数字集成电路低功耗分析
4002芯片
4002芯片4002芯片是一种高性能、低功耗的数字逻辑集成电路芯片,被广泛应用于计算机、通信、工业控制等领域。
它采用了先进的CMOS技术,具有高密度、低功耗、高可靠性等优点。
4002芯片的主要特性如下:1. 高集成度:4002芯片拥有较大的芯片面积和较高的管脚数目,可集成更多的逻辑门电路和功能单元,实现更复杂的功能。
它可以替代多个传统离散元器件,减少电路板面积和系统复杂度。
2. 低功耗:4002芯片采用了低功耗CMOS技术,具有较低的工作电压和功耗。
它在工作过程中,可以有效减少功耗和热量的产生,延长电池寿命,提高系统的能效。
3. 高速性能:4002芯片的时钟频率较高,可以实现快速的信号处理和数据传输,提高系统的响应速度和实时性。
它适用于对速度要求较高的应用场景,如高速通信、图像处理等。
4. 高可靠性:4002芯片采用了先进的工艺和设计技术,具有优良的抗干扰性和电磁兼容性。
它可以有效抵抗电磁干扰、抑制噪声,并保证数据的可靠传输和处理。
5. 多功能性:4002芯片内部集成了多种常用的逻辑门电路、锁存器、触发器等功能单元,可以实现多种逻辑运算和状态控制。
它还支持多种输入输出模式和电压等级的选择,适应不同的应用需求。
6. 易于设计和使用:4002芯片具有标准的引脚排布和接口定义,方便设计师进行原理图设计和电路板布局。
它通常使用标准IC封装,易于与其他电子元器件进行连接和组装。
同时,它还有丰富的技术文档和开发工具支持,便于使用者进行开发和测试。
总之,4002芯片是一款高性能、低功耗、多功能的数字逻辑集成电路芯片,广泛应用于计算机、通信、工业控制等领域。
它的出现极大地推动了电子技术的发展和应用,为各行各业提供了更多的创新和便利。
低功耗CMOS集成运算放大器的研究与设计
级全差分运算放大器。通过采用密勒电容和调零电阻串联的补偿电路,有效地改善了电路的频率
响应特性,提高了转换速度,使该两级运算放大器在获得较大输入共模范围和输出摆幅的同时,还
获得了较高的增益及相位裕度,满足便携式电子产品的低功耗、高性能要求。Cadence Spectre BSIM3V3模型仿真结果表明,在10 GQ负载电阻和1 pF负载电容并联的条件下,该两级运算放
64.
[5]Lee T H.CMOS射频集成电路设计[M].(英文版). 北京:电子工业出版社,2002.230-233.
6结论
本文提出了一种新颖的低噪声放大器,在输入
作者简介:高清运(1965一),女(汉族),河 南新乡人,副教授,博士,主要研究方向为 集成电路设计。
(上接第416页) 通过引入密勒电容和调零电阻串联电路进行频率补 偿,使系统具有较好的频率响应特性和较大的摆率。 采用Cadence Spectre模拟器的BSIM3V3模型,对
本文设计了一种可满足视频速度应用的低电压低功耗10位流水线结构的CMOS A/D转换器.该转换器由9个低功耗运算放大器和19个比较器组成,采用 1.5位/级共9级流水线结构,级间增益为2并带有数字校正逻辑.为了提高其抗噪声能力及降低二阶谐波失真,该A/D转换器采用了全差分结构.全芯片模拟结 果表明,在3V工作电压下,以20MHz的速度对2MHz的输入信号进行采样时,其信噪失调比达到53dB,功率消耗为28.7mW.最后,基于0.6μm CMOS工艺得到该 A/D转换器核的芯片面积为1.55mm2.
2020—2027.
[4]Soorapanth T,Lee T H.RF linearity of short-channel MOSFE'Ts[A].First Int Workshop Des Mixed-Mode Integr Circ and Appl[C].Cancun,Mexico.1997.18—
集成电路低功耗设计方法研究【文献综述】
毕业设计文献综述电子信息科学与技术集成电路低功耗设计方法研究摘要:随着IC制造工艺达到纳米级,功耗问题已经与面积、速度一样受到人们关注,并成为制约集成电路发展的关键因素之一。
同时,由于电路特征尺寸的缩小,之前相比于电路动态功耗可以忽略的静态漏功耗正不断接近前者,给电路低功耗设计提出了新课题,即低漏功耗设计。
本文将分析纳米工艺下芯片功耗的组成和对低漏功耗进行研究的重要性,然后介绍目前主要的低功耗设计方法。
此外,由于ASIC技术是目前集成电路发展的趋势和技术主流,而标准单元是ASIC设计快速发展的重要支撑,本文在最后提出了标准单元包低漏功耗设计方法,结合电路级的功耗优化技术,从而拓宽ASIC功耗优化空间。
关键字:低功耗,标准单元,ASIC设计前言:自1958年德克萨斯仪器公司制造出第一块集成电路以来,集成电路产业一直以惊人的速度发展着,到目前为止,集成电路基本遵循着摩尔定律发展,即集成度几乎每18个月翻一番。
随着制造工艺的发展,IC设计已经进入了纳米级时代:目前国际上能够投入大规模量产的最先进工艺为40nm,国内的工艺水平正将进入65nm;2009年,Intel酷睿i系列创纪录采用了领先的32nm 工艺,并且下一代22nm工艺正在研发中。
但伴随电路特征尺寸的减小,电路功耗数值正呈指数上升,集成电路的发展遭遇了功耗瓶颈。
功耗问题已经同面积和速度一样受到人们重视,成为衡量IC设计成功与否的重要指标之一。
若在设计时不考虑功耗而功利地追求集成度的提高,则可能会使电路某些部分因功耗过大引起温度过高而导致系统工作不稳定或失效。
如Intel的1.5GHz Pentium Ⅳ处理器,拥有的晶体管数量高达4200万只,功率接近95瓦,整机生产商不得不为其配上了特大号风扇来维持其正常工作。
功耗的增大不仅将导致器件的可靠性降低、芯片的稳定性下降,同时也给芯片的散热和封装带来问题。
因此,功耗已经成为阻碍集成电路进一步发展的难题之一,低功耗设计也已成为集成电路的关键设计技术之一。
数字集成电路低功耗物理实现技术与UPF
数字集成电路低功耗物理实现技术与UPF孙轶群sun.yiqun@国民技术股份有限公司Nationz Technologies Inc摘要本文从CMOS电路功耗原理入手,针对不同工艺尺寸下数字集成电路的低功耗物理实现方法进行描述,并着重描述了Synopsys UPF(Unified Power Format)对低功耗设计的描述方法。
UPF是Synopsys公司提出的一种对芯片中电源域设计进行约束的文件格式。
通过与UPF 格式匹配的Liberty文件,UPF约束文件可以被整套Galaxy物理实现平台的任何一个环节直接使用,并将设计者的电源设计约束传递给设计工具,由工具完成设计的实现工作,从而实现整套数字集成电路低功耗物理实现的流程。
1.0 概述本文从数字集成电路低功耗设计原理下手,对设计中低功耗的实现技术进行描述,包括完成低功耗设计需要的库资料以及常用EDA工具对低功耗技术实现的方法。
2.0 CMOS电路的低功耗设计原理CMOS电路功耗主要分3种,静态功耗主要与工艺以及电路结构相关,短路电流功耗主要与驱动电压、p-MOS和n-MOS同时打开时产生的最大电流、翻转频率以及上升、下降时间有关,开关电流功耗主要与负载电容、驱动电压、翻转频率有关。
做低功耗设计,就必须从这些影响功耗的因素下手。
3.0 低功耗设计手段及Library需求低功耗的设计手段较为复杂,但对于不同的设计,或者不同的工艺,实现的方法却各不相同。
3.1 0.18um及以上工艺0.18um及以上工艺,在低功耗设计手段上较为有限,主要原因在于,静态功耗很小,基本不用关心。
动态功耗方面,主要的功耗来自于Switching Power,即与负载电容、电压以及工作中的信号翻转频率相关。
减小负载电容,就必须在设计上下功夫,减少电路规模。
减少信号翻转频率,除了降低时钟频率外,只有在设计上考虑,能不翻转的信号就不翻转。
至于电压,由于0.18um及以上工艺的阈值电压有一定的限制,因此,供电电压降低,势必影响工作频率。
数字集成电路74LS74ASL74HC74HCT74F系列芯片的区别
数字集成电路74LS/74ASL/74HC/74HCT/74F系列芯片的区别1、LS是低功耗肖特基,其改进型为先进低功耗肖特基TTL,即74ALS系列,它的性能比74LS更好。
HC是高速COMS,具有CMOS的低功耗和相当于74LS高速度的性能,属于一种高速低功耗产品。
LS的速度比HC略快。
HCT输入输出与LS兼容,但是功耗低;F 是高速肖特基电路;2、LS是TTL电平,HC是COMS电平。
3、LS输入开路为高电平,HC输入不允许开路,hc一般都要求有上下拉电阻来确定输入端无效时的电平。
LS却没有这个要求4、LS输出下拉强上拉弱,HC上拉下拉相同。
5、工作电压不同,LS只能用5V,而HC一般为2V到6V;6、电平不同。
LS是TTL电平,其低电平和高电平分别为0.8和V2.4,而CMOS在工作电压为5V时分别为0.3V和3.6V,所以CMOS可以驱动TTL,但反过来是不行的7、驱动能力不同,LS一般高电平的驱动能力为5mA,低电平为20mA;而CMOS的高低电平均为5mA;8、CMOS器件抗静电能力差,易发生栓锁问题,所以CMOS的输入脚不能直接接电源。
9、上述两者的工作频率都在30mHz以下,74ALS略高,可达50mHz。
但它们的工作电压却大不相同:74LS系列为5V,74HC系列为2~6V。
10、扇出能力:74LS系列为20,而74HC系列在直流时则高达1000以上,但在交流时很低,由工作频率决定。
74LS属于TTL类型的集成电路,而74HC属于CMOS集成电路。
LS、HC二者高电平低电平定义不同,HC高电平规定为0.7倍电源电压,低电平规定为0.3倍电源电压。
LS规定高电平为2.0V,低电平为0.8V。
带负载特性不同。
HC上拉下拉能力相同,LS上拉弱而下拉强。
输入特性不同。
HC输入电阻很高,输入开路时电平不定。
LS输入内部有上拉,输入开路时为高电平。
================================CD是harris的前缀,SN是TI的前缀。
数字集成电路--电路、系统与设计
数字集成电路是现代电子产品中不可或缺的一部分,它们广泛应用于计算机、手机、汽车、医疗设备等领域。
数字集成电路通过在芯片上集成大量的数字电子元件,实现了电子系统的高度集成和高速运算。
本文将从电路、系统与设计三个方面探讨数字集成电路的相关内容。
一、数字集成电路的电路结构数字集成电路的电路结构主要包括逻辑门、寄存器、计数器等基本元件。
其中,逻辑门是数字集成电路中最基本的构建元件,包括与门、或门、非门等,通过逻辑门的组合可以实现各种复杂的逻辑功能。
寄存器是用于存储数据的元件,通常由触发器构成;而计数器则可以实现计数和计时功能。
这些基本的电路结构构成了数字集成电路的基础,为实现各种数字系统提供了必要的支持。
二、数字集成电路与数字系统数字集成电路是数字系统的核心组成部分,数字系统是以数字信号为处理对象的系统。
数字系统通常包括输入输出接口、控制单元、运算器、存储器等部分,数字集成电路在其中充当着处理和控制信号的角色。
数字系统的设计需要充分考虑数字集成电路的特性,包括时序和逻辑的正确性、面积和功耗的优化等方面。
数字集成电路的发展也推动了数字系统的不断完善和创新,使得数字系统在各个领域得到了广泛的应用。
三、数字集成电路的设计方法数字集成电路的设计过程通常包括需求分析、总体设计、逻辑设计、电路设计、物理设计等阶段。
需求分析阶段需要充分了解数字系统的功能需求,并将其转化为具体的电路规格。
总体设计阶段需要根据需求分析的结果确定电路的整体结构和功能分配。
逻辑设计阶段是将总体设计转化为逻辑电路图,其中需要考虑逻辑函数、时序关系、并行性等问题。
电路设计阶段是将逻辑电路图转化为电路级电路图,包括门电路的选择和优化等。
物理设计阶段则是将电路级电路图转化为实际的版图设计,考虑布线、功耗、散热等问题。
在每个设计阶段都需要充分考虑电路的性能、面积、功耗等指标,以实现设计的最优化。
结语数字集成电路作为现代电子系统的关键组成部分,对于数字系统的功能和性能起着至关重要的作用。
数字集成电路低功耗物理实现技术与UPF
数字集成电路低功耗物理实现技术与UPF孙轶群sun.yiqun@国民技术股份有限公司Nationz Technologies Inc摘要本文从CMOS电路功耗原理入手,针对不同工艺尺寸下数字集成电路的低功耗物理实现方法进行描述,并着重描述了Synopsys UPF(Unified Power Format)对低功耗设计的描述方法。
UPF是Synopsys公司提出的一种对芯片中电源域设计进行约束的文件格式。
通过与UPF 格式匹配的Liberty文件,UPF约束文件可以被整套Galaxy物理实现平台的任何一个环节直接使用,并将设计者的电源设计约束传递给设计工具,由工具完成设计的实现工作,从而实现整套数字集成电路低功耗物理实现的流程。
1.0 概述本文从数字集成电路低功耗设计原理下手,对设计中低功耗的实现技术进行描述,包括完成低功耗设计需要的库资料以及常用EDA工具对低功耗技术实现的方法。
2.0 CMOS电路的低功耗设计原理CMOS电路功耗主要分3种,静态功耗主要与工艺以及电路结构相关,短路电流功耗主要与驱动电压、p-MOS和n-MOS同时打开时产生的最大电流、翻转频率以及上升、下降时间有关,开关电流功耗主要与负载电容、驱动电压、翻转频率有关。
做低功耗设计,就必须从这些影响功耗的因素下手。
3.0 低功耗设计手段及Library需求低功耗的设计手段较为复杂,但对于不同的设计,或者不同的工艺,实现的方法却各不相同。
3.1 0.18um及以上工艺0.18um及以上工艺,在低功耗设计手段上较为有限,主要原因在于,静态功耗很小,基本不用关心。
动态功耗方面,主要的功耗来自于Switching Power,即与负载电容、电压以及工作中的信号翻转频率相关。
减小负载电容,就必须在设计上下功夫,减少电路规模。
减少信号翻转频率,除了降低时钟频率外,只有在设计上考虑,能不翻转的信号就不翻转。
至于电压,由于0.18um及以上工艺的阈值电压有一定的限制,因此,供电电压降低,势必影响工作频率。
低功耗文献综述
文献综述摘要:随着集成电路技术的飞速发展和广泛应用,由功耗所引发的能源消耗、封装成本、以及高集成度芯片散热等问题日益突显,越来越受到人们的重视;低功耗技术己成为当今集成电路设计的一个研究重点和热点。
低功耗技术的研究主要涉及了工艺、封装和电路设计三大层面;其中电路设计层面具有成本低、适用范围广的特点,有很大的优化空间。
本文针对低功耗芯片设计技术进行了系统地研究,并将研究成果成功应用到一个典型的低功耗无线通讯系统—射频识别系统中。
本文首先分析了不同供电机制系统低功耗的特征,区分了“低能耗”和“低功率”的概念,详尽阐述了功耗的产生机理;在此基础上,结合RFID系统中电子标签芯片的工作原理,针对其特殊的低功耗需求,提出了一种适合电子标签数字基带处理器的分布式架构。
接着,比较系统地介绍了降低功耗的四种基本途径,研究了传统CMOS电路不同设计阶段的各种低功耗技术;并将其灵活应用到电子标签芯片的设计中,提出了一种简单有效的随机数发生机制和一种新颖的分步式译码电路,分别设计并实现了超低功耗的超高频、高频和低频电子标签数字基带处理器芯片。
测试结果表明:本文设计与国外的同类设计相比,在功耗方面具有较大的优势。
本文还积极探索了一种新颖的低功耗技术—绝热电路技术:提出了一种准静态绝热逻辑电路结构(C2N-}N2D2P),有效地避免了动态绝热逻辑中因电路节点充放电而产生的冗余功耗;同时为了完善绝热电路的逻辑功能,提出了一种具有置位/复位功能的绝热锁存器电路结构;将绝热电路技术应用到ROM电路的设计中,提出了一种绝热ROM存储器单元电路(ADL ROM ),大大降低了读操作时位线负载电容充放电而产生的动态功耗。
为了促进绝热电路技术在集成电路设计中的应用和推广,本文还开发了一套绝热电路的半自动设计方法,并设计了与之配套的绝热单元库。
最终,将绝热电路技术的研究成果巧妙地与RFID系统设计相结合,设计并实现了一款绝热低频电子标签,目前该芯片正处于测试过程中。
VLSI论文:大规模集成电路设计中的低功耗高层次综合算法研究
VLSI论文:大规模集成电路设计中的低功耗高层次综合算法研究【中文摘要】大规模集成电路(Very Large Scale Integrated circuit, VLSI)是计算机科学和电子科学的基础和载体。
当前,大规模集成电路的半导体制程已经进入32nm工艺,芯片内部集成的运算单元数目在不断增长。
随着大规模集成电路的工艺进步及功能、结构的日趋复杂,对于集成电路计算机辅助设计(Computer Aided Design)的要求也越来越高。
而电路CAD技术的核心在于各种自动综合和规划布线算法。
高层次综合是进行电路功能模块设计和行为描述的重要步骤,是进行芯片进行物理设计的第一步。
高层次综合的主要在于为电路中的各种操作分配硬件功能单元,实现各种操作的时间调度、功能单元共享和绑定。
高层次综合接受系统行为描述,通过一定的算法,将其转换成由功能单元、存储单元、选择器件等组成电路结构。
再经过寄存器转移级别转换、区域划分、布图、布线等步骤得到整个电路的完整物理版图。
当前工业界高层次综合算法大都是基于元件库里相对于每一种操作只有一种功能单元来实现的情况,并在此基础上为所有需要执行的操作分配功能单元,实现调度和互连。
考虑到每种功能单元在晶体管电路级别上可以有多种不同的实现方式,而...【英文摘要】Very Large Scale Integrated circuit (VLSI) design is very important to modern industry. Currently, the manufacture standard of semiconductor device has move into 32nmera. As the advance of circuit technology, the requirement for Electronic Design Automation (EDA) tools is increasing too. The core part of any EDA tool lies in the algorithm.High Level Synthesis (HLS) is a critical procedure following the behavior description of the circuit function. It is the first step of doing physical design of a chip...【关键词】VLSI 高层次综合调度退火算法力导向算法【英文关键词】VLSI High Level Synthesis Scheduling Simulated Annealing Force Directed Scheduling【目录】大规模集成电路设计中的低功耗高层次综合算法研究摘要4-5Abstract5第1章绪论8-19 1.1 论文的研究背景8-15 1.1.1 大规模集成电路(VLSI)和计算机辅助设计(CAD)8-13 1.1.2 大规模集成电路设计中的高层次综合13-15 1.2 国内外研究现状15-18 1.3 论文工作的主要目的和意义18 1.4 论文的主要工作内容18-19第2章大规模集成电路设计中的低功耗高层次综合问题19-29 2.1 VLSI设计中高层次综合的基础算法19-24 2.1.1 ASAP算法和ALAP算法20-22 2.1.2 力导向算法22 2.1.3 随机算法22-23 2.1.4 其他算法23-24 2.2 VLSI设计中低功耗高层次综合问题24-28 2.2.1 VLSI的功耗分析24-25 2.2.2 VLSI设计中的低功耗高层次综合问题25-28 2.3 本章小结28-29第3章大规模集成电路设计中的单一功能单元高层次综合退火算法29-42 3.1 VLSI设计中单一功能单元高层次综合退火算法的基础29-31 3.2 VLSI设计中的单一功能单元高层次综合退火算法31-37 3.2.1 初始状态选择31-34 3.2.2 状态转移函数34 3.2.3 成本估计函数34-35 3.2.4 降温函数的选择35 3.2.5 功能单元参数设定35-37 3.3 VLSI设计中单一功能单元高层次综合退火算法实现与对比37-40 3.3.1 单一功能单元低功耗高层次综合退火算法的实现37-39 3.3.2 单一功能单元低功耗高层次综合退火算法的对比39-40 3.4 本章小结40-42第4章大规模集成电路设计中的多功能单元高层次综合退火算法42-51 4.1 面向VLSI设计中低功耗高层次综合的模拟退火算法改进42-44 4.2 VLSI设计中低功耗高层次综合的超前预估44-45 4.3 VLSI设计中低功耗高层次综合的功能单元参数设定45-50 4.4 本章小结50-51第5章大规模集成电路设计中的低功耗高层次综合的力导向算法51-57 5.1 VLSI设计中高层次综合的基本力导向算法51-54 5.2 VLSI设计中的低功耗高层次综合的力导向算法54-55 5.3 本章小结55-57第6章大规模集成电路设计中的低功耗高层次综合算法的对比57-65 6.1 单一功能退火算法与多功能单元退火算法的对比57-61 6.2 多功能单元退火算法结果与力导向算法的对比61-64 6.3 本章小结64-65第7章全文总结与展望65-66致谢66-67参考文献67-71攻读硕士学位其间所发表的论文71。
数字电路BiCMOS技术
数字电路BiCMOS技术数字电路BiCMOS技术是一种将双极性晶体管(Bipolar)和金属氧化物半导体场效应晶体管(CMOS)结合起来的制造技术。
它充分利用了两种晶体管的优势,并在高速性能和低功耗方面提供了更好的解决方案。
本文将从BiCMOS技术的概念、原理、应用以及优缺点等方面进行探讨。
一、BiCMOS技术概述BiCMOS技术是指将Bipolar和CMOS两种晶体管集成在同一块芯片上,以实现高集成度和优越性能的目标。
BiCMOS技术通过在CMOS上集成bipolar晶体管来克服CMOS器件速度和功率消耗方面的缺点,从而使得集成电路在高速运算和低功耗上能够取得良好的平衡。
BiCMOS技术的工艺流程主要包括CMOS工艺和双极性晶体管工艺两部分。
CMOS工艺主要用于制作CMOS晶体管,而双极性晶体管工艺则用于制作bipolar晶体管。
通过精确且可控的工艺流程,BiCMOS技术能够在同一块芯片上实现两种不同类型晶体管的集成。
二、BiCMOS技术原理BiCMOS技术的原理基于Bipolar和CMOS晶体管之间的互补作用。
CMOS晶体管由P型和N型金属氧化物半导体场效应晶体管组成,它具有低功耗和高噪声抑制能力;而bipolar晶体管由PN结和NPN结组成,具有高电流放大和高频率特性。
通过将这两种晶体管结合在一起,BiCMOS技术实现了高速度和低功耗的优势。
当需要高速操作时,使用bipolar晶体管进行放大和驱动操作;而在不需要高速操作时,使用CMOS晶体管进行低功耗的待机操作。
通过这种组合,BiCMOS技术能够在数字电路的设计中实现高性能和低功耗的要求。
三、BiCMOS技术应用BiCMOS技术在现代集成电路中具有广泛的应用。
由于其高速度和低功耗的特点,BiCMOS技术被广泛应用于数字信号处理器(DSP)、数据通信、网络交换、高速计算机、高性能寄存器以及高速模数转换器等领域。
DSP是BiCMOS技术应用的典型代表。
集成电路设计技术创新研究分析
集成电路设计技术创新研究分析随着科技的快速发展,集成电路设计技术也在不断进步。
作为微电子行业的核心技术,集成电路设计技术广泛应用于计算机、移动通讯、家庭电器、医疗设备、汽车电子等各个领域,对现代社会的发展起着至关重要的作用。
在这篇文章中,我们将对集成电路设计技术的创新研究进行分析。
1. 研究背景首先,我们需要了解一下当前集成电路设计技术所面临的背景。
微电子产业的发展已经达到了一个新的高度,集成度越来越大,体积越来越小,功耗越来越低,性能越来越高。
这些变化使得现有的设计工具和方法无法完全满足市场的需求,而集成电路设计技术的创新研究就是针对这些现状。
2. 技术创新集成电路设计技术的创新研究主要涉及到以下几个方面:2.1 低功耗技术随着智能手机和可穿戴设备等新兴市场的兴起,低功耗技术成为了当前的一个热点。
为了延长电池寿命,集成电路设计需要实现更优秀的低功耗技术。
近年来,一些新的低功耗技术的出现,如睡眠转换技术和体态感知技术,已经在实际应用中得到了广泛的应用和验证。
2.2 多核并行技术在集成电路设计中,多核并行技术也是一种重要的技术。
多核并行技术能够提高芯片的计算能力和处理速度,让其能够更好地适应当前的市场需求。
随着计算机图形和视频处理等领域应用的广泛,多核并行技术在多领域的应用都得到了提升。
2.3 智能电路设计智能电路设计是集成电路设计的一个新兴领域,该领域主要涉及到人工智能、大数据和云计算等技术,可以帮助设计人员快速进行芯片设计。
利用这些技术,设计人员可以将电路功能自动分解,进行更快速和稳定的数据分析,进而提高电路设计的效率和质量。
3. 设计方法为了实现上述技术创新,集成电路的设计方法也在不断进步。
其中一些方法包括:3.1 仿真技术集成电路仿真技术是一种重要的设计方法,可以减少物理样品制备时间和成本。
在仿真过程中,设计人员可以加入不同的参数,来测试不同的电路性能。
同时,通过仿真,设计人员也可以更清楚地了解电路模型和电路性能的关系,更准确地确定设计方向。
数字集成电路物理设计
数字集成电路物理设计作者:陈春章艾霞王国雄出版社:科学出版社出版日期:2008年1月页数:285 装帧:开本:16 版次:商品编号:2022071 ISBN:703022031 定价:36元丛书序前言第1章集成电路物理设计方法1.1数字集成电路设计挑战1.2数字集成电路设计流程l.2.1展平式物理设计1.2.2硅虚拟原型设计1.2.3层次化物理设计1.3数字集成电路设计收敛1.3.1时序收敛1.3.2功耗分析1.3.3可制造性分析1.4数字集成电路设计数据库1.4.1数据库的作用与结构1.4.2数据库的应用程序接口1.4.3数据库与参数化设计1.5总结习题参考文献第2章物理设计建库与验证2.1集成电路工艺与版图2.1.1 CMOS集成电路制造工艺简介2.1.2 CMOS器件的寄生闩锁效应2.1.3版图设计基础2.2设计规则检查2.2.1版图设计规则2.2.2 DRC的图形运算函数2.2.3 DRC在数字IC中的检查2.3电路规则检查2.3.1电路提取与比较2.3.2电气连接检查2.3.3器件类型和数目及尺寸检查数字集成电路物理设计2.3.4 LVS在数字IC中的检查2.4版图寄生参数提取与设计仿真2.4.1版图寄生参数提取2.4.2版图设计仿真2.5逻辑单元库的建立2.5.1逻辑单元类别2.5.2逻辑单元电路2.5.3物理单元建库与数据文件2.5.4时序单元建库与数据文件2.5.5工艺过程中的天线效应2.6总结习题参考文献第3章布图规划和布局3.1布图规划3.1.1布图规划的内容和目标3.1.2 I/0接口单元的放置与供电3.1.3布图规划方案与延迟预估3.1.4模块布放与布线通道3.2电源规划3.2.1电源网络设计3.2.2数字与模拟混合供电3.2.3时钟网络3.2.4多电源供电3.3布局3.3.1展平式布局3.3.2层次化布局3.3.3布局目标预估3.3.4标准单元布局优化算法3.4扫描链重组3.4.1扫描链定义3.4.2扫描链重组3.5物理设计网表文件3.5.1设计交换格式文件3.5.2其他物理设计文件3.6总结习题参考文献第4章时钟树综合4.1时钟信号4.1.1系统时钟与时钟信号的生成4.1.2时钟信号的定义4.1.3时钟信号延滞4.1.4时钟信号抖动4.1.5时钟信号偏差4.2时钟树综合方法4.2.1时钟树综合与标准设计约束文件4.2.2时钟树结构4.2.3时钟树约束文件与综合4.3时钟树设计策略4.3.1时钟树综合策略4.3.2时钟树案例4.3.3异步时钟树设计4.3.4锁存器时钟树4.3.5门控时钟4.4时钟树分析4.4.1时钟树与时序分析4.4.2时钟树与功耗分析4.4.3时钟树与噪声分析4.5总结习题参考文献第5章布线5.1全局布线5.1.1全局布线目标5.1.2全局布线规划5.2详细布线5.2.1详细布线目标5.2.2详细布线与设计规则5.2.3布线修正5.3其他特殊布线5.3.1电源网络布线5.3.2时钟树布线5.3.3总线布线数字集成电路物理设计5.3.4实验布线5.4布线算法5.4.1通道布线和面积布线5.4.2连续布线和多层次布线5.4.3模块设计和模块布线5.5总结习题参考文献第6章静态时序分析6.1延迟计算与布线参数提取6.1.1延迟计算模型6.1.2电阻参数提取6.1.3电容参数提取6.1.4电感参数提取6.2寄生参数与延迟格式文件6.2.1寄生参数格式sPF文件6.2.2标准延迟格式SDF文件6.2.3 sDF文件的应用6.3静态时序分析6.3.1时序约束文件6.3.2时序路径与时序分析6.3.3时序分析特例6.3.4统计静态时序分析6.4时序优化6.4.1造成时序违例的因素6.4.2时序违例的解决方案6.4.3原地优化6.5总结习题参考文献第7章功耗分析7.1静态功耗分析7.1.1反偏二极管泄漏电流7.1.2门栅感应漏极泄漏电流7.1.3亚阈值泄漏电流7.1.4栅泄漏电流7.15静态功耗分析第8章信号完整性分析第9章低功耗设计技术与物理实施第10章芯片设计的终验证与签核附录索引数字专用集成电路的设计与验证本书作者:杨宗凯,黄建,杜旭编著第1章概述1.1 引言1.2 ASIC的概念1.3 ASIC开发流程1.4 中国集成电路发展现状第2章Verilog HDL硬件描述语言简介2.1 电子系统设计方法的演变过程2.2 硬件描述语言综述2.3 Verilog HDL的基础知识2.4 Verilog HDL的设计模拟与仿真第3章ASIC前端设计3.1 引言3.2 ASIC前端设计概念3.3 ASIC前端设计的工程规范3.4 设计思想3.5 结构设计3.6 同步电路3.7 ASIC前端设计基于时钟的划分3.8 同步时钟设计3.9 ASIC异步时钟设计4.10 小结第4章ASIC前端验证4.1 ASIC前端证综述4.2 前端验证的一般方法4.3 testbench4.4 参考模型4.5 验证组件的整合与仿真4.6 小结第5章逻辑综合5.1 综合的原理和思路5.2 可综合的代码的编写规范5.3 综合步骤5.4 综合的若干问题及解决……第6章可测性技术第7章后端验证附录A 常用术语表附录B Verilog语法和词汇惯用法附录C Verilog HDL关键字附录D Verilog 不支持的语言结构参考文献yoyobao编号:book194094作者:杨宗凯,黄建,杜旭编著(点击查看该作者所编图书)出版社:电子工业出版社(点击查看该出版社图书)出版日期:2004-10-1ISBN:7121003783装帧开本:胶版纸/0开/ 0页/480000字版次:1原价:¥28VLSI设计方法与项目实施点击看大图市场价:¥43.00 会员价:¥36.55【作者】邹雪城;雷鑑铭;邹志革;刘政林[同作者作品]【丛书名】普通高等教育“十一五”规划教材【出版社】科学出版社【书号】9787030194510【开本】16开【页码】487【出版日期】2007年8月【版次】1-1【内容简介】本书以系统级芯片LCD控制器为例,以数模混合VLSI电路设计流程为线索,系统地分析了VLSI系统设计方法,介绍了其设计平台及流行EDA软件。
SOC的功耗分析
低功耗SOC设计1)为什么需要低功耗?随着SOC的集成度与性能的不断发展,如今的SOC已达到百瓦量级。
如Intel的Itanium2功耗约130瓦,这需要昂贵的封装,散热片及冷却环境。
根据摩尔定律,每18个月晶体管密度增加一倍,而电源技术要达到相同的增速,需要5年,显然电源技术已成瓶颈。
电路里的大电流会使产品的寿命和可靠性降低。
电源的动态压降严重的时候还会造成失效。
2)功耗从哪儿来?功耗一般分两种:来自开关的动态功耗,和来自漏电的静态功耗。
而动态功耗又可分为电容充放电(包括网络电容和输入负载),还有当P/N MOS 同时打开形成的瞬间短路电流。
静态功耗也可分为几类:扩散区和衬底形成二极管的反偏电流(Idiode),另外一类是关断晶体管中通过栅氧的电流(Isubthreshold)。
芯片的漏电会随温度变化,所以当芯片发热时,静态功耗指数上升。
另外漏电流也会随特征尺寸减少而增加。
公式:Ptotal = Pdynamic + Pshort + PleakagePswitch = A * C * V2 * FPshort = A (B/12) (V-2Vth)3 * F * TPleakage = (Idiode + Isubthreshold) * V3)怎样减少功耗呢?首先定义对功耗的需求,然后分析不同的架构,决定如下需求:system performance, processor and other IP selection, new modules to be designed, target technology, the number of power domains to be considered, target clock frequencies, clock distribution and structure, I/O requirements, memory requirements, analog features and voltage regulation.你还需要定义工作模式:如startup, active, standby, idle, and power down等等,当然这些模式是由软硬件共同决定的。
集成电路的低功耗设计策略分析
CE MAGAZINE PAGE 91集成电路的低功耗设计策略分析王奇君【摘 要】集成电路是现代电子设备的核心,其功耗对设备的性能和续航时间有着重要影响。
随着集成电路规模的不断扩大,功耗问题日益严重,低功耗设计成为集成电路设计的重要研究方向。
故此将针对集成电路的低功耗设计策略进行分析,从设计意义、设计思路等方面展开探究,总结相应的低功耗设计方法,为提高系统的性能和可靠性提供学术支持。
【关键词】集成电路;低功耗设计;策略分析;功耗优化作者简介:王奇君,武汉梦芯科技有限公司,CTO。
近年来,移动设备的普及和无线通信技术的快速发展,使得低功耗设计成为集成电路设计的一个重要方向。
随着功耗的不断增加,电池寿命问题成为制约设备续航能力的重要因素。
因此,在集成电路设计中,低功耗设计已经成为不可或缺的一部分,在移动设备和物联网技术的快速发展背景下,对于集成电路的低功耗设计需求越来越迫切。
低功耗设计不仅可以延长电池续航时间,还可以降低设备的热量和功率消耗。
因此,研究低功耗设计策略对于当前集成电路领域具有重要意义。
一、集成电路的低功耗设计意义集成电路(IC)的低功耗设计是指在设计和制造过程中,通过各种技术手段减少集成电路的功耗,提高其能效比。
其中,电源管理是低功耗设计的核心,其使得集成电路在不同工作状态下能够动态调整功耗,从而达到节能的效果。
电路结构优化可以通过改变电路的结构和布局,减少功耗并提高电路性能。
时钟频率控制可以根据不同的需求来动态调整时钟频率,以达到降低功耗的效果。
IO接口设计可以减少与外部设备的通信开销,从而减少功耗。
随着科技的发展,电子产品对集成电路的性能和功耗要求越来越高。
低功耗设计不仅可以降低电子产品的能耗,减少环境污染,还可以提高产品的可靠性和稳定性,延长产品的使用寿命。
具体而言,集成电路作为电子产品的核心部件,其功耗直接影响着整个电子产品的能耗。
通过低功耗设计,可以减少集成电路的功耗,降低电子产品的能耗,从而减少环境污染,低功耗设计还有助于减少电子产品的散热问题,降低产品温度,提高产品的可靠性。
数字集成电路低功耗物理实现技术与UPF
数字集成电路低功耗物理实现技术与UPF孙轶群sun.yiqun@国民技术股份有限公司Nationz Technologies Inc摘要本文从CMOS电路功耗原理入手,针对不同工艺尺寸下数字集成电路的低功耗物理实现方法进行描述,并着重描述了Synopsys UPF(Unified Power Format)对低功耗设计的描述方法。
UPF是Synopsys公司提出的一种对芯片中电源域设计进行约束的文件格式。
通过与UPF 格式匹配的Liberty文件,UPF约束文件可以被整套Galaxy物理实现平台的任何一个环节直接使用,并将设计者的电源设计约束传递给设计工具,由工具完成设计的实现工作,从而实现整套数字集成电路低功耗物理实现的流程。
1.0 概述本文从数字集成电路低功耗设计原理下手,对设计中低功耗的实现技术进行描述,包括完成低功耗设计需要的库资料以及常用EDA工具对低功耗技术实现的方法。
2.0 CMOS电路的低功耗设计原理CMOS电路功耗主要分3种,静态功耗主要与工艺以及电路结构相关,短路电流功耗主要与驱动电压、p-MOS和n-MOS同时打开时产生的最大电流、翻转频率以及上升、下降时间有关,开关电流功耗主要与负载电容、驱动电压、翻转频率有关。
做低功耗设计,就必须从这些影响功耗的因素下手。
3.0 低功耗设计手段及Library需求低功耗的设计手段较为复杂,但对于不同的设计,或者不同的工艺,实现的方法却各不相同。
3.1 0.18um及以上工艺0.18um及以上工艺,在低功耗设计手段上较为有限,主要原因在于,静态功耗很小,基本不用关心。
动态功耗方面,主要的功耗来自于Switching Power,即与负载电容、电压以及工作中的信号翻转频率相关。
减小负载电容,就必须在设计上下功夫,减少电路规模。
减少信号翻转频率,除了降低时钟频率外,只有在设计上考虑,能不翻转的信号就不翻转。
至于电压,由于0.18um及以上工艺的阈值电压有一定的限制,因此,供电电压降低,势必影响工作频率。
llc芯片
llc芯片LLC芯片(Low-voltage, low-cost, low-power consumption)是一种低压、低成本、低功耗的集成电路芯片。
LLC芯片是现代电子设备中最常见的集成电路之一。
它由一系列的晶体管、电阻、电容和其他电子元件组成。
通过微电子技术,这些元件被集成到芯片的表面上,形成一个紧凑、高度集成的电子电路。
LLC芯片通常采用CMOS技术制造,以提供低功耗和低电压操作。
LLC芯片具有许多优点。
首先,由于其低成本和高度集成的特性,LLC芯片能够在各种电子设备中广泛应用。
例如,它可以用于智能手机、平板电脑、数字相机等移动设备中的图像处理和通信模块,以提供高效的图像处理和通信功能。
其次,LLC芯片的低电压和低功耗特性使得设备能够更长时间地工作。
这对于移动设备来说尤为重要,因为它们通常依赖于电池供电。
而使用LLC芯片能够延长电池寿命,提高设备的稳定性和使用时间。
此外,LLC芯片还具有出色的性能特点。
它可以实现高速、高稳定的数据处理和传输,并具有较高的抗干扰能力和抗噪声性能。
因此,LLC芯片广泛应用于通信设备、计算机网络、工业控制和交通工具等领域。
LLC芯片还有助于推动电子产品的创新。
由于其低成本和高度集成的特点,它可以促使电子产品更加智能化、小型化和功能化。
通过将多个功能模块集成到一个LLC芯片中,可以简化产品设计和制造过程,提高产品的性能和可靠性。
总结起来,LLC芯片作为一种低压、低成本、低功耗的集成电路芯片,在现代电子设备中扮演着重要的角色。
它具有广泛的应用领域,如移动设备、通信设备、工业控制等,为电子产品的发展和创新提供了强大支持。
随着技术的不断进步,LLC 芯片的性能将进一步提高,为各种应用场景带来更大的优势和便利。
低功耗集成电路中IR Drop分析与工程实践
I 创 新 应 用
低 功 耗 集 成 电路 中 I R D r o p分 析 与 工 程 实践
孙 艳
( 上海兆芯集成 电路有 限公 司 ,上海 2 0 1 2 0 3) 摘要 :随着 集成 电路工艺进入超 深亚微 米和纳米数量级 ,单位面积上的功耗 消耗和 电流 密度明显 上升 ,而这会导致超大 规模 集成 电路 中电源 网络的 I R D r o p问题 ,对于超大规模 集成 电路进行 I R D r o p分析就成 为必要。为了提 高深亚微米工艺下低功耗芯片的性能和成 品率 ,有必要对超大规模 低 功耗芯 片的 I R D r o p成 因进行研究 。并运用 E D A 工具对其进行分析 ,通过 I R D r o p分析结果找 出芯片电源网络 的缺 陷 。并对I R D r o p 敏感 区域进行相关干预 。并获得预期的改善。 关键 词 :C M OS;低功耗 电路 ;静态功耗 ;动态功耗 ;I R D r o p 中图分 类号 :T N 3 8 6 文章编号 :1 6 7 4 — 2 5 8 3 ( 2 0 1 7 ) 0 6 — 0 0 6 9 — 0 5 D OI :1 0 . 1 9 3 3 9 4 . i s s n . 1 6 7 4 - 2 5 8 3 . 2 0 1 7 . 0 6 . 0 1 6 中文引用格式 :孙艳. 低功 耗集成 电路中 I R D r o p分析 与工程实践 [ J 】 _ 集成 电路应用, 2 0 1 7 , 3 4 ( 6 ) :
e x p e c t e d i mp r o v eme n t .
Ke y wo r d: l o w p o wer c i r c u i t s , s t a t i c p o we r c o n s u mp t i o n , d y n a mi c p o wer d i s s i p a t i o n ,I R Dr o p
vdd_logic 逻辑电压功耗
标题:vdd_logic 逻辑电压功耗分析与优化一、概述vdd_logic 逻辑电压是数字电路中的关键参数,它直接影响着数字电路的功耗和性能。
在现代集成电路设计中,对 vdd_logic 逻辑电压的功耗分析和优化已经成为一项重要的工作。
本文将从逻辑电压功耗的定义、分析方法、优化策略等方面展开讨论,以期为集成电路设计工程师提供一定的参考和指导。
二、逻辑电压功耗的定义与影响因素1. 定义逻辑电压功耗是指数字电路中由逻辑门工作带来的功耗,它是数字电路整体功耗的重要组成部分。
2. 影响因素(1)逻辑门数量:逻辑电压功耗与逻辑门数量成正比,逻辑门数量越多,功耗越大。
(2)时钟频率:时钟频率越高,逻辑电压功耗越大,因为逻辑门需要以更快的速度工作。
(3)电压波动:电压波动会导致逻辑门的功耗增加,因为逻辑门需要更大的电压来保持正常工作。
三、逻辑电压功耗的分析方法1. 静态功耗分析静态功耗是指在没有输入切换的情况下逻辑电路的功耗,通过技术手段可以减少静态功耗,例如使用低功耗逻辑门设计、采用节能模式等。
2. 动态功耗分析动态功耗是指在输入信号切换时产生的功耗,动态功耗主要由开关过程和短路电流引起,可以采用时钟频率降低、优化逻辑门结构等方法降低动态功耗。
四、逻辑电压功耗的优化策略1. 降低逻辑门数量通过设计优化、逻辑整合等方式,减少逻辑门数量,从而降低逻辑电压功耗。
2. 降低时钟频率在保证性能的前提下,合理降低时钟频率,可以减少逻辑电压功耗。
3. 使用节能逻辑门选择具有低功耗特性的逻辑门,可以有效降低逻辑电压功耗。
4. 优化布局合理布局电路,减少信号传输距离,降低功耗。
5. 充分利用节能模式充分利用节能模式,减少空闲状态下的功耗消耗。
五、结论vdd_logic 逻辑电压功耗是数字电路设计中不可忽视的重要参数,对其进行合理分析和优化,不仅可以降低功耗,延长电池续航时间,提高设备性能,还可以降低集成电路的散热压力,延长设备寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[7] 王传声,朱咏梅.多芯片组件(MCM)的封装技术.微电子技术.2000年28卷4期.40一45
页.
[8] 孙海厢,邵志标.基于自适应重排的低功耗地址总线编码.西安交通大学学报.2006年4
(4)门级低功耗设计:
目前采用的门级低功耗优化方法主要有门尺寸优化和门级多阈值电压技术(Gate-level Multi-Vthimplementation)。其中,门尺寸优化的基本思想是通过减小器件的尺寸来获得低功耗,但这样做通常会影响电路的性能。作为改进,可以将非关键路径的门缩小尺寸以减小面积和功耗,因此门尺寸优化问题可以转化为满足给定延迟约束条件下的功耗极小化问题。门级多阈值电压技术主要用来降低漏电流功耗,随着芯片集成度的提高,电源电压不断降低,多阈值电压逻辑电路在低功耗设计中发挥着越来越重要的作用,它一方面降低了内部工作电压的逻辑摆幅,使功耗降低;另一方面有效地控制了漏电流的增加,克服了以往由于因工作电压减少、阈值电压降低而导致的漏电流的增加。
YN1=XN1+A*YN2
YN=XN+A*XN1+A*YN2
利用分布性(distributivity)和常数传递(constant propagation)(A*A= 技术将图3(b)所示的展开结构再变换成图3(c)。图示的关键路径已经是3,使用流水化技术,再将图3(c)的结构变为图3(d)。这样,整个系统在性能不变的条件下,关键路径仍为 2,但并行采样,可以允许以原来一半的速度工作,使用较低的电压。当然,变换同时也使电路的有效电容增加,这一点是需要权衡的。
数字集成电路低功耗分析
摘要:
电子产品功耗的大小不仅限制了便携设备电池使用时间,也在一定程度上影响着设备性能。研究如何降低功耗己经成为所有IC设计者必须考虑的重要问题,对功耗的优化也是目前每个IC设计企业的必要环节。本文主要对数字集成电路功耗的优化方法进行了分析,分别从工艺级、电路级、版图级、门级、寄存器级、算法级和系统级分析了低功耗的优化方法。
(7) 系统级低功耗设计
降低功耗在设计流程中进行的越早越好,这样可以有效地降低功耗预算,避免重新设计带来的成本浪费。动态电源管理就是系统级的一种降低功耗技术动态电源管理是这样实现的:整个系统的动作状态时刻被监控,如果系统中某些模块空闲或做无效计算时,即自动关闭,进入低功耗(休眠)状态。典型的实现方式有门控时钟技术,它通过控制通向各模块时钟是否有效来实现工作状态转换,降低不必要的功耗。这种控制对需长时间休眠模块节省功耗十分有效。
(2)电路级低功耗优化技术:
动态逻辑在电路在具体实现的过程中,CMOS工艺提供了很多种的逻辑结构,比如全互补型静态CMOS逻辑结构、伪NMOS逻辑结构、动态CMOS逻辑结构、时钟CMOS逻辑结构、多米诺逻辑结构等。
动态CMOS逻辑门的基本结构如图1所示,脉冲φ控制着整个逻辑门电路的动态工作,中间是由N型管组成的逻辑门电路,上端为输出Z,并经过P型管(预充电管)接正向电源Vdd,下端经N型管(赋值管)接负向电源Vss。
(1)工艺级低功耗优化技术:
封装技术对芯片的功耗有着巨大的影响,芯片级的输入输出功耗大约占到整个系统功耗的1/4到1/2,所以,在具有多个芯片的系统中,优先考虑的减少工输入输出的功耗。通常芯片之间的接口单元占了大部分的功耗,造成这种现象的原因是片间接口的电容大小在pF数量级上,而片上的电容仅仅是在fF数量级上。对于传统的封装技术,Bakogl认为每个被封装管脚的电容大约是13一14pF。由于动态功耗和电容之间成线性关系,所以芯片间的输入输出接口的电容功耗可以占到整个芯片组功耗的25%到50%之间。对于具有多个芯片的系统来说,减小输入输出电容对于降低系统的功耗具有积极的意义。多芯片封装(MCM)技术相对于印制电路版(PCB)技术可以大量地减少芯片之间通讯功耗。在MCM多芯片封装中,所有的芯片被封装在一个基板上面,此时,芯片间的输入输出接口电容可以达到片内输入输出接口电容的数量,从而降低了芯片间的功耗。采用MCM封装还可以减小片间连接线长度和电容大小,使延时减小,提高了电路性能,可以为降低电压低功耗做准备。此外,和其它封装方式相比较,MCM封装可以大大提高系统的集成度。在深亚微米工艺中,8”x10”MCM可以封装10亿个管子,不仅节省了面积,而且可以换取功耗,为功耗的设计提供灵活性。
N逻辑
(3)版图级低功耗优化技术:
版图优化必须同时优化器件和器件之间的互连。深亚微米技术的广泛应用,使互连线产生的功耗成为了整个电路功耗的主要部分,过去的布局连线线只考虑面积和时延着两个因素。现在布局布线要考虑来自设计前端的信号信息,来实现功耗的优化。对具有较高活动性的信号选择上层金属布线是版图设计中最简单的低功耗处理方法。基板和上层金属用一层二氧化硅来隔开,布线的物理电容会随着氧化层的厚度的增加而减小,因此把活动性高的信号线布在较上层可以降低功耗,但应该注意到较上层布线需要较多的通孔,而通孔会增加电容。此外,应使高活动性信号的布线具有较低的电容。在处理复杂设计时,通常会将电路分成较小的电路块逐一优化。由于块内互连线比块间互连线短,电容也较小,因此在网表划分时要考虑信号的活性,要使低活性的互连线处在边界上。布局、布线的问题可使用面积优化和延迟的方法,但在进行功耗优化时,必须用信号的活动性对电路互连线加权,尽量使高活动性的互连线处于块内。在深亚微米设计时,因为藕合电容占据着大部分总的互连电容和功耗,因此在布线时,引线的间距也应要根据信号的活动性进行调整。同理,引线的线宽也要根据信号活动性、延迟限制和互连电容权衡考虑。
数字集成电路低功耗优化方法:
低功耗设计技术大致可以分为两类:动态技术和静态技术。静态技术是指从系统构造、工作原理方面入手,降低系统功耗,如选用低功耗器件,采用异步电路体系设计等。而动态技术则是通过改变系统的运行行为来达到降低系统功耗的目的,如在系统工作过程中,根据运行状况将器件从工作状态转入睡眠状态。功耗主要取决于四个因素:工作电压、负载电容、开关活动性和工作频率。因此,数字集成电路的低功耗优化设计要综合考虑这四个方面来找到最佳的优化方法。
结语:
电子产品的工作寿命越来越受到重视,设计者在实现电路功能的同时还要考虑到降低电路功耗问题。功耗优化贯穿于设计的各阶段,有些降低功耗措施与电路性能存在折中,设计时须针对特定项目在面积、速度和功耗间进行权衡,以使电路各性能指标达到最佳。
参考文献:
[1] 洪先龙,刘伟平,边计年. 超大规模集成电路计算机辅助设计与模拟,北京:
关键词:低功耗;集成电路;优化
引言:
随着移动设备快速大量的增加和芯片处理速度的提高,芯片的功耗己成为集成电路设计者必须考虑的重要问题,于此同时对芯片的整体性能评估己经由原来的面积和速度变成了面积、时序、可测性和功耗的综合考虑,而且功耗所占的比重越来越大。
低功耗技术的研究背景:
集成电路是一个二十世纪发展起来的高技术产业,也是二十一世纪世界进入信息化社会的前提和基础。在1958年德克萨斯仪器公司生产出第一块集成电路,集成电路产业就一直保持着快速的发展速度,处在数字化和信息化时代的今天,数字集成电路的应用和改进显得尤为重要,从电子管到晶体管再到中小规模集成电路和超大规模集成电路,到现在市场上主流的专用集成电路(ASIC),以及现处于快速发展的系统级芯片,数字集成电路始终朝着速度更快,集成度更高,规模更大的方向不断发展。从目前状况来看,数字集成电路基本上仍然遵循摩尔定律来发展—集成度几乎每18个月增长一倍。但是随着芯片规模的不断扩大,功耗问题变得越来越突出,并且成为制约数字集成电路发展的重要因素。长期以来,面积最小化和处理的高速度是数字集成电路设计中最主要的问题。现在,因为新的IC技术工艺的使用和集成度越来越高,降低芯片功耗逐渐成为了非常重要的一个因素。在亚微米和深亚微米的技术中,由于能量消耗而产生的余热使电路中的某些功能受到了不同程度的影响。功耗的增加意味着电迁移率的增加。当芯片温度上达到一定的程度时,电路就无法正常工作,因此复杂系统的性能就会被严重的影响到,并且整个系统的可靠性将会降低,尤其对于要求具有长生命周期和高可靠性的电子产品来说,降低功耗是必然的选择。从产品市场需求来看,近年来依靠电池供电的数码产品的大量使用如便携电脑、移动通讯工具等,这些产品的功耗严重影响着用户的使用体验,为了使产品具有更长的使用时间,迫切需要降低产品功耗。目前,功耗的优化方法有很多种,也越来越具有针对性,但大体思路都是通过降低工作电压和工作频率、减少计算量等方法来实数字集成电路的功耗优化。数字集成电路低功耗优化的下一个研究方向是结合多个层次的功耗分析与优大减少器件的个数,逻辑的实现仅由NMOS网络来完成,PMOS网络仅用来作为预充电器件,器件个数的减少从而减小负载电容,所以功耗降低。第二,动态逻辑中PMOS器件层叠个数较少,所以电路可以在低电压的条件下正常工作,从而降低功耗。第三,动态逻辑可以避免短路功耗。第四,动态逻辑可以在输出节点上确保每个时钟周期内电平的翻转幅度,不会产生伪跳变,进而降低了功耗。第五,动态逻辑电路可以大量减少由于竞争冒险而产生的毛刺现象,也可以降低节点的寄生电容和消除短路电流,从而降低功耗。动态逻辑的不足之处在于预充电管需要时钟驱动,这加重了时钟的负担
(5) 寄存器传输级低功耗设计:
寄存器传输级(RTL)低功耗技术主要通过减少寄存器不希望的跳变(glitch--Spurious switch)来降低功耗。这种跳变虽然对电路的逻辑功能没有负面的影响,但会导致跳变因子的增加,从而导致功耗的增加。减少glitch的方法主要是消除其产生的条件,如用时钟信号同步、结构重构以及时钟门控(Clock Gating)等。在电路中插入由时钟信号控制的寄存器将待传递的信号同步,可以将寄存器前面的glitch阻隔在寄存器外,避免其层层传递累积,非门控结构电路与带门控结构的电路如图2(a)、(b)所示。
算法级的设计方法主要是对硬件资源的合理利用,以及针对所要实现的功能优化数据信号的编码风格。在进行算法设计时,可以通过因式分解、提公因式等数学方法,找出复用率较高的子函数,将其单独实现成子电路供其他模块调用,以节约硬件资源,减少电路的物理电容。另外,降低开关活动因子是降低功耗的一个有效方法,尤其对结点电容大的信号线更是如此,比如总线。现在的大型芯片中总线的数据线和地址线一般都比较多、比较长,每条线都需要驱动大负载,通常占总功耗的15~20%,有的甚至达70%以上。我们可以采用合适的编码方式来降低开关活动频率,如格雷码。它是通过对二进制数编码,实现连续的两个二进制数之间只有一位不同,这样总线在传输连续变化的数据时,在总线上只有一位发生变化,总线的翻转活动大大减小,从而降低功耗。