初中数学经典试题及答案初三复习资料.doc
初中数学经典试题及答案(初三复习资料)

初中数学经典试题一、选择题:1、图 ( 二) 中有四条互相不平行的直线L1、L2、L3、L4所截出的七个角。
关于这七个角的度数关系,下列何者正确( )A.2=4+7B.3=1+6C.1+ 4+ 6=180D.2+ 3+ 5=360答案: C.2、在平行四边形ABCD中, AB= 6, AD= 8,∠ B 是锐角,将△ ACD沿对角线 AC折叠,点D落在△ ABC所在平面内的点 E 处。
如果 AE过 BC的中点,则平行四边形ABCD的面积等于()A、48B、10 6C、127D、24 2BOCFDA答案: C.3、如图,⊙ O中弦 AB、 CD相交于点F, AB= 10,AF= 2。
若 CF∶ DF= 1∶ 4,则 CF的长等于()A、2B、2C、3D、22答案: B.4、如图:△ ABP与△ CDP是两个全等的等边三角形,且PA⊥PD。
有下列四个结论:①∠PBC =150;② AD∥BC;③直线 PC与 AB垂直;④四边形ABCD是轴对称图形。
其中正确结论的个数为()A DPB第10题图CA 、 1B、 2C、 3D、 4答案: D.C5、如图,在等腰Rt△ABC中,∠ C=90o ,AC=8,F 是 AB边上的E中点,点 D、E 分别在 AC、 BC 边上运动,且保持 AD=CE,连接DDE、 DF、 EF。
在此运动变化的过程中,下列结论:A F B① △DFE是等腰直角三角形;②四边形 CDFE不可能为正方形;③ DE 长度的最小值为 4;④四边形 CDFE的面积保持不变;⑤△ CDE 面积的最大值为 8。
其中正确的结论是()A.①②③B.①④⑤C.①③④ D .③④⑤答案: B.二、填空题:6、已知0x1.(1) 若x 2 y 6 ,则y的最小值是;(2). 若x2y2 3 , xy1,则x y =.答案:( 1)-3 ;( 2)-1.7、用 m根火柴可以拼成如图 1 所示的 x 个正方形,还可以拼成如图 2 所示的 2y 个正方形,那么用含 x 的代数式表示y,得 y= _____________ .图1图2答案: y=3x-1.552218、已知m- 5m- 1= 0,则 2m- 5m+m2=.A D 答案: 28.9、 ____________________ 范围内的有理数经过四舍五入得到的近似数.N M答案:大于或等于且小于 .10、如图:正方形 ABCD中,过点 D 作 DP交 AC于点 M、交AB于点 N,交 CB的延长线于点 P,若 MN= 1, PN= 3,P B C第19题图则 DM的长为.答案: 2.11、在平面直角坐标系xOy 中,直线 y x 3 与两坐标轴围成一个△AOB。
九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 26cmB. 28cmC. 30cmD. 32cm2. 已知函数f(x) = 2x + 3,那么f(3)的值为多少?A. 9B. 11C. 12D. 153. 在直角坐标系中,点A(2, -3)关于x轴的对称点坐标为?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,那么第10项的值为多少?A. 19B. 20C. 21D. 225. 已知一个圆的半径为5cm,那么这个圆的面积为多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 若两个角的和为90°,则这两个角互为补角。
()2. 任何数乘以0都等于0。
()3. 在直角三角形中,斜边是最长的一边。
()4. 若一个等差数列的公差为0,则这个数列的所有项都相等。
()5. 任何数乘以-1都等于这个数的相反数。
()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为______cm。
2. 已知函数f(x) = 3x 5,那么f(4)的值为______。
3. 在直角坐标系中,点B(-3, 4)关于原点的对称点坐标为______。
4. 若一个等差数列的首项为2,公差为3,那么第7项的值为______。
5. 已知一个圆的直径为10cm,那么这个圆的周长为______cm。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请解释等差数列和等比数列的区别。
3. 请说明圆的面积公式。
4. 请简述函数的概念。
5. 请解释直角坐标系中点的坐标表示。
五、应用题(每题2分,共10分)1. 一个长方形的长为10cm,宽为5cm,求这个长方形的面积。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学总复习资料_分专题试题及答案(90页).doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
(word完整版)九年级数学总复习试卷及参考答案

九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。
初三总复习数学试卷及答案

一、选择题(每题5分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001……2. 下列函数中,定义域为全体实数的是()A. y = √(x^2 - 1)B. y = |x|C. y = 1/xD. y = √x3. 已知一元二次方程x^2 - 5x + 6 = 0的两个根为a和b,则a+b的值为()A. 5B. 6C. 4D. 34. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 正方形C. 圆D. 等边三角形5. 已知函数y = 2x - 3,若x的值增加2,则y的值将()A. 增加1C. 减少1D. 减少4二、填空题(每题5分,共20分)6. 分数2/3与-1/3的和为______。
7. 若a = 3,则a^2 - 2a + 1的值为______。
8. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标为______。
9. 已知等腰三角形的底边长为6,腰长为8,则该三角形的面积为______。
10. 若函数y = kx + b(k≠0)的图像过点(1,2),则该函数的解析式为______。
三、解答题(每题10分,共30分)11. (10分)解一元二次方程:x^2 - 4x - 12 = 0。
12. (10分)已知函数y = 3x^2 - 2x + 1,求该函数的对称轴和顶点坐标。
13. (10分)在平面直角坐标系中,点P(m,n)在直线y = 2x + 1上,且点P到原点的距离为5,求点P的坐标。
四、证明题(10分)14. (10分)已知:∠A = ∠B,AB = AC,求证:△ABC是等腰三角形。
答案:一、选择题1. A2. B3. A4. C5. B二、填空题7. 48. (-2,3)9. 2410. y = 3x - 1三、解答题11. 解:x^2 - 4x - 12 = 0(x - 6)(x + 2) = 0x = 6 或 x = -2∴ 方程的解为x = 6 或 x = -2。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
(完整word版)初三数学总复习资料_分专题试题及答案(90页),推荐文档

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学总复习资料分专题试题及答案90页.doc

《数与式》考点1 有理数、实数的概念1、 实数的分类:有理数,无理数。
2、 实数和数轴上的点是___________对应的,每一个实数都可以用数轴上的________来表示,反过来,数轴上的点都表示一个________。
3、 ______________________叫做无理数。
一般说来,凡开方开不尽的数是无理数,但要注意,用根号形式表示的数并不都是无理数(如4),也不是所有的无理数都可以写成根号的形式(如π)。
1、 把下列各数填入相应的集合内:51.0,25.0,,8,32,138,4,15,5.73&&π- 有理数集{ },无理数集{ }正实数集{ }2、 在实数271,27,64,12,0,23,43--中,共有_______个无理数 3、 在4,45sin ,32,14.3,3︒--中,无理数的个数是_______4、 写出一个无理数________,使它与2的积是有理数解这类问题的关键是对有理数和无理数意义的理解。
无理数与有理数的根本区别在于能否用既约分数来表示。
考点2 数轴、倒数、相反数、绝对值1、 若0≠a ,则它的相反数是______,它的倒数是______。
0的相反数是________。
2、 一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是__________。
⎩⎨⎧<≥=)0____()0____(||x x x 3、 一个数的绝对值就是数轴上表示这个数的点与______的距离。
1、___________的倒数是211-;0.28的相反数是_________。
2、 如图1,数轴上的点M 所表示的数的相反数为_________M3、 0|2|)1(2=++-n m ,则n m +的值为________ 3图14、 已知21||,4||==y x ,且0<xy ,则y x 的值等于________ 5、 实数c b a ,,在数轴上对应点的位置如图2所示,下列式子中正确的有( )①0>+c b ②c a b a +>+ ③ac bc > ④ac ab >A.1个B.2个C.3个D.4个6、 ①数轴上表示-2和-5的两点之间的距离是______数轴上表示1和-3的两点之间的距离是________。
初三数学经典试题及答案

初三数学经典试题及答案一、选择题1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:A2. 一个数的平方等于36,这个数是:A. 6B. -6C. 6 或 -6D. 以上都不对答案:C3. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题4. 一个数的立方等于-27,这个数是______。
答案:-35. 一个三角形的两边长分别为3厘米和4厘米,第三边长是奇数,那么第三边长可能是______。
答案:5厘米三、解答题6. 已知一个直角三角形的两条直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(3² + 4²) = √(9 + 16) =√25 = 5厘米。
7. 一个数的一半加上3等于10,求这个数。
答案:设这个数为x,则有(1/2)x + 3 = 10,解得x = 14。
四、证明题8. 证明:如果一个三角形的两边长分别为a和b,且a > b,那么这个三角形的周长大于2b。
答案:设第三边为c,根据三角形的三边关系,有a + b > c,a + c > b,b + c > a。
将这三个不等式相加,得到2(a + b + c) > 2(a + b),即a + b + c > a + b,所以三角形的周长a + b + c > 2b。
五、应用题9. 一个工厂生产了100个零件,其中10%是次品。
如果从这100个零件中随机抽取5个,求至少抽到一个次品的概率。
答案:首先计算抽到5个都是正品的概率,即(90/100) × (89/99)× (88/98) × (87/97) × (86/96)。
至少抽到一个次品的概率为1减去抽到5个都是正品的概率。
六、综合题10. 一个长方体的长、宽、高分别为a、b、c,已知 a = 2b,c = 3a,求长方体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学经典试题一、选择题:1、图(二)中有四条互相不平行的直线L 1、L2、L3、L 4所截出的七个角。
关于这七个角的度数关系,下列何者正确?( )A .742∠∠∠+=B .613∠∠∠+=C .︒∠∠∠180641=++D .︒∠∠∠360532=++ 答案:C.2、在平行四边形ABCD 中,AB =6,AD =8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处。
如果AE 过BC 的中点,则平行四边形ABCD 的面积等于( ) A 、48 B 、610 C 、712 D 、224答案:C.3、如图,⊙O 中弦AB 、CD 相交于点F ,AB =10,AF =2。
若CF ∶DF =1∶4,则CF 的长等于( )A 、2B 、2C 、3D 、22 答案:B.4、如图:△ABP 与△CDP 是两个全等的等边三角形,且PA ⊥PD 。
有下列四个结论:①∠PBC=150;②AD∥BC;③直线PC 与AB 垂直;④四边形ABCD 是轴对称图形。
其中正确结论的个数为( )OF DCAA 、1B 、2C 、3D 、4 第10题图PDCBA答案:D.5、如图,在等腰Rt△ABC 中,∠C=90º,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。
在此运动变化的过程中,下列结论:① △DFE 是等腰直角三角形; ② 四边形CDFE 不可能为正方形;③ DE 长度的最小值为4;④ 四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8。
其中正确的结论是( )A .①②③B .①④⑤C .①③④D .③④⑤ 答案:B.二、填空题:6、已知01x ≤≤.(1)若62=-y x ,则y 的最小值是 ; (2).若223x y +=,1xy =,则x y -= .答案:(1)-3;(2)-1.7、用m 根火柴可以拼成如图1所示的x 个正方形,还可以拼成如图2所示的2y 个正方形,那么用含x 的代数式表示y ,得y =_____________.答案:y =53x -51.8、已知m 2-5m -1=0,则2m 2-5m +1m 2= .答案:28.9、____________________范围内的有理数经过四舍五入得到的近似数3.142.答案:大于或等于3.1415且小于3.1425.10、如图:正方形ABCD 中,过点D 作DP 交AC 于点M 、 交AB 于点N ,交CB 的延长线于点P ,若MN =1,PN =3,则DM 的长为 .答案:2.11、在平面直角坐标系xOy 中,直线3+-=x y 与两坐标轴围成一个△AOB。
现将背面完全相同,正面分别标有数1、2、3、21、31的5张卡片洗匀后,背面朝上,从中任取一张,将… ……图1 图2第19题图P N M DCB AEFDCBA该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在△AOB 内的概率为 . 答案:53. 12、某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%。
由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点。
若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %. 答案:30.13、小明背对小亮按小列四个步骤操作:(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; (2)从左边一堆拿出两张,放入中间一堆;(3)从右边一堆拿出两张,放入中间一堆;(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现有的张数是 . 答案:6.14、某同学在使用计算器求20个数的平均数时,错将88误输入为8,那么由此求出的平均数与实际平均数的差为 . 答案:-4.15、在平面直角坐标系中,圆心O 的坐标为(-3,4),以半径r 在坐标平面内作圆, (1)当r 时,圆O 与坐标轴有1个交点; (2)当r 时,圆O 与坐标轴有2个交点; (3)当r 时,圆O 与坐标轴有3个交点; (4)当r 时,圆O 与坐标轴有4个交点; 答案:(1)r=3; (2)3<r <4; (3)r=4或5; (4)r >4且r ≠5.三、解答题:16、若a 、b 、c 为整数,且1=-+-a c b a ,求a c c b b a -+-+-的值. 答案:2.17、方程0120092007)20082=-⨯-x x (的较大根为a ,方程020*******=--x x 的较小根为b ,求2009)(b a +的值.解:把原来的方程变形一下,得到:(2008x )²-(2008-1)(2008+1)X-1=0 2008²x²-2008²x +x-1=0 2008²x(x-1)+(x-1)=0 (2008²x +1)(x-1)=0x=1或者-1/2008²,那么a=1. 第二个方程:直接十字相乘,得到: (X+1)(X-2009)=0所以X=-1或2009,那么b=-1. 所以a+b=1+(-1)=0,即2009)(b a +=0.18、在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; (2) 当t 为何值时,以点A 、P 、Q 为顶点的三角形△AOB 相似? (3) 当t=2秒时,四边形OPQB 的面积多少个平方单位? 解:(1)设直线AB 的解析式为:y=kx+b将点A (0,6)、点B (8,0)代入得⎩⎨⎧+=+⨯=bk bk 8006解得⎪⎩⎪⎨⎧=-=643b k直线AB 的解析式为: 643+-=x y (2) 设点P 、Q 移动的时间为t 秒,OA=6,OB=8. ∴勾股定理可得,AB=10 ∴AP=t ,AQ=10-2t 分两种情况,① 当△APQ ∽△AOB 时AB AO AQ AP =,106210=-t t ,1133=t . ② 当△AQP ∽△AOB 时AB AO AP AQ =,106210=-t t ,1330=t . 综上所述,当1133=t 或1330=t 时,以点A 、P 、Q 为顶点的三角形△AOB 相似.(3) 当t=2秒时,四边形OPQB 的面积,AP=2,AQ=6过点Q 作QM ⊥OA 于M △AMQ ∽△AOB∴OB QM AB AQ =,8106QM =,QM=4.8 △APQ 的面积为:8.48.422121=⨯⨯=⨯QM AP (平方单位)∴四边形OPQB 的面积为:S △AOB -S △APQ =24-4.8=19.2(平方单位)19、某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同。
安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%。
安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离。
假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由。
解:(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,xBxB由题意得:⎩⎨⎧=+=+800)(4560)2(2y x y x解得:⎩⎨⎧==80120y x答:平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生。
(2)这栋楼最多有学生4×8×45=1440(名)拥挤时5分钟4道门能通过:%)201)(80120(25-+⨯=1600(名)∵1600>1440∴建造的4道门符合安全规定。
20、已知抛物线42)4(2++-+-=m x m x y 与x 轴交于点A (1x ,0)、B (2x ,0)两点,与y 轴交于点C ,且1x <2x ,1x +22x =0。
若点A 关于y 轴的对称点是点D 。
(1)求过点C 、B 、D 的抛物线的解析式;(2)若P 是(1)中所求抛物线的顶点,H 是这条抛物线上异于点C 的另一点,且△HBD 与△CBD 的面积相等,求直线PH 的解析式。
解:(1)由题意得:⎪⎪⎩⎪⎪⎨⎧>+=++-=∆--=⋅-=+=+032)42(4)4(4240222212121m m m m x x m x x x x由①②得:821-=m x ,42+-=m x将1x 、2x 代入③得:42)4)(82(--=+--m m m整理得:01492=+-m m∴1m =2,2m =7 ∵1x <2x∴82-m <4+-m ∴m <4∴2m =7(舍去)∴1x =-4,2x =2,点C 的纵坐标为:42+m =8 ∴A 、B 、C 三点的坐标分别是A (-4,0)、B (2,0)、C (0,8)又∵点A 与点D 关于y 轴对称 ∴D (4,0)设经过C 、B 、D 的抛物线的解析式为:)4)(2(--=x x a y 将C (0,8)代入上式得:)40)(20(8--=a ∴a =1∴所求抛物线的解析式为:862+-=x x y(2)∵862+-=x x y =1)3(2--x ∴顶点P (3,-1)设点H 的坐标为H (0x ,0y)∵△BCD 与△HBD 的面积相等∴∣0y ∣=8∵点H 只能在x 轴的上方,故0y =8将0y =8代入862+-=x x y 中得:0x =6或0x =0(舍去) ∴H (6,8)设直线PH 的解析式为:b kx y +=则⎩⎨⎧=+-=+8613b k b k解得:k =3 b =-10∴直线PH 的解析式为:103-=x y21、已知:如图,在直角梯形ABCD 中,AD∥BC,∠ABC=90º,DE⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC 。
(1)求证:BG=FG ;(2)若AD=DC=2,求AB 的长。
证明:(1)连结EC ,证明略(2)证明⊿AEC 是等边三角形,AB=322、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系260050+-=x y ,去年的月销售量p (万台)与月份x 之间成一次函数关系,(1(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了%5.1m 。