件的序号) ①90,60,30A B C ===o o o ;②75,60,45A B C ===o o o ; ③75,75,30A B C ===o o o . 14.如图,在△ABC 中,90ACB ︒∠=,2AC =,1BC =, 点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点A BCE C 1A 1B 1FC 随之在y 轴上运动,在运动过程中,点B 到原点O 的最大距离是 .二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分 15.已知数列{}n a 中,1111,1n na a a +==+,若利用下面程序框图计算该数列的第2016项,则判断框内的条件是( ) A .2014≤n B .2016n ≤ C .2015≤n D .2017n ≤16.在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若221sin cos 2C C -=,则下列各式正确的是 ( )C .2a b c +<D .2a b c +≥17.已知集合22{(,)|1}M x y x y =+≤,若实数,λμ满足:对任意的(,)x y M ∈,都有(,)x y M λμ∈,则称(,)λμ是集合M 的“和谐实数对”.则以下集合中,存在“和谐实数对”的是 ( ) A .}4|),{(=+μλμλB .}4|),{(22=+μλμλ C .}44|),{(2=-μλμλD .}4|),{(22=-μλμλ18. 已知正方体''''ABCD A B C D -,记过点A 与三条直线,,'AB AD AA 所成角都相等的直线条数为m ,过点A 与三个平面..',,'AB AC AD 所成角都相等的直线的条数为n ,则下面结论正确的是 ( )A .1,1m n ==B .4,1m n == C. 3,4m n == D .4,4m n ==三、解答题(本大题共有5题,满分74分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分6分. 如图,在直三棱柱111ABC A B C -中,2BAC π∠=,2AB AC ==, 16AA =,点E F 、分别在棱11AA CC 、上,且12AE C F ==.(1)求四棱锥B AEFC -的体积;(2)求BEF ∆所在半平面与ABC ∆所在半平面所成二面角θ的余弦值.?结束输出A 否是A =1A +1n =n +1n =1,A =1开始20.(本题满分14分)本题共有2小题,第(1)小题满分6分, 第(2)小题满分8分.如图,某城市设立以城中心O 为圆心、r 公里为半径圆形保护区,从保护区边缘起,在城中心O 正东方向上一条高速公路PB 、西南方向上有一条一级公路QC ,现要在保护区边缘PQ 弧上选择一点A 作为出口,建一条连接两条公路且与圆O 相切直道BC .已知通往一级公路道路AC 每公里造价为a 万元,通往高速公路的道路AB 每公里造价为2m a 万元,其中,,a r m 为常数,设POA θ∠=,总造价为y 万元. (1)把y 表示成θ的函数()y f θ=,并求出定义域;(2)当622m +=时,如何确定A 点的位置才能使得总造价最低?6分,第(2)小题8分.已知椭圆2222:1(a b 0)x y C a b+=>>的右顶点、上顶点分别为A 、B ,坐标原点到直线AB的距离为433,且2a b =. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点1F 的直线l 交椭圆于M 、N 两点, 且该椭圆上存在点P ,使得四边形MONP (图形上字母按此 顺序排列)恰好为平行四边形,求直线l 的方程.22.(本题满分16分)本题共有3个小题.第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.对于函数(x)f ,若在定义域内存在实数x ,满足(x)(x)f f -=-,称(x)f 为“局部奇 函数”.(1) 已知二次函数2(x)24(R)f a x x a a =+-∈,试判断(x)f 是否为“局部奇函数”? 并说明理由;(2)若(x)2xf m =+是定义在区间[1,1]-上的“局部奇函数”,求实数m 的取值范围; (3)若12(x)423xx f m m +=-⋅+-是定义在R 的“局部奇函数”,求实数m 的取值范围.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题①满分6分,第(2)小题②满分8分.已知等比数列{}n a 的首项12015a =,数列{}n a 前n 项和记为n S ,前n 项积记为n T . (1) 若360454S =,求等比数列{}n a 的公比q ; (2) 在(1)的条件下,判断|n T |与|1n T +|的大小;并求n 为何值时,n T 取得最大值; (3) 在(1)的条件下,证明:若数列{}n a 中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为12,,,n d d d L ,则数列{}n d 为等比数列.2015学年第二学期考试参考答案和评分标准一、填空题(本大题共14题,每题4分,满分56分) 1. )3,0( 2.-1 3.{}5 4.92 5.3π6. 187.12 8.8π 9. ),4[+∞ 10.22311.(理)23 (文)6 12. (理)1.89 (文)343+ 13.② 14.(理)12+ (文)22(1)(1)1x y -+-= 二、选择题(本大题共4题,每题5分,满分20分)15. C 16. B 17. C 18. D 三、解答题(本大题共5题,满分74分)19.(本题满分12分)本题共2个小题,每小题6分.解:(理)(1)B AEFC V -=111(42)224332AEFC S AB =⋅=⋅⋅+⨯⨯=……6分 (2)建立如图所示的直角坐标系,则)0,0,0(A ,(0,2,0)B ,(0,0,2)E ,(2,0,4)F , (2,0,2)EF =u u r ,(0,2,2)EB =-u u r……………………7分设平面BEF 的法向量为(,,)n x y z =r ,则22011,1220n EF x z z x y n EF y z ⎧⋅=+=⎪⇒==-=⎨⋅=-=⎪⎩u u u r r u u u rr 取得, 所以(1,1,1)n =-r……………………………9分平面ABC 的法向量为1(0,0,1)n =r,则113cos 33n n n n θ⋅===⋅r r r r 所以BEF ∆所在半平面与ABC ∆所在半平面所成二面角θ的余弦值为33.…12分 解:(文)(1)111111111111142223323A B C F F A B C A B C V V S C F --∆==⋅=⋅⋅⨯⨯= …6分 (2)连接CE ,由条件知1//CE FA ,所以CEB ∠就是异面直线BE 与1A F 所成的角.8分在CEB ∆中,22BC CE BE ===,所以60CEB ∠=o, ………………10分所以异面直线BE 与1A F 所成的角为60o. …………………………………12分20.(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分. 解:(1)Q BC 与圆O 相切于A ,∴OA ⊥BC,在∆ABC 中,tan AB r θ=……2分 同理,可得3tan()4AC r πθ=-………4分223tan tan()4y m aAB aAC m ar ar πθθ∴=+=+- 23[tan tan()],(,)442y ar m πππθθθ∴=+-∈………6分 (2)由(1)得2231tan [tan tan()]ar[m tan ]41tan y ar m πθθθθθ--=+-=+- 222[m (tan 1)m 1]tan 1ar θθ=-+++-…………9分(,),tan 1042ππθθ∈∴->Q ∴22m (tan 1)22tan 1m θθ-+≥-………12分 当且仅当2tan 1mθ=-时取等号,又622m +=,所以tan 3,3πθθ== 即A 点在O 东偏南3π的方向上,总造价最低。
SAT数学选择题技巧
SAT数学选择题技巧杭州新航道SAT数学频道小编给大家整理了数学选择题中的一些技巧,希望对大家有所帮助,更多SAT资讯欢迎访问杭州新航道官网。
选择题中干扰项的存在一方面给我们增添了答题的难度,比如讲混淆了我们的思维,误导了我们的答题方向,但另一方面也减轻了答题的难度。
问题的关键在于,我们如何在题干的要求下,以干求肢分析各选项,排除干扰。
其实,考官在设置选项之时也会自觉不自觉地参照于某种规律,这种潜在规律多半发端于设计选项的目的。
这些规律往往也利用人类思维中某些常见的弱点,比如说在逻辑判断与推理中常犯的错误等等。
例如,干扰项与正确项常常会部分相同,部分不同,这样才能考察考生是否是完全掌握了知识点。
再例如,在选项中考官有时会不自觉地设置一个正确项,然而又设置一个与此正确项内容截然相反的错误项,让考生在两者中进行取舍。
而此时我们往往能借助一些选项之间逻辑关系的帮助,缩小选择的范围或确立选择的方向。
排除法,是选择时最为基本,也是最为有效的方法。
在SAT数学选择题的选项中只可能有一个正确答案,所以如果无法得出5个所给选项中的任何一个答案,赶快停下来重新读题,重新做。
SAT数学选择题中不会出现没有答案的现象,所以考生不必把自己认为的答案额外写出来,是无用的。
SAT数学选择题答题技巧中,大家要掌握的最重要的一点就是一定要试着合理地排除答案。
比如你很确定结果是一个正数,那么把负数答案全部画掉。
用类似的方法排除到剩余1~3个答案,再合理的猜测(平时练习一定要这样做,看看你是否适合“猜”答案,如果从来都没正确过,考试的时候千万不要用这样的方法;如果你蒙功比较好,考试的时候你可以猜一下实在做不出来的题目),这也是没有办法的办法。
请记住,SAT数学选择题错一个扣0.25分,不要盲目地猜。
如果考试的时候你的计算结果没有出现/出现多个在5个选项中,赶快停止计算,重新读题目,重新列式计算。
SAT数学选择题分布在SAT数学考试的三个答题区间内,允许考生使用计算器,每一区开头都有一些公式。
三月sat机考题目
三月sat机考题目3月SAT机考题目:1. 请根据下列信息,判断哪个学生在春假中旅行的最长时间。
- 学生A:在春假中旅行了两周。
- 学生B:在春假中旅行了10天。
- 学生C:在春假中旅行了5天。
- 学生D:在春假中旅行了一个月。
参考内容:根据所给信息,学生D在春假中旅行了一个月,而一个月通常有30天,因此学生D在春假中旅行的最长时间。
2. 下列哪个表达式等于1/4?- A) 3/6- B) 2/3- C) 5/8- D) 7/10参考内容:为了确定哪个表达式等于1/4,我们可以将给定的分数化简为最简形式。
只有当分子为1,分母为4时,分数才等于1/4。
因此,我们需要找到分母为4,分子为1的表达式。
根据选项中的分数可以发现,只有选项A) 3/6可以化简为1/4,因为3/6=1/2,而1/2无法与1/4等同。
因此,选项A) 3/6 等于1/4。
3. 下列哪个词与其他词不同类?- A) Dog- B) Cat- C) Apple- D) Cow参考内容:在选项中,A) Dog和B) Cat是两种宠物,是同一类别的。
C) Apple则是一种水果,与宠物无关。
D) Cow是一种牲畜,与宠物不同。
因此,C) Apple与其他词不同类。
4. 请根据下列信息选择填入空白处的最佳选项。
- 我今天早上起床后,首先刷牙,然后 _____。
- A) 吃早餐- B) 去学校- C) 洗脸- D) 喝咖啡参考内容:在早上起床后,刷牙通常是个人卫生的第一步。
所以,在刷牙后,最自然的下一步应该是洗脸,以便清洁脸部。
选项C) 洗脸是填入空白处的最佳选项。
5. 请根据下列信息选择合适的图表类型来表示销售额数据。
- 近5年来某公司的销售额。
- 每年的销售额。
- 与时期相关的销售额变化。
参考内容:根据所给信息,选择合适的图表类型可以更好地呈现销售额数据。
给定的信息表明,我们需要显示每年的销售额以及销售额随时间的变化。
在这种情况下,折线图是最适合的图表类型。
SAT数学选择题的技巧总结
SAT数学选择题的技巧总结
sat数学考试中,共44道选择题和10道填空题。
答题时间是70分钟。
解答sat数学选择题的时候,一个非常重要的答题原则就是sat数学选择题答错要扣分,扣0.25分,所以大家一定要谨慎,不要随意的猜。
不要在某个题目上花太长的时间。
所有题目都是一个一分,不要在关键时候挑战自己,如果题目看了半天还是没有头绪,在题号上做个明显的标记,等全部题目做完再回来认真读题目,写下已知量,尝试列算式。
sat数学选择题,顾名思义,从题目下方的a,b,c,d,e5个选项中选择正确的*。
注意:只可能有一个正确*,如果你无法得出5个所给选项中的任何一个*,赶快停下来重新读题,重新做。
不要以为这和国内部分考题一样会出现没有*的现象而自己把自己的*额外写出来。
选择题要试着合理地排除*,比如你很确定结果上一正数,那么把负数*全部画掉。
用类似的方法排除到剩余1~3个*,再合理的猜测。
2016年华侨、港澳台联考数学真题 (含答案与详细解析)
绝密★启用前2016年中华人民共和国普通高等学校 联合招收华侨、港澳地区、台湾省学生入学考试数 学一、选择题:本大题共12小题;每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设集合{|11}A x x =-<,{|22}x B x =<,则AB =( )(A ){|01}x x << (B ){|02}x x << (C ){|2}x x < (D )∅(2)若02απ≤<,且2sin 1α≤,则α的取值范围是( )(A )[0,2)π(B )5[0,)[,2)33πππ (C )5[,]66ππ(D )5[0,)[,2)66πππ (3)平面向量(,3)a x =与(2,)b y =平行的充分必要条件是( )(A )0x =,0y= (B )3x =-,2y =- (C )6xy =(D )6xy =-(4)复数22(12)(2)i i -+的模为( )(A )1 (B )2(C (D )5(5)等比数列{}n a 的各项都为正数,记{}n a 的前n 项和为n S ,若31S =,524S S -=,则1a =( )(A )19 (B )17(C )15 (D )13(6)函数21log ((1,))1yx x =∈+∞-的反函数是( )(A )21()x y x R -=+∈ (B )12((1,))x y x -=-∈+∞(C )12()xyx R -=∈ (D )112(,1)x yx R x -=∈≠(7)设直线24y x =-与双曲线C :2221y x b-=的一条渐近线平行,则C 的离心率为( )(A (B (C )3 (D )5(8)若函数([1,1])x y a x =∈-的最大值与最小值之和为3,则22a a -+=( )(A )9 (B )7(C )6 (D )5(9)从1,2,3,4,5,6中任取3个不同的数相加,则不同的结果共有( )(A )6种(B )9种 (C )10种(D )15种(10)正四棱锥的各棱长均为1,则它的体积是( )(A )3(B )6(C )6 (D )16(11)抛物线21(1)4yx =-的准线方程为( )(A )0x = (B )1516x =(C )1x = (D )1716x=(12)曲线111y x=+-的对称轴的方程是( )(A )y x =-与2y x =+ (B )y x =与2y x =-- (C )y x =-与2yx =-(D )y x =与2yx =-+二、填空题:本大题共6小题;每题5分。
sat数学试题
SAT 数学题分成了选择题和计算题,相对于 SAT 数学选择题,答案还有一些提示的作用,SAT 数学计算题就需要大家自己进行解答了。
下面为大家推荐的这道 SAT 数学计算题是非常典 型的代数方程类的题目,大家一起来看看吧。
What value of satisfies both of the equations above? The correct answer is1/2 or 。
5 Explanation Difficulty: MediumSince, the value ofis either or 。
ORThe two values of that satisfy the first equation are and .Since, the value ofis either or .ORThe two values of that satisfy the second equation are and .You are asked to find the value of that satisfies both equations. That value is 。
The answer can be entered in the grid asor 。
下面是两道 SAT 数学练习题,都是选择题,后面附有答案及其解析。
SAT 数学练习题可以让 大家更快更好的了解 SAT 数学考试的出题方式以及应对方式.下面是详细内容,我们一起来 看一下这些 SAT 数学练习题的吧。
1、 Cone A has volume 24。
When its radius and height are multiplied by the same factor, the cone’s surface area doubles. What is Cone A’s new volume?(A)(B)48(C)(D)96 (E)Not enough information to tell 2、 A rectangle stands so that its 6 inch side lies flat against the ground。
揭秘SAT数学选择题答题技巧-智课教育出国考试.
智课网 S A T 备考资料
揭秘SAT数学选择题答题技巧-智课教育出国考试
揭秘SAT数学选择题答题技巧,希望对大家有所帮助。
SAT数学考试中,选择题站了很大一部分,因此把握选择题的技巧是非常必要的。
首先,不要在某个题目上花太长的时间。
所有题目都是一个一分,不要在关键时候挑战自己,如果题目看了半天还是没有头绪,在题号上做个明显的标记,等全部题目做完再回来认真读题目,写下已知量,尝试列算式。
SAT数学选择题,只可能有一个正确答案,如果你无法得出5个所给选项中的任何一个答案,赶快停下来重新读题,重新做。
不要以为这和国内部分考题一样会出现没有答案的现象而自己把自己的答案额外写出来。
选择题要试着合理地排除答案,比如你很确定结果上一正数,那么把负数答案全部画掉。
用类似的方法排除到剩余1~3个答案,再合理的猜测。
如果SAT数学考试的时候你的计算结果没有出现/出现多个在5个选项中,赶快停止计算,重新读题目,重新列式计算。
SAT数学考前确认自己是否记清所有要用到的公式,概念以及考试可能会用到的单词。
虽然考试卷子上会给出所谓的公式,但是都是些简单的面积,体积,三角函数,
角度计算公式,中国考生应该没有谁不记得吧。
避免考试的时候现推导公式而浪费时间。
上述就是SAT数学选择题答题技巧介绍,希望可以给大家参考,预祝大家取得理想的考试成绩。
SAT数学真题精选
SAT数学真题精选编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(SAT数学真题精选)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为SAT数学真题精选的全部内容。
SAT数学真题精选1.If 2 x + 3 = 9, what is the value of 4 x – 3 ?(A) 5 (B)9 (C) 15 (D) 18 (E) 21 2。
If 4(t + u) + 3 = 19, then t + u = ?(A) 3 (B) 4 (C) 5 (D) 6 (E)73。
In the xy-coordinate (坐标) plane above, the line contains the points (0,0)and (1,2)。
If line M (not shown) contains the point (0,0) and is perpendicular (垂直) to L, what is an equation of M?(A) y = —1/2 x (B) y = —1/2 x + 1 (C) y = — x (D) y = — x + 2 (E) y = -2x4. If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers?(A)K + 5 (B)K + 15 (C) K + 20 (D)K + 30 (E) K + 455. There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats。
sat考试题及答案
sat考试题及答案SAT考试题及答案1. 阅读部分阅读部分包含52个问题,分为5篇文章,每篇文章后附有若干个问题。
以下是一篇示例文章及相关问题。
文章摘要:本文讨论了城市化对环境的影响,特别是城市扩张对野生动物栖息地的破坏。
问题1:作者提到城市化的主要目的是什么?A. 提高城市居民的生活质量B. 增加城市的经济收入C. 减少对自然环境的破坏D. 保护野生动物的栖息地正确答案:A问题2:根据文章,城市扩张对野生动物栖息地的影响是什么?A. 栖息地面积增加B. 栖息地面积减少C. 栖息地质量提高D. 栖息地质量下降正确答案:B2. 写作和语言部分写作和语言部分包含44个问题,要求考生修改句子、段落和整个文章,以提高语言的准确性和表达的清晰度。
问题3:以下句子中,哪个选项是语法正确的?A. She is one of the most talented singers who has ever performed.B. She is one of the most talented singers who have ever performed.C. She is one of the most talented singers who had ever performed.D. She is one of the most talented singers who has ever performed.正确答案:B问题4:以下哪个选项最适合填入空白处,以使段落连贯?原文:"The new policy aims to reduce traffic congestion by encouraging people to use public transportation."A. However, many people still prefer driving their own cars.B. Therefore, the policy has been successful in reducing traffic.C. As a result, the number of cars on the road has decreased.D. Despite this, traffic congestion remains a problem.正确答案:A3. 数学部分数学部分包含58个问题,分为两个部分:无需计算器部分和需计算器部分。
(完整版)sat数学考试试题(可编辑修改word版)
SAT 数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x – 3 ?(A) 5 (B) 9 (C) 15 (D) 18 (E) 212. If 4(t + u) + 3 = 19, then t + u = ?(A) 3 (B) 4 (C) 5 (D) 6 (E) 73.In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is perpendicular (垂直)to L, what is an equation of M?(A) y = -1/2 x(B) y = -1/2 x + 1(C)y = - x(D)y = - x + 2(E)y = -2x4.If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers?(A) K + 5 (B) K + 15 (C) K + 20 (D) K + 30 (E) K + 455.There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium?(A) 800 (B) 1,000 (C) 1,100 (D) 1,300 (E) 1,7006.If rsuv = 1 and rsum = 0, which of the following must be true?(A) r < 1 (B) s < 1 (C) u= 2 (D) r = 0 (E) m = 07.The least integer of a set of consecutive integers (连续整数) is –126. if the sum of these integers is 127, how many integers are in this set?(A) 126 (B) 127 (C) 252 (D) 253 (E) 2548.A special lottery is to be held to select the student who will live in the only deluxe room in a dormitory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. Each senior’s name is placed in the lottery 3 times; each junior’s name, 2 time; and each sophomore’s name, 1 times. If a student’s name is chosen at random from the names in the lottery, what is the probability that a senior’s name will be chosen?(A)1/8 (B) 2/9 (C) 2/7 (D) 3/8 (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus?(A) 90% (B) 5% (C) 40% (D) 20% (E) 25% Question #2: In the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC?(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a?(A)7 (B)8 (C)9 (D)11 (E)4Question #4: What is the value of b, if x = 2 is a solution of equation x2 - b · x + 1 = 0?(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | < x + 1 ?(A)-1/2 (B)1/2 (C)1 (D)-1 (E)2Question #6: If integers m > 2 and n > 2, how many (m, n) pairs satisfy the inequality m n < 100?(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase is 50% every 20 years. How may times larger will the deer population be in 60 years ?(A)2.275 (B)3.250 (C)2.250 (D)3.375 (E)2.500 Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4Question #9:The number of medals won at a track and field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams?(A)20% (B)6.66% (C)26.6% (D)33.3% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube?(A)66 (B)60 (C)76 (D)96 (E)65Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x ?(a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and x2 = 4(e) x1 = 6 and x2 = 0Question #2: In the (x, y) coordinate plane, three lines have the equations:l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2?(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c = 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managers have a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a master degree? (a) 125 (b) 150 (c) 175 (d) 200 (e) 225 Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE =(a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If α and β are the angles of the right triangle shown in the figure above, then sin2α + sin2β is equal to:(a) cos(β)(b) sin(β)(c) 1 (d) cos2(β)(e) -1 Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a?(a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e) a = 11Question #1: If f(x) = x and g(x) = √x, x≥ 0, what are the solutions of f(x) = g(x)? (A) x = 1 (B)x1 = 1, x2 = -1(C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateral? The radius of the circle is 9(a) π(b) 2 ·π(c) 3 ·π(d) 4 ·π(e) π/2 Question #3: What is the probability that someone that throws 2 dice gets a 5 and a 6? Each dice has sides numbered from 1 to 6.(a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36 Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes from A to B at a speed of 15 miles/hour while his return speed is 10 miles/hour. What is the distance between the 2 towns?(a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 miles Question #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2. The radius of C2 is equal to the edge of C1. What is the height of C2?(a)2·a/π(b)a / π(c)a / (2·π)(d)a / π(e)a + πQuestion #6: How many integers x are there such that 2x < 100, and at the same time the number 2x + 2 is an integer divisible by both 3 and 2?(a)1 (b)2 (c) 3 (d) 4 (e)5Question #7: sin(x)cos(x)(1 + tan2(x)) =(a)tan(x) + 1 (b)cos(x)(c)sin(x) (d)tan(x)(e)sin(x) + cos(x)Question #8: If 5xy = 210, and x and y are positive integers, each of the following could be the value of x + y except:(a)13 (b) 17 (c) 23 (d)15 (e)43Question #9: The average of the integers 24, 6, 12, x and y is 11. What is the value of the sum x + y?(a)11 (b)17 (c)13 (d)15 (e) 9Question #10: The inequality |2x - 1| > 5 must be true in which one of the following cases?I. x < -5 II. x > 7 III. x > 01.Three unit circles are arranged so that each touches the other two. Find the radiiof the two circles which touch all three.2.Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.3.(1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that x y = y x.(2) Show that 12 - 22 + 32 - 42 + ... + (-1)n+1n2 = (-1)n+1(1 + 2 + ... + n).4.All coefficients of the polynomial p(x) are non-negative and none exceed p(0). Ifp(x) has degree n, show that the coefficient of x n+1 in p(x)2 is at most p(1)2/2.5.What is the maximum possible value for the sum of the absolute values of thedifferences between each pair of n non-negative real numbers which do not exceed 1?6.AB is a diameter of a circle. X is a point on the circle other than the midpoint ofthe arc AB. BX meets the tangent at A at P, and AX meets the tangent at B at Q.Show that the line PQ, the tangent at X and the line AB are concurrent.7.Four points on a circle divide it into four arcs. The four midpoints form aquadrilateral. Show that its diagonals are perpendicular.8.Find the smallest positive integer b for which 7 + 7b + 7b2 is a fourth power.9.Show that there are no positive integers m, n such that 4m(m+1) = n(n+1).10.ABCD is a convex quadrilateral with area 1. The lines AD, BC meet at X. Themidpoints of the diagonals AC and BD are Y and Z. Find the area of the triangle XYZ.11.A square has tens digit 7. What is the units digit?12.Find all ordered triples (x, y, z) of real numbers which satisfy the following systemof equations:xy = z - x - yxz = y - x - zyz = x - y - z第11 页共11 页。
三月sat机考题目
三月sat机考题目(原创版)目录1.三月 SAT 机考题目概述2.三月 SAT 机考题目内容3.三月 SAT 机考题目分析4.三月 SAT 机考题目对考生的影响正文【三月 SAT 机考题目概述】每年三月,SAT(Scholastic Assessment Test,学术能力评估测试)机考都会吸引众多学生参加。
SAT 考试是全球范围内最受欢迎的大学入学考试之一,其成绩被许多国家和地区的大学作为录取的重要依据。
三月的SAT 机考题目涵盖了阅读、写作和数学三个方面,旨在全面评估学生的学术能力。
本文将对三月 SAT 机考题目进行分析,帮助考生更好地应对考试。
【三月 SAT 机考题目内容】1.阅读部分:阅读部分包括一篇文章,考生需要仔细阅读并回答相关问题。
文章主题多样,可能涉及历史、科学、文学等各个领域。
考生需要具备快速阅读和理解的能力,以便在有限的时间内准确回答问题。
2.写作部分:写作部分要求考生在规定时间内,根据题目要求进行写作。
这部分主要测试考生的文字表达能力、逻辑思维和论证能力。
考生需要熟悉各种写作技巧,并能够灵活运用。
3.数学部分:数学部分包括选择题和填空题,涉及算术、代数、几何等多个方面的知识。
考生需要具备扎实的数学基础,并能够运用所学知识解决实际问题。
【三月 SAT 机考题目分析】1.阅读部分:阅读部分题目难度适中,重点测试考生的信息提取和推理能力。
在备考过程中,考生需要注重提高阅读速度和理解能力,同时加强对文章结构的把握。
2.写作部分:写作部分题目具有较强的开放性,考生需要根据自己的观点进行论述。
在备考过程中,考生需要注重积累写作素材,提高自己的论证能力和语言表达能力。
3.数学部分:数学部分题目难度相对较低,但涉及的知识点较广。
在备考过程中,考生需要加强对数学基础知识的掌握,并熟练运用各种解题方法。
【三月 SAT 机考题目对考生的影响】三月 SAT 机考题目对考生的影响主要体现在以下几个方面:1.对考生的学术能力进行全面评估,帮助考生了解自己在各个方面的优势和不足。
SAT数学试题及答案
If the rectangle is rotated about a side of length 4, then the height of the cylinder will be 4 and the radius will be 6.
Once you visualize the cylinder, youcan plug in the values for the volume of a cylinder:
Read the following SAT testquestion and then click on a button to select your answer.
The quadratic function is graphed in the -plane above. If for all values of , which of the following could be the coordinates of point ?
下面是两道SAT数学练习题,都是选择题,后面附有答案及其解析。SAT数学练习题可以让大家更快更好的了解SAT数学考试的出题方式以及应对方式。下面是详细内容,我们一起来看一下这些SAT数学练习题的吧。
1、Cone A has volume 24. When its radius and height are multiplied by the same factor, the cone’s surface area doubles. What is Cone A’s new volume?
一道SAT数学题(抛物线)
天道留学时间:2011-08-26
点击:26次
下面是一道关于抛物线的SAT数学题及其解法的内容,非常详细。SAT题中,抛物线是必考的一类,虽然中学课程都有所涉及,还是相对比较抽象,尤其是在理解SAT数学题的表达方式上。下面我们来看看这道关于抛物线的SAT数学题吧。
sat数学考试试题
s a t数学考试试题 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】S A T数学真题精选1. If 2 x + 3 = 9, what is the value of 4 x – 3(A) 5? (B) 9 (C) 15 (D) 18? (E) 212. If 4(t + u) + 3 = 19, then t + u =(A) 3 (B) 4(C) 5(D) 6? (E) 73. In the xy-coordinate (坐标) plane above, the line contains the points (0,0) and (1,2). If line M (not shown) contains the point (0,0) and is perpendicular (垂直) to L, what is an equation of M(A) y = -1/2 x(B) y = -1/2 x + 1?(C) y = - x?(D) y = - x + 2?(E) y = -2x4. If K is divisible by 2,3, and 15, which of the following is also divisible by these numbers(A) K + 5 (B) K + 15(C) K + 20(D) K + 30(E) K + 455. There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which of the following could be the number of seats in this auditorium(A) 800 (B) 1,000(C) 1,100(D) 1,300? (E) 1,7006. If rsuv = 1 and rsum = 0, which of the following must be true(A) r < 1? (B) s < 1? (C) u= 2(D) r = 0(E) m = 07. The least integer of a set of consecutive integers (连续整数) is –126. if the sum of these integers is 127, how many integers are in this set(A) 126? (B) 127? (C) 252? (D) 253(E) 2548. A special lottery is to be held to select the student who will live in the only deluxe room in a dormitory. There are 200 seniors, 300 juniors, and 400 sophomores who applied. Each senior’s name is placed in the lottery 3 times; each junior’s name, 2 time; and each sophomore’s name, 1 times. If a student’s name is chosen at random from the names in the lottery, what is the probability that a senior’s name will be chosen(A)1/8? (B) 2/9(C) 2/7? (D) 3/8? (E) 1/2Question #1: 50% of US college students live on campus. Out of all students living on campus, 40% are graduate students. What percentage of US students are graduate students living on campus?(A) 90% (B) 5% (C) 40% (D) 20% (E) 25%Question #2: In the figure below, MN is parallel with BC and AM/AB = 2/3. What is the ratio between the area of triangle AMN and the area of triangle ABC?(A) 5/9 (B) 2/3 (C) 4/9 (D) 1/2 (E) 2/9Question #3: If a2 + 3 is divisible by 7, which of the following values can be a?(A)7 (B)8 (C)9 (D)11 (E)4Question #4: What is the value of b, if x = 2 is a solution of equation x2 - b · x + 1 = 0?(A)1/2 (B)-1/2 (C)5/2 (D)-5/2 (E)2Question #5: Which value of x satisfies the inequality | 2x | < x + 1(A)-1/2 (B)1/2 (C)1 (D)-1 (E)2Question #6: If integers m > 2 and n > 2, how many (m, n) pairs satisfy the inequality m n < 100?(A)2 (B)3 (C)4 (D)5 (E)7Question #7: The US deer population increase is 50% every 20 years. How may times larger will the deer population be in 60 years(A) (B) (C) (D) (E)Question #8: Find the value of x if x + y = 13 and x - y = 5.(A)2 (B)3 (C)6 (D)9 (E)4Question #9:The number of medals won at a track and field championship is shown in the table above. What is the percentage of bronze medals won by UK out of all medals won by the 2 teams?(A)20% (B)% (C)% (D)% (E)10%Question #10: The edges of a cube are each 4 inches long. What is the surface area, in square inches, of this cube(A)66 (B)60 (C)76 (D)96 (E)65Question #1: The sum of the two solutions of the quadratic equation f(x) = 0 is equal to 1 and the product of the solutions is equal to -20. What are the solutions of the equation f(x) = 16 - x(a) x1 = 3 and x2 = -3 (b) x1 = 6 and x2 = -6(c) x1 = 5 and x2 = -4 (d) x1 = -5 and x2 = 4(e) x1 = 6 and x2 = 0Question #2: In the (x, y) coordinate plane, three lines have the equations: l1: y = ax + 1l2: y = bx + 2l3: y = cx + 3Which of the following may be values of a, b and c, if line l3 is perpendicular to both lines l1 and l2(a) a = -2, b = -2, c = .5 (b) a = -2, b = -2, c = 2(c) a = -2, b = -2, c = -2 (d) a = -2, b = 2, c = .5(e) a = 2, b = -2, c = 2Question #3: The management team of a company has 250 men and 125 women. If 200 of the managers have a master degree, and 100 of the managers with the master degree are women, how many of the managers are men without a master degree(a) 125 (b) 150 (c) 175 (d) 200 (e) 225Question #4: In the figure below, the area of square ABCD is equal to the sum of the areas of triangles ABE and DCE. If AB = 6, then CE =(a) 5 (b) 6 (c) 2 (d) 3 (e) 4Question #5:If α and β are the angles of the right triangle shown in the figure above, then sin2α + sin2β is equal to:(a) cos(β)(b) sin(β) (c) 1 (d) cos2(β) (e) -1Question #6: The average of numbers (a + 9) and (a - 1) is equal to b, where a and b are integers. The product of the same two integers is equal to (b - 1)2. What is the value of a(a) a = 9 (b) a = 1 (c) a = 0 (d) a = 5 (e) a = 11 Question #1: If f(x) = x and g(x) = √x, x≥ 0, what are the solutions of f(x) = g(x) (A) x = 1 (B)x1 = 1, x2 = -1(C)x1 = 1, x2 = 0 (D)x = 0(E)x = -1Question #2: What is the length of the arc AB in the figure below, if O is the center of the circle and triangle OAB is equilateralThe radius of the circle is 9(a) π(b) 2 ·π(c) 3 ·π(d) 4 ·π (e) π/2Question #3: What is the probability that someone that throws 2 dice gets a 5 and a6 Each dice has sides numbered from 1 to 6.(a)1/2 (b)1/6 (c)1/12 (d)1/18 (e)1/36Question #4: A cyclist bikes from town A to town B and back to town A in 3 hours. He bikes from A to B at a speed of 15 miles/hour while his return speed is 10miles/hour. What is the distance between the 2 towns?(a)11 miles (b)18 miles (c)15 miles (d)12 miles (e)10 miles Question #5: The volume of a cube-shaped glass C1 of edge a is equal to half the volume of a cylinder-shaped glass C2. The radius of C2 is equal to the edge of C1. What is the height of C2?(a)2·a /π (b)a / π (c)a / (2·π) (d)a / π (e)a + πQuestion #6: How many integers x are there such that 2x < 100, and at the same time the number 2x + 2 is an integer divisible by both 3 and 2?(a)1 (b)2 (c) 3 (d) 4 (e)5Question #7: sin(x)cos(x)(1 + tan2(x)) =(a)tan(x) + 1 (b)cos(x)(c)sin(x) (d)tan(x)(e)sin(x) + cos(x)Question #8: If 5xy = 210, and x and y are positive integers, each of the following could be the value of x + y except:(a)13 (b) 17 (c) 23 (d)15 (e)43Question #9: The average of the integers 24, 6, 12, x and y is 11. What is the value of the sum x + y(a)11 (b)17 (c)13 (d)15 (e) 9Question #10: The inequality |2x - 1| > 5 must be true in which one of the following casesI. x < -5 II. x > 7 III. x > 01.Three unit circles are arranged so that each touches the other two. Findthe radii of the two circles which touch all three.2.Find all real numbers x such that x + 1 = |x + 3| - |x - 1|.3.(1) Given x = (1 + 1/n)n, y = (1 + 1/n)n+1, show that x y = y x.(2) Show that 12 - 22 + 32 - 42 + ... + (-1)n+1n2 = (-1)n+1(1 + 2 + ... + n).4.All coefficients of the polynomial p(x) are non-negative and noneexceed p(0). If p(x) has degree n, show that the coefficient of x n+1 in p(x)2 is at most p(1)2/2.5.What is the maximum possible value for the sum of the absolutevalues of the differences between each pair of n non-negative realnumbers which do not exceed 1?6.AB is a diameter of a circle. X is a point on the circle other than themidpoint of the arc AB. BX meets the tangent at A at P, and AX meets the tangent at B at Q. Show that the line PQ, the tangent at X and the line AB are concurrent.7.Four points on a circle divide it into four arcs. The four midpoints forma quadrilateral. Show that its diagonals are perpendicular.8.Find the smallest positive integer b for which 7 + 7b + 7b2 is a fourthpower.9.Show that there are no positive integers m, n such that 4m(m+1) =n(n+1).10.ABCD is a convex quadrilateral with area 1. The lines AD, BC meet atX. The midpoints of the diagonals AC and BD are Y and Z. Find the area of the triangle XYZ.11. A square has tens digit 7. What is the units digit?12.Find all ordered triples (x, y, z) of real numbers which satisfy thefollowing system of equations:xy = z - x - yxz = y - x - zyz = x - y - z。
sat数学试题及答案
sat数学试题及答案1. 题目:解下列方程求x的值:\(2x - 5 = 3x + 1\)。
答案:首先将方程中的x项移到同一边,得到\(2x - 3x = 1 + 5\),简化后得到\(-x = 6\)。
然后将系数化为1,得到\(x = -6\)。
2. 题目:计算下列表达式的值:\(\frac{3}{4} \times\frac{8}{9}\)。
答案:将分子相乘得到\(3 \times 8 = 24\),分母相乘得到\(4\times 9 = 36\),所以表达式的值为\(\frac{24}{36}\)。
化简分数得到\(\frac{2}{3}\)。
3. 题目:一个矩形的长是宽的两倍,如果宽是5单位,那么矩形的周长是多少?答案:矩形的长是宽的两倍,所以长为\(5 \times 2 = 10\)单位。
矩形的周长是\(2 \times (\text{长} + \text{宽}) = 2 \times (10 + 5) = 2 \times 15 = 30\)单位。
4. 题目:如果一个数的平方是25,那么这个数是多少?答案:设这个数为\(x\),则有\(x^2 = 25\)。
解这个方程,我们得到\(x = \pm 5\)。
所以这个数可以是5或者-5。
5. 题目:计算下列多项式的乘积:\((x + 3)(x - 2)\)。
答案:使用分配律,我们得到\(x(x - 2) + 3(x - 2) = x^2 - 2x +3x - 6\)。
合并同类项,得到\(x^2 + x - 6\)。
6. 题目:一个圆的半径是4厘米,求这个圆的面积。
答案:圆的面积公式是\(A = \pi r^2\),其中\(r\)是半径。
将半径4厘米代入公式,得到\(A = \pi \times 4^2 = 16\pi\)平方厘米。
7. 题目:如果一个函数\(f(x) = 2x + 3\),求\(f(-1)\)的值。
答案:将\(x = -1\)代入函数\(f(x)\),得到\(f(-1) = 2(-1) + 3 = -2 + 3 = 1\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年3月14日SAT官方每日一题---数学选择
为了让我们更好的适应sat考试,sat官网每天都会有sat官方每日一题,下面是小编为您整
理的2016年3月sat官方每日一题,是数学选择,让我们一起来看一看这道数学选择吧。
Read the following SAT test question and then click on a button to select your answer.
y=x^2+9
y=6x
If (x,y) is a solution to the system of equations shown above, which of the following is the y-coordinate of the solution?
(A) -18
(B) -3
(C) 3
(D) 18
答案:D
解析:
Choice D is correct.
Because both equations express y in terms of x, set the x-expressions equal to each other and solve. x^2+9= 6x
Determine the x-coordinates in the solution set by setting this quadratic equation equal to zero and factoring (alternatively, we could use the quadratic formula or complete the square).
x^2+9= 6x
x^2-6x+9=0
(x-3)(x-3)=0
Next, set each factor equal to zero and solve. Since the two factors are the same, this only needs to be done once.
x-3=0, x=3
x=3 is the x-coordinate of the solution set. In order to find the y-coordinate of the solution set, substitute this value of x into one of the original equations. In this case, it's easiest to substitute into the linear equation.
y=6x, y=6*3=18
The y-coordinate of the solution of the system of equations is 18.
上面是小编为您整理的2016年3月sat官方每日一题,是数学选择题,为了让我们更好的适应sat考试,sat官网每天都会发布sat官方每日一题,让我们一起来看一看这道数学选择吧。
天道六步曲第三步文书创作与学校申请根据申请者个人特点和录取委员会的思维逻辑进行纯英文创作。
我们追求用地道的英语精彩展现申请人的特点,将Be Yourself 和Admission Officers' Thinking在每一份文书中完美结合。
这不仅极大增加了成功机会,也让文书的写作变成了与我们的用户进行心灵交流的一种仪式。
这个过程,不断感动着参与到其中的我们并为此骄傲。
文书创作与学校申请具体服务项目如下:
1. 根据各项考试成绩和背景提升情况最终确定学校和专业
2. 根据所选学校的要求和特点制定有针对性的申请方案
3. 根据所选学校的要求和特点创作有针对性的申请文书
4. 指导申请人完成Writing Sample/Research Proposal 和Portfolio 的制作
5. 指导申请人办理成绩单、在读证明、毕业证明,存款证明等相关申请材料
6. 指导申请人完成网上申请和邮寄申请材料。