基本初等函数学习的复习模板计划练习题与标准标准答案.doc

合集下载

完整版高中数学必修一第二章基本初等函数学习复习计划练习题及答案

完整版高中数学必修一第二章基本初等函数学习复习计划练习题及答案

高中数学必修一第二章根本初等函数试题一、选择题:、假设f(x)x1,那么f(3)〔〕1A、2B、4C、22D、102、对于函数y f(x),以下说法正确的有〔〕①y是x的函数;②对于不同的x,y的值也不同;③f(a)表示当x a时函数f(x)的值,是一个常量;④f(x)一定可以用一个具体的式子表示出来。

A、1个B、2个C、3个D、4个3、以下各组函数是同一函数的是〔〕①f(x)2x3与g(x)x2x;②f(x)x与g(x)2x0与g(x)1x;③f(x);x0④f(x)x22x1与g(t)t22t1。

A、①②B、①③C、③④D、①④4、二次函数y4x2mx5的对称轴为x2,那么当x1时,y的值为〔〕A、7B、1C、17D、255、函数y x26x5的值域为〔〕A、0,2B、0,4C、,4D、0,6、以下四个图像中,是函数图像的是〔〕y y y yO x O x O x O x〔1〕〔2〕〔3〕〔4〕A、〔1〕B、〔1〕、〔3〕、〔4〕C、〔1〕、〔2〕、〔3〕D、〔3〕、〔4〕7、假设f:A B能构成映射,以下说法正确的有〔〕〔1〕A中的任一元素在B中必须有像且唯一;〔2〕B中的多个元素可以在A 中有相同的原像;〔3〕B中1的元素可以在A中无原像;〔4〕像的集合就是集合B。

A、4个B、3个C、2个D、1个8、f(x)是定义在R上的奇函数,以下结论中,不正确的是()...A、f(x)f(x)0B、f(x)f(x)2f(x)C、f(x)gf(x)≤0f(x)1 D、f(x)9f(x)22(a1)x2,4a的取值范围是〔x在区间上是减少的,那么实数〕、如果函数A、a≤3B、a≥3C、a≤5D、a≥510、设函数f(x)(2a1)x b是R上的减函数,那么有〔〕A、a1B、a1C、a≥1D、a≤1222f(a)f(b)20成立,那么必有〔〕11、定义在R上的函数f(x)对任意两个不相等实数a,b,总有baA、函数f(x)是先增加后减少B、函数f(x)是先减少后增加C、f(x)在R上是增函数D、f(x)在R上是减函数12、以下所给4个图象中,与所给3件事吻合最好的顺序为〔〕1〕我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;2〕我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽误了一些时间;3〕我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。

人教版高中数学必修一《基本初等函数》全章小结复习及同步练习(含答案)

人教版高中数学必修一《基本初等函数》全章小结复习及同步练习(含答案)

.
( 2)培养学生数形结合的思想观念及抽象思维能力
.
二 .重点、难点
重点:指数函数与对数函数的性质。 难点:灵活运用函数性质解决有关问题。
三、学法与教具
1、学法:讲授法、讨论法。
2、教具:投影仪。 四、教学设想
1、回顾本章的知识结构
整数指数幂 有理数指数幂 无理数指数幂
定义 图象与性质
指数 指数函数
11. 光线每通过一块玻璃板其强度要损失 10%,设光线原来的强度为
的性质 .
作业: P90
A组
37
P91B组34必修 1 第二章《基本初等函数(Ⅰ) 》同步练习
(时间: 60 分钟,满分: 100 分)
班别
座号
姓名
成绩
一、选择题 (本大题共 10 小题,每小题 5 分,共 50 分) 1. 下列计算中正确的是
A. x3 x3 x6
B. (3a 2b 3) 2
9a4b 9
小结:底数相同的指数函数与对数函数关于
y x 对称,它们之间还有一个关系式子:
a log a N N (a 1,a 0, N 0)
1x
例 3:已知 f ( x)
log a 1
(a x
0且 a
1)
( 1)求 f (x) 的定义域
( 2)求使 f ( x) 0 的 x 的取值范围
1x
分析:( 1)要求 f (x)
7. 若 a、 b 是任意实数,且 a b ,则
2
2
A. a b
ab
B. 2
0
C. lg( a b) 0
()
a
b
1
1
D.
2
2
8. 函数 f ( x) log a x ( 2 ≤ x≤)的最大值比最小值大 1,则 a 的值

基本初等函数2复习word精品文档7页

基本初等函数2复习word精品文档7页

基本初等函数复习题一、选择题1.已知cos α=12,α∈(370°,520°),则α等于( )A.390°B.420°C.450°D.480°2.若sin x·cos x<0,则角x的终边位于( ) A.第一、二象限 B.第二、三象限C.第二、四象限 D.第三、四象限3.函数y=tan x2是( )A.周期为2π的奇函数 B.周期为π2的奇函数C.周期为π的偶函数 D.周期为2π的偶函数4.已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图象如图,那么ω等于( )A.1 B.2C.12D.135.函数f(x)=cos(3x+φ)的图象关于原点成中心对称,则φ等于( )A.-π2B.2kπ-π2(k∈Z)C.kπ(k∈Z) D.kπ+π2(k∈Z)6.若sin θ+cos θsin θ-cos θ=2,则sin θcos θ的值是( )A .-310B.310C .±310D.347. 将函数y =sin x 的图象上所有的点向右平行移动π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( )A .y =sin ⎝ ⎛⎭⎪⎫2x -π10B .y =sin ⎝ ⎛⎭⎪⎫2x -π5C .y =sin ⎝ ⎛⎭⎪⎫12x -π10D .y =sin ⎝ ⎛⎭⎪⎫12x -π208. 在同一平面直角坐标系中,函数y =cos ⎝ ⎛⎭⎪⎫x 2+3π2(x ∈[0,2π])的图象和直线y =12的交点个数是( ) A .0B .1C .2D .49. 已知集合M =⎩⎨⎧⎭⎬⎫x |x =k π2+π4,k ∈Z ,N ={x |x =k π4+π2,k ∈Z },则( )A .M =NB .M NC .N MD .M ∩N =∅10.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c二、填空题11.已知一扇形的弧所对的圆心角为54°,半径r=20 cm,则扇形的周长为________ cm.12.方程sin πx=14x的解的个数是________.13.已知函数f(x)=2sin(ωx+φ)的图象如图所示,则f(7π12)=________.14.已知函数y=sin πx3在区间[0,t]上至少取得2次最大值,则正整数t的最小值是______.三、解答题15.已知f(α)=sin2π-α·cos2π-α·tan-π+αsin-π+α·tan-α+3π.(1)化简f(α);(2)若f(α)=18,且π4<α<π2,求cos α-sin α的值;(3)若α=-31π3,求f(α)的值.16.求函数y=3-4sin x-4cos2x的最大值和最小值,并写出函数取最值时对应的x的值.17.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=π8.(1)求φ;(2)求函数y=f(x)的单调增区间;(3)在下面坐标系上画出函数y=f(x)在区间[0,π]上的图象.18.在已知函数f(x)=A sin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<π2)的图象与x轴的交点中,相邻两个交点之间的距离为π2,且图象上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2. (1)求f (x )的解析式; (2)当x ∈⎣⎢⎡⎦⎥⎤π12,π2时,求f (x )的值域.19.如图所示,函数y =2cos(ωx +θ)(x ∈R ,ω>0,0≤θ≤π2)的图象与y轴交于点(0,3),且该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点A (π2,0),点P 是该函数图象上一点,点Q (x 0,y 0)是PA 的中点,当y 0=32,x 0∈[π2,π]时,求x 0的值.答案1.B 2.C 3.A 4.B 5.D 6.B 7.C 8.C 9.B 10.D 11.6π+40 12.7 13.0 14.815.(1)f (α)=sin α·cos α (2)-32(3)-3416.解 y =3-4sin x -4cos 2x =4sin 2x -4sin x -1=4⎝ ⎛⎭⎪⎫sin x -122-2,令t =sin x , 则-1≤t ≤1,∴y =4⎝⎛⎭⎪⎫t -122-2 (-1≤t ≤1).∴当t =12,即x =π6+2k π或x =5π6+2k π(k ∈Z )时,y min =-2;当t =-1,即x =3π2+2k π (k ∈Z )时,y max =7. 17.解 (1)∵x =π8是函数y =f (x )的图象的对称轴,∴sin ⎝ ⎛⎭⎪⎫2×π8+φ=±1.∴π4+φ=k π+π2,k ∈Z .∵-π<φ<0,∴φ=-3π4. (2)由(1)知φ=-3π4,因此y =sin ⎝⎛⎭⎪⎫2x -3π4. 由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z .∴函数y =sin ⎝ ⎛⎭⎪⎫2x -3π4的单调增区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8,k ∈Z . (3)由y =sin ⎝⎛⎭⎪⎫2x -3π4,知故函数y18.(1)f (x )=2sin⎝ ⎛⎭⎪⎫2x +π6 (2)[-1,2]19.解 (1)将x =0,y =3代入函数y =2cos(ωx +θ)中,得cos θ=32,因为0≤θ≤π2, 所以θ=π6. 由已知T =π,且ω>0,得ω=2πT =2ππ=2.(2)因为点A (π2,0),Q (x 0,y 0)是PA 的中点,y 0=32,所以点P 的坐标为(2x 0-π2,3).又因为点P在y=2cos(2x+π6)的图象上,且π2≤x0≤π,所以cos(4x0-5π6)=32,且7π6≤4x0-5π6≤19π6,从而得4x0-5π6=11π6,或4x0-5π6=13π6,即x0=2π3,或x0=3π4.希望以上资料对你有所帮助,附励志名言3条:1、生命对某些人来说是美丽的,这些人的一生都为某个目标而奋斗。

高中数学基本初等函数课后练习题(含答案)-精选教育文档

高中数学基本初等函数课后练习题(含答案)-精选教育文档

高中数学基本初等函数课后练习题(含答案)人教必修一第二章基本初等函数课后练习题(含答案)2.1 指数函数2.1.1 根式与分数指数幂1.27的平方根与立方根分别是()A.3 3,3 B.3 3,3C.3 3,3 D.3 3,32. 的运算结果是()A.2 B.-2C.2 D.不确定3.若a2-2a+1=a-1,则实数a的取值范围是() A.[1,+) B.(-,1)C.(1,+) D.(-,1]4.下列式子中,正确的是()A. =2B. =-4C. =-3D.=25.下列根式与分数指数幂的互化中,正确的是()A.-x= (x0)B. = (y0)C.= (x0)D.=- (x0)6.设a,bR,下列各式总能成立的是()A.( - )3=a-bB. =a2+b2C. -=a-bD. =a+b7.计算:+ (a0,n1,nN*).8.化简:6+4 2+6-4 2=__________.9.化简:++=()A.1 B.-1 C.3 D.-310.已知a,b是方程x2-6x+4=0的两根,且a>b>0,求a-ba+b的值.2.1.2 指数幂的运算1.化简的结果是()A.35B.53C.3 D.52.计算[(-2)2] 的值为()A.2 B.-2C.22 D.-223.若(1-2x) 有意义,则x的取值范围是()A.xR B.xR,且x12C.x D.x124.设a0,计算( )2( )2的结果是()A.a8 B.a4C.a2 D.a5.的值为()A.103 B.3C.-13 D.66.计算:(-1.8)0+(1.5)-2 +=________.7.化简: .8.化简:ab3 ba3 a2b=__________.9.若x0,则(2x +3 )(2x -3 )-4x (x-x )=__________. 10.已知f(x)=ex-e-x,g(x)=ex+e-x(e=2.718…).(1)求[f(x)]2-[g(x)]2的值;(2)设f(x)f(y)=4,g(x)g(y)=8,求gx+ygx-y的值.2.1.3 指数函数及其图象1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=x(1)C.y=-4x D.y=ax+2(a0,且a1)2.y=2x+2-x的奇偶性为()A.奇函数B.偶函数C.既是偶函数又是奇函数D.既不是奇函数也不是偶函数3.函数f(x)=1-2x的定义域是()A.(-,0] B.[0,+)C.(-,0) D.(-,+)4.已知0<a<1,b<-1,则函数f(x)=ax+b的图象不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限5.如图K21所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,yR,A={x|y=2x-x2},B={y|y=3x(x0)},则A#B为()图K21A.{x|02}B.{x|12}C.{x|01或x2}D.{x|01或x2}6.函数y=a|x|(a1)的图象是()A B C D7.求函数y=16-4x的值域.8.已知f(x)是偶函数,且当x0时,f(x)=10x,则当x0时,f(x)=()A.10x B.10-xC.-10x D.-10-x9.对于函数f(x)定义域中任意的x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)f(x2);②f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1-1x10);⑤f(-x1)=1fx1.当f(x)=12x时,上述结论中,正确结论的序号是____________.10.(1)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围;(2)对于任意实数a,函数y=ax-3+3的图象恒过哪一点?2.1.4 指数函数的性质及其应用1.13 ,34,13-2的大小关系是()A.13 13-2B.13 -132C.13-234D.13-2132.若122a+1123-2a,则实数a的取值范围为() A.(1,+) B.12,+C.(-,1) D.-,123.下列选项中,函数y=|2x-2|的图象是()4.函数y=ax在[0,1]上的最大值与最小值之和为3,则函数y=3ax-1在[0,1]上的最大值为()A.6 B.1 C.3 D.325.(2019年四川泸州二模)已知在同一直角坐标系中,指数函数y=ax和y=bx的图象如图K22,则下列关系中正确的是()图K22A.a<b<1 B.b<a<1C.a>b>1 D.b>a>16.下列函数中,既是偶函数,又在(0,+)上单调递增的函数是()A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|7.已知函数f(x)=12xx4,fx+1 x<4,求f(3)的值.8.设函数f(x)=2-x, x-,1,x2,x[1,+.若f(x)4,则x的取值范围是________________.9.函数f(x)=的值域为__________.10.已知f(x)=10x-10-x10x+10-x.(1)判断函数f(x)的奇偶性;(2)证明f(x)是定义域内的增函数;(3)求f(x)的值域.2.2 对数函数2.2.1 对数与对数运算1.下列各组指数式与对数式互化,不正确的是()A.23=8与log28=3B.=13与log2713=-13C.(-2)5=-32与log-2(-32)=5D.100=1与lg1=02.已知函数f(x)=log2(x+1),若f(a)=1,则a=() A.0 B.1C.2 D.33.以下四个命题:①若logx3=3,则x=9;②若log4x=12,则x=2;③若=0,则x=3;④若=-3,则x=125.其中是真命题的个数是()A.1个 B.2个C.3个 D.4个4.方程=14的解是()A.x=19 B.x=33C.x=3 D.x=95.若f(ex)=x,则f(e)=()A.1 B.eeC.2e D.06.设集合P={3,log2a},Q={a,b},若PQ={0},则PQ =()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}7.求下列各式中x的取值范围:(1)log(x-1)(x+2);(2)log(x+3)(x+3).8.设f(x)=lgx,x0,10x,x0,则f[f(-2)]=__________. 9.已知=49(a0) ,则=__________.10.(1)若f(log2x)=x,求f12的值;(2)若log2[log3(log4x)]=0,log3[log4(log2y)]=0,求x+y的值.2.2.2 对数的性质及其应用1.计算log23log32的结果为()A.1 B.-1C.2 D.-22.(2019年陕西)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()A.logablogcb=logcaB.logablogca=logcbC.logabc=logablogacD.loga(b+c)=logab+logac3.(2019年四川泸州一模)2lg2-lg125的值为()A.1 B.2C.3 D.44.lg12.5-lg58+lg0.5=()A.-1 B.1C.2 D.-25.若log513log36log6x=2,则x=()A.9 B.19C.25 D.1256.设2a=5b=m,且1a+1b=2,则m=()A.10 B.10C.20 D.1007.计算:lg2lg52+lg0.2lg40.8.已知lg2=a,lg3=b,用a,b表示log1245=______________.9.已知log83=p,log35=q,以含p,q的式子表示lg2. 10.已知lga和lgb是关于x的方程x2-x+m=0的两个根,而关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根.求实数a,b和m的值.2.2.3 对数函数及其性质(1)1.若log2a<0,12b>1,则()A.a>1,b>0 B.a>1,b<0C.0<a<1, b>0 D.0<a<1, b<02.(2019年广东揭阳一模)已知集合A={x|y=lg(x+3)},B={x|x2},则下列结论正确的是()A.-3A B.3BC.AB=B D.AB=B3.函数y=log2x与y=log x的图象关于()A.x轴对称 B.y轴对称B.原点对称 D.直线y=x对称4.函数y=1log0.54x-3的定义域为()A.34,1B.34,+C.(1,+)D.34,1(1,+)5.若函数f(x)=loga(x+1)(a0,a1)的定义域和值域都是[0,1],则a=()A.13B.2C.22 D.26.已知a0,且a1,函数y=ax与y=loga(-x)的图象只能是图中的()7.若函数y=loga(x+b)(a0,a1)的图象过点(-1,0)和(0,1),求a,b的值.8.已知A={x|2},定义在A上的函数y=logax(a>0,且a1)的最大值比最小值大1,则底数a的值为()A.2B.2C.-2 D.2或29.设a=log54,b=(log53)2,c=log45,则()A.ab B.baC.ac D.bc10.已知函数f(x)=lnkx-1x-1(k0).(1)求函数f(x)的定义域;(2)若函数f(x)在区间[10,+)上是增函数,求实数k的取值范围.2.2.4 对数函数及其性质(2)1.已知函数y=ax与y=logax(a>0,且a1),下列说法不正确的是()A.两者的图象都关于直线y=x对称B.前者的定义域、值域分别是后者的值域、定义域C.两函数在各自的定义域内的增减性相同D.y=ax的图象经过平移可得到y=logax的图象2.若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点()A.(1,1) B.(1,5)C.(5,1) D.(5,5)3.点(4,16)在函数y=logax的反函数的图象上,则a=() A.2 B.4C.8 D.164.已知a=log23.6,b=log43.2,c=log43.6,则() A.ac B.abC.bc D.cb5.若0y1,则()A.3y B.logx3logy3C.log4xlog4y D.14x14y6.设loga23<1,则实数a的取值范围是()A.0<a<23 B.23<a<1C.0<a<23或a>1 D.a>237.在下面函数中,与函数f(x)=lg1+x1-x有相同奇偶性的是()A.y=x3+1B.y=e0-1e0+1C.y=|2x+1|+|2x-1|D.y=x+1x8.函数y=ln(4+3x-x2)的单调递增区间是___________.9.对于函数f(x)定义域中的任意x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)② f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1+x22fx1+fx22.当f(x)=lgx时,上述结论中,正确结论的序号是____________.10.设f(x)=log 1-axx-1为奇函数,a为常数,(1)求a的值;(2)证明f(x)在(1,+)上单调递增;(3)若对于[3,4]上的每一个x值,不等式f(x)>12x+m恒成立,求实数m的取值范围.2.2.5 对数函数及其性质(3)1.设a=log 2,b=log 3,c=120.3,则()A.ac B.abC.ba D.bc2.将函数y=3x-2的图象向左平移2个单位,再将所得图象关于直线y=x对称后,所得图象的函数解析式为() A.y=4+log3x B.y=log3(x-4)C.y=log3x D.y=2+log3x3.方程log2x=x2-2的实根有()A.3个 B.2个C.1个 D.0个4.设函数f(x)=loga(x+b)(a0,a1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b=()A.3 B.4C.5 D.65.如图K21,给出函数y=ax,y=logax,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=ax,y=logax,y=log(a +1)x,y=(a-1)x2依次对应的图象是()图K21A.①②③④ B.①③②④C.②③①④ D.①④③②6.函数y=e|lnx|-|x-1|的图象大致是()7.已知函数f(x)=loga(2x+b-1)(a0,a1)的图象如图K22,则a,b满足的关系是()图K22A.0a-11B.0a-11C.0b-11D.0a-1b-118.下列函数的图象中,经过平移或翻折后不能与函数y=log2x的图象重合的函数是()A.y=2x B.y=log xC.y=4x2 D.y=log21x+19.若函数f(x)=loga(x+x2+2a2)是奇函数,求a的值.10.已知函数f(x)=loga(1-x)+loga(x+3)(01).(1)求函数f(x)的定义域;(2)求方程f(x)=0的解;(3)若函数f(x)的最小值为-4,求a的值.2.3 幂函数1.所有幂函数的图象都经过的定点的坐标是()A.(0,0) B.(0,1)C.(1,1) D.(-1,-1)2.下列说法正确的是()A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数C.y=x是增函数,也是偶函数D.y=x0不是偶函数3.已知幂函数f(x)的图象经过点2,22,则f(4)的值为() A.16 B.116C.12 D.24.下列函数中,既是偶函数,又是在区间(0,+)上单调递减的函数为()A.y=x-2 B.y=x-1C.y=x2 D.y=x5.当x(1,+)时,下列函数的图象全在直线y=x下方的偶函数是()A.y=x B.y=x-2C.y=x2 D.y=x-16.设a=0.7 ,b=0.8 ,c=log30.7,则()A.ca B.cbC.ac D.bc7.若幂函数y=(m2-3m+3)x 的图象不经过坐标原点,求实数m的取值范围.8.给出函数的一组解析式如下:①y=;②y=;③y=;④y=;⑤y=;⑥y=;⑦y=;⑧y=x3;⑨y=x-3;⑩y= .回答下列问题:(1)图象关于y轴对称的函数有__________;(2)图象关于原点对称的函数有__________.9.请把相应的幂函数图象代号填入表格.①y=;②y=x-2;③y=;④y=x-1;⑤y=;⑥y=;⑦y=;⑧y= .函数代号① ② ③ ④ ⑤ ⑥ ⑦ ⑧图象代号10.已知函数f(x)=(m2-m-1)x-5m-3,当m为何值时,f(x)是:(1)幂函数;(2)幂函数,且是(0,+)上的增函数;(3)正比例函数;(4)反比例函数;(5)二次函数.第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 根式与分数指数幂1.B 2.A 3.A4.B 解析:A错,=2;C错,=|-3|=3;D错,( )5=-2.5.C 解析:A错,-x=-x (x0);B错,=(-y) (y0);D错,x = (x0).6.B7.解:当n为奇数时,原式=a-b+a+b=2a;当n为偶数时,原式=b-a-a-b=-2a.8.4 解析:原式=22+222+22+22-222+22=2+22+2-22=2+2+2-2=4.9.B 解析:∵3.1410,=-3.143.14-=-1,=10--10=-1,而=1.故原式=-1+1-1=-1.10.解:∵a,b是方程x2-6x+4=0的两根,a+b=6,ab=4.∵a>b>0,a-ba+b2=a+b2-4aba+b+2ab=2019=2.a-ba+b=2.2.1.2 指数幂的运算1.B2.C 解析:[(-2)2] =(2) =(2)-1=22.3.D4.C 解析:原式==a2.5.A 解析:原式=310 =103.6.29 解析:原式=1+23232 +=1+1+27=29. 7.解:原式=== .8. 解析:原式=ab3 ba3 a2b=a b ba3 a2b =a b b a a2b=a b a b =a b=a0b = .9.-23 解析:(2x +3 )(2x -3 )-4x (x-x )=4x -33-4x +4=-23.10.解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)]=2ex(-2e-x)=-4e0=-4.(2)f(x)f(y)=(ex-e-x)(ey-e-y)=ex+y+e-(x+y)-ex-y-e-(x-y)=g(x+y)-g(x-y)=4,①同法可得g(x)g(y)=g(x+y)+g(x-y)=8. ②由①②解方程组gx+y-gx-y=4,gx+y+gx-y=8.解得g(x+y)=6,g(x-y)=2,gx+ygx-y=62=3.2.1.3 指数函数及其图象1.B 2.B 3.A4.A 解析:g(x)=ax的图象经过一、二象限,f(x)=ax+b是将g(x)=ax的图象向下平移|b|(b<-1)个单位而得,因而图象不经过第一象限.5.D 解析:A={x|y=2x-x2}={x|2x-x20}={x|02},B ={y|y=3x(x0)}={y|y1},则AB={x|x0},AB={x|12},根据新运算,得A#B=AB(AB)={x|01或x2}.故选D. 6.B 解析:函数关于y轴对称.7.解:∵4x0,016-4x16,016-4x4.8.B 解析:设x0,则-x0,f(-x)=10-x,∵f(x)为偶函数.f(x)=f(-x)=10-x.9.①③④⑤解析:因为f(x)=12x,f(x1+x2)===f(x1)f(x2),所以①成立,②不成立;显然函数f(x)=12x单调递减,即fx1-fx2x1-x20,故③成立;当x10时,f(x1)1,fx1-1x10,当x10时,0f(x1)1,fx1-1x10,故④成立;f(-x1)=12 ==1fx1,故⑤成立.10.解:(1)∵当x>0时,f(x)=(a2-1)x的值总大于1,a2-1>1.a2>2.a>2或a<-2.(2)∵函数y=ax-3的图象恒过定点(3,1),函数y=ax-3+3的图象恒过定点(3,4).2.1.4 指数函数的性质及其应用1.A 2.B3.B 解析:由y=|2x-2|=2x-2, x1,-2x+2, x1,分两部分:一部分为y1=2x-2(x1),只须将y=2x的图象沿y轴的负半轴平移2个单位即可,另一部分为y2=-2x+2(x1),只须将y=2x的图象对称于x轴的图象y=-2x,然后再沿y轴的正半轴平移2个单位,即可得到y=-2x+2的图象.故选B.4.C 解析:由于函数y=ax在[0,1]上是单调的,因此最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=3ax-1在[0,1]上是单调递增函数,最大值当x =1时取到,即为3.5.C 解析:很显然a,b均大于1;且y=bx函数图象比y =ax变化趋势小,故b<a,综上所述,a>b>1.6.B7.解:f(3)=f(3+1)=f(4)=124=116.8.(-,-2)(2,+)9.(0,3] 解析:设y=13u,u=x2-2x,∵函数y=13u是单调减函数,函数y=f(x)与u=x2-2x增减性相反.∵u有最小值-1,无最大值,y有最大值13-1=3,无最小值.又由指数函数值域y0知所求函数的值域为(0,3].10.(1)解:∵f(x)的定义域是R,且f(-x)=10-x-10x10-x+10x=-f(x),f(x)是奇函数.(2)证法一:f(x)=10x-10-x10x+10-x=102x-1102x+1=1-2102x+1.令x2>x1,则f(x2)-f(x1)=-∵y=10x为增函数,当x2>x1时,->0.又∵ +1>0, +1>0,故当x2>x1时,f(x2)-f(x1)>0,即f(x2)>f(x1).f(x)是增函数.证法二:考虑复合函数的增减性.由f(x)=10x-10-x10x+10-x=1-2102x+1.∵y=10x为增函数,y=102x+1为增函数,y=2102x+1为减函数,y=-2102x+1为增函数,y=1-2102x+1为增函数.f(x)=10x-10-x10x+10-x在定义域内是增函数.(3)解:令y=f(x).由y=102x-1102x+1,解得102x=1+y1-y.∵102x>0,1+y1-y>0,解得-1<y<1.即f(x)的值域为(-1,1).2.2 对数函数2.2.1 对数与对数运算1.C 2.B 3.B 4.A5.A 解析:令ex=t,则x=lnt,f(t)=lnt.f(e)=lne =1.6.B 解析:log2a=0,a=1.从而b=0,PQ={3,0,1}.7.解:(1)由题意知x+20,x-10,x-11,解得x1,且x2. 故x的取值范围为(1,2)(2,+).(2)由题意知x+30,x+31,解得x-3,且x-2.故x的取值范围为(-3,-2)(-2,+).8.-2 解析:∵x=-20,f(-2)=10-2=11000,f(10-2)=lg10-2=-2,即f[f(-2)]=-2.9.3 解析:(a ) =232 a=233log a=log 233=3. 10.解:(1)令log2x=t,则2t=x.因为f(log2x)=x,所以f(t)=2t.所以f12=2 =2.(2)因为log2[log3(log4x)]=0,所以log3(log4x)=1.所以log4x=3,所以x=43=64.又因为log3[log4(log2y)]=0.所以log4(log2y)=1.所以log2y=4.所以y=24=16.所以x+y=64+16=80.2.2.2 对数的性质及其应用1.A 2.B 3.B4.B 解析:方法一:原式=lg10023-lg1024+lg12=lg100-lg23-lg10+lg24+lg1-lg2=lg102-3lg2-1+4lg2-lg2=2-1=1.方法二:原式=lg12.51258=lg10=1.5.D6.A 解析:∵1a+1b=logm2+logm5=logm10=2,m2=10.又∵m0,m=10.7.解:原式=lg2lg1022+lg210lg(2210)=lg2(1-2lg2)+(lg2-1)(2lg2+1)=lg2-2(lg2)2+2(lg2)2-2lg2+lg2-1=-1.8.2b+1-a2a+b 解析:log1245=lg45lg12=2lg3+lg52lg2+lg3=2b+1-a2a+b.9.解:由log83=p,得lg3lg8=p,即lg3=3lg2p.①由log35=q,得lg5lg3=q,即1-lg2=lg3q.②①代入②中,得1-lg2=3lg2pq.(3pq+1)lg2=1.∵3pq+10,lg2=13pq+1.10.解:∵lga和lgb是关于x的方程x2-x+m=0的两个根,lga+lgb=1,①lgalgb=m. ②∵关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根,=(lga)2+4(1+lga)=0.lga=-2,即a=1100.将lga=-2代入①,得lgb=3.b=1000.再将lga=-2,lgb=3代入②,得m=-6.综上所述,a=1100,b=1000,m=-6.2.2.3 对数函数及其性质(1)1.D 解析:由log2a0,得01.由12b1,得b0.故选D. 2.D3.A 解析:y=log x=-log2x.4.A 解析:由log0.54x-30,4x-30,解得341.5.D6.B 解析:y=loga(-x)与y=logax关于y轴对称.7.a=2,b=28.D9.D 解析:∵log45log54log531,(log53)2log54log45.bc.故选D.10.解:(1)由kx-1x-10,得(kx-1)(x-1)0.又∵k0,x-1k(x-1)0.当k=1时,函数f(x)的定义域为{x|x1};由01时,函数f(x)的定义域为xx1或x1k,当k1时,函数f(x)的定义域为xx1k或x1.(2)f(x)=lnkx-1+k-1x-1=lnk+k-1x-1,∵函数f(x)在区间[10,+)上是增函数,k-10,即k1.又由10k-110-10,得k110.综上所述,实数k的取值范围为1101.2.2.4 对数函数及其性质(2)1.D 2.C 3.A4.B 解析:∵a=log23.6log22=1.又∵y=log4x,x(0,+)为单调递增函数,log43.2log43.6log44=1,ba.5.C6.C 解析:由loga23<1=logaa,得(1)当0<a<1时,由y=logax是减函数,得0<a<23;(2)当a>1时,由y=logax是增函数,得a>23,a>1.综合(1)(2),得0<a<23或a>1.7.D 解析:f(x)的定义域为(-1,1),且对定义域内任意x,f(-x)=lg1-x1+x=lg1+x1-x-1=-lg1+x1-x=-f(x);又可以验证f-12f12,因此,f(x)是奇函数但不是偶函数.用同样的方法可有:y=x3+1既不是奇函数又不是偶函数;y=e0-1e0+1=0(xR)既是奇函数又是偶函数;y=|2x+1|+|2x-1|是偶函数而不是奇函数,只有y=12x-1+12是奇函数但不是偶函数.故选D.8.-1,32 解析:令u(x)=4+3x-x2,又∵4+3x-x2>0x2-3x-4<0,解得-1<x<4.又u(x)=-x2+3x+4=-x-322+254,对称轴为x=32,开口向下的抛物线;u(x)在-1, 32上是增函数,在32,4上是减函数,又y=lnu(x)是定义域上的增函数,根据复合函数的单调性,y=ln(4+3x-x2)在-1, 32上是增函数.9.②③10.(1)解:∵f(x)是奇函数,f(-x)=-f(x).log 1+ax-x-1=-log 1-axx-11+ax-x-1=x-11-ax>01-a2x2=1-x2a=1.检验a=1(舍),a=-1.(2)证明:任取x1>x2>1,x1-1>x2-1>0.0<2x1-1<2x2-10<1+2x1-1<1+2x2-10<x1+1x1-1<x2+1x2-1log x1+1x1-1>log x2+1x2-1,即f(x1)>f(x2).f(x)在(1,+)内单调递增.(3)解:f(x)-12x>m恒成立.令g(x)=f(x)-12x.只需g(x)min>m,用定义可以证g(x)在[3,4]上是增函数,g(x)min=g(3)=-98.当m<-98时原式恒成立.2.2.5 对数函数及其性质(3)1.D 解析:c=120.30,a=log 20,b=log 30,并且log 2log 3,所以cb.2.C 解析:y=3x-2的图象向左平移2个单位得到y=3x 的图象,其反函数为y=log3x.3.B 4.B 5.B 6.D 7.A8.C 解析:将A项函数沿着直线y=x对折即可得到函数y =log2x.将B沿着x轴对折,将D向下平移1个单位再沿x 轴对折即可.9.22 提示:利用奇函数的定义或f(0)=0.10.解:(1)要使函数有意义,则有1-x0,x+30,解得-31.所以函数f(x)的定义域为(-3,1).(2)函数可化为f(x)=loga(1-x)(x+3)=loga(-x2-2x+3),由f(x)=0,得-x2-2x+3=1,即x2+2x-2=0,x=-13.∵-13(-3,1),方程f(x)=0的解为-13.(3)函数可化为f(x)=loga(-x2-2x+3)=loga[-(x+1)2+4],∵-31,0-(x+1)2+44.∵01,loga[-(x+1)2+4]loga4,即f(x)min=loga4.由loga4=-4,得a-4=4.a=4-14=22.2.3 幂函数1.C 2.A3.C 解析:设f(x)=x,则有2=22,解得=-12,即f(x)=x ,所以f(4)=4 =12.4.A 5.B 6.B7.解:m2-3m+3=1,m2-m-20,解得m=1或m=2. 8.(1)②④(2)①⑤⑧⑨9.依次是E,C,A,G,B,D,H,F10.解:(1)若f(x)是幂函数,故m2-m-1=1,即m2-m-2=0.解得m=2或m=-1.(2)若f(x)是幂函数且又是(0,+)上的增函数,则m2-m-1=1,-5m-30.所以m=-1.(3)若f(x)是正比例函数,则-5m-3=1,解得m=-45.此时m2-m-10,故m=-45.(4)若f(x)是反比例函数,则-5m-3=-1,则m=-25,此时m2-m-10,故m=-25.(5)若f(x)是二次函数,则-5m-3=2,即m=-1,此时m2-m-10,故m=-1.综上所述,当m=2或m=-1时,f(x)是幂函数;当m=-1时,f(x)既是幂函数,又是(0,+)上的增函数;当m=-45时,f(x)是正比例函数;当m=-25时,f(x)是反比例函数;当m=-1时,f(x)是二次函数.。

基本初等函数复习学案 - - (有答案) -29

基本初等函数复习学案 - - (有答案) -29

第二章基本初等函数一、基础知识回顾: (一)指数函数1.n 次方根的含义:一般地,a x n =,那么x 叫做a 的 ,其中1>n 且*N n ∈,用符号 表示,式子 叫做根式,其中 叫根指数, 叫被开方数. 2. (1)()=nna(2)n 为奇数时,=nna n 为偶数时,=n na3.指数幂的运算性质:(1)=0a (0≠a )(2)=-n a (0≠a )(3)=∙sr a a (4) =s r a )( (5)=r ab )(1对数的含义:如果ba N =(01)a a >≠,且,那么称 为 ,记作 ,① 以10为底的对数称为常用对数,10log N 记作___________.② 以无理数( 2.71828)e e = 为底的对数称为自然对数,log e N 记作_________.特别的有:(1)=a a log , (3)=1log a .注:零和负数没有对数2.对数的运算法则:.0,0>>N M (1)=MN a log ;(2)=NMa log (3)=n a M log . 对数恒等式=N a a log .3.对数的换底公式:log a N = (0a >,且1a ≠,0N >). 换底公式的变形形式:(1)ab b a log 1log =, (2)=n a b n log ,(3)=n a b m log .1.幂函数的概念:一般地,我们把形如 的函数称为幂函数,其中 是自变量, 是常数;2.幂函数的性质:(1)幂函数的图象都过点 ;幂函数的图象都不经过第 象限;(2)当0α>时,幂函数在[0,)+∞上 ;当0α<时,幂函数在(0,)+∞上;(四)函数与方程1.函数的零点(1)定义,对于函数y =f(x)(x ∈D),把使 成立的实数x 叫做函数y =f(x)(x ∈D)的零点. (2)函数的零点与相应方程的根、函数的图象与x 轴交点间的关系方程f(x)=0有实数根⇔函数y =f(x)的图象与 有交点⇔函数y =f(x)有 . 2.函数零点的判定(零点存在性定理)如果函数y =f(x)在区间[a ,b]上的图象是连续不断的一条曲线,并且有 ,那么函数y =f(x)在区间 内有零点,即存在c ∈(a ,b),使得 ,这个 也就是f(x)=0的根.二分法 对于在区间[],a b 上连续不断,且__________________的函数()y f x =,通过不断地把函数()f x 的零点所在的区间一分为二,使区间的两端点逐步逼近零点,近而得到零点的近似值的方法叫做二分法。

基本初等函数经典复习题答案

基本初等函数经典复习题答案

())1,,,0(.4*>∈>=n N n m a a a n m n mxN N a a x =⇔=log 必修1基本初等函数 复习题1、幂的运算性质(1)s r s r a a a +=⋅),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =⋅)(R r ∈ 2、对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1()N M N M a a a log log log +=⋅; ○2 N M NM a a a log log log -=; ○3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a换底公式:abb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b mnb a n a m log log =;(2)a b b a log 1log =.求函数的定义域时列不等式组的主要依据是:(1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法(A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降)(C)复合函数的单调性:复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x= 2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 3、若{|2},{|x M y y P y y ====,则M∩P ( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5 C.2<a<3,或3<a<5 D.3<a<45、 已知x a x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a 6、函数|log |)(21x x f =的单调递增区间是 ( )A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞7、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ) A 、0<a<b<1<d<c B 、0<b<a<1<c<d C 、0<d<c<1<a<b D 、0<c<d<1<a<b 8、已知幂函数f(x)过点(2,22),则f(4)的值为 ( )A 、21 B 、 1 C 、2 D 、8 9、6.0log 5.0=a ,5.0log 2=b ,5log3=c ,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b 10、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是1.a 0a ,1)2(212≠>⎪⎭⎫⎝⎛>--且其中x x a a A.(0,1) B.(1,2) C.(0,2) D.[2,+∞] 11、函数)1(log 21-=x y 的定义域为 .12. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =13、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为 14、函数2)23x (lg )x (f +-=恒过定点15、求下列各式中的x 的值1)1x (ln )1(<-16.点(2,1)与(1,2)在函数()2ax bf x +=的图象上,求()f x 的解析式。

高中数学:第2章2节 基本初等函数 对数函数 幂函数总复习试题及答案

高中数学:第2章2节 基本初等函数 对数函数 幂函数总复习试题及答案

2.2 对数函数 2.2.1 对数与对数运算一、选择题(本大题共7小题,每小题5分,共35分) 1.以下四个命题中是真命题的为( ) ①若log 5x =3,则x =15; ②若log 25x =12,则x =5;③若log x5=12,则x =5;④若log 5x =-3,则x =1125.A .①②B .①③C .②④D .③④ 2.log849log27的值是( )A .2 B.32C .1 D.233.已知对数式log a -2(5-a )=b ,则实数a 的取值X 围是( ) A .(-∞,5) B .(2,5) C .(2,3)∪(3,5) D .(2,+∞)4.已知lg 2=a ,lg 3=b ,则lg 12等于( ) A .a 2+b B .2a +b C .a +2b D .a +b 25.对数式2lg 22+lg 25+3lg 2lg 5- lg 2化简的结果是( ) A .1 B .-lg 2C .lg 5 D.126.计算log 2(22)-log (2-1)(3-22)+e ln 2的值为( )A .3B .2C .1D .0 7.lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则lg(ab )·lgab2=( )A .2B .4C .6D .8二、填空题(本大题共4小题,每小题5分,共20分) 8.方程lg x +lg(x -1)=1-lg 5的根是x =________. 9.已知m >0,且10x =lg(10m )+lg1m,则x =________.10.2lg 4+lg 91+12lg 0.36+13lg 8=________.11.已知log 147=a ,log 145=b ,则用a ,b 表示log 3514=________. 三、解答题(本大题共2小题,共25分) 12.(12分)解方程(lg x )2+lg x 5-6=0.13.(13分)计算:(1)[(1-log 63)2+log 62·log 618]÷log 64;(2)lg23-lg 9+1(lg 27+lg 8-lg 1000)lg 0.3·lg 1.2.14.(5分)定义a ⊗b =a 12+b -13,a *b =lg a 2-lg b 12.若M =94⊗8125,N =2*125,则M +N =________.15.(15分)已知log 23=a ,3b =7,求log 1256.答案2.2.1 对数与对数运算1.C [解析] 由对数的定义可知,②④中的命题是真命题. 2.D [解析]log849log27=log272log223÷log 27=23.3.C [解析] 由对数的定义,log a -2(5-a )必满足⎩⎪⎨⎪⎧5-a>0,a -2>0,a -2≠1,解得2<a <5且a ≠3,∴a ∈(2,3)∪(3,5).4.B [解析] lg 12=lg 4+lg 3=2lg 2+lg 3=2a +b .5.A [解析] 2lg 22+lg 25+3lg 2lg 5-lg 2=lg 5(lg 5+3lg 2)+2lg 22-lg 2=(1-lg 2)(1-lg 2+3lg 2)+2lg 22-lg 2=(1-lg 2)(1+2lg 2)+2lg 22-lg 2=1.6.A [解析] 原式=log2(2)3-log (2-1)(2-1)2+2=3-2+2=3.7.B [解析] 由已知得,lg a +lg b =2,即lg(ab )=2,且lg a ·lg b =12,所以lg(ab )·lgab2=2(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ]=2×22-4×12=2×2=4,故选B.8.2 [解析] 方程变形为lg x (x -1)=lg 2,所以x (x -1)=2,解得x =2或x =-1.经检验x =-1不合题意,舍去,所以原方程的根为x =2.9.0 [解析] ∵lg(10m )+lg 1m =lg 10+lg m +lg 1m=1,∴10x =1=100,∴x =0.10.2 [解析] 原式=2(lg 4+lg 3)1+lg 0.36+lg38=2lg 121+lg 0.6+lg 2=2lg 12lg (10×0.6×2)=2.11.1a +b[解析] log 3514=log1414log1435=1log147+log145=1a +b.12.解:原方程可化为(lg x )2+5lg x -6=0,即(lg x +6)(lg x -1)=0, 所以lg x =-6或lg x =1,解得x =10-6或x =10.经检验x =10-6和x =10都是原方程的解. 所以原方程的解为x =10-6或x =10. 13.解:(1)原式=log 6632+log 62·log 6362÷log 64=[(log 62)2+log 62(log 636-log 62)]÷log 64 =[(log 62)2+2log 62-(log 62)2]÷log 64 =2log 62÷log 64=log 64÷log 64=1.(2)原式=lg23-2lg 3+1⎝ ⎛⎭⎪⎫32lg 3+3lg 2-32(lg 3-1)·(lg 3+2lg 2-1)=(1-lg 3)·32(lg 3+2lg 2-1)(lg 3-1)·(lg 3+2lg 2-1)=-32.14.5[解析] M =⎝ ⎛⎭⎪⎫9412+⎝⎛⎭⎪⎫8125-13=32+52=4, N =lg(2)2-lg⎝ ⎛⎭⎪⎫12512=lg 2+lg 5=1,故M +N =5. 15.解:∵log 23=a ,∴log 32=1a. 又3b =7,∴log 37=b ,故log 1256=log356log312=log37+log38log33+log34=log37+3log321+2log32=b +3·1a 1+2·1a=ab +3a +2.2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)一、选择题(本大题共7小题,每小题5分,共35分)1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =12x ,x>1,则A ∩B =( )A.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12 B .{y |0<y <1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y<1 D .∅ 2.函数y =log a (2x -3)+1的图像恒过定点P , 则点P 的坐标是( ) A .(2,1) B .(2,0) C .(2,-1) D .(1,1) 3.函数f (x )=12-log3x的定义域是( )A .(-∞,9]B .(-∞,9)C .(0,9]D .(0,9)4.已知f (x )为R 上的增函数,且f (log 2x )>f (1),则x 的取值X 围为( ) A .(2,+∞) B .0,12∪(2,+∞)C.12,2 D .(0,1)∪(2,+∞)5.函数f (x )=log 2(1-x )的图像为( )图L2­2­16.已知x =20.5,y =log 52,z =log 50.7,则x ,y ,z 的大小关系为( ) A .x <y <z B .z <x <y C .z <y <x D .y <z <x7.已知0<a <1,log am <log an <0,则() A .1<n <m B .1<m <n C .n <m <1 D .m <n <1二、填空题(本大题共4小题,每小题5分,共20分) 8.函数f (x )=log2x -2的定义域是________.9.已知对数函数f (x )的图像过点P (8,3),则f ⎝ ⎛⎭⎪⎫132=________.10.函数y =log 12(3x -a )的定义域是⎝ ⎛⎭⎪⎫23,+∞,则a =________.11.设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2014)=9,则f (x 21)+f (x 2)+…+f (x 2014)的值等于________.三、解答题(本大题共2小题,共25分) 12.(12分)判断函数f (x )=log 2(x +1+x2)的奇偶性.13.(13分)已知函数f (x )=lg (3x -3).(1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,某某数t 的取值X 围.14.(5分)设函数f (x )=⎩⎪⎨⎪⎧log2(x -1),x ≥2,12x -1,x<2,若f (x 0)>1,则x0的取值X 围是________.15.(15分)已知实数x 满足-3≤log 12x ≤-12.求函数y =⎝⎛⎭⎪⎫log2x 2·⎝ ⎛⎭⎪⎫log2x 4的值域.答案2.2.2 对数函数及其性质 第1课时 对数函数及其性质(一)1.A [解析] 因为A ={y |y >0},B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12,所以A ∩B =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪0<y<12.2.A [解析] 当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1). 3.D [解析] 要使函数有意义,只需2-log 3x >0,即log 3x <2,所以0<x <9. 4.A [解析] 依题意有log 2x >1,所以x >2.5.A [解析] 由定义域知x <1,排除选项B ,D.又f (x )=log 2(1-x )是定义域上的减函数,故选A.6.C [解析] 因为x =20.5>20=1,0<y =log 52<1,z =log 50.7<0,所以z <y <x . 7.A [解析] 原式变形为log a m <log a n <log a 1,根据减函数的性质得m >n >1.8.[4,+∞) [解析] 由已知得⎩⎪⎨⎪⎧x>0,log2x -2≥0,解得x ≥4.9.-5 [解析] 设f (x )=log a x ,将点P (8,3)代入得3=log a 8,所以a 3=8,所以a =2,所以f (x )=log 2x ,所以f132=log 2132=log 22-5=-5.10.2 [解析] 根据题意,得3x -a >0,∴x >a 3,∴a 3=23,解得a =2.11.18 [解析] 因为f (x 1x 2…x 2014)=log a (x 1x 2…x 2014)=9,所以f (x 21)+f (x 2)+…+f (x 2014)=log a x 21+log a x 2+…+log a x 2014=log a (x 21x 2…x 2014)=log a (x 1x 2…x 2014)2=2log 2(x 1x 2…x 2014)=2×9=18. 12.解:要使函数有意义,需满足x +1+x2>0,∴x ∈R ,故函数的定义域为R ,关于原点对称.∵f (-x )+f (x )=log 2(-x +1+x2)+log 2(x +1+x2)=log 2(1+x 2-x 2)=log 21=0,∴f (-x )=-f (x ),即函数为奇函数.13.解:(1)由3x -3>0得x >1,所以定义域为(1,+∞). 因为(3x -3)∈(0,+∞),所以值域为R . (2)因为h (x )=lg(3x -3)-lg(3x +3)=lg3x -33x +3=lg1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数,所以函数h (x )的值域为(-∞,0).若不等式h (x )>t 无解,则t 的取值X 围是t ≥0.14.(-∞,-1)∪(3,+∞) [解析] 当x 0≥2时,log 2(x 0-1)>1,得log 2(x 0-1)>1=log 22,所以x 0-1>2,得x 0>3;当x 0<2时,12x 0-1>1,即12x 0>2=12-1,所以x 0<-1.所以x 0的取值X 围是(-∞,-1)∪(3,+∞).15.解:y =⎝⎛⎭⎪⎫log2x 2·⎝ ⎛⎭⎪⎫log2x 4=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2.∵-3≤log 12x ≤-12,∴12≤log 2x ≤3.令t =log 2x ,则t ∈⎣⎢⎡⎦⎥⎤12,3,y =t 2-3t +2=⎝ ⎛⎭⎪⎫t -322-14,∴t =32时,y min =-14;t =3时,y max =2.故函数的值域为⎣⎢⎡⎦⎥⎤-14,2.第2课时 对数函数及其性质(二)一、选择题(本大题共7小题,每小题5分,共35分)1.若log 3a <0,13b >1,则( )A .a >1,b >0B .0<a <1,b >0C .a >1,b <0D .0<a <1,b <0 2.下列函数中,在(0,2)上为增函数的是( ) A .y =log 12(x +1)B .y =log 2x2-1C .y =log 21xD .y =log12(x 2-4x +5)3.设f (x )=⎩⎪⎨⎪⎧2ex -1,x<2,log3(x2-1),x ≥2,则f [f (2)]的值为( )A .0B .1C .2D .34.已知a >0,且a ≠1,则函数y =a -x 与y =log a (-x )的图像可能是( )图L2­2­25.设a =30.7,b =0.43,c =log 30.5,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .c <a <b D .b <c <a6.已知函数f (x )=2x +a ·2-x ,则对于任意实数a ,函数f (x )不可能( ) A .是奇函数B .既是奇函数,又是偶函数C .是偶函数D .既不是奇函数,又不是偶函数7.已知y =log a (8-3ax )在[1,2]上是减函数,则实数a 的取值X 围是( ) A .(0,1) B .1,43C.43,4 D .(1,+∞)二、填空题(本大题共4小题,每小题5分,共20分) 8.函数y =log 12(1-2x )的单调递增区间为________.9.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f 12=0,则不等式f (log 4x )<0的解集是________.10.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系为________.11.函数y =log 12(x 2-6x +17)的值域为________.三、解答题(本大题共2小题,共25分)12.(12分)已知函数f (x )=log2(1-x )-log2(1+x ). (1)求函数f (x )的定义域; (2)判断f (x )的奇偶性.13.(13分)解不等式:log a (x -4)>log a (x -2).14.(5分)若不等式lg 1+2x +(1-a )3x3≥(x -1)lg 3对任意的x ∈(-∞,1]恒成立,则a 的取值X 围是( )A .(-∞,0]B .(-∞,1]C .[0,+∞)D .[1,+∞)15.(15分)已知定义在R 上的函数y =f (x )是偶函数,且x ≥0时,f (x )=ln(x 2-2x +2). (1)求f (x )的解析式; (2)求出f (x )的单调递增区间.答案第2课时 对数函数及其性质(二)1.D [解析] 由函数y =log 3x ,y =13x 的图像知,0<a <1,b <0.2.D [解析] A ,C 中函数为减函数,(0,2)不是B 中函数的定义域.D 中,函数y =x 2-4x +5在(0,2)上为减函数,又∵12<1,故y =log12(x 2-4x +5)在(0,2)上为增函数,故选D.3.C [解析] f [f (2)]=f [log 3(22-1)]=f (1)=2e 1-1=2. 4.C [解析] a >1时,y =a -x =1ax 是减函数,y =loga (-x )是减函数,且其图像位于y轴左侧;当0<a <1时,y =a -x =1ax 是增函数,y =loga (-x )是增函数,且其图像位于y 轴左侧.由此可知C 正确.5.B [解析] a =30.7>30=1,0<b =0.43<0.40=1,c =log 30.5<log 31=0,所以c <b <a .6.B [解析] 验证可知,当a =-1时,f (x )=2x -2-x ,f (-x )=2-x -2x =-f (x ),所以a =-1时,函数f (x )是奇函数,当a =1时,f (-x )=f (x )=2x +2-x ,函数f (x )是偶函数.当a =0时,函数f (x )既不是奇函数,又不是偶函数.故选B.7.B [解析] 因为a >0,所以t =8-3ax 为减函数,而当a >1时,y =log a t 是增函数,所以y =log a (8-3ax )是减函数,于是a >1.由8-3ax >0,得a <83x在[1,2]上恒成立,所以a <83xmin =83×2=43.8.-∞,12[解析] 令u =1-2x ,函数u =1-2x 在区间-∞,12内递减,而y =log12u 是减函数,故函数y =log 12(1-2x )在-∞,12内递增.9.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x<2 [解析] 由题意可知,由f (log 4x )<0得-12<log 4x <12,即log 44-12<log 4x <log 4412,得12<x <2.10.a =b >c [解析] 由已知得a =32log 23,b =log 232-12=32log 23>32,c =log 32<1.故a =b >c .11.(-∞,-3] [解析] 令t =x 2-6x +17=(x -3)2+8≥8,因为y =log 12t 为减函数,所以y =log 12t ≤log 128=-3.12.解:(1)要使函数有意义,则⎩⎪⎨⎪⎧1-x>0,1+x>0,∴-1<x <1,故函数的定义域为(-1,1).(2)∵f (-x )=log 2(1+x )-log 2(1-x )=-f (x ),∴f (x )为奇函数.13.解:当a >1时,原不等式等价于⎩⎪⎨⎪⎧x -4>x -2,x -4>0,x -2>0,该不等式组无解;当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧x -4<x -2,x -4>0,x -2>0,解得x >4.所以当a >1时,原不等式的解集为空集;当0<a <1时,原不等式的解集为(4,+∞). 14.B [解析] 不等式lg1+2x +(1-a )3x3≥(x -1)lg 3变为lg1+2x +(1-a )3x3≥lg 3x -1,即1+2x +(1-a )3x3≥3x -1,整理得a ≤13x +23x .因为y =13x +23x 是减函数,所以y ≥131+231=1. 若不等式lg1+2x +(1-a )3x3≥(x -1)lg 3对任意的x ∈(-∞,1]恒成立,则a ≤13x+23xmin =1.15.解:(1)x <0时,-x >0,∵x ≥0时,f (x )=ln(x 2-2x +2), ∴x <0时,f (-x )=ln(x 2+2x +2).∵y =f (x )是偶函数,∴f (-x )=f (x ),即x <0时,f (x )=ln(x 2+2x +2).故f (x )=⎩⎪⎨⎪⎧ln (x2+2x +2),x<0,ln (x2-2x +2),x ≥0.(2)当x ≥0时,f (x )=ln(x 2-2x +2),函数的单调递增区间即为t =x 2-2x +2的增区间,增区间为(1,+∞);当x <0时,f (x )=ln(x 2+2x +2),函数的递增区间为(-1,0). 故函数f (x )的单调递增区间是(-1,0),(1,+∞).2.3 幂函数一、选择题(本大题共7小题,每小题5分,共35分)1.下列函数是幂函数的是( )A .y =x xB .y =3x 12C .y =x 12+1 D .y =x -22.若函数f (x )=(2m +3)xm 2-3是幂函数,则实数m 的值为( ) A .-1 B .0 C .1 D .23.已知幂函数f (x )=x α的图像经过点3,33,则f (4)的值为( )A.12B.14C.13D .24.下列函数中既是偶函数,又在(0,+∞)上单调递增的是( ) A .y =x B .y =-x 2 C .y =2x D .y =|x |5.函数y =x 23图像的大致形状是( )图L2­3­16.幂函数f (x )=(m 2-4m +4)xm 2-6m +8在(0,+∞)上为减函数,则m 的值为( ) A .1或3 B .1 C .3 D .27.如图L2­3­2所示,曲线C 1,C 2,C 3,C 4是幂函数y =x α在第一象限内的图像,已知α分别取±1,12,2四个值,对应于曲线C 1,C 2,C 3,C 4的α分别为( )图L2­3­2A .-1,12,1,2B .2,1,12,-1C.12,1,2,-1D .2,1,-1,12二、填空题(本大题共4小题,每小题5分,共20分)8.由幂函数的图像可知,使x 3-x 2>0成立的x 的取值X 围是________.9.若函数f (x )=⎩⎪⎨⎪⎧x -12,x>0,-2,x =0,(x +3)12,x<0,则f {f [f (0)]}=________.10.已知幂函数f (x )=k ·x α的图像过点⎝ ⎛⎭⎪⎪⎫12,22,则k +α=________.11.已知f (x )=a x,g (x )为幂函数,若F (x )=f (x )+g (x )的图像过点A (1,2)和B 2,52,则F (x )=________.三、解答题(本大题共2小题,共25分)12.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数. (1)求a 的值;(2)求函数g (x )=f (x )+[f (x )]2在⎣⎢⎡⎦⎥⎤0,12上的值域. 13.(13分)已知函数f (x )=x -k 2+k +2(k ∈N ),满足f (2)<f (3).(1)求k 的值与f (x )的解析式;(2)对于(1)中的函数f (x ),试判断是否存在m ,使得函数g (x )=f (x )-2x +m 在[0,2]上的值域为[2,3],若存在,请求出m 的值;若不存在,请说明理由. 14.(5分)给出下面三个不等式,其中正确的是________.①-8-13<-1913;②4.125>3.8-25>(-1.9)-35;③0.20.5>0.40.3.15.(15分)已知幂函数y =x 3m -9(m ∈N *)的图像关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m 3的a 的取值X 围.答案 2.3 幂函数1.D [解析] 由幂函数的定义,幂函数满足三个条件:①系数为1,②底数为自变量,③指数为常数.故选D.2.A [解析] 依题意2m +3=1,得m =-1.3.A [解析] 依题意有33=3α,所以α=-12,所以f (x )=x -12,所以f (4)=4-12=12.4.D [解析] A 中的函数不具备奇偶性;B 中的函数是偶函数,但是在区间(0,+∞)上是减函数;C 中的函数不具备奇偶性;D 中的函数是偶函数且在(0,+∞)上单调递增.5.D [解析] 因为y =x 23是偶函数,且在第一象限图像沿x 轴递增,所以选项D 正确.6.C [解析] 因为f (x )为幂函数,所以m 2-4m +4=1,解得m =3或m =1,所以f (x )=x -1或f (x )=x 3.因为f (x )为(0,+∞)上的减函数,所以m =3.7.B [解析] 由幂函数的图像性质,C 1:y =x 2;C2:y =x ;C 3:y =x 12;C 4:y =x-1.8.(1,+∞) [解析] 在同一坐标系中作出y =x 3及y =x 2的图像(图略),可得不等式成立的x 的取值X 围是(1,+∞).9.1 [解析] f (0)=-2,f (-2)=1,f (1)=1,即f {f [f (0)]}=1.10.32 [解析] 因为函数是幂函数,所以k =1,又因为其图像过点⎝ ⎛⎭⎪⎪⎫12,22,所以22=⎝ ⎛⎭⎪⎫12α,解得α=12,故k +α=32.11.1x+x [解析] 设g (x )=x b ,则F (x )=a x+x b ,依题意a 1+1b =2且a 2+2b =52,解得a=b =1,所以F (x )=1x+x .12.解:(1)因为函数f (x )=(a 2-a +1)x a +1为幂函数, 所以a 2-a +1=1,解得a =0或a =1.当a =0时,f (x )=x ,函数是奇函数;当a =1时,f (x )=x 2,函数是偶函数.故a =0.(2)由(1)知g (x )=x +x 2=⎝ ⎛⎭⎪⎫x +122-14.当x =0时,函数取得最小值g (0)=0;当x =12时,函数取得最大值g ⎝ ⎛⎭⎪⎫12=12+14=34.故g (x )在区间⎣⎢⎡⎦⎥⎤0,12上的值域为⎣⎢⎡⎦⎥⎤0,34.13.解:(1)由f (2)<f (3),得-k 2+k +2>0,解得-1<k <2, 又k ∈N ,则k =0,1. 当k =0,1时,f (x )=x 2.(2)由已知得g (x )=x 2-2x +m =(x -1)2+m -1,当x ∈[0,2]时,易求得g (x )∈[m -1,m ], 由已知值域为[2,3],得m =3. 故存在满足条件的m ,且m =3. 14.①② [解析] ①-1913=-9-13,由于幂函数y =x -13在(0,+∞)上是减函数,所以8-13>9-13,因此-8-13<-9-13,故①正确;②由于4.125>1,0<3.8-25<1,(-1.9)-35<0,故②正确;③由于y =0.2x 在R 上是减函数,所以0.20.5<0.20.3,又y =x 0.3在(0,+∞)上是增函数,所以0.20.3<0.40.3,所以0.20.5<0.40.3,故③错误.15.解:∵函数y =x 3m -9在(0,+∞)上递减, ∴3m -9<0,解得m <3.又m ∈N *,∴m =1,2. 又函数图像关于y 轴对称,∴3m -9为偶数,故m =1, ∴原不等式为(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均单调递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a , 解得23<a <32或a <-1.滚动习题(五)[X 围2.1~2.3] [时间:45分钟 分值:100分]一、选择题(本大题共7小题,每小题5分,共35分)1.(lg 9-1)2=( )A .lg 9-1B .1-lg 9C .8D .222.若集合A ={x |lg x ≤0},B ={y |y =1-x 2},则A ∩B =( ) A .(-∞,1] B .(0,1) C .(0,1] D .[1,+∞) 3.函数y =ln (x +1)-x2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1] 4.若a >1,b <-1,则函数y =a x +b 的图像必不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.函数f (x )=4x +12x( )A .既是奇函数又是偶函数B .为非奇非偶函数C .为奇函数D .为偶函数6.设偶函数f (x )=log a |x +b |在(0,+∞)上单调递增,则f (b -2)与f (a +1)的大小关系为( )A .f (b -2)>f (a +1)B .f (b -2)=f (a +1)C .f (b -2)<f (a +1)D .不能确定7.已知f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a ,b ,c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c二、填空题(本大题共4小题,每小题5分,共20分) 8.设a =log 75,b =log 67,则a ,b 的大小关系是________.9.已知0<x <y <1,m =log2x +log2y ,则m 的取值X 围是________.10.已知f (x )=2+log3x ,x ∈[1,9],则函数y =f 2(x )+f (x 2)的最大值是________.11.关于下列命题:①若函数y =2x 的定义域是{x |x ≤0},则它的值域是{y |y ≤1};②若函数y =1x 的定义域是{x |x >2},则它的值域是⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≤12;③若函数y =x 2的值域是{y |0≤y ≤4},则它的定义域一定是{x |-2≤x ≤2}; ④若函数y =log 2x 的值域是{y |y ≤3},则它的定义域是{x |0<x ≤8}.其中不正确的命题的序号是________(注:把你认为不正确的命题的序号都填上). 三、解答题(本大题共3小题,共45分)12.(15分)(1)化简:4x 14·(-3x 18y -16)2÷(-6x -12y -23)(结果保留根式形式);(2)计算:log 34273·log 5[412log 210-(33)23-7log 72].13.(15分)记函数f (x )=x2-1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .(1)求区间A ;(2)若B ⊆A ,某某数a 的取值X 围.14.(15分)已知函数f (x )满足f (log a x )=x -1-x ,其中a >0且a ≠1.(1)求函数f (x )的解析式,判断并证明奇偶性;(2)对于函数f (x ),当x ∈(-1,1)时,f (1-m )+f (1-m 2)>0,某某数m 的取值X 围.答案 滚动习题(五)1.B [解析] 因为lg 9<lg 10=1,所以(lg 9-1)2=1-lg 9.2.C [解析] 由已知得集合A ={x |lg x ≤0}={x |0<x ≤1},B ={y |y =1-x 2}={y |y ≤1},故A ∩B =(0,1].3.C [解析] 要使函数有意义,则有x +1>0且-x 2-3x +4>0,即x >-1且x 2+3x -4<0,解得-1<x <1.4.B [解析] 函数y =a x +b 的图像可以看成是由y =a x 的图像平移得到的.因为a >1,所以函数y =a x 单调递增且图像在x 轴的上方.又因为b <-1,所以把y =a x 的图像向下平移|b |个单位即可得到函数y =a x +b 的图像,易知y =a x +b 的图像必不经过第二象限.5.D [解析] f (-x )=4-x +12-x =1+4x 2x =f (x ),故f (x )为偶函数.6.C [解析] ∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |.当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数,∴f (a +1)>f (2)=f (b -2).7.C [解析] 因为f (x )是定义在R 上的偶函数,所以b =f (log 123)=f (-log 23)=f (log 23),log 23=log 49>log 47>1,0<0.20.6<1. 因为f (x )是定义在R 上的偶函数,且在(-∞,0]上是增函数,所以f (x )在(0,+∞)上是减函数,所以b <a <c .8.a <b [解析] 因为a =log 75<log 77=1,b =log 67>log 66=1,所以a <b .9.m <0 [解析] 由0<x <y <1,得0<xy <1,故m =log 2x +log 2y =log 2xy <log 21=0.10.13 [解析] 由f (x )=2+log 3x ,x ∈[1,9],得f (x 2)=2+log 3x 2,x 2∈[1,9],则y =(2+log 3x )2+2+log 3x 2,即y =(log 3x )2+6log 3x +6=(log 3x +3)2-3.令log 3x =t ,0≤t ≤1,则y =(t +3)2-3,当t =log 3x =1,即x =3时,y max =13.11.①②③ [解析] 作出这四个函数的图像(图略),可知只有④是正确的,①②③都是不正确的.12.解:(1)原式=4x 14·3x 14·y -13÷(-6x -12·y -23)=-2x 3y . (2)原式=(log 3334-log 33)·log 5[4log 210-(332)23-7log 72] =34-1·log 5(10-3-2)=-14. 13.解:(1)由x 2-1≥0,得x ≤-1或x ≥1,故A =(-∞,-1]∪[1,+∞).(2)因为(x -a -1)(2a -x )>0,且a <1,所以2a <x <a +1,所以B =(2a ,a +1).由于B ⊆A ,从而有2a ≥1或a +1≤-1,即a ≥12或a ≤-2,结合a <1,故12≤a <1或a ≤-2.故实数a 的取值X 围为(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1. 14.解:(1)令t =log a x ,则x =a t ,故f (t )=a -t -a t ,即f (x )=a -x -a x . 因为f (-x )=a x -a -x =-f (x ),故函数f (x )为奇函数.(2)①当a >1时,函数f (x )在(-1,1)上单调递减且为奇函数,则由f (1-m )+f (1-m 2)>0得f (1-m )>f (m 2-1),所以⎩⎪⎨⎪⎧1>1-m>-1,-1<m2-1<1,1-m<m2-1,解得1<m <2.②当0<a <1时,函数f (x )在(-1,1)上单调递增且为奇函数,则由f (1-m )+f (1-m 2)>0得f (1-m )>f (m 2-1),所以⎩⎪⎨⎪⎧1>1-m>-1,-1<m2-1<1,1-m>m2-1,解得0<m <1. 综上知,当a >1时,m ∈(1,2);当0<a <1时,m ∈(0,1).。

(word版)基本初等函数练习题与答案

(word版)基本初等函数练习题与答案

数学1〔必修〕第二章根本初等函数〔1〕[根底训练A组]一、选择题1.以下函数与y x有相同图象的一个函数是〔〕A.y x2B.y x2x.loga x且D.y log a x a(a0a1)aCy2.以下函数中是奇函数的有几个〔〕x2x①y a1②y lg(1x)③y④y log a1xxa x1x331x A.1B.2C.3D.43.函数y3x与y 3x的图象关于以下那种图形对称()A.x轴B.y轴C.直线y xD.原点中心对称x1334.x3,那么x2x2值为〔〕A.33B.25C.45D.455.函数y log1(3x 2)的定义域是〔〕2A.[1,)B.(2,)C.[2,1]D.(2,1]3336.三个数6,6,log6的大小关系为〔〕A.6log66B.66log6 C.log666 D.log6667.假设f(lnx)3x4,那么f(x)的表达式为〔〕A.3lnx B.3lnx4C.3e x D.3e x4二、填空题1.2,32,54,88,916从小到大的排列顺序是。

2.化简81041084的值等于__________。

4113.计(log25)24log254log21=。

算:54.x2y24x2y50,那么log x(y x)的值是_____________。

13x3的解是_____________。

5.方程3x116.函数y82x1的定义域是______;值域是______.7.判断函数y x2lg(x x21)的奇偶性。

三、解答题1.a x65(a0),求a3xaa x a3x的值。

2.计算1lg214lg34lg6lg的值。

33.函数f(x)1log21x,求函数的定义域,并讨论它的奇偶性单调性。

x1x 4.〔1〕求函数f(x)log2x13x2的定义域。

〔2〕求函数y(1)x24x,x[0,5)的值域。

3数学1〔必修〕第二章根本初等函数〔1〕[综合训练B组]一、选择题1.假设函数f(x)log a x(0a1)在区间[a,2a]上的最大值是最小值的3倍,那么a的值为()2 B .2 1D .1A .C . 42422.假设函数y log a (xb)(a0,a 1)的图象过两点(1,0)和(0,1),那么( )A .a2,b2B .a 2,b2C .a2,b1D .a2,b23.f(x 6)log 2x ,那么f(8)等于〔〕4 B .8C .18D .1A .234.函数y lgx ()A .是偶函数,在区间B .是偶函数,在区间C .是奇函数,在区间( ,0) 上单调递增 (,0)上单调递减(0, )上单调递增D .是奇函数,在区间 (0, )上单调递减5.函数f(x)lg 1 x .假设f(a) b.那么f(a)〔〕1 xA .bB .b1 D .1C .bb6.函数f(x)log a x 1 在(0,1) 上递减,那么 f(x)在(1,)上〔〕A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值二、填空题1f(x) 2x2 xlga是奇函数,那么实数a =_________。

基本初等函数经典复习题+答案

基本初等函数经典复习题+答案

())1,,,0(.4*>∈>=n N n m a a a n m nmxN N a a x =⇔=log 必修1基本初等函数 复习题1、幂的运算性质(1)sr sra a a +=⋅),(R s r ∈;(2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =⋅)(R r ∈2、对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1()N M N M a a a log log log +=⋅; ○2 N M NMa a alog log log -=; ○3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a换底公式:abb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b )(1)b mnb a n a mlog log =;(2)a b b a log 1log =.求函数的定义域时列不等式组的主要依据是:(1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法(A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降)(C)复合函数的单调性:复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x= 2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞)3、若{|2},{|x M y y P y y ====,则M∩P( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5 C.2<a<3,或3<a<5 D.3<a<45、 已知x a x f -=)()10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是()A.0>aB.1>a C. 1<a D. 10<<a6、函数|log |)(21x x f =的单调递增区间是 ( ) A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞7、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ) A 、0<a<b<1<d<c B 、0<b<a<1<c<d C 、0<d<c<1<a<b D 、0<c<d<1<a<b 8、已知幂函数f(x)过点(2,22),则f(4)的值为 ( )1.a 0a ,1)2(212≠>⎪⎭⎫⎝⎛>--且其中x x a a A 、21 B 、 1 C 、2 D 、89、6.0log 5.0=a ,5.0log 2=b ,5log 3=c ,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b10、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是A.(0,1)B.(1,2)C.(0,2)D.[2,+∞] 11、函数)1(log 21-=x y 的定义域为 .12. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =13、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为 14、函数2)23x (lg )x (f +-=恒过定点15、求下列各式中的x 的值1)1x (ln )1(<-16.点(2,1)与(1,2)在函数()2ax bf x +=的图象上,求()f x 的解析式。

高考数学复习资料8专题2 函数概念与基本初等函数 含答案

高考数学复习资料8专题2 函数概念与基本初等函数 含答案

①y=2|x|;②y=lg(x+x2+1);③y=2x+2-x;④y=lg1x+1.2.(2015·嘉兴一模)已知函数y=f (x)+x是偶函数,且f (2)=1,则f (-2)=________. 3.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y轴对称;④没有一个函数既是奇函数,又是偶函数.其中正确的个数是________.4.设函数f (x)是定义在R上的偶函数,当x≥0时,f (x)=2x+1.若f (a)=3,则实数a的值为________.5.已知函数f (x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f (x-1),若f (2)=2,则f (2 018)的值为________.6.函数f (x)是周期为4的偶函数,当x∈[0,2]时,f (x)=x-1,则不等式xf (x)>0在[-1,3]上的解集为__________________.7.函数f (x )=⎩⎪⎨⎪⎧x 2+x (x <0),x 2-x (x >0)是________函数(填“奇”或“偶”). 8.如果函数g (x )=⎩⎪⎨⎪⎧2x -3,x >0,f (x ),x <0是奇函数,则f (x )=________. 9.(2014·湖南改编)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.10.已知f (x )是定义在R 上且以3为周期的奇函数,当x ∈(0,1.5)时,f (x )=ln(x 2-x +1),则函数f (x )在区间[0,6]上与x 轴的交点的个数是________.11.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则a =______. 12.(2015·保定三模)若偶函数f (x )对定义域内任意x 都有f (x )=f (2-x ),且当x ∈(0,1]时,f (x )=log 2x ,则f (152)=________. 13.已知函数f (x )=bx +c ax 2+1(a ,b ,c ∈R ,a >0)是奇函数,若f (x )的最小值为-12,且f (1)>25,则b 的取值范围是__________.14.定义[x ]表示不超过x 的最大整数,例如,[1.5]=1,[-1.5]=-2.若f (x )=sin(x -[x ]),则下列结论中:①f (x )为奇函数;②f (x )是周期函数,周期为2π;③f (x )的最小值为0,无最大值;④f (x )无最小值,最大值为sin 1.其中说法正确的序号是________.答案解析1.④解析 对④,函数定义域为(-1,+∞),不关于原点对称,故y =lg1x +1不是奇函数也不是偶函数,选项①为偶函数,选项②为奇函数,选项③为偶函数.2.5解析 ∵y =f (x )+x 是偶函数,∴f (-x )-x =f (x )+x ,∴f (-2)=f (2)+2+2=1+2+2=5.3.1解析 函数y =1x 2是偶函数,但不与y 轴相交,故①错; 函数y =1x是奇函数,但不过原点,故②错; 函数f (x )=0既是奇函数又是偶函数,故④错.4.±15.2解析 由已知得,g (-x )=f (-x -1),∵f (x )为偶函数,g (x )为奇函数,∴-g (x )=f (x +1),又g (x )=f (x -1),∴f (x +1)=-f (x -1),∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ),∴f (2 018)=f (4×504+2)=f (2)=2.6.(-1,0)∪(1,3)解析 f (x )的图象如图.由图象可知,不等式xf (x)>0在[-1,3]上的解集为(-1,0)∪(1,3).7.偶解析当x<0时,-x>0,则f (-x)=(-x)2-(-x)=x2+x=f (x);当x>0时,-x<0,则f (-x)=(-x)2+(-x)=x2-x=f (x),所以f (-x)=f (x),即f (x)是偶函数.8.2x+3解析令x<0,则-x>0,g(-x)=-2x-3.又g(x)为奇函数,∴g(x)=2x+3.∴f(x)=2x+3.9.1解析∵f (x)-g(x)=x3+x2+1,∴f (-x)-g(-x)=-x3+x2+1.∵f (x)是偶函数,g (x)是奇函数,∴f (-x)=f (x),g (-x)=-g (x).∴f (x)+g (x)=-x3+x2+1,∴f (1)+g (1)=-1+1+1=1.10.9解析当x∈(0,1.5)时,f (x)=ln (x2-x+1),令f (x)=0,则x2-x+1=1,解得x=1.∵函数f (x)是定义域为R的奇函数,∴在区间[-1.5,1.5]上,f (-1)=-f (1)=0,f (0)=0,f (1.5)=f (1.5-3)=f (-1.5)=-f (1.5),∴f (-1)=f (1)=f (0)=f (1.5)=f (-1.5)=0.∵函数f (x)是周期为3的周期函数,∴函数f (x )在区间[0,6]上的零点为0,1,1.5,2,3,4,4.5,5,6,共9个.11.1解析 方法一 ∵f (x )是R 上的偶函数,∴f (-x )=f (x )在R 上恒成立,即e -x a +a e -x =e x a +a e x ,(a 2-1)e 2x +1-a 2=0对任意的x 恒成立, ∴⎩⎪⎨⎪⎧a 2-1=0,a >0,解得a =1. 方法二 ∵f (x )是R 上的偶函数,∴f (-1)=f (1),∴1a ·1e +a e =e a +a e, (a -1a )e +1e (1a-a )=0, ∴(a -1a )(e 2-1)=0,∴a -1a=0. 又a >0,∴a =1.经验证,当a =1时,有f (-x )=f (x ),∴a =1.12.-1解析 ∵f (x )是偶函数,∴f (-x )=f (x ).∴f (x +2)=f [2-(x +2)]=f (-x )=f (x ),∴函数f (x )的周期为2,∴f (152)=f (8-12)=f (-12)=f (12)=log 2 12=-1. 13.⎝⎛⎭⎫12,2解析 f (x )+f (-x )=bx +c ax 2+1+b (-x )+c a (-x )2+1=2c ax 2+1=0,∴c =0, ∴f (x )=bx ax 2+1.x ≠0时,f (x )=b ax +1x(a >0), ∴f (x )min =b -2a=-12, 当且仅当x =-1a 时,f (x )取得最小值. ∴b =a ⇒a =b 2.又f (1)=b a +1=b b 2+1>25,∴2b 2-5b +2<0, ∴12<b <2. 14.③解析 f (1.5)=sin (1.5-[1.5] )=sin 0.5,f (-1.5)=sin (-1.5-[-1.5] )=sin 0.5,则f (1.5)=f (-1.5),故①错;f (x +1)=sin (x +1-[x +1])=sin (x +1-[x ]-1)=sin (x -[x ])=f (x ),∴T =1,故②错;令g (x )=x -[x ],则由g (x )在[k ,k +1](k ∈Z )上是单调递增函数,知当g (x )∈[0,1)时,故f (x )∈[0,sin 1),又g (x )的周期为1,故③正确,④错.综上,说法正确的序号为③.。

必修1基本初等函数练习题及答案(可编辑修改word版)

必修1基本初等函数练习题及答案(可编辑修改word版)

a a a a 2 第二章 基本初等函数部分练习题(2)一、选择题:(只有一个答案正确,每小题 5 分共 40 分) 1、若 a > 0 ,且 m , n 为整数,则下列各式中正确的是( D )mA 、 a m ÷ a n = an1÷ a n = a 0-nB 、 a m ⋅ a n = a m a nC 、 (a m)n= a m +nD 、2、已知 f (10x ) = x ,则 f (100)=( D )A 、100B 、10100C 、lg10D 、23、对于 a > 0, a ≠ 1 ,下列说法中,正确的是 ( D)①若 M = N 则log a M = log a N ; ② 若 log a M = log a N 则M = N ; ③ 若log M 2 = log N 2 则 M = N ;④若 M = N 则log M 2 = log N 2 。

A 、①②③④B 、①③C 、②④D 、②4、函数 y = 2 + log 2 x (x ≥1) 的值域为 (C)A 、(2, +∞)B 、(-∞, 2)⎛ 1 ⎫-1.5 C 、[2, +∞) D 、[3, +∞)5、设 y = 40.9, y = 80.48, y =,则 ( C )123 ⎪ ⎝ ⎭A 、 y 3 > y 1 > y 2B 、 y 2 > y 1 > y 3C 、 y 1 > y 3 > y 2D 、y 1 > y 2 > y 36、在b = log (a -2) (5 - a ) 中,实数 a 的取值范围是 ( B )A 、 a > 5或a < 23 < a < 4B 、 2 < a < 3或3 < a < 5C 、 2 < a < 5D 、7、计算(lg 2)2+ (lg 5)2+ 2 lg 2 ⋅ lg 5 等于 (B )A 、0B 、1C 、2D 、38、已知 a = log 3 2 ,那么log 3 8 - 2 log 3 6 用 a 表示是( B )A 、5a - 2B 、 a - 2C 、3a - (1+ a )2D 、 3a - a 2 -1二、填空题:(每小题 4 分,共 20 分)9、某企业生产总值的月平均增长率为 p ,则年平均增长率为(1 + p )12- 1 .2 3x - 2 ⎩ ⎪ 10、log 6 [log 4 (log3 81)] 的值为 0 .11、若log x( -1) = -1 ,则 x = 2 + 1.12. 已知幂函数的图像经过点(2,32)则它的解析式是 y = x 5三.解答题 (共 40 分)13. 求下列函数的定义域:(每小题 5 分,共 10 分)(1) f (x )= log 2 1(x+1) - 3 (2) f (x ) = log2 x -13x -2解:要使原函数有意义,须使:解:要使原函数有意义,须使:⎧x > 2, ⎧x + 1 > 0, ⎧x > -1, ⎧ > 0, ⎪ 3⎪ ⎪ 1 ⎨( + 1) - 3 ≠ 0, 即⎨x ≠ 7, ⎨2x - 1 > 0, 得⎨x > 2 ,⎩log 2 x ⎩⎪2x - 1 ≠ 1,⎪ ⎪x ≠ 1.⎪⎩所以,原函数的定义域是: 所以,原函数的定义域是:(-1,7) (7, + ∞ ).2 ( ,1) 3(1, + ∞ ).114、由于电子技术的飞速发展,计算机的成本不断降低,若每隔 5 年计算机的价格降低 ,3问现在价格为 8100 元的计算机经过 15 年后,价格应降为多少? (10 分)解:设 15 年后的价格为 y 元,则依题意,得 y = 8100 ⋅ ⎛1 - ⎝ 1 ⎫3⎪ ⎭=2400 (元)答:15 年后的价格为 2400 元。

完整版)基本初等函数经典复习题+答案

完整版)基本初等函数经典复习题+答案

完整版)基本初等函数经典复习题+答案1、幂的运算性质1) $a^r\cdot a^s=a^{r+s}$,其中$r,s\in R$;2) $(a^r)^s=a^{rs}$,其中$r,s\in R$;3) $a^r\cdot b^r=(ab)^r$,其中$r\in R$;4) $a^{-n}=\dfrac{1}{a^n}$,其中$a>0,n\in N^*,n>1$。

2、对数的运算性质若$a>0$且$a\neq 1$,$M>0,N>0$,则有:1) $a^x=N\iff \log_a N=x$;2) $\log_a(MN)=\log_a M+\log_a N$;3) $\log_a\dfrac{M}{N}=\log_a M-\log_a N$;4) $\log_a M^n=n\log_a M$,其中$n\in R$;5) $\log_a 1=0$;6) 换底公式:$\log_a b=\dfrac{\log_c b}{\log_c a}$,其中$a>0,a\neq 1,c>0,c\neq 1,b>0$。

3、函数的定义域能使函数式有意义的实数$x$的集合称为函数的定义域。

求函数的定义域时,需要注意以下几点:1) 偶次方根的被开方数不小于零;2) 对数式的真数必须大于零;3) 分式的分母不等于零;4) 指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法A) 定义法:1.任取$x_1,x_2\in D$,且$x_1<x_2$;2.作差$f(x_1)-f(x_2)$;3.变形(通常是因式分解和配方);4.定号(即判断差$f(x_1)-f(x_2)$的正负);5.下结论(指出函数$f(x)$在给定的区间$D$上的单调性)。

B) 图象法(从图象上看升降)。

C) 复合函数的单调性:复合函数$f[g(x)]$的单调性与构成它的函数$u=g(x),y=f(u)$的单调性密切相关,其规律为“同增异减”。

函数概念与基本初等函数三轮复习考前保温专题练习(六)含答案新高考高中数学

函数概念与基本初等函数三轮复习考前保温专题练习(六)含答案新高考高中数学

高中数学专题复习《函数的概念与基本初等函数》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题1.下列函数中,与函数y=31x定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx(2020江西理)D2.设2()lg 2x f x x +=-,则2()()2x f f x+的定义域为 ( ) A .(4,0)(0,4)- B .(4,1)(1,4)-- C .(2,1)(1,2)-- D .(4,2)(2,4)--(2020湖北理)3.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是( )(A .P QB .Q PC .P=QD .P Q=(2020湖北理)4.已知非0实数c b a ,,成等差数列,则二次函数2)(ax x f =+2bx+c 的图象与x 轴的交点个数为( ) A .1B .2C .1或2D .0(2020)5.定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg (10x+1),x ∈(-∞,+∞),那么( )A .g (x )=x ,h (x )=lg (10x+10-x+2)B .g (x )=21lg [(10x +1)+x ],h (x )=21lg [(10x+1)-x ] C .g (x )=2x ,h (x )=lg (10x+1)-2x D .g (x )=-2x ,h (x )=lg (10x+1)+2x (1994全国15) 6.函数2log 2-=x y 的定义域是( )A .),3(+∞B .),3[+∞C .),4(+∞D .),4[+∞ (2020湖南理)7.定义在R 上的偶函数()f x 满足:对任意的1212,(,0]()x x x x ∈-∞≠,有2121()(()())0x x f x f x -->.则当*n N ∈时,有(A)()(1)(1)f n f n f n -<-<+ (B) (1)()(1)f n f n f n -<-<+ (C) (C)(1)()(1)f n f n f n +<-<- (D) (1)(1)()f n f n f n +<-<-8.如图所示,一质点(,)P x y 在xOy 平面上沿曲线运动,速度大小不 变,其在x 轴上的投影点(,0)Q x 的运动速度()V V t =的图象大致为A B C D (2020江西卷文)9.在区间上),(+∞0不是增函数的是------------------------------------------------------------------------------------( )(A) 12+=x y (B) 132+=x y (C) xy 2=(D) 122++=x x y 10.已知奇函数)(x f y =在其定义域上是增函数,那么)(x f y -=在它的定义域上--------------------( )(A) 既是奇函数,又是增函数 (B) 既是奇函数,又是减函数yxO(,)P x y (,0)Q x O ()V t t O ()V t tO ()V t tO ()V t t(C) 既是偶函数,又是先减后增的函数 (D) 既是偶函数,又事先增后减的函第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题11.若函数))(12()(a x x xx f -+=为奇函数,则a = ▲ .12.定义在R 上的函数)(x f y =是增函数,且函数)2(-=x f y 的图象关于)0,2(成中心对称,设s ,t 满足不等式)4()4(22t t f s s f --≥-,若22≤≤-s 时,则s t +3的范围是 .13.函数()lg(23)x x f x =-的定义域为 ▲ .14.已知奇函数()f x 的图像关于直线2x =-对称,当[]0,2x ∈时,()2f x x =,则(9)f -= ;2-15.若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域为 .16.若二次函数2()4f x ax x c =-+的值域为[0,)+∞,则2244a cc a +++的最小值为12评卷人得分三、解答题17.已知R ∈a ,函数()||mnf x x x a =⋅-.(1)若0,1m n ==,写出函数)(x f 的单调递增区间(不必证明);(2)若1,1m n ==,当2>a 时,求函数)(x f y =在区间]2,1[上的最小值. (本题满分16分)18.已知函数()f x 定义域为[0,1],1()()()(||)2g x f x a f x a a =++-≤,求函数()g x 的定义域。

高中数学必修1数学基本初等函数经典复习题+答案

高中数学必修1数学基本初等函数经典复习题+答案

())1,,,0(.4*>∈>=n N n m a a a n m n mxN N a a x =⇔=log 必修1基本初等函数 复习题1、幂的运算性质(1)s r s r a a a +=⋅),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =⋅)(R r ∈ 2、对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1()N M N M a a a log log log +=⋅; ○2 N M NM a a a log log log -=; ○3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a换底公式:abb c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b mn b a n a m log log =;(2)a b b a log 1log =.3、定义域:能使函数式有意义的实数的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法(A) 定义法:○1 任取x 1,x 2∈D ,且x 1<x 2;○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方);○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降)(C)复合函数的单调性:复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”1、 下列函数中,在区间()0,+∞不是增函数的是( ) A.x y 2= B. x y lg = C. 3x y = D. 1y x= 2、函数y =log 2x +3(x≥1)的值域是( )A.[)+∞,2B.(3,+∞)C.[)+∞,3D.(-∞,+∞) 3、若{|2},{|x M y y P y y ====,则M∩P ( ) A.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥ 4、对数式2log (5)a b a -=-中,实数a 的取值范围是( ) A.a>5,或a<2 B.2<a<5 C.2<a<3,或3<a<5 D.3<a<45、 已知x a x f -=)( )10(≠>a a 且,且)3()2(->-f f ,则a 的取值范围是( )A. 0>aB. 1>aC. 1<aD. 10<<a 6、函数|log |)(21x x f =的单调递增区间是 ( )A 、]21,0( B 、]1,0( C 、(0,+∞) D 、),1[+∞7、图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ) A 、0<a<b<1<d<c B 、0<b<a<1<c<d C 、0<d<c<1<a<b D 、0<c<d<1<a<b 8、已知幂函数f(x)过点(2,22),则f(4)的值为 ( )A 、21 B 、 1 C 、2 D 、8 9、6.0log 5.0=a ,5.0log 2=b ,5log3=c ,则( )A.a <b <cB.b <a <cC.a <c <bD.c <a <b 10、已知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是1.a 0a ,1)2(212≠>⎪⎭⎫⎝⎛>--且其中x x a aA.(0,1)B.(1,2)C.(0,2)D.[2,+∞] 11、函数)1(log 21-=x y 的定义域为 .12. 设函数()()()()4242xx f x x f x ⎧≥⎪=⎨<+⎪⎩,则()2log 3f =13、计算机的成本不断降低,如果每隔5年计算机的价格降低31,现在价格为8100元的计算机,15年后的价格可降为 14、函数2)23x (lg )x (f +-=恒过定点15、求下列各式中的x 的值1)1x (ln )1(<-16.点(2,1)与(1,2)在函数()2ax bf x +=的图象上,求()f x 的解析式。

函数概念与基本初等函数Ⅰ复习题及答案 (105)

函数概念与基本初等函数Ⅰ复习题及答案 (105)

函数概念与基本初等函数Ⅰ复习题及答案9.已知函数f (x )=3x +a 3x +1为奇函数. (1)求a 的值;(2)判断函数f (x )的单调性,并加以证明.解 (1)因为函数f (x )是奇函数,且f (x )的定义域为R ;所以f (0)=1+a 1+1=0,所以a =-1(经检验,a =-1时f (x )为奇函数,满足题意).(2)由(1)知f (x )=3x -13x +1=1-23x +1,函数f (x )在定义域R 上单调递增.证明如下: 设x 1<x 2∈R ,则f (x 1)-f (x 2)=2(3x 1-3x 2)(3x 1+1)(3x 2+1). 因为x 1<x 2,所以3x 1<3x 2,所以3x 1-3x 2<0,所以f (x 1)<f (x 2),所以函数f (x )在定义域R 上单调递增.10.已知函数f (x )=a x +b (a >0,a ≠1),其中a ,b 均为实数.(1)若函数f (x )的图像经过点A (0,2),B (1,3),求函数y =1f (x )的值域; (2)如果函数f (x )的定义域和值域都是[-1,0],求a +b 的值. 解 (1)因为函数f (x )的图像经过点A (0,2),B (1,3), ∴⎩⎨⎧1+b =2,a +b =3,∴⎩⎨⎧a =2,b =1,∴函数f (x )=2x +1>1,函数y =1f (x )=12x +1<1. 又1f (x )=12x +1>0,故函数y =1f (x )的值域为(0,1). (2)如果函数f (x )的定义域和值域都是[-1,0],若a >1,则函数f (x )=a x +b 为增函数,∴⎩⎪⎨⎪⎧1a +b =-1,1+b =0,无解.若0<a <1,则函数f (x )=a x +b 为减函数, ∴⎩⎪⎨⎪⎧1a +b =0,1+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,∴a +b =-32.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 基本初等函数部分练习题( 2)
一、选择题: (只有一个答案正确,每小题 5 分共 40 分)
1、若 a
0 ,且 m, n 为整数,则下列各式中正确的是
( D )
A 、a m a n
m
B 、a m a n a m a n
C 、 a m n
a m n
n
0 n
a n
D 、
a a
1
2、已知 f (10x ) x ,则 f 100 =
(D )
A 、 100
B 、 10100
C 、 lg10
D 、 2
3、对于 a 0, a 1 ,下列说法中,正确的是

D )
① 若 M
N 则 log a M log a N ; ② 若 log a M log a N 则 M N
; ③ 若
log a M 2 log a N 2 则 M
N ;④若 M
N 则 log a M 2 log a N 2 。

A 、①②③④
B 、①③
C 、②④
D 、②
4、函数 y 2 log 2 x( x ≥ 1) 的值域为
( C )
A 、 2,
B 、
,2
C 、 2,
D 、 3,
5、设 y 1 40.9 , y 2 80.48 , y 3
1
2
1.5
,则 ( C )
A 、 y 3 y 1 y 2
B 、 y 2 y 1 y 3
C 、 y 1 y 3
y 2
D 、 y 1 y 2
y 3
6、在 b log (a 2) (5 a) 中,实数 a 的取值范围是 (
B

A 、 a
5或a 2 B 、 2 a 3或3 a 5
C 、 2 a 5
D 、 3 a 4
7、计算 lg 2 2 lg 5 2 2lg 2 lg 5 等于 (
B

A 、 0
B 、 1
C 、2
D 、3
8、已知 a log 3 2 ,那么 log 3 8 2log 3 6 用 a 表示是(
B

A 、 5a 2
B 、 a 2
C 、 3a
(1 a) 2
D 、 3a a 2
1
二、填空题: (每小题 4 分,共 20 分)
9 p
,则年平均增长率为 1 p
12
1 .
、某企业生产总值的月平均增长率为
10、 log 6 log 4 (log 3 81) 的值为
0 .
11
log x 2 1
1
,则 x
2 1.
、若
12.已知幂函数的图像经过点( 2, 32)则它的解析式是y x5 三.解答题(共 40 分)
13.求下列函数的定义域:(每小题 5 分,共10 分)
(1)f (x)
1
( 2)f ( x) log 2x 1 3x 2
1) 3
log 2 (x
解:要使原函数有意义,须使:解:要使原函数有意义,须使:
x 2 ,
x 1 0, x 1, 3x 2 0, 3
1 ,
即2x 1 0, 得 x log 2 x 1 3 x 7,
0,
2x 1 1, 2
x 1. 所以,原函数的定义域是:所以,原函数的定义域是:
(-1 , 7)( 7,) .
( 2
,1) (1, ).
3
1 ,
14、由于电子技术的飞速发展,计算机的成本不断降低,若每隔 5 年计算机的价格降低
8100 元的计算机经过15 年后,价格应降为多少?( 10 分)3
问现在价格为
1 3
解:设 15 年后的价格为 y 元,则依题意,得y 8100 1 =2400 ( 元)
3
答: 15 年后的价格为2400 元。

15、判断函数f ( x) lg x2 1 x 的奇偶性。

(10分)
解: f(x) 是奇函数。


x R, f ( x) lg x2 1 x , f (x) lg x2 1 x

f (x) f ( x) l
g x2 1 x lg x2 1 x lg x2 1 x2 lg1 0 即 f (x) f ( x) ,∴函数 f ( x) lg x2 1 x 是奇函数。

16.已知f ( x)
1 x
( 1,1), 求证: f ( a) f (b)
a b
lg , a, b f ( ). (10分)
1 x 1 ab
证明:左边: f (a) f (b) =lg 1 a 1 b 1 a 1 b 1 a b ab
, + lg = lg( ) =lg
1 a 1 b 1 a 1 b 1 a b ab
a b
1
a b
1 ab 1 a b ab lg =lg
右边: f (1 ab
) a b 1 a b ab ,所以,左边 = 右边,即:
1
1 ab
a b
f (a) f (b) f ().证毕。

1ab。

相关文档
最新文档