平行线知识点汇总(实用型)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线和平行线知识点总结

在平面不重合的两条直线相交与平行的两种位置关系:相交与平行。在初中,我们会更加深入地研究角度的关系。角度的关系和直线的位置关系密切相关。

相交线

一、邻补角与对顶角

两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:

相关测试:

(1)若三条直线交于一点,则共有对顶角(平角除外)( )

A.6对

B.5对

C.4对

D.3对

(2)下列各图中,1∠与2∠是对顶角的是( )

(3)直线AB 、CD 相交于点O ,

⑴如果100AOC BOD ∠+∠=o ,那么____AOD ∠=o

⑵如果BOC AOC ∠∠比 的2倍大30o ,那么___AOC ∠=o

两线垂直 ⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

符号语言记作: 如图所示:AB ⊥CD ,垂足为O

⑵垂线性质1:在同一平面,过一点有且只有一条直线与已知直线垂直

(与平行公理相比较记)

A B C D

O

⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。

相关测试:

(1)如图,点O 是直线CD 上一点,AO OB ⊥,2AOD BOC ∠=∠,求BOC ∠的度数.

(2)三角形ABC 中,90C ∠=o ,6AC =cm ,8BC =cm,10AB =cm.那么点B 到直线 AC 的距离是___________,A 、B 两点的距离是________.

如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念 分析它们的联系与区别

⑴垂线与垂线段

⑵两点间距离与点到直线的距离

⑶线段与距离

三.平行线

1、平行线的概念:同一平面两条直线的位置关系有两种 1.相交;2.平行

在同一平面,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b。

附:判断同一平面两直线的位置关系时,可以根据它们的公共点的个数来确定:

①有且只有一个公共点,两直线相交;

②无公共点,则两直线平行;

③两个或两个以上公共点,则两直线重合(因为两点确定一条直线

2、平行公理――平行线的存在性与惟一性

经过直线外一点,有且只有一条直线与这条直线平行

3、平行公理的推论:

如果两条直线都与第三条直线平行,那么这两条直线也互相平行

如左图所示,∵b ∥a ,c ∥a

∴b ∥c

注意符号语言书写,前提条件是两直线都平行于第三

条直线,才会结论,这两条直线都平行。

5、三线八角

两条直线被第三条直线所截形成八个角,它们构成了同位角、错角与同旁角。 如图,直线b a ,被直线l 所截

①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,

叫做同位角(位置相同) ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(),叫做错角(位置在且交错)

③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(),叫做同旁角。 a b c

a b

l

1 2 3 4 5 6 7 8

④三线八角也可以成模型中看出。同位角是“A”型;错角是“Z”型;同旁角是“U”型。

相关练习:

一、选择题:

1.在同一平面,两条不重合直线的位置关系可能是( )

A.平行或相交

B.垂直或相交;

C.垂直或平行

D.平行、垂直或相交

2.下列说确的是( )

A.经过一点有一条直线与已知直线平行

B.经过一点有无数条直线与已知直线平行

C.经过一点有且只有一条直线与已知直线平行

D.经过直线外一点有且只有一条直线与已知直线平行

3.在同一平面有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

A.0个

B.1个

C.2个

D.3个

4.下列说确的有( )

①不相交的两条直线是平行线;②在同一平面,两条直线的位置关系有两种;

③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.

A.1个

B.2个

C.3个

D.4个

二.填空题

1.若AB∥CD,AB∥EF,则_____∥______,理由是__________________.

2.在同一平面,若两条直线相交,则公共点的个数是________;•若两条直线平行,则公共点的个数是_________.

3.同一平面的三条直线,其交点的个数可能为________.

4.直线L同侧有A,B,C三点,若过A,B的直线L1和过B,C的直线L2都与L平行,则A,•B,C三点________,理论根据是___________________________.

5.两条直线平行,它们的交点个数是_______.

6.平行用符号“______”表示,直线AB与CD的平行,可以记作_______.

7._______,______的两条直线叫做平行线.

8.在同一平面,两条直线的位置关系有_____和______两种.

三、解答题变式训练:

1.已知直线a∥b,b∥c,c∥d,则a与d的关系是什么?为什么?

相关文档
最新文档