人教A版高中数学必修五课件:数列.pptx
合集下载
人教版高中数学必修5(A版) 等差数列的前n项和 PPT课件
10 9 S10 10 500 50 7250 (万元 ) 2
答:从2001到2010年,该市在“校校通”工程中的总投入 是7250元。
等差数列的前 n 项和公式:
n(a1 an ) Sn 2 n(n 1) S n na1 d 2
问题:1.两个公式中共有几个量?
若一个数列的前 n项和为Sn pn2 qn, 其中p, q为常数, 且p 0, 那么这个数列一定是等 差数列吗?
若一个数列的前 n项和为Sn pn2 qn r (r 0), 其中p, q 为常数,且 p 0, 那么这个数列一定是等 差数列吗?
小结:
1.知识点小结:1)等差数列的前
例1:2000年11月14日教育部下发了《关于在中小学实施“校
校通”工程的通知》,某市计划从2001年起用10年的时间,在 全市中小学建成不同标准的校园网。据测算,2001年该市用于 “校校通”工程的经费为500万元。为了保证工程的顺利实施, 计划每年投入的资金都比上一年增加50万元。那么从2001年起 的未来10年内,该市在“校校通”工程中的总投入是多少? 解:由题可知,从2001年起各年投入的资金构成等差数列, 设为{an },则 a1 500, d 50 则到2010年,投入的资金总额为
16
等差数列的前 n 项和公式:
n(n 1) S n na1 d 2
d 2 d n (a1 )n 2 2
当
d 0 时, Sn 是 n的二
次函数形式,且常数项为 0
例2:已知一个等差数列{an }前10项的和是310,前20项的和是
解:由题意知 代入公式 得
1220,由这些条件能确定这个等差数列的前n项和的公式吗?
高中数学第二章第1节《数列的概念》课件新人教A版必修5
3.写出下列数列的一个通项公式. (1)2,4 ,6 ,8 ,...
3 15 35 63 (2) 1, 3, 5,7 , 9 ,...
2 4 8 16 (3)9,99,999,9999,...
(4) 3, 3, 1, 52, 1 33, ...
(5)0,1,0,1,0,1,…
本节课学习的主要内容有: 1、数列的有关概念 2、数列的通项公式;
2.项数无限的数列叫做无穷数列。
1 , 例如,数列
1 , 1,1 ,1 , 2 345
思考:
思考1:数列 4,5,6,7,8,9,10; 数列 10,9,8,7,6,5,4;是否相同?
思考2:数列中的数是否可以重复? 如:数列-1,1,-1,1,···。
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
本节课的能力要求是: 会用观察法由数列的前几项求数 列的通项公式
P38 1,3,5
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,,有ຫໍສະໝຸດ 选的择孩在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
3.形如a,aa,aaa,aaaa, …,(a∈N*)等数列的通项
可统一写成
an
a(10n 9
1)
;
4.形如a,b,a,b,a,b,…的摆动数列可归
纳为一公式: ab( 1 )n `1(ab )
3 15 35 63 (2) 1, 3, 5,7 , 9 ,...
2 4 8 16 (3)9,99,999,9999,...
(4) 3, 3, 1, 52, 1 33, ...
(5)0,1,0,1,0,1,…
本节课学习的主要内容有: 1、数列的有关概念 2、数列的通项公式;
2.项数无限的数列叫做无穷数列。
1 , 例如,数列
1 , 1,1 ,1 , 2 345
思考:
思考1:数列 4,5,6,7,8,9,10; 数列 10,9,8,7,6,5,4;是否相同?
思考2:数列中的数是否可以重复? 如:数列-1,1,-1,1,···。
例1、 写出下面数列的一个通项公式,使它的 前4项分别是下列各数:
本节课的能力要求是: 会用观察法由数列的前几项求数 列的通项公式
P38 1,3,5
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,,有ຫໍສະໝຸດ 选的择孩在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
冬是
天荷
3.形如a,aa,aaa,aaaa, …,(a∈N*)等数列的通项
可统一写成
an
a(10n 9
1)
;
4.形如a,b,a,b,a,b,…的摆动数列可归
纳为一公式: ab( 1 )n `1(ab )
人教版高中数学必修5(A版) 2.1数列的概念与简单表示法 PPT课件
2.1数列的概念与简单表示法
如图表示堆放的钢管,共堆放了6层。自上而下各 层的钢管数排列成一列数:
5,6,7,8,9,10
自然数 1,2,3,4,5, …的倒数排列成一列数:
1
1
1
1
1 ,2 , 3 ,4, 5, …
-1的1次幂,2次幂,3次幂,4次幂,…排列成一 列数:
-1 ,1,-1,1,-1,1,…
一、定义
像前面的例子中,按一定次序排列的一列数 叫做数列。数列中的每一个数叫做这个数列的项, 各项依次叫做这个数列的第一项(或首项),第 二项,…,第n项, …。 问:下面二列数是否为同一数列?
1,2,3,4,5 5,4,3,2,1
结论:因其排列次序不同,故不是同一数列。
项数有限的数列叫做有穷数列。 项数无限的数列叫做无穷数列。
(2) 在通项公式中依次 n = 1, 2, 3, 4, 5,得到数 列{an} 的前5项为
-1,
2,
-3,
4,
-5.
例题2 写出数列的一个通项公式,使它的前4项分别 是下列各数: (1 ) 1 , 3 , 5 , 7 ; (2 )
1 1 1 1 1 2 , 2 3, 3 4, 4 5。
解:(1) an=2n-1; (2)
这告诉我们:无穷(有穷)数列可以看作一个定义 域为自然数集N(N的有限子集)的函数当自变量从 小到大依次取值时对应的一列函数值。
二、数列的三种表示方法 ⑴一般表示法 a1 , a2 , a3 , … an , …
其中 an 表示数列的第n项。有时我们把上 面的数列简记为{an}. 例如:把数列
2,4,6,8,10, … ① 4,5,6,7, 8 , … ② 分别简记为 {2n} {n+3}
如图表示堆放的钢管,共堆放了6层。自上而下各 层的钢管数排列成一列数:
5,6,7,8,9,10
自然数 1,2,3,4,5, …的倒数排列成一列数:
1
1
1
1
1 ,2 , 3 ,4, 5, …
-1的1次幂,2次幂,3次幂,4次幂,…排列成一 列数:
-1 ,1,-1,1,-1,1,…
一、定义
像前面的例子中,按一定次序排列的一列数 叫做数列。数列中的每一个数叫做这个数列的项, 各项依次叫做这个数列的第一项(或首项),第 二项,…,第n项, …。 问:下面二列数是否为同一数列?
1,2,3,4,5 5,4,3,2,1
结论:因其排列次序不同,故不是同一数列。
项数有限的数列叫做有穷数列。 项数无限的数列叫做无穷数列。
(2) 在通项公式中依次 n = 1, 2, 3, 4, 5,得到数 列{an} 的前5项为
-1,
2,
-3,
4,
-5.
例题2 写出数列的一个通项公式,使它的前4项分别 是下列各数: (1 ) 1 , 3 , 5 , 7 ; (2 )
1 1 1 1 1 2 , 2 3, 3 4, 4 5。
解:(1) an=2n-1; (2)
这告诉我们:无穷(有穷)数列可以看作一个定义 域为自然数集N(N的有限子集)的函数当自变量从 小到大依次取值时对应的一列函数值。
二、数列的三种表示方法 ⑴一般表示法 a1 , a2 , a3 , … an , …
其中 an 表示数列的第n项。有时我们把上 面的数列简记为{an}. 例如:把数列
2,4,6,8,10, … ① 4,5,6,7, 8 , … ② 分别简记为 {2n} {n+3}
高中数学 2.1.2 数列的递推公式课件 新人教A版必修5
不同点 通项 公式 递推 公式 可根据某项的序号,直接用代入法求出该项 可根据第 1 项或前几项的值,通过一次或多 次赋值逐项求出数列的项,直至求出所需的 项 相同点 都可确定一个数列,都 可求出数列的任何一 项
-7-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
题型一
递推公式的应用
a3=1+ a2=1+ × = , a4=1+ a3=1+ × = a5=1+ a5=1+ ×
15 8 15 , 8 31 . 16 3 2 7 4 15 8 31 16
=
∴ 这个数列的前 5 项是 a1=1,a2= ,a3= ,a4= ,a5= .
-9-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
此ppt下载后可自行编辑
高中数学课件
-
第2课时
数列的递推公式
-3-
目标引航
自主预习
课堂互动
典型考题
随堂练习
1.知道递推公式是给出数列的一种形式. 2.能够根据递推公式写出数列的前几项.
-4-
目标引航
自主预习
课堂互动
典型考题
随堂练习
递推公式 如果已知数列 {an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或 前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式. 用递推公式给出数列的方法叫做递推法.
-15-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
递推公式中往往含有 a n+m,其意义是数列中的第 n+m 项,通常与 an+m 不相等.
-7-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
题型一
递推公式的应用
a3=1+ a2=1+ × = , a4=1+ a3=1+ × = a5=1+ a5=1+ ×
15 8 15 , 8 31 . 16 3 2 7 4 15 8 31 16
=
∴ 这个数列的前 5 项是 a1=1,a2= ,a3= ,a4= ,a5= .
-9-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
此ppt下载后可自行编辑
高中数学课件
-
第2课时
数列的递推公式
-3-
目标引航
自主预习
课堂互动
典型考题
随堂练习
1.知道递推公式是给出数列的一种形式. 2.能够根据递推公式写出数列的前几项.
-4-
目标引航
自主预习
课堂互动
典型考题
随堂练习
递推公式 如果已知数列 {an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或 前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式. 用递推公式给出数列的方法叫做递推法.
-15-
目标引航
自主预习
课堂互动
典型考题
随堂练习
题型 一
题型 二
题型 三
递推公式中往往含有 a n+m,其意义是数列中的第 n+m 项,通常与 an+m 不相等.
高中数学人教A版必修5第二章2.2等差数列2课时课件
a2=a1+d,
实际由等差数列定义有
a3=a2+d =a1+2d, a4=a3+d =a1+3d, 由上式猜测: an=a1+(n-1)d.
a2-a1=d, a3-a2=d,
a4-a3=d, ……
an-an-1=d,
联想:形如递推公式a n
- an-1
=
f
(n),
求通项公式可运用累加法
各式两边分别相加得
问题1. 刚才写出的 4 个数列, 它们有什么共同的 规律? 请你给有这种规律的数列设计一个名称.
(1) 5, 10, 15, 20, 25, 30, 35, … (2) 18, 15.5, 13, 10.5, 8, 5.5, 3, 0.5. (3) 10072, 10144, 10216, 10288, 10360. (4) 60, 58, 56, 54, 52, 50, 48, 46, 44, 42.
问题1. 等差数列的应用较为广泛, 如: 能被 7 整 除的三位正整数有多少个? 一部梯子有 15 级, 最下 一级宽 61cm, 最上一级宽 40cm, 从下到上的第 10 级宽是多少? 你能用等差数列知识解决这类问题吗?
同样, 梯子的各级宽依次构成等差数列. 设这个数列为{bn}, 则 b1=61, b15=40. 由通项公式 b15=b1+(15-1)d 得
(2) 是等差数列, 它的首项是原数列首项a1, 公差是原 数列公差的 2 倍, 即2d.
(3) 也是等差数列, 它的首项是原数列首项a7, 公差是 原数列公差的 7 倍, 即7d.
5. 已知{an}是等差数列. (1) 2a5=a3+a7 是否成立? 2a5=a1+a9 呢? 为什么? (2) 2an=an-1+an+1 (n>1) 是否成立? 据此你能得出 什么结论?
高中数学人教A版必修5《等差数列》PPT课件
本节课主要学习:
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
一个定义: an-an-1=d(d是常数,n≥2, n∈N*) 一个公式:an=a1+(n-1)d 一种思想:方程思想 一个概念: A=a+b/2
方法二
由递推公式:an-an-1=d (d是常数,n≥2,n∈N*)
可得:
a2-a1=d
a3-a2=d a4-a3=d
……
an-an-1=d
列。 这也是判断,证明一个数列是等差数列的一种方 法。 等差中项法
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
5.证明数列为等差数列的方法: (1)定义法: an an1 d (n 2) (2)等差中项法:2an an1 an1(n 2)
解法一
高中数学人教A版必修5《等差数列》P PT课件
高中数学人教A版必修5《等差数列》P PT课件
证明: 1 , 1 , 1 成等差数列 abc
2 11 b ac
bcba bcabac2
ac
a
c
(a b c)(1 1) 2 ac
(a b c) 2 2 b
2(a c) 2b 2 bb
4
4 an1
(n
1)记bn
1 an 2
(1)求证:数列bn 是等差数列;
(2)求数列an 的通项公式
构造法
解:(2)由(1)知,b n
1 2
(n 1)
1 2
n 2
bn
1 an 2
an
1 bn
2
2 n
2
求数列通项公式的方法:
(1)公式法;
(2)累加法;an1 an f (n)
(3)累乘法;an1 f (n)
人教A版数学必修五《等差数列》课件PPT
an=a1+(n-1)d (n∈N*)
人教A版数学必修五《等差数列》课件 PPT
人教A版数学必修五《等差数列》课件 PPT
②问-400是不是等差数列-5,-9,-13,… 的项?如果是,是第几项? 解:a1=-5,d=-4 an=-5+(n-1)·(-4),则 由题意知,本题是要回答是否存在正整数n, 使得 -401=-5+(n-1)·(-4)成立 解之得 n= 399
4
所以-400不是这个数列的项
an=a1+(n-1)d (n∈N*)
人教A版数学必修五《等差数列》课件 PPT
练习:1 100是不是等差数列2,9,16,…的项?如果 人教A版数学必修五《等差数列》课件PPT
0
是,是第几项? 如果不是,说明理由.
20 在正整数集合中,有多少个三位数?
30 在三位正整数集合中有多少个是7的倍数?
人教A版数学必修五《等差数列》课件 PPT
(一)求通项an
若已知一个等差数列的首项a1和公差d,即可求出an 例如:①a1=1, d=2, 则 an=1+(n-1)·2=2n-1
②已知等差数列8,5,2,…求 an及a20
解:∴∵aan1==88+,(dn=-5-1)·8(=--3)3=-3n+11
这就是说,这些数列具有这样的共同特点: 从第2项起,每一项与前一项的差都等于同一常数。
定义:一般地,如果一个数列从第2项起,每
一项与它的前一项的差等于同一常数,那么
这个数列就叫做等差数列, 通常用A · P表示。 这个常数叫等差数列的公差,用字母d表示。
数学语言: an-an-1=d
(d是常数,n≥2,n∈N*)
由此得到 a n=a1+(n-1)d
人教A版数学必修五《等差数列》课件 PPT
人教A版数学必修五《等差数列》课件 PPT
②问-400是不是等差数列-5,-9,-13,… 的项?如果是,是第几项? 解:a1=-5,d=-4 an=-5+(n-1)·(-4),则 由题意知,本题是要回答是否存在正整数n, 使得 -401=-5+(n-1)·(-4)成立 解之得 n= 399
4
所以-400不是这个数列的项
an=a1+(n-1)d (n∈N*)
人教A版数学必修五《等差数列》课件 PPT
练习:1 100是不是等差数列2,9,16,…的项?如果 人教A版数学必修五《等差数列》课件PPT
0
是,是第几项? 如果不是,说明理由.
20 在正整数集合中,有多少个三位数?
30 在三位正整数集合中有多少个是7的倍数?
人教A版数学必修五《等差数列》课件 PPT
(一)求通项an
若已知一个等差数列的首项a1和公差d,即可求出an 例如:①a1=1, d=2, 则 an=1+(n-1)·2=2n-1
②已知等差数列8,5,2,…求 an及a20
解:∴∵aan1==88+,(dn=-5-1)·8(=--3)3=-3n+11
这就是说,这些数列具有这样的共同特点: 从第2项起,每一项与前一项的差都等于同一常数。
定义:一般地,如果一个数列从第2项起,每
一项与它的前一项的差等于同一常数,那么
这个数列就叫做等差数列, 通常用A · P表示。 这个常数叫等差数列的公差,用字母d表示。
数学语言: an-an-1=d
(d是常数,n≥2,n∈N*)
由此得到 a n=a1+(n-1)d
新课标人教A版数学必修5全部课件:数列
三、关于数列的通项公式 1、 不是每一个数列都能写出数列的通项公式不唯一 如: 1, 1, 1, 1, … 可写成
3、已知通项公式可写出数列的任一项
四、 例题:
写出下面数列的一个通项公式,使它的前 项分别是 下列各数:
1,0,1,0.
7,77,777,7777 1,7,13,19,25,31
1, 1, 1, 1, …
数列的定义: 按一定次序排列的一列数(数列的有序性) 数列中的每一个数叫做数列的项, 数列的第n项an叫做数列的通项(或一般项)。
2. 通项公式:(an与n之间的关系)
分类:递增数列、递减数列;常数列;摆动数列; 有穷数列、无穷数列。 4、 用图象表示:— 是一群孤立的点 3.
五、小结: 1.数列的有关概念 2.观察法求数列的通项公式 六、习题:
2005.5 .6
数列、数列的通项公式 一、从实例引入 1. 堆放的钢管 4, 5, 6,7,8,9,10
2、正整数的倒数
4、1的正整数次幂:1, 1, 1, 1, …
5、无穷多个数排成一列数:1, 1, 1, 1,…
二、提出课题:数列 4, 5, 6, 7, 8, 9, 10
1, 1, 1, 1,… 1.
人教A版高中数学必修5课件:2.2等差数列定义及通项公式(共37张PPT)
证明.在求{an}通项公式时,要用到{an-2}是等差数列,先求 1
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.
{an-2}的通项,再求{an}的通项公式.
➢ 等差数列的判定与证明 等差数列的判定方法有以下二种: (1)定义法:an+1-an=d(常数)(n∈N*)⇔{an}为等差数列; (2)等差中项法:2an+1=an+an+2(n∈N*)⇔{an}为等差数 列. 如果要证明一个数列是等差数列,必须用定义法或等差 中项法.
(2)注意定义中“每一项与它的前一项的差”这一运算 要求,它的含义也有两个:其一是强调作差的顺序,即后面 的项减前面的项;其二是强调这两项必须相邻.
(3)注意定义中的“同一常数”这一要求,否则这个数 列不能称为等差数列.
2.怎样认识等差数列通项公式 (1)确定 a1 和 d 是确定通项的一般方法. (2)由方程思想,根据 an,a1,n,d 中任何三个量可求 解另一个量,即知三求一. (3)通项公式可变形为 an=dn+(a1-d),可把 an 看作自 变量为 n 的一次函数.
∴294<d≤3.又 d 为整数, ∴d=3. ∴an=a1+(n-1)·d=-24+3(n-1)=3n-27. ∴通项公式为 an=3n-27.
10.如果一个数列的各项都是实数,且从第二项开始, 每一项与它前一项的平方差是相同的常数,则称该数列为等 方差数列,这个常数叫做这个数列的公方差.
(1)设数列{an}是公方差为 p 的等方差数列,求 an 和 an- 1(n≥2)的关系式;
项公式是
.
3.等差中项
如果 a,A,b 成等差数列,那么 A 叫做 a 与 b 的等差
中项.
1.正确理解等差数列的定义 (1)注意定义中“从第 2 项起”这一前提条件的两层含 义,其一,第 1 项前面没有项,无法与后续条件中“与前一 项的差”相吻合;其二,定义中包括首项这一基本量,且必 须从第 2 项起保证使数列中各项均与其前面一项作差.
高中数学人教A版必修五教学课件:第二章 《数列》 2.4 第2课时 等比数列的性质
-6 解析:a4a7=a1· a10= =-2. 3
答案:B
3. 等比数列{an}中, 若 a9=-2, 则此数列前 17 项之积为____________.
解析:由题意得 a1a2a3…a15a16a17 =(a1a17)· (a2a16)· (a3a15)· …· a9
17 17 =a17 9 =(-2) =-2 .
2 ∴a6 =a2· a10,
1 ∴a10=162 × =13 122. 2
2
法三:由公式 ap· aq=ap+k· aq-k 得
2 a2· a10=a2+4· a10-4=a6 .
1 ∴a10=1622× =13 122. 2
答案:13 122
探究二
an+1=can+d(c≠1,cd≠0)的递推关系
利用等比数列的性质解题 (1)基本思路:充分发挥项的 “下标”的指导作用,分析等比数列项 与项之间的关系,选择恰当的性质解题. (2)优缺点:简便快捷,但是适用面窄,有一定的思维含量.
1.在等比数列中,若 a2=2,a6=162,则 a10=________.
解析:法一:∵a6=a2q4,其中 a2=2,a6=162, ∴q4=81, ∴a10=a6q4=162×81=13 122. 法二:∵2,6,10 三数成等差数列, ∴a2,a6,a10 成等比数列.
-
1n-1 4n-1 n-1 第 n 个图形的周长 3 ×(3×4 )=3×3 .
[感悟提高]
(1)解决此类问题,需要抓住变中的不变量,即数据在改
变,但其变化规律不改变,事实上,给出的图形只是问题的载体,我 们只需从“形”中抽象出“数”,即可将问题归结为等比数列.
a1=1, 1 ∴ 或 1 q = . q=2,
人教a版必修五课件:数列的递推公式(60页)
进入导航
第二章 2.1 第2课时
系列丛书
典例导悟
类型一 [例1] 由递推公式求数列中的项 已知数列{an}中,a1=1,a2=2,以后各项由
an=an-1+an-2(n≥3)给出. (1)写出此数列的前5项; an (2)通过公式bn= 构造一个新的数列{bn},写出数 an+1 列{bn}的前4项.
人教A版· 数学· 必修5
进入导航
第二章 2.1 第2课时
系列丛书
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
人教A版· 数学· 必修5
系列丛书
第二章
数列
第二章
数列
进入导航
系列丛书
2.1
数列的概念与简单表示法
第二章
数列
进入导航
系列丛书
第2课时
课前自主预习
数列的递推公式
课堂互动探究
随堂知能训练
课时作业
人教A版· 数学· 必修5
进入导航
第二章 2.1 第2课时
系列丛书
目标了然于胸,让讲台见证您的高瞻远瞩
1.体会递推公式是数列的一种表示方法. 2.理解递推公式的含义,能根据递推公式写出数列的 前n项,了解数列的函数性质. 3.掌握一些简单的递推公式来求数列的通项公式.
递推法 . 方法叫做________
人教A版· 数学· 必修5
进入导航
第二章 2.1 第2课时
系列丛书
思考感悟
1.通项公式与递推公式的区别与联系
人教A版· 数学· 必修5
人教a版必修五课件:等比数列(53页)
(1)a4=2,a7=8,求an; (2)a2+a5=18,a3+a6=9,an=1,求n. [分析] 解答本题可将条件转化为关于基本元素a1与q
的方程组,求出a1和q,再表示其他量.
[解]
3 a1q =2, 6 a1q =8.
(1)方法一:因为 ① ②
3 a4=a1q , 6 a = a q 7 1 ,
3.等比中项 (1)如果三个数x,G,y组成 等比数列 ,则G叫做x和y的 等比中项.
2 G (2)如果G是x和y的等比中项,那么 =xy,即G=± xy .
思考感悟
1.如何理解等比数列的定义?
提示:(1)一个数列从第2项起,每一项与它前一项的比 是同一个常数,定义中“同一个”常数非常重要,切不可 丢掉. (2)常数列是等差数列,但不一定是等比数列,如 0,0,0„就不是等比数列.
新知初探
1.等比数列的定义 如果一个数列从第2项起,每一项与它的前一项的比 等于 同一常数 ,那么这个数列叫做等比数列, 这个常数 叫做等比数列的公比,公比通常用字母q(q≠0)表示.
2.等比数列的通项公式 如果一个等比数列{an}的首项为a1,公比为q,那么它的
n-1 a q 通项公式是an= 1 .
所以
② 3 3 由 得q =4,从而q= 4,而a1q3=2, ① 2n-5 2 1 n-1 于是a1= 3= ,所以an=a1q =2 . q 2 3
方法二:因为a7=a4q3,所以q3=4. 所以an=a4q
n-4
3 n-4 2n-5 =2· ( 4) =2 3 .
4 a2+a5=a1q+a1q =18, ③ (2)方法一:因为 2 5 a3+a6=a1q +a1q =9. ④
人教版高中数学必修5(A版) 2.5等比数列的前n项和 PPT课件
例3
某商场今年销售计算机5000台,如果平均每 年的销售量比上一年的销售量增加10%,那么 从今起,大约几年可使总销售量达到30000台 (结果保留到个位)?
5000台 5000×(1+10%)=5000×1.1台 5000×(1+10%) ×(1+10%) 第2年产量为 第3年产量为
分析:第1年产量为
……
第n年产量为
n1
5000 1.12台
50001.1 台
则 n 年内的总产量为:
5 5 1.1 5 1.12 5 1.1n1 30000
例3
某商场今年销售计算机5000台,如果平均每 年的销售量比上一年的销售量增加10%,那么 从今起,大约几年可使总销售量达到30000台 (结果保留到个位)?
答:约5年可以使总销售量量达到30000台
小结
1.已知 a1 , n, q 则
Sn
{
na 1,
a1 1 q n , 1 q
( q=1).
(q≠1).
( q=1). (q≠1).
已知 a1 , an , q 则
Sn
{
na 1,
a1 an q , 1 q
2.对含字母的题目一般要分别考虑q=1和q≠1两种情况。
, q 1 10% 1.1, Sn 30000 , 其中 a1 5000
n 5000 1 1 . 1 ∴ 30000 . 1 1.1
解:由题意,从第1年起,每年的销售量组成一个等比数列 an ,
即
1.1 1.6.
n
两边取常用 n lg1.1 lg1.6 对数,得 lg1.6 0.20 5 ( 年) ∴ n lg1.1 0.041
人教版A版高中数学必修5:等差数列_课件26
等差数列
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数
10n n2 n2 10n
50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1
10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数
10n n2 n2 10n
50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1
10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使
人教版高中数学必修5(A版) 等比数列的前n项和 PPT课件
a1 a 2 a 3 a1 a 2 a 3 k kb1 , b 2 , b3 0 b1 b 2 b3 b1 b 2 b3
(西 萨)
在古印度,有个名叫西萨的人,发明了国际象棋,当 时的印度国王大为赞赏,对他说:我可以满足你的任 何要求.西萨说:请给我棋盘的64个方格上,第一格 放 1 粒小麦,第二格放 2 粒,第三格放 4 粒,往后每一 格都是前一格的两倍,直至第64格.国王令宫廷数学 家计算,结果出来后,国王大吃一惊.为什么呢?
(1 q)S a a q a qa S 当q≠1时, 1 q
n 1 n
1 n
a1 q(Sn an )
n
返回目录
4、公式应用:
例1:求等比数列
1 1 1 , , , 2 4 8
的前8项的和。
1 1 1 1 解:由 a1 , q , n 8 ,得 2 4 2 2
n
a n 1
q(n 2)或
n 1
an
q(n N*)
(2)等比数列的通项公式
an a1q
n 1
( a 1 ≠0 且 ( n N *)
q ≠0)
(3)数列的前n项和与通项公式的关系
S1 an Sn Sn 1
(n 1) (n 2)
(4)合分比定理
n1
a1q ②
n
①—② ,得
(1 q)Sn a1 0 0 a1q
(1 q)Sn a1 a1q
n
a1 - a1q 探讨1: 由 (1 - q)sn = a1 - a1q 得 sn比数列中的公比能不能为1? q=1时是什么数列?此时sn=?
(西 萨)
在古印度,有个名叫西萨的人,发明了国际象棋,当 时的印度国王大为赞赏,对他说:我可以满足你的任 何要求.西萨说:请给我棋盘的64个方格上,第一格 放 1 粒小麦,第二格放 2 粒,第三格放 4 粒,往后每一 格都是前一格的两倍,直至第64格.国王令宫廷数学 家计算,结果出来后,国王大吃一惊.为什么呢?
(1 q)S a a q a qa S 当q≠1时, 1 q
n 1 n
1 n
a1 q(Sn an )
n
返回目录
4、公式应用:
例1:求等比数列
1 1 1 , , , 2 4 8
的前8项的和。
1 1 1 1 解:由 a1 , q , n 8 ,得 2 4 2 2
n
a n 1
q(n 2)或
n 1
an
q(n N*)
(2)等比数列的通项公式
an a1q
n 1
( a 1 ≠0 且 ( n N *)
q ≠0)
(3)数列的前n项和与通项公式的关系
S1 an Sn Sn 1
(n 1) (n 2)
(4)合分比定理
n1
a1q ②
n
①—② ,得
(1 q)Sn a1 0 0 a1q
(1 q)Sn a1 a1q
n
a1 - a1q 探讨1: 由 (1 - q)sn = a1 - a1q 得 sn比数列中的公比能不能为1? q=1时是什么数列?此时sn=?
人教A版高中数学必修五2.4.1等比数列的概念及通项公式课件
3.等比数列的通项公式an=a1qn-1共涉及a1,q,n,an四个量,已知其中三个 量可求得第四个量.
知识点四 等比数列的类型
思考:等比数列的公比与该数列的类型有关系吗? (1)数列:1,2,4,8,16,… (2)数列:8,4,2,1, 1 , 1 , 1 ,
2 48
(3)数列:-1,-2,-4,-8,-16,…
……
a a q n-1
n
1
3.等比数列的通项公式: an a1qn-1
思考:如何用 a1 和 q 表示 an?
❖ 方法:累加法
等 a2 - a1 d
差 数
a3 - a2 d
列
a4 - a3 d
……
+)an - an-1 d
类比
累乘法
等 比 数 列
a2 q a1
a3 q a2
a4 q
∴an+1+1=2(n∈N*). an+1
∴数列{an+1}是等比数列.
(2)求数列{an}的通项公式.
解 由(1)知{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2·2n-1=2n.
即an=2n-1.
反思感悟 等比数列的判定方法
(1)定义法: an =q(n≥2,q an-1
共同特点: 从第二项起,每一项与其前一项的比是
同一个常数
类比“等差数列”,这样的数列可以叫做“等比数列”。
知识点一 等比数列的概念 1.定义:如果一个数列从第 2项起,每一项与它的 前 一项的 比 等于同一 常数, 那么这个数列叫做等比数列,这个常数叫做等比数列的公比 ,通常用字母q表
示(q≠0).
√C.①②④
解析 ①②显然是等比数列;
由于x可能为0,③不是;
知识点四 等比数列的类型
思考:等比数列的公比与该数列的类型有关系吗? (1)数列:1,2,4,8,16,… (2)数列:8,4,2,1, 1 , 1 , 1 ,
2 48
(3)数列:-1,-2,-4,-8,-16,…
……
a a q n-1
n
1
3.等比数列的通项公式: an a1qn-1
思考:如何用 a1 和 q 表示 an?
❖ 方法:累加法
等 a2 - a1 d
差 数
a3 - a2 d
列
a4 - a3 d
……
+)an - an-1 d
类比
累乘法
等 比 数 列
a2 q a1
a3 q a2
a4 q
∴an+1+1=2(n∈N*). an+1
∴数列{an+1}是等比数列.
(2)求数列{an}的通项公式.
解 由(1)知{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2·2n-1=2n.
即an=2n-1.
反思感悟 等比数列的判定方法
(1)定义法: an =q(n≥2,q an-1
共同特点: 从第二项起,每一项与其前一项的比是
同一个常数
类比“等差数列”,这样的数列可以叫做“等比数列”。
知识点一 等比数列的概念 1.定义:如果一个数列从第 2项起,每一项与它的 前 一项的 比 等于同一 常数, 那么这个数列叫做等比数列,这个常数叫做等比数列的公比 ,通常用字母q表
示(q≠0).
√C.①②④
解析 ①②显然是等比数列;
由于x可能为0,③不是;
高中数学人教A版必修5第2章第5节《数列求和》课件
1 2
(1 2
1 4
1 3
1 5
1 4
1 6
1 5
1 7
1 1 1 1 ) n n 2 n 1 n 3
••
•
•
Sn
1 2
(1 2
1 3
n
1
2
1) n3
5 12
2(n
2n 5 2)(n
3)
小规律:
裂项相消时,前面剩几项, 对应后面就剩几项;前面剩 第几项,对应后面就剩倒数 第几项;前后至少各写出两 组数。
解:设等差数列an
的首项为a1
,
公差为d, an
1 an1
的前n项和为Tn
3a1a123dd36
ad1
1 1
an n
1 1 anan1 n(n 1)
1 1 n n1
Tn
11
1 2
1 2
1 3
1 1 n 1
n n 1
1 1 1 11 n 1 n n nn1
常见数列的裂项方法
(1)
(3)2 4 6 (4)12 22 32
(5)13 23 33
2n n(n 1)
n2 n(n 1)(2n 1) 6
n3 n2 (n 1)2 4
二.倒序相加法
适用于:如果一个数列 an 中与首
末两项“等距离”的两项之 和等于首末两项的和。
方法:把数列分别正着写和倒着写再 相加。
1 2
an 2n 1
(2)
1
1
anan1 (2n 1)(2n 1)
1( 1 1 ) 2 2n 1 2n 1
Tn
1 2
(1
1 3
1 3
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列的第n项。
问题1:指出以下各组数列的对应项及项数
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,···. (3)4,5,6,7,8,9,10.
问题2:数列(3)4,5,6,7,8 ,9,10改为10,9,8,7,6,5, 4还表示同一数列吗? 问题3:-1,1,-1,1,-1,……是 不是一个数列? 答: 2、不是,因为次序不同
空白演示
在此输入您的封面副标题
1 2 22 23 24 25 26 27 … 263 1国+2王+要22+给…多+少263麦=粒18?446744073709551615
人陛你什赏陛里不几搞搬下想么赐下 的 够粒定啊赏得样?国麦小麦。!小到的库子人就
OK
?
§3.1数列
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,···. (3)4,5,6,7,8,9,10.
3、是
问题4:数列中的数与数集中的元素有什 么区别?
答:数列中的数是有序的,可重复的 ,而数集中的元素是无序且不能重 复的。
关数过列问列来(系题3中,有)5的每:没每个上有一序述规个 号4律数也个?都都数如对对列何应应中着着总的一一结项个 个这与序数些序号。规,如号律反数的?
项an:45678910
序号n:1234567
数列的实质:数列的项an是序号n的函数
,数列可看作序号n从小到大取值时对应的 一列函数值
y=f(x)
函数值
自变量
an =f(n)
2、如果通数项列公{a式n}中的第n项an与n之间的关系可 : 以用一个公式来表示,则称此公式为数列
的通项公式。
注:数列的通项公式实际上是一个以正 整数集N*或它的有限子集{1,2,…, n}为定义域的函数表达式
(4)1,,,,,···,···.
正这整四数组1,数2据,有3,什4么,共…同的特倒征数?排成一列
1、定义:
(1)数列:按一定次序排列的一列数叫数 列
(2)项:数列中的每一个数叫做这个数列 的项
• 各项依次叫做这个数列的第1项,第2项, ······,第n项,······
(3)数列的一般形式可以写成: a1,a2,…,an,…简记为{an},其中an是数
问题6:你能否求出以下数列的通项公式?
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,··· (3)4,5,6,7,8,9,10.
(5)-1,1,-1,1,…
说明:1、并不是所有的数列都 有通项公式,如数列(2)。
2、有些数列的通项公式不 唯一,如数列(5)
an an=n+3的图象
分析:在通项公式中取n=1,2,3 ,4,5,得到数列的前5项:
思考:
例2写出下面数列的一个通项公式, 使它的前4项分别是下列各数
⑴1,3,5,7
练习:P120/1、2、3、4
பைடு நூலகம்
1、(1)1,4,9,16,25
(2)10,20,30,40,50
(3)5,-5,5,-5,5
小结
• 数列的定义; • 数列的通项公式。 • 本节课的能力要求是: • (1)会由通项公式求数列的特定项;
. 10
. 9
数列图象
. 8 . 7
是一些点
6
. 5
. . 4
3
2
1
O 1234567
n
an 1
an=1/n的图象
这些点是
½
孤立的!
¼
O1234567n
4、数列的分类:
(1)按项的多少分: 如(1)(3)是有穷数列, (2)(4)(5)是无穷数列。
(2)按项之间大小关系分:
例1根据下面数列{an}的通项 公式,写出它的前5项:
(2)会由数列的前几项求数列的通项公式 。
作业 P122习题3.1:1、2
思考题: 写出下列数列的一个通项公式: (1)2,0,2,0… (2)9,99,999,9999… (3)0.9,0.99,0.999,0.9999…
问题1:指出以下各组数列的对应项及项数
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,···. (3)4,5,6,7,8,9,10.
问题2:数列(3)4,5,6,7,8 ,9,10改为10,9,8,7,6,5, 4还表示同一数列吗? 问题3:-1,1,-1,1,-1,……是 不是一个数列? 答: 2、不是,因为次序不同
空白演示
在此输入您的封面副标题
1 2 22 23 24 25 26 27 … 263 1国+2王+要22+给…多+少263麦=粒18?446744073709551615
人陛你什赏陛里不几搞搬下想么赐下 的 够粒定啊赏得样?国麦小麦。!小到的库子人就
OK
?
§3.1数列
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,···. (3)4,5,6,7,8,9,10.
3、是
问题4:数列中的数与数集中的元素有什 么区别?
答:数列中的数是有序的,可重复的 ,而数集中的元素是无序且不能重 复的。
关数过列问列来(系题3中,有)5的每:没每个上有一序述规个 号4律数也个?都都数如对对列何应应中着着总的一一结项个 个这与序数些序号。规,如号律反数的?
项an:45678910
序号n:1234567
数列的实质:数列的项an是序号n的函数
,数列可看作序号n从小到大取值时对应的 一列函数值
y=f(x)
函数值
自变量
an =f(n)
2、如果通数项列公{a式n}中的第n项an与n之间的关系可 : 以用一个公式来表示,则称此公式为数列
的通项公式。
注:数列的通项公式实际上是一个以正 整数集N*或它的有限子集{1,2,…, n}为定义域的函数表达式
(4)1,,,,,···,···.
正这整四数组1,数2据,有3,什4么,共…同的特倒征数?排成一列
1、定义:
(1)数列:按一定次序排列的一列数叫数 列
(2)项:数列中的每一个数叫做这个数列 的项
• 各项依次叫做这个数列的第1项,第2项, ······,第n项,······
(3)数列的一般形式可以写成: a1,a2,…,an,…简记为{an},其中an是数
问题6:你能否求出以下数列的通项公式?
(1)1,2,22,23,24,…,263 (2)1,1.4,1.41,1.414,··· (3)4,5,6,7,8,9,10.
(5)-1,1,-1,1,…
说明:1、并不是所有的数列都 有通项公式,如数列(2)。
2、有些数列的通项公式不 唯一,如数列(5)
an an=n+3的图象
分析:在通项公式中取n=1,2,3 ,4,5,得到数列的前5项:
思考:
例2写出下面数列的一个通项公式, 使它的前4项分别是下列各数
⑴1,3,5,7
练习:P120/1、2、3、4
பைடு நூலகம்
1、(1)1,4,9,16,25
(2)10,20,30,40,50
(3)5,-5,5,-5,5
小结
• 数列的定义; • 数列的通项公式。 • 本节课的能力要求是: • (1)会由通项公式求数列的特定项;
. 10
. 9
数列图象
. 8 . 7
是一些点
6
. 5
. . 4
3
2
1
O 1234567
n
an 1
an=1/n的图象
这些点是
½
孤立的!
¼
O1234567n
4、数列的分类:
(1)按项的多少分: 如(1)(3)是有穷数列, (2)(4)(5)是无穷数列。
(2)按项之间大小关系分:
例1根据下面数列{an}的通项 公式,写出它的前5项:
(2)会由数列的前几项求数列的通项公式 。
作业 P122习题3.1:1、2
思考题: 写出下列数列的一个通项公式: (1)2,0,2,0… (2)9,99,999,9999… (3)0.9,0.99,0.999,0.9999…