人教A版高中数学必修五课件:数列.pptx

合集下载

人教版高中数学必修5(A版) 等差数列的前n项和 PPT课件

人教版高中数学必修5(A版) 等差数列的前n项和 PPT课件

10 9 S10 10 500 50 7250 (万元 ) 2
答:从2001到2010年,该市在“校校通”工程中的总投入 是7250元。
等差数列的前 n 项和公式:
n(a1 an ) Sn 2 n(n 1) S n na1 d 2
问题:1.两个公式中共有几个量?
若一个数列的前 n项和为Sn pn2 qn, 其中p, q为常数, 且p 0, 那么这个数列一定是等 差数列吗?
若一个数列的前 n项和为Sn pn2 qn r (r 0), 其中p, q 为常数,且 p 0, 那么这个数列一定是等 差数列吗?
小结:
1.知识点小结:1)等差数列的前
例1:2000年11月14日教育部下发了《关于在中小学实施“校
校通”工程的通知》,某市计划从2001年起用10年的时间,在 全市中小学建成不同标准的校园网。据测算,2001年该市用于 “校校通”工程的经费为500万元。为了保证工程的顺利实施, 计划每年投入的资金都比上一年增加50万元。那么从2001年起 的未来10年内,该市在“校校通”工程中的总投入是多少? 解:由题可知,从2001年起各年投入的资金构成等差数列, 设为{an },则 a1 500, d 50 则到2010年,投入的资金总额为
16
等差数列的前 n 项和公式:
n(n 1) S n na1 d 2
d 2 d n (a1 )n 2 2

d 0 时, Sn 是 n的二
次函数形式,且常数项为 0
例2:已知一个等差数列{an }前10项的和是310,前20项的和是
解:由题意知 代入公式 得
1220,由这些条件能确定这个等差数列的前n项和的公式吗?

高中数学第二章第1节《数列的概念》课件新人教A版必修5

高中数学第二章第1节《数列的概念》课件新人教A版必修5
3.写出下列数列的一个通项公式. (1)2,4 ,6 ,8 ,...
3 15 35 63 (2) 1, 3, 5,7 , 9 ,...
2 4 8 16 (3)9,99,999,9999,...
(4) 3, 3, 1, 52, 1 33, ...
(5)0,1,0,1,0,1,…
本节课学习的主要内容有: 1、数列的有关概念 2、数列的通项公式;
2.项数无限的数列叫做无穷数列。
1 , 例如,数列
1 , 1,1 ,1 , 2 345
思考:
思考1:数列 4,5,6,7,8,9,10; 数列 10,9,8,7,6,5,4;是否相同?
思考2:数列中的数是否可以重复? 如:数列-1,1,-1,1,···。
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
本节课的能力要求是: 会用观察法由数列的前几项求数 列的通项公式
P38 1,3,5
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,,有ຫໍສະໝຸດ 选的择孩在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
3.形如a,aa,aaa,aaaa, …,(a∈N*)等数列的通项
可统一写成
an
a(10n 9
1)
;
4.形如a,b,a,b,a,b,…的摆动数列可归
纳为一公式: ab( 1 )n `1(ab )

人教版高中数学必修5(A版) 2.1数列的概念与简单表示法 PPT课件

人教版高中数学必修5(A版) 2.1数列的概念与简单表示法 PPT课件
2.1数列的概念与简单表示法
如图表示堆放的钢管,共堆放了6层。自上而下各 层的钢管数排列成一列数:
5,6,7,8,9,10
自然数 1,2,3,4,5, …的倒数排列成一列数:
1
1
1
1
1 ,2 , 3 ,4, 5, …
-1的1次幂,2次幂,3次幂,4次幂,…排列成一 列数:
-1 ,1,-1,1,-1,1,…
一、定义
像前面的例子中,按一定次序排列的一列数 叫做数列。数列中的每一个数叫做这个数列的项, 各项依次叫做这个数列的第一项(或首项),第 二项,…,第n项, …。 问:下面二列数是否为同一数列?
1,2,3,4,5 5,4,3,2,1
结论:因其排列次序不同,故不是同一数列。
项数有限的数列叫做有穷数列。 项数无限的数列叫做无穷数列。
(2) 在通项公式中依次 n = 1, 2, 3, 4, 5,得到数 列{an} 的前5项为
-1,
2,
-3,
4,
-5.
例题2 写出数列的一个通项公式,使它的前4项分别 是下列各数: (1 ) 1 , 3 , 5 , 7 ; (2 )
1 1 1 1 1 2 , 2 3, 3 4, 4 5。
解:(1) an=2n-1; (2)
这告诉我们:无穷(有穷)数列可以看作一个定义 域为自然数集N(N的有限子集)的函数当自变量从 小到大依次取值时对应的一列函数值。
二、数列的三种表示方法 ⑴一般表示法 a1 , a2 , a3 , … an , …
其中 an 表示数列的第n项。有时我们把上 面的数列简记为{an}. 例如:把数列
2,4,6,8,10, … ① 4,5,6,7, 8 , … ② 分别简记为 {2n} {n+3}

高中数学 2.1.2 数列的递推公式课件 新人教A版必修5

高中数学 2.1.2 数列的递推公式课件 新人教A版必修5
不同点 通项 公式 递推 公式 可根据某项的序号,直接用代入法求出该项 可根据第 1 项或前几项的值,通过一次或多 次赋值逐项求出数列的项,直至求出所需的 项 相同点 都可确定一个数列,都 可求出数列的任何一 项
-7-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
题型一
递推公式的应用
a3=1+ a2=1+ × = , a4=1+ a3=1+ × = a5=1+ a5=1+ ×
15 8 15 , 8 31 . 16 3 2 7 4 15 8 31 16
=
∴ 这个数列的前 5 项是 a1=1,a2= ,a3= ,a4= ,a5= .
-9-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
此ppt下载后可自行编辑
高中数学课件
-
第2课时
数列的递推公式
-3-
目标引航
自主预习
课堂互动
典型考题
随堂练习
1.知道递推公式是给出数列的一种形式. 2.能够根据递推公式写出数列的前几项.
-4-
目标引航
自主预习
课堂互动
典型考题
随堂练习
递推公式 如果已知数列 {an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或 前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式. 用递推公式给出数列的方法叫做递推法.
-15-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
递推公式中往往含有 a n+m,其意义是数列中的第 n+m 项,通常与 an+m 不相等.

高中数学人教A版必修5第二章2.2等差数列2课时课件

高中数学人教A版必修5第二章2.2等差数列2课时课件

a2=a1+d,
实际由等差数列定义有
a3=a2+d =a1+2d, a4=a3+d =a1+3d, 由上式猜测: an=a1+(n-1)d.
a2-a1=d, a3-a2=d,
a4-a3=d, ……
an-an-1=d,
联想:形如递推公式a n
- an-1
=
f
(n),
求通项公式可运用累加法
各式两边分别相加得
问题1. 刚才写出的 4 个数列, 它们有什么共同的 规律? 请你给有这种规律的数列设计一个名称.
(1) 5, 10, 15, 20, 25, 30, 35, … (2) 18, 15.5, 13, 10.5, 8, 5.5, 3, 0.5. (3) 10072, 10144, 10216, 10288, 10360. (4) 60, 58, 56, 54, 52, 50, 48, 46, 44, 42.
问题1. 等差数列的应用较为广泛, 如: 能被 7 整 除的三位正整数有多少个? 一部梯子有 15 级, 最下 一级宽 61cm, 最上一级宽 40cm, 从下到上的第 10 级宽是多少? 你能用等差数列知识解决这类问题吗?
同样, 梯子的各级宽依次构成等差数列. 设这个数列为{bn}, 则 b1=61, b15=40. 由通项公式 b15=b1+(15-1)d 得
(2) 是等差数列, 它的首项是原数列首项a1, 公差是原 数列公差的 2 倍, 即2d.
(3) 也是等差数列, 它的首项是原数列首项a7, 公差是 原数列公差的 7 倍, 即7d.
5. 已知{an}是等差数列. (1) 2a5=a3+a7 是否成立? 2a5=a1+a9 呢? 为什么? (2) 2an=an-1+an+1 (n>1) 是否成立? 据此你能得出 什么结论?

高中数学人教A版必修5《等差数列》PPT课件

高中数学人教A版必修5《等差数列》PPT课件
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)

人教A版数学必修五《等差数列》课件PPT

人教A版数学必修五《等差数列》课件PPT
an=a1+(n-1)d (n∈N*)
人教A版数学必修五《等差数列》课件 PPT
人教A版数学必修五《等差数列》课件 PPT
②问-400是不是等差数列-5,-9,-13,… 的项?如果是,是第几项? 解:a1=-5,d=-4 an=-5+(n-1)·(-4),则 由题意知,本题是要回答是否存在正整数n, 使得 -401=-5+(n-1)·(-4)成立 解之得 n= 399
4
所以-400不是这个数列的项
an=a1+(n-1)d (n∈N*)
人教A版数学必修五《等差数列》课件 PPT
练习:1 100是不是等差数列2,9,16,…的项?如果 人教A版数学必修五《等差数列》课件PPT
0
是,是第几项? 如果不是,说明理由.
20 在正整数集合中,有多少个三位数?
30 在三位正整数集合中有多少个是7的倍数?
人教A版数学必修五《等差数列》课件 PPT
(一)求通项an
若已知一个等差数列的首项a1和公差d,即可求出an 例如:①a1=1, d=2, 则 an=1+(n-1)·2=2n-1
②已知等差数列8,5,2,…求 an及a20
解:∴∵aan1==88+,(dn=-5-1)·8(=--3)3=-3n+11
这就是说,这些数列具有这样的共同特点: 从第2项起,每一项与前一项的差都等于同一常数。
定义:一般地,如果一个数列从第2项起,每
一项与它的前一项的差等于同一常数,那么
这个数列就叫做等差数列, 通常用A · P表示。 这个常数叫等差数列的公差,用字母d表示。
数学语言: an-an-1=d
(d是常数,n≥2,n∈N*)
由此得到 a n=a1+(n-1)d

新课标人教A版数学必修5全部课件:数列

新课标人教A版数学必修5全部课件:数列

三、关于数列的通项公式 1、 不是每一个数列都能写出数列的通项公式不唯一 如: 1, 1, 1, 1, … 可写成
3、已知通项公式可写出数列的任一项
四、 例题:
写出下面数列的一个通项公式,使它的前 项分别是 下列各数:
1,0,1,0.
7,77,777,7777 1,7,13,19,25,31
1, 1, 1, 1, …
数列的定义: 按一定次序排列的一列数(数列的有序性) 数列中的每一个数叫做数列的项, 数列的第n项an叫做数列的通项(或一般项)。
2. 通项公式:(an与n之间的关系)
分类:递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。 4、 用图象表示:— 是一群孤立的点 3.
五、小结: 1.数列的有关概念 2.观察法求数列的通项公式 六、习题:
2005.5 .6
数列、数列的通项公式 一、从实例引入 1. 堆放的钢管 4, 5, 6,7,8,9,10
2、正整数的倒数
4、1的正整数次幂:1, 1, 1, 1, …
5、无穷多个数排成一列数:1, 1, 1, 1,…
二、提出课题:数列 4, 5, 6, 7, 8, 9, 10
1, 1, 1, 1,… 1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列的第n项。
问题1:指出以下各组数列的对应项及项数
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,···. (3)4,5,6,7,8,9,10.
问题2:数列(3)4,5,6,7,8 ,9,10改为10,9,8,7,6,5, 4还表示同一数列吗? 问题3:-1,1,-1,1,-1,……是 不是一个数列? 答: 2、不是,因为次序不同
空白演示
在此输入您的封面副标题
1 2 22 23 24 25 26 27 … 263 1国+2王+要22+给…多+少263麦=粒18?446744073709551615
人陛你什赏陛里不几搞搬下想么赐下 的 够粒定啊赏得样?国麦小麦。!小到的库子人就
OK
?
§3.1数列
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,···. (3)4,5,6,7,8,9,10.
3、是
问题4:数列中的数与数集中的元素有什 么区别?
答:数列中的数是有序的,可重复的 ,而数集中的元素是无序且不能重 复的。
关数过列问列来(系题3中,有)5的每:没每个上有一序述规个 号4律数也个?都都数如对对列何应应中着着总的一一结项个 个这与序数些序号。规,如号律反数的?
项an:45678910
序号n:1234567
数列的实质:数列的项an是序号n的函数
,数列可看作序号n从小到大取值时对应的 一列函数值
y=f(x)
函数值
自变量
an =f(n)
2、如果通数项列公{a式n}中的第n项an与n之间的关系可 : 以用一个公式来表示,则称此公式为数列
的通项公式。
注:数列的通项公式实际上是一个以正 整数集N*或它的有限子集{1,2,…, n}为定义域的函数表达式
(4)1,,,,,···,···.
正这整四数组1,数2据,有3,什4么,共…同的特倒征数?排成一列
1、定义:
(1)数列:按一定次序排列的一列数叫数 列
(2)项:数列中的每一个数叫做这个数列 的项
• 各项依次叫做这个数列的第1项,第2项, ······,第n项,······
(3)数列的一般形式可以写成: a1,a2,…,an,…简记为{an},其中an是数
问题6:你能否求出以下数列的通项公式?
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,··· (3)4,5,6,7,8,9,10.
(5)-1,1,-1,1,…
说明:1、并不是所有的数列都 有通项公式,如数列(2)。
2、有些数列的通项公式不 唯一,如数列(5)
an an=n+3的图象
分析:在通项公式中取n=1,2,3 ,4,5,得到数列的前5项:
思考:
例2写出下面数列的一个通项公式, 使它的前4项分别是下列各数
⑴1,3,5,7
练习:P120/1、2、3、4
பைடு நூலகம்
1、(1)1,4,9,16,25
(2)10,20,30,40,50
(3)5,-5,5,-5,5
小结
• 数列的定义; • 数列的通项公式。 • 本节课的能力要求是: • (1)会由通项公式求数列的特定项;
. 10
. 9
数列图象
. 8 . 7
是一些点
6
. 5
. . 4
3
2
1
O 1234567
n
an 1
an=1/n的图象
这些点是
½
孤立的!
¼
O1234567n
4、数列的分类:
(1)按项的多少分: 如(1)(3)是有穷数列, (2)(4)(5)是无穷数列。
(2)按项之间大小关系分:
例1根据下面数列{an}的通项 公式,写出它的前5项:
(2)会由数列的前几项求数列的通项公式 。
作业 P122习题3.1:1、2
思考题: 写出下列数列的一个通项公式: (1)2,0,2,0… (2)9,99,999,9999… (3)0.9,0.99,0.999,0.9999…
相关文档
最新文档