19.1.1变量与函数(1)教学设计

合集下载

人教版数学八年级下册《19.1.1 变量与函数》教学设计

人教版数学八年级下册《19.1.1 变量与函数》教学设计

人教版数学八年级下册《19.1.1 变量与函数》教学设计一. 教材分析人教版数学八年级下册《19.1.1 变量与函数》是初中数学的重要内容,主要让学生了解变量的概念,以及变量与函数的关系。

本节课通过具体的实例,引导学生理解函数的概念,并能够运用函数解决实际问题。

教材内容由浅入深,循序渐进,符合学生的认知发展规律。

二. 学情分析八年级的学生已经掌握了代数的基础知识,对数学概念有一定的理解能力。

但是,对于函数的概念和意义,以及如何运用函数解决实际问题,可能还存在一定的困难。

因此,在教学过程中,要注重引导学生通过实例理解函数的概念,培养学生的动手操作能力和解决问题的能力。

三. 教学目标1.知识与技能:使学生理解变量与函数的概念,能够识别函数关系,并运用函数解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生提出问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作意识和创新精神。

四. 教学重难点1.重点:理解变量与函数的概念,掌握函数的表示方法。

2.难点:函数概念的理解,以及如何运用函数解决实际问题。

五. 教学方法采用问题驱动法、合作学习法和情境教学法。

通过设置问题情境,引导学生观察、操作、思考,培养学生的动手操作能力和解决问题的能力。

同时,鼓励学生相互讨论、交流,培养学生的团队协作意识和创新精神。

六. 教学准备1.教师准备:熟悉教材内容,了解学生学情,设计教学问题和活动。

2.学生准备:预习教材,了解变量与函数的基本概念。

七. 教学过程1.导入(5分钟)利用生活中的实例,如温度随时间的变化,引出变量与函数的概念。

提问:什么是变量?什么是函数?引导学生思考并回答。

2.呈现(15分钟)呈现教材中的例题和练习题,让学生观察、分析,引导学生发现变量与函数之间的关系。

提问:如何判断两个变量之间存在函数关系?如何表示函数关系?3.操练(15分钟)学生分组讨论,选取一个实例,尝试用函数表示变量之间的关系。

19.1.1-变量与函数-教案

19.1.1-变量与函数-教案

19.1.1 变量与函数八年级科目:数学主备人:范德彪时间:年月日课时安排与说明:1课时一、教学设计1、教学目标(1)理解变量与常量、自变量与函数的含义,能指出具体问题中的常量、变量,并会用含一个变量的代数式表示另一个变量;(2)理解两个变量间的特殊对应关系,能指出由哪一个变量唯一确定另一变量,会判断两个变量是否具有函数关系,并会求自变量的取值范围;(3)通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.引导学生探索实际问题中的数量关系,让学生体会“变化与对应”的数学思想,培养学生提高分析问题和解决问题的能力。

2、内容分析(1)函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。

方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。

本节课是函数入门课,要从数学的角度研究变化现象,把握变化规律,首先必须准确认识变量与常量的特征,关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.(2)基于以上分析,确定本节课的教学重点是能找出一个变化过程中的变量与常量,教学难点是能判断两个变量是否具有函数关系。

3、学情分析(1)学生的认知基础:变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系。

类似于一元一次方程,学生直知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,并没有用运动与变化的观点去体会两个变量之间相互依赖的关系。

另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.(2)学生是年龄心理特点:八年级学生具有很强的感性认知基础,活泼好动,思维敏捷,表现欲强,对一些具体的实践活动十分感兴趣,但思考问题单一,不会延伸运用。

人教版数学八年级下册19.1.1《变量与函数》教学设计

人教版数学八年级下册19.1.1《变量与函数》教学设计
19.1.1变量与函数 (第1课时)教案
课前准备活动:每位同学都注意留心身边事物的运动变化过程,至少记录三个实例,以备上课使用。
【教材分析】




知识
技能
1.理解变量、常量的概念以及相互之间的关系,能指出一个变化过程中的变量与常量.
2.能找出变量之间的简单关系,列出简单关系式.
过程
方法
经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.逐步感知变量间的关系.
根据上面的描述,指出其中的变量和常量,
2,放学后,你步行回家的平均速度是80米/分钟,离开学校的路程是s米,离开学校的时间是t分钟。根据以上描述,指出变量与常量并完成下表
t/分钟
1
2
3
4
...
S/米
...
请用时间t表示路程s_______。
教师出示题目,学生分节完成。首先小组内交流,然后统一展示。




如图,在长方形ABCD中,当点P在边AD(不包括A、D两点)上从A向D移动时,有些线段的长度和三角形的面积始终保持不变,而有些则发生了变化。
(1)试分别写出长度变和不变的线段,面积变和不变的三角形。
(2)若AP=x,BC=8,AB=4,求 和




作业:
课本P72练习题
教师布置作业,提出具体要求
问题1:找出乌龟追兔子这个过程中所涉及的量。
问题2:请同学们比较一下,乌龟追兔子的过程中,距离s和时间t这两个量与乌龟的速度v有什么不同的地方吗?
问题3:请大家按照刚才的步骤,(先找出变化过程中的量,再判断一下这些量有哪些在发生变化,又有哪些是不变的。)来研究一下刚才大家举出的实例。

初中数学变量与函数--精品教学设计

初中数学变量与函数--精品教学设计

变量与函数(第1课时)教学设计一、内容和内容解析1. 内容人教版《义务教育课程标准实验教科书数学》八年级下册:“19.1.1变量与函数”第1课时.2. 内容解析本节内容为《一次函数》第一课时. 在学生学习了二元一次方程和找规律的基础上,学生对变量和常量已有一些模糊的认识. 通过生活实例的感悟,由具体到抽象,抽象出量的意义,并对量进行分类得出变化的量和不变的量,归纳出变量与常量的概念. 同时在讨论问题过程中,引出变量间的单值对应关系,体会建模思想,为学习函数的定义、函数的表达方式、函数的取值范围及函数的应用做出铺垫,为《一次函数》全章的学习打下基础.根据以上的分析,本节课的教学重点确定为:通过列举生活实例,理解量的意义,逐步形成常量与变量的概念,并能指出实际问题中的常量与变量.二、目标和目标解析1. 目标(1)理解量的意义、常量与变量的概念,并能指出实际问题中的常量与变量;(2)在实际问题的探究过程中,感受生活中变量间的对应关系,学会分辨不同表达方式中的变量与常量,经历从具体到抽象、从感性认识到理性分析的思维过程,体会函数与方程、数形结合和分类讨论的数学思想,提升数学抽象和数学建模的核心素养.2. 目标解析本节内容从学生熟悉的实际问题出发,让学生体会变量间的单值对应关系,感受一个变量随另一个变量的变化而变化,渗透自变量与函数的关系,从具体到抽象,通过表格、关系式及图象让学会生认识运动过程中的变量和常量概念,进而认识相关概念的联系和区别.达成目标(1)的标志:在探究过程中,正确找到变量与常量,并找出变化规律;达成目标(2)的标志:在练习和拓展中,找到图表中隐藏的变量与常量,能读取不同的数量关系和表达方式.三、教学问题诊断分析学生在字母表示数中,接触过当字母取值变化时,代数式的值随之变化,但学生对量的意义较为模糊.学生在生活中具有对两个量之间关联的体验,如气温随时间变化等,学生对变量与常量的定义理解困难不大,但是对变化中的单值对应关系及在变化过程中寻找变量与常量较难把握,特别是函数中的“唯一确定”仅局限于通过公式求出的唯一值,对不能用公式求出值的单值对应关系难以理解.因此教学难点确定为:理解变化过程中的变量与常量,以及变量与常量的相对性.四、教学支持条件分析从学生学过的小学课文《秋天来了》,引导学生观察现实世界和日常生活中的变化现象,让学生会用“变”的眼光观察现实世界,会用数学思维思考现实世界,会用数学语言表达现实世界.以李强的活动情境为主线引出生活中的变化事例,发现生活中变化的量和不变的量,引出变量与常量,在事例中感悟一个量随另一个量的变化现象,为刻画变量间的依赖关系,形成函数概念做出铺垫.以大量生活问题题材引导学生发现生活中变化的量和不变的量,以及变量间的单值对应关系,引导学生分析、分类、归纳出变量与常量的概念,结合式子、表格和图形给学生多种变量对应关系的呈现方式,帮助学生使用变量与常量准确地表述数学的研究对象,学会用数学的语言表达和交流数学问题,积累抽象思维的经验,提升数学抽象素养。

变量与函数教学设计-经典教学教辅文档

变量与函数教学设计-经典教学教辅文档

19.1.1变量与函数教学设计(第一课时)教学目标知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.过程与方法1.经历观察、分析、考虑等数学活动过程,发展合情推理,有条理地、清晰地阐述本人观点.2.逐渐感知变量间的关系.情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.构成实事求是的态度和独立考虑的习气.教学重点1.认识变量、常量2.用式子表示变量间关系教学难点用含有一个变量的式子表示另一个变量教学方法精心设疑合作交流自主探求教具预备多媒体课件课时安排1课时教学过程活动一图片欣赏开头语:为了更深入地认识千变万化的世界,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.活动二提出成绩,创设情境成绩1:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶工夫为t小时.1.请同学们根据题意填写下表:2.在以上这个过程中,变化的量是________.没有变化的量是__________.3.试用含t的式子表示s.成绩2:每张电影票的售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张,三场电影票的票房支出各多少元?若设一场电影售出票x张,票房支出为y元,怎样用含x的式子表示y?成绩3:圆形水波慢慢地扩大,在这一过程中,当圆的半径r 分别为10cm,20cm,30cm 时,圆的面积S分别为多少?怎样用半径r来表示面积S?成绩4:用10 m长的绳子围一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?如何用一边长x来表示它的邻边长y?先生合作交流自主完成.结论:1.S=60t; 2.y=10x; 3.S=兀r2;4. y=5–x.成绩升华发问1:分别指出考虑(1)~(4)的变化过程中所触及的量,在这些量中哪些量是发生了变化的?哪些量是一直不变的?发问2:在考虑(1)~(4)的变化过程中,当一个量发生变化时,另一个量能否也随之发生变化?是哪一个量随哪一个量的变化而变化?发问3:在考虑(1)~(4)的变化过程中,发生变化的量无量制条件吗?如何限制?活动三构成概念变量(variable):在一个变化过程中,数值发生变化的量为变量。

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案
2、每张电影票的售价为10 元,设某场电影售出x 张票,票房收入为y 元.
售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;

人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1

人教版数学八年级下册19.1.1《变量与函数》教学设计1一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,本节课主要介绍变量的概念以及函数的定义。

学生在学习本节课之前,已经掌握了代数基础知识,如代数式、方程等,为本节课的学习打下了基础。

本节课的内容是学生学习更高级数学知识的重要基石,对于培养学生的逻辑思维能力、解决问题的能力具有重要意义。

二. 学情分析八年级的学生已经具备了一定的代数基础,对于未知数、代数式等概念有了初步的了解。

但是,学生在学习过程中,可能对于抽象的变量概念、函数的定义及表示方法等方面存在一定的困难。

因此,在教学过程中,需要注重引导学生通过具体实例来理解抽象概念,提高学生的抽象思维能力。

三. 教学目标1.理解变量的概念,掌握常量与变量的区别。

2.理解函数的定义,掌握函数的表示方法。

3.能够运用变量和函数的知识解决实际问题。

四. 教学重难点1.重点:变量、函数的概念及其表示方法。

2.难点:函数概念的理解,函数表示方法的应用。

五. 教学方法1.情境教学法:通过生活实例引入变量和函数的概念,使学生能够更好地理解抽象知识。

2.引导发现法:教师引导学生通过观察、分析、归纳等方法,自主发现变量和函数的规律。

3.实践操作法:让学生通过动手操作,加深对变量和函数概念的理解。

六. 教学准备1.教学课件:制作生动有趣的教学课件,帮助学生直观地理解变量和函数的概念。

2.教学实例:准备一些生活实例,用于引导学生学习变量和函数。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例,如气温、水位等,引导学生思考这些量是如何变化的。

通过观察、讨论,让学生初步理解变量概念。

2.呈现(10分钟)介绍常量与变量的定义,让学生明确常量与变量的区别。

接着,引入函数的定义,讲解函数的表示方法,如解析式、图象等。

3.操练(10分钟)让学生分组讨论,举例说明生活中的一些函数关系,如身高与年龄的关系、商品价格与数量的关系等。

《变量与函数》公开课教学设计 人教版八年级下册

《变量与函数》公开课教学设计  人教版八年级下册

人教版八年级下册19.1.1变量与函数教学设计因为数是固定不变的,所以在一个关系式中,常量是数,而字母可以取相应变化的值,所以变量是字母。

下列运动变化过程中的关系式,哪些是变量,哪些是常量:①y=0.4x常量:变量:②a=3+2.4b常量:变量:③C=2πR常量:变量:④V=6abc常量:变量:2、函数的相关概念:P73一般地,在一个变化过程中,如果有____个变量___与___,并且对于____的每一个确定的值,____都有___________的值与其对应,那么我们就说 x是_________,y是 x的______.如果当x=a 时,对应的y=b,那么 b 叫做当自变量的值为a时的_______.P74用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的_________.x/h 1 2 3 4 (x)y/km 60 120 180 240 (60x)在上述汽车行驶的过程中, y与x的关系式是_________,这其中有____个变量,给一个x,得____个y,所以____是自变量,_____是_____的函数。

x=1时,y的函数值是60;x=2时,y的函数值是120;x=3时,y的函数值是_______;x=4时,y的函数值是_______。

函数解析式即y与x的关系式:___________.y是x的函数吗?如果是,指出自变量。

①y=0.4x 两个变量x和y,给一个x,得一个y,所以,x是自变量,y是x的函数。

②y=±x 反例:当 x=1时,y=±1,给一个x,得两个y,所以y不是x函数。

③y2=x 问题前置的目的。

左题由组代表抢答,并计入本组竞赛成绩,教师根据答题情况纠偏改错。

2、学生齐读并齐答,教师根据回答情况纠偏改错。

①②③④是难点题目,教师先讲解,学生讨论研究。

反例:(±3)2=9,当 x=9时,y=±3,给一个x,得两个y,所以y不是x的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19章《19.1.1变量与函数》教学设计教学内容19.1.1变量与函数第一课时
教学目标知识与技能:
1.认识变量、常量.
2.学会用含一个变量的代数式表示另一个变量.
过程与方法:1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.
2.逐步感知变量间的关系.
情感、态度与价值观:
1.积极参与数学活动,对数学产生好奇心和求知欲.
2.形成实事求是的态度以及独立思考的习惯.
教学重点1.认识变量、常量.
2.用式子表示变量间关系.
教学难点用含有一个变量的式子表示另一个变量.教学方法
引导、探索法
教学准备PPT
教学过程设计
教学过程一、前提预设
此环节由一名学生带领大家复习学过的知识,教师进行补充。

二、目标解读
认识变量与常量,会用含一个变量的代数式表示另一个变量。

三、合作学习
(一)快乐独学
汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.
1.请同学们根据题意填写下表:
t/时 1 2 3 4 5 t
s/千米
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.
3.试用含t的式子表示s,s=________,t的取值范围是_____________.
这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.
(二)愉悦合作
问题一:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•
1.请同学们根据题意填写下表:
售出票数(张)早场150 午场205 晚场310 x
收入y (元)
2.在以上这个过程中,变化的量是_____________.不变化的量是__________.3.试用含x的式子表示y,y=______。

这个问题反映了票房收入_________随售票张数_________的变化过程.
问题二:小军用50元钱去买单价为6元的笔记本,则他剩余的钱Q与他买这种笔记本的本数x之间的关系为:___________________________
1、以上过程中变化的量是____________,不变的量是_______________.
2、这个问题反应了________随__________的变化过程.
归纳总结:
在一个变化过程中,我们称数值发生变化
....的量为________;
在一个变化过程中,我们称数值始终不变
....的量为________;
(三)幸福展示:
指出下列问题中的变量与常量
1、某市的自来水价格为4元每吨,现在要抽取若干户居民调查水费的支出情况,记某户的月用水量为x吨,月应交水费为y元。

2、把10本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入x本,第二个抽屉放入y本。

3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率为 。

4、某地手机通话费为0.2元每分钟,李明在手机话费卡中存入30元,记此后他的手机通话时间为t分钟,话费卡中的余额为y元。

四、课后巩固
1、甲乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)
满足s=vt,在这个变化过程中,下列判断中错误的是()
A.S是变量 B.t是变量 C.v是变量 D.S是常量
2、某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的
式子表示y.
份数/份 1 2 3 4 5 6 7 100
价钱/元
x与y之间的关系是y=______,在这个变化过程中,常量是_________,变量是___________.
3、长方形相邻两边长分别为x、•y•,面积为30•,•则用含x•的式子表示y•为y=_______,则这个问题中,___________是常量;_________是变量.
5、在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm.
(1).请同学们根据题意填写下表:
所挂重物(kg) 1 2 3 4 5 m
受力后的弹簧长度L
(cm)
(2).在以上这个过程中,变化的量是_____________.不变化的量是__________.(3).试用含m的式子表示L=____________ .
(4).这个问题反映了_________随_________的变化过程.
五、课时小结
本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.
1.确定事物变化中的变量与常量.
2.尝试运算寻求变量间存在的规律.
3.利用学过的有关知识公式确定关系区.
本课作业
课后思考题、练习题.
板书设计
课题:《19.1.1变量与函数》
一、例题展示
二、作业。

相关文档
最新文档