线性规划问题中目标函数常见类型梳理
线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
线性规划知识点总结

线性规划知识点总结线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域都有广泛的应用,包括经济学、工程学、管理学等。
本文将对线性规划的基本概念、模型构建、求解方法以及应用领域进行详细介绍。
一、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为系数,xi为决策变量。
2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,常用形式为a1x1 + a2x2 + ... + anxn ≤ b,其中ai为系数,b为常数。
3. 可行解:满足所有约束条件的决策变量取值称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大值或者最小值的解称为最优解。
二、模型构建1. 决策变量:根据具体问题确定需要优化的变量,通常用xi表示。
2. 目标函数:根据问题要求确定目标函数的系数,进而确定是最大化还是最小化。
3. 约束条件:根据问题中给出的条件,建立约束条件方程。
4. 非负约束:决策变量通常需要满足非负约束条件,即xi ≥ 0。
三、求解方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制约束条件的直线,然后确定可行域,最后在可行域内找到目标函数的最优解。
2. 单纯形法:对于多维线性规划问题,常使用单纯形法进行求解。
单纯形法通过不断迭代,逐步接近最优解。
它基于线性规划的基本定理,即最优解一定在可行解的顶点上。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
整数规划问题通常更加复杂,求解时间较长。
四、应用领域1. 生产计划:线性规划可以用于确定最佳的生产计划,使得生产成本最小化或者利润最大化。
2. 运输问题:线性规划可以用于确定最佳的运输方案,使得运输成本最小化。
3. 资源分配:线性规划可以用于确定最佳的资源分配方案,使得资源利用率最高。
线性规划中目标函数的几种类型及解法

线性规划中目标函数的几种类型及解法作者:陈雄飞来源:《新课程学习·中》2013年第04期教学目标:1.知识目标:进一步掌握线性规划的基本概念和图解方法.2.能力目标:提高学生灵活运用线性规划的知识分析和解决相关问题;进一步培养学生的数形结合、化归与转化思想.3.情感目标:通过相同约束条件一题多变,激发学生的学习热情,增强创新意识,培养他们的探究精神,进一步提高知识迁移能力.教学重点:用图解法解决线性规划中目标函数的几种典型问题.教学难点:分析辨别线性规划中目标函数的几种类型.教学手段:多媒体辅助教学.教学方法:启发探究式.教学过程:一、知识复习,引入课题线性规划是指在线性约束条件下求线性目标函数的最大值或最小值问题.解决问题的基本思想是数形结合思想,即在约束条件所对应的可行域内根据目标函数的几何意义找出目标函数的最优解.下面我们回顾一下线性规划问题的一些基本概念:(1)线性约束条件:由x,y的一次不等式(或方程)组成的不等式组.(2)目标函数:关于x,y的解析式,如z=x-y,z=x2+y2等.(3)可行解:满足线性约束条件的解(x,y)叫做可行解.(4)可行域:所有可行解组成的集合叫做可行域.(5)最优解:使目标函数达到最大值或最小值的可行解.(6)用图解法解决简单的线性规划问题的基本步骤:①根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);②设z=0,画出直线l0;③观察、分析、平移直线l0,从而找到最优解;④求得目标函数的最大值或最小值.今天我们复习的课题是线性规划中目标函数的几种类型及解法.二、例题讲授,合作探究下面我们结合一些例题,谈谈线性规划中目标函数的几种类型及解法.三、迁移训练,巩固提高四、课堂小结本节课我们复习了线性规划问题的基本概念,并利用图解法解决了线性规划中目标函数的四种典型问题——截距型、斜率型、距离型、面积型.再次体验了数形结合思想、化归与转化思想在解决一些复杂数学问题中的运用.五、课后作业,深入思考(作者单位湖北省孝感市第一高级中学)。
线性规划中目标函数的几种类型及解法

典型解法是代数几何并用 , 确定范围, 伺机求 解 . 面笔者将结合一些例题 , 下 谈谈 目标 函
数 的几 种类 型及解 法 . 类型 1 形 如 z= a + b 的 目标 函数 x y型
例 1 已 知 点 P x, )在 不 等 式 组 ( Y
詈将 看 直 在 轴 的 距 问 就 ,詈 作 线 上 截 ,题 化
中学 数学 杂志( 中) 20 年第 3 高 06 期
3 5
类型 2 形如 : 垒
甜 十
型 的 目标 函
f +Y 一2≥ 0 2 此 3 o 求 z= , z一2 +4 ≥
【x —Y 一3≤ 0 3
、
+Y 的最大值
数
z
n
例 2
设 实 数 ., 满 足 2Y 7
即 在 ,上 的投影 的 l
绝对值 . 中在求两条异面直线的距离时, 其 , l 为与两异面直线的方向向量都垂直的一个向 量, B分别 为两异 面直线上 的任 意两 点; A, 在求直线 a 到平面a 的距离时, 为平面a的 , l
一
0, )所以商 =(, 20 , =(,, ) 2 一 ,) 24 一2 ,
维普资讯
中学数学杂志 ( 高中 ) 2 0 06年第 3 期
例 5 已知 AB D 是 边 长 为 4的正 方 C
注 在求解空 间距离 时, 若用 向量方 法, 由数量积的几何意义可得求距离 的统一
.
形G作 G 面 A C CJ _ B D于C, G =2 且 C ,
解 如 图 4 建 立 空 间 直 角 坐 标 系 , , 则
公 式 d= L
—■妻
f r f I
.
线性规划中目标函数的几种类型及解法

图 1
盈圆
6 1
课 例 交流
2 0 1 3年 4月 1 8日
囊 秘 万 富 凡 乌
文 例 、 兵
摘 要: 杜甫咏马之作为大家展 示 了大唐 帝国的兴衰成败 , 犹如一座 挖不完的宝藏 , 以其独特 的风格在诗歌史上保持 了恒 久不变 的 魅力 。 关键词 : 杜甫; 人民性 ; 特色; 形象
祧 小 戳
: f + y一 2≥ 0
u | J ‘
能力.
教 学 重 点:
: 例2 . 已 知{ x - 2 y + 4 > I 0 , 求z = . _的 最 大 值. .
教 学手段 : 多 辅 助教学・
:化为
, 问题化归为求 可行域 内的点 P ( , y ) 与点 ( 一 1 , 0 ) 连
( 6 ) 用 图解法 解决简单 的线性规 划问题 的基本 步骤 : ①根 据 :
: 曼
=
, y ) 与点( 一 , 一 ) 连线 内 的点 ( 娴 挥 的 形 式 将 问 题 化 归 为 求 可 行 域 “, ’ ~ ” ” …… c’o… 一
譬 ② 设 约 束 篷 , 芝 苎 妻 示 竺 曼 : 斜 率 的 倍 的 范 围 、 最 值 等 问 题 . 0 , 画 出直 线 l o ; ③观察 、 分析 、 平移 直线 l o , 从 而找 到最 优 : … ~~c ” 一… ’ 一… 。 。。
的形式 , 将问题化归为求 直线 l 在Y 轴上 的截距 - z・
x + y - 2 - -  ̄ 2 , 3 ) / I l - (
l
圈 3
\ r I l / /
\
的范围.
鬯± 坐 兰 三
线性规划问题中目标函数常见类型梳理

线性规划问题中目标函数常见类型梳理必须做并保管好——王永富一、直线的斜率型例1.已知实数x 、y 满足不等式组2240x y x ⎧+≤⎨≥⎩,求函数31y z x +=+的值域. 注意:当目标函数形如y a z x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
例2 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则 y x 的取值X 围是( ). (A )[95,6] (B )(-∞,95]∪[6,+∞) (C )(-∞,3]∪[6,+∞) (D )[3,6]解析 y x是可行域内的点M (x ,y )与原点O(0,0)连线的斜率,当直线OM 过点(52,92)时,y x取得 最小值95;当直线OM 过点(1,6)时,y x取得最大值6. 答案A二、平面内两点间的距离型(或距离的平方型) 例3. 已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则22448w x y x y =+--+的最值为___________.同步训练:已知实数x ,y 满足,则的最大值是分析,目标函数的几何意义是表示可行域内的点到点(1,1)的距离的平方,画出可行域可求得三、 点到直线的距离型例4.已知实数x 、y 满足2221,42x y u x y x y +≥=++-求的最小值。
同步训练:已知实数x 、y 满足220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数22z x y =+的最大值是____。
四、变换问题研究目标函数例5.已知⎪⎩⎪⎨⎧≥≤+≥a x y x x y 2,且y x z +=2的最大值是最小值的3倍,则a 等于( )A .31或3B .31 C .52或2 D .52 五、求可行域的面积例6、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大六、求可行域中整点个数例7、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( )A 、9个B 、10个C 、13个D 、14个七、求线性目标函数中参数的取值X 围例8、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( )A 、-3B 、3C 、-1D 、1八、求非线性目标函数的最值例9、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D、例9:已知实数满足,求的最大值.分析:这个目标函数就显得有点“隐蔽”了,注意到目标函数有个绝对值符号,联想到点到直线的距离公式的结构特点,那么就可顺利解决了.,也是说表示为可行域内的点到直线距离的倍.。
线性规划知识点归纳总结

线性规划知识点归纳总结一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<0 3.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0 注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
线性规划中的目标函数

线性规划中的目标函数。
线性规划是一种在组合优化中广泛应用的解决方案。
它是使用数学技术来解决这类问题时的首要工具,通过判断和解决系统问题,使系统能够获得最优化的效果。
简单来说,线性规划问题涉及将目标函数最大化或最小化,而且必须满足所有的约束条件。
线性规划的目标函数是求解优化问题的重要组成部分。
它用来表示被优化的总体行为,即任务的目的或受限环境的要求,多数线性规划问题的目标是要最大化或最小化函数值。
典型的目标函数可以定义为最小化求解变量在约束条件下的加权和,即最小化某一函数的结果,以实现最优效果。
最小化目标函数的目的是求出一个最优解。
实际上,它定义了优化问题的目标,其中包括最小或最大某种效果的实现。
它的设计可以非常复杂,因为它往往都有许多限制条件和变量。
不同的线性规划问题可以有不同的目标函数,其中可以明确表达出问题的要求和限制条件。
这些不同的目标函数都是为了获得最优解,即实现最小化或最大化某种特定效果而设计。
无论问题复杂与否,目标函数都是最优解的核心,所以通常会加以仔细考虑,以便最终获得较为满意的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划问题中目标函数常见类型梳理
山东 张吉林
线性规划问题中目标函数的求解是线性规划问题的重点也是难点,对于目标函数的含义学生往往理解的不深不透,只靠死记硬背,生搬硬套,导致思路混乱,解答出错。
本文将有关线性规划问题中目标函数的常见类型梳理如下,以期对大家起到一定的帮助。
一 基本类型——直线的截距型(或截距的相反数)
例1.已知实数x 、y 满足约束条件0503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩
,则24z x y =+的最小值为( )
A .5
B .-6
C .10
D .-10 分析:将目标函数变形可得124
z y x =-+,所求的目标函数的最小值即一组平行直线12
y x b =-+在经过可行域时在y 轴上的截距的最小值的4倍。
解析:由实数x 、y 满足的约束条件,作可行域如图所示:
当一组平行直线L 经过图中可行域三角形ABC 区域的点C 时,在y 轴上的截距最小,又(3,3)C -,故24z x y =+的最小值为min 234(3)6z =⨯+⨯-=-,答案选B 。
点评:深刻地理解目标函数的含义,正确地将其转化为直线的斜率是解决本题的关键。
二 直线的斜率型
例2.已知实数x 、y 满足不等式组2240x y x ⎧+≤⎨≥⎩
,求函数31y z x +=+的值域. 解析:所给的不等式组表示圆22
4x y +=的右半圆(含边界),
31
y z x +=+可理解为过定点(1,3)P --,斜率为z 的直线族.则问题的几何意义为:求过半圆域224(0)x y x +≤≥上任一点与点(1,3)P --的直线斜率的最大、最小值.由图知,过点P 和点(0,2)A 的直线斜率最大,max 2(3)50(1)
z --==--.过点P 所作半圆的切线的斜率最小.设切点为(,)B a b ,则过B 点的切线方程为4ax by +=.又B 在半圆周上,P 在切线上,则有22434a b a b ⎧+=⎨--=⎩解
得a b ⎧=⎪⎪⎨⎪=⎪⎩
因
此m i n 33z =。
综上可知函数的值域
为⎤⎥⎣⎦
三 平面内两点间的距离型(或距离的平方型)
例3. 已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩
,则22448w x y x y =+--+的最值为___________.
解析:目标函数2222
448(2)(2)w x y x y x y =+--+=-+-,其含义是点(2,2)与可行域内的点的距离的平方。
由实数x 、y 所满足的不等式组作可行域如图所示:
可行域为图中ABC 内部(包括边界),易求B (-2,-1),结合图形知,点(2,2)到点B 的距离为其到可行域内点的最大值,22max (22)(12)25w =--+--=;点(2,2)到直线x+y-1=0
的距离为其到可行域内点的最小值,min 2w =
=。
四 点到直线的距离型
例4.已知实数x 、y 满足2221,42x y u x y x y +≥=++-求的最小值。
解析:目标函数222242(2)(1)5u x y x y x y =++-=++--,其含义是点(-2,1)与可行域内的点的最小距离的平方减5。
由实数x 、y 所满足的不等式组作可行域如图所示(直线右上方):
点(-2,1)到可行域内的点的最小距离为其到直线2x+y=1的距离,由点到直线的距离公式可求
得d ==,故21695555d -=-=- 同步训练:已知实数x 、y 满足220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩
,则目标函数22z x y =+的最大值是____。
答案:13;
五 变换问题研究目标函数
例5.(山东潍坊08届高三)已知⎪⎩
⎪⎨⎧≥≤+≥a x y x x y 2,且y x z +=2的最大值是最小值的3倍,则
a 等于( )
A .31或3
B .31
C .52或2
D .5
2 解析:求解有关线性规划的最大值和最小值问题,
准确画图找到可行域是关键.如图所示,A y x z
在+=2
点和B 点分别取得最小值和最大值. 由 ),(•a a •A x y a x 得⎩⎨⎧==,由⎩
⎨⎧==+y x y x 2得 B (1,1). ∴a •z •z 3,3min
max ==. 由题意 得.3
1•a =故答案B 。
六 综合导数、函数知识类
例6.(山东省日照市2008届高三第一次调研).已知函数),2[)(+∞-的定义域为x f ,部分对
应值如下表,)()(x f x f 为'的导函数,函数)(x f y '=的图象如右图所示. 若两正数a ,b 满足331)2(++<+a b b a f ,则的取值范围是 ( )
A .)3,7(
B .)3,5(
C .)56,32(
D .)3,31(- 分析:本题的关键是如何从函数的导函数的图象中找到原函数的基本性质,将其与所给的函数性质联系起来。
由导函数的图象可知,原函数在区间 [-2,0]为单调递减函数,在区间(0,∞+)为单调递增函数。
结合题中提供的函数的数据可得422<+<-b a ,另外注意到
3
3++a b 的几何意义,转化为线性规划问题可求解。
解析:由导函数的图象可知,原函数在区间 [-2,0]为单调递减函数,在区间(0,∞+)为单调递增函数,又1)4(,1)0(,1)2(=-==-f f f ,故422<+<-b a ,而b a ,均为正数,
可得可行域如图,
3
3++a b 的几何意义是可行域内的点和(-3,-3)连线的斜率的取值范围,故最大为点(0,4),此时为373034=++,最小为点(2,0),此时为5
33230=++,所以答案B.
如果实数,a b 满足条件:20101a b b a a +-≥⎧⎪--≤⎨⎪≤⎩,则22a b a b ++的最大值是____________.
补充:1.如果实数,a b 满足条件:20101a b b a a +-≥⎧⎪--≤⎨⎪≤⎩,则22a b a b ++的最大值是 ▲ . 2.已知O 是坐标原点,(2,1),(,)A P x y 满足430352510x y x y x -+≤⎧⎪+≤⎨⎪-≥⎩,求||c o s O P A O P ⋅
∠ 的最大值。