最新广州市黄埔区七年级上期末数学试卷(含答案)
最新广州市黄埔区七年级上期末数学试卷(有答案)-名师版
2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2| C.﹣(﹣2)=|﹣2| D.﹣|2|=|﹣2|3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B. C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b= .16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]= .三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2| C.﹣(﹣2)=|﹣2| D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B. C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40 °.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为 2 .【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b= 1 .【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]= ﹣27 .【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27.。
广州市七年级上学期期末考试数学试卷及详细答案解析(共5套)
广州市七年级上学期期末考试数学试卷(一)一、单选题1、﹣5的绝对值是()A、B、5C、-5D、-2、第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人,11.1万人用科学记数法表示为()A、1.11×104B、11.1×104C、1.11×105D、1.11×1063、计算3x2﹣2x2的结果为()A、﹣5x2B、5x2C、﹣x2D、x24、下列各组中,不是同类项的是()A、x3y4与x3z4B、﹣3x与﹣xC、5ab与﹣2abD、﹣3x2y与x2y5、一件标价为a元的商品打9折后的价格是()A、(a﹣9)元B、90%a元C、10%a元D、9a元6、下列等式的变形正确的是()A、如果x﹣2=y,那么x=y﹣2B、如果x=6,那么x=2C、如果x=y,那么﹣x=﹣yD、如果x=y,那么=7、如果1是关于x方程x+2m﹣5=0的解,则m的值是()A、-4B、4C、-2D、28、已知∠A=40°,则∠A的补角等于()A、50°B、90°C、140°D、180°9、如图,下列水平放置的几何体中,从正面看不是长方形的是()A、B、C、D、10、在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A、70°B、110°C、120°D、141°二、填空题11、﹣2的相反数是________12、化简:2(a+1)﹣a=________13、方程x+5=2x﹣3的解是________14、在数轴上,若A点表示数﹣1,点B表示数2,A、B两点之间的距离为________15、如图,C、D是线段上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则BD的长为________ cm三、计算题16、计算:×(﹣6)﹣÷(﹣)17、化简:(5x﹣3y)﹣3(x﹣2y)18、解方程:.19、已知线段AB=12,点D、E是线段AB的三等分点,求线段BD的长.20、体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒(2)求这个小组8名男生的平均成绩是多少?21、计算:﹣14+(﹣2)2﹣|2﹣5|+6×(﹣).四、解答题22、已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.23、甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的,应调往甲、乙两队各多少人?24、如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.25、如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第n+1个图案还差2根.问最后摆的图案是第几个图案?答案解析部分一、单选题1、【答案】B【考点】绝对值【解析】【解答】解:﹣5的绝对值是5,故选:B.【分析】利用绝对值的定义求解即可.2、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将11.1万用科学记数法表示为:1.11×105.故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.3、【答案】D【考点】同类项、合并同类项【解析】【解答】解:3x2﹣2x2,=(3﹣2)x2,=x2.故选D.【分析】根据合并同类项法则进行计算即可得解.4、【答案】A【考点】同类项、合并同类项【解析】【解答】解:A、字母不同不是同类项,故A符合题意;B、字母项且相同字母的指数也相同,故B不符合题意;C、字母项且相同字母的指数也相同,故C不符合题意;D、字母项且相同字母的指数也相同,故D不符合题意;故选:A.【分析】根据同类项是字母项且相同字母的指数也相同,可得答案.5、【答案】B【考点】列代数式【解析】【解答】解:由题意可得:一件标价为a元的商品打9折后的价格是90%a元.故选:B.【分析】直接利用标价×,进而求出答案.6、【答案】C【考点】等式的性质【解析】【解答】解:A、等式的左边加2,右边减2,故A错误;B、等式的左边乘以3,右边除以2,故B错误;C、等式的两边都乘以﹣1,故C正确;D、当a=0时,0不能作除数,故D错误;故选:C.【分析】根据等式的性质1,两边都加或减同一个数或同一个整式,结果不变,可判断A,根据等式的性质2,两边都乘或除以同一个不为零的数或同一个整式,结果仍不变,可判断B、C、D.7、【答案】D【考点】一元一次方程的解【解析】【解答】解:∵x=1是关于x方程x+2m﹣5=0的解,∴1+2m﹣5=0,∴m=2,故选D.【分析】将x=1代入即可得出m即可.8、【答案】C【考点】余角和补角【解析】【解答】解:∠A的补角等于:180°﹣∠A=140°.故选C.【分析】利用两角互补的定义,进行计算.9、【答案】B【考点】简单几何体的三视图【解析】【解答】解:A、圆柱的主视图是长方形,故此选项不合题意;B、圆锥的主视图是三角形,故此选项符合题意;C、三棱柱的主视图是长方形,故此选项不合题意;D、长方体的主视图是长方形,故此选项不合题意;故选:B.【分析】分别找出从物体正面看所得到的图形即可.10、【答案】D【考点】解直角三角形的应用-方向角问题【解析】【解答】解:∵在灯塔O处观测到轮船A位于北偏西54°的方向,∴∠AOC=54°,∴∠AOD=90°﹣54°=36°,∵轮船B在南偏东15°的方向,∴∠EOB=15°,∴∠AOB=36°+90°+15°=141°,故选:D.【分析】首先根据题意可得∠AOD=90°﹣54°=36°,再根据题意可得∠EOB=15°,然后再根据角的和差关系可得答案.二、填空题11、【答案】2【考点】相反数【解析】【解答】解:﹣2的相反数是:﹣(﹣2)=2,故答案为:2.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.12、【答案】a+2【考点】整式的加减【解析】【解答】解:原式=2a+2﹣a=a+2.故答案是:a+2.【分析】首先把括号外的2乘到括号内,去括号,然后合并同类项即可.13、【答案】x=8【考点】解一元一次方程【解析】【解答】解:方程移项得:x﹣2x=﹣3﹣5,合并得:﹣x=﹣8,解得:x=8,故答案为:x=8【分析】方程移项合并,把x系数化为1,即可求出解.14、【答案】3【考点】数轴【解析】【解答】解:2﹣(﹣1)=3.故答案为:3【分析】用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.15、【答案】7【考点】两点间的距离【解析】【解答】解:∵AB=10cm,BC=4cm,∴AC=6cm,∵D是线段AC的中点,∴CD=AC=3cm,∴BD=DC+CB=7cm,故答案为:7cm.【分析】根据题意、结合图形求出AC的长,根据线段中点的性质求出DC的长,结合图形计算即可.三、计算题16、【答案】解:原式=﹣4﹣×(﹣)=﹣4+6=2.【考点】有理数的混合运算【解析】【分析】原式先计算乘除运算,再计算加减运算即可得到结果.17、【答案】解:原式=5x﹣3y﹣3x+6y=2x+3y.【考点】整式的加减【解析】【分析】首先去括号,进而合并同类项得出答案.18、【答案】解:去分母得:3(3x+1)=15﹣5(x+2),去括号得:9x+3=15﹣5x﹣10,移项得:9x+5x=15﹣10﹣3,合并得:14x=2,解得:x=.【考点】解一元一次方程【解析】【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.19、【答案】解:根据点D,E是线段AB的三等分点,得每等份的长是4cm,如果D靠近A,则BD=4+4=8cm,如果D靠近B,则BD=4cm,所以线段BD的长度为8cm或4cm.【考点】两点间的距离【解析】【分析】分D靠近A和D靠近B两种情况,根据题意计算即可.20、【答案】解:(1)达标人数为6,达标率为×100%=75%,答:男生达标率为75%;(2)=﹣0.2(秒)14﹣0.2=13.8(秒)答:平均成绩为13.8秒.【考点】正数和负数【解析】【分析】(1)根据非正数的是达标成绩,可得达标数,根据达标人数除以抽测人数,可得答案;(2)根据数据的和除以数据的个数,可得平均成绩.21、【答案】解:原式=﹣1+4﹣3+3﹣2=﹣6+7=1.【考点】有理数的混合运算【解析】【分析】原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.四、解答题22、【答案】解:(1)∵多项式A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=4(2x2﹣xy)﹣(x2+xy﹣6)=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6;(2)∵由(1)知,4A﹣B=7x2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.【考点】整式的加减【解析】【分析】(1)根据A=2x2﹣xy,B=x2+xy﹣6可得出4A﹣B的式子,再去括号,合并同类项即可;(2)直接把x=1,y=﹣2代入(1)中的式子进行计算即可.23、【答案】解:设调往甲队x人,调往乙队(30﹣x)人,根据题意得40+30﹣x=(65+x),解得:x=25,所以30﹣x=30﹣25=5答:应调往甲队25人,调往乙队5人.【考点】一元一次方程的应用【解析】【分析】设调往甲队x人,调往乙队(30﹣x)人,则现在甲队人数为(65+x)人,现在乙队人数为(40+30﹣x)人,利用乙队人数是甲队人数的列方程,然后解方程求出x,则计算30﹣x即可.24、【答案】解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.【考点】角平分线的定义【解析】【分析】①根据∠COD=∠EOC,可得∠EOC=4∠COD;②根据角的和差,可得∠EOD的大小,根据角平分线的性质,可得答案.25、【答案】解:(1)按如图的方式摆放,每增加1个正方形火花图案,火柴棒的根数相应地增加3根,若摆成5个、6个、n个同样大小的正方形火花图案,则相应的火柴棒的根数分别是16根、19根、(3n+1)根.∵当他摆完第n个图案时剩下了20根火柴棒,要刚好摆完第n+1个图案还差2根.∴3(n+1)+1=22,解得n=6,∴这位同学最后摆的图案是第7个图案.【考点】探索图形规律【解析】【分析】(1)易得组成一个正方形都需要4根火柴棒,找到组成1个以上的正方形需要的火柴棒的根数在4的基础上增加几个3即可.(2)根据(1)的规律得出3(n+1)+1=22,解出n即可.广州市七年级上学期期末考试数学试卷(二)一、选择题1、﹣3的倒数为()A、﹣B、C、3D、﹣32、十八大报告指出:“建设生态文明,是关系人民福祉、关乎民族未来的长远大计”,这些年党和政府在生态文明的发展进程上持续推进,在“十一五”期间,中国减少二氧化碳排放1 460 000 000吨,赢得国际社会广泛赞誉.将1 460 000 000用科学记数法表示为()A、146×107B、1.46×107C、1.46×109D、1.46×10103、“一个数a的3倍与2的和”用代数式可表示为()A、3(a+2)B、(3+a)aC、2a+3D、3a+24、如果x= 是关于x的方程2x+m=2的解,那么m的值是()A、1B、C、﹣1D、-5、下列运算正确的是()A、a3+a3=26aB、3a﹣2a=aC、3a2b﹣4b2a=﹣a2bD、(﹣a)2=﹣a26、把弯曲的河道改直,能够缩短航程,这样做的道理是()A、两点之间,射线最短B、两点确定一条直线C、两点之间,直线最短D、两点之间,线段最短7、多项式x2y﹣xy2+3xy﹣1的次数与常数项分别是()A、2,﹣1B、3,1C、3,﹣1D、2,18、已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32015的个位数字是()A、3B、9C、7D、19、如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()A、PB、QC、SD、T10、如图是一个正方体包装盒的表面积展开图,若在其中的三个正方形A、B、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A、B、C内的三个数依次为()A、0,﹣2,1B、0,1,2C、1,0,﹣2D、﹣2,0,1二、填空题11、若单项式﹣4a2b的系数为x,次数为y,则x+y=________.12、若∠α=25°40′,则∠α的补角大小为________.13、比﹣2.15大的最小整数是________.14、已知|x|=2,|y|=3,且xy<0,x+y>0,则x﹣y=________.15、已知关于x的方程kx=5﹣x,有正整数解,则整数k的值为________.16、如图,用大小相等的小正方形拼成大正方形网格.在1×1的网格中,有一个正方形;在1×1的网格中,有1个正方形;在2×2的网格中,有5个正方形;在3×3的网格中,有14个正方形;…,依此规律,在4×4的网格中,有________个正方形,在n×n的网格中,有________个正方形.三、解答题17、计算下列各式的值:(1)20﹣(﹣7)﹣|﹣2|;(2)(﹣1)3﹣×[2﹣(﹣3)2].18、解方程:(1)9﹣3x=7+5x;(2)﹣=1.19、已知A=3ax3﹣bx,B=﹣ax3﹣2bx+8.(1)求A+B;(2)当x=﹣1时,A+B=10,求代数式3b﹣2a的值.20、某支股票上周末的收盘价格是10.00元,本周一到周五的收盘情况如下表:(“+”表示股票比前一天上涨,“﹣”表示股票比前一天下跌)(2)本周末的收盘价比上周末收盘价是上涨了,还是下跌了?________.(3)这五天的收盘价中哪天的最高?________哪天的最低?________相差多少?________.21、如图,∠A+∠B=90°,点D在线段AB上,点E在线段AC上,作直线DE,DF平分∠BDE,DF与BC交于点F.(1)依题意补全图形;(2)当∠B+∠BDF=90°时,∠A与∠EDF是否相等?说明理由.22、如图,C,D两点把线段AB分成1:5:2三部分,M为AB的中点,MD=2cm,求CM和AB的长.23、列方程解应用题.(1)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的,中、美两国人均淡水资源占有量之和为13800m3,问中、美两国人均淡水资源占有量各为多少(单位:m3)?(2)加工一批零件,张师傅单独加工需要40天完成,李师傅单独加工需要60天完成.现在由于工作需要,张师傅先单独加工了10天,李师傅接着单独加工了30天后,剩下的部分由张、李二位师傅合作完成,这样完成这批零件一共用了多长时间?24、如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.答案解析部分一、<b >选择题</b>1、【答案】A【考点】倒数【解析】【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.【分析】根据倒数的定义进行解答即可.2、【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1 460 000 000=1.46×109.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 460 000 000有10位,所以可以确定n=10﹣1=9.3、【答案】D【考点】列代数式【解析】【解答】解:由题意列代数式得:3a+2,故选D.【分析】a的3倍表示为3a,与2的和,再相加即可.4、【答案】A【考点】一元一次方程的解【解析】【解答】解:∵x= 是关于x的方程2x+m=2的解,∴2× +m=2,∴m=1,故选A.【分析】将x= 代入方程2x+m=2,即可得出答案.5、【答案】B【考点】幂的乘方与积的乘方【解析】【解答】解:A、a3+a3=2a3,故A错误;B、3a﹣2a=a,故B正确;C、3a2b,4b2a不是同类项不能合并,故C错误;D、(﹣a)2=a2,故D错误.故选:B.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.6、【答案】D【考点】线段的性质:两点之间线段最短【解析】【解答】解:由两点之间线段最短可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故选:D.【分析】根据两点之间线段最短即可得出答案.7、【答案】C【考点】多项式【解析】【解答】解:多项式x2y﹣xy2+3xy﹣1的次数与常数项分别是:3,﹣1,故选C.【分析】根据多项式系数和次数的定义可以得到多项式x2y﹣xy2+3xy﹣1的次数以及它的常数项,本题得以解决.8、【答案】C【考点】探索数与式的规律【解析】【解答】解:由题意可知,3的乘方的末位数字以3、9、7、1四个数字为一循环,∵2015÷4=503…3,∴32015的末位数字与33的末位数字相同是7.故选C.【分析】由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,可知3的乘方的末位数字以3、9、7、1四个数字为一循环,用32015的指数2015除以4得到的余数是几就与第几个数字的末位数字相同,由此解答即可.9、【答案】C【考点】数轴【解析】【解答】解:由数轴可得,若原点在P点,则p+q+s+t=10,若原点在Q点,则p+q+s+t=6,若原点在S点,则p+q+s+t=﹣2,若原点在T点,则p+q+s+t=﹣14,∵数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,∴原点应是点S,故选C.【分析】根据数轴可以分别假设原点在P、Q、S、T,然后分别求出p+q+s+t的值,从而可以判断原点在什么位置,本题得以解决.10、【答案】A【考点】几何体的展开图【解析】【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“C”与面“﹣1”相对,面“B”与面“2”相对,“A”与面“0”相对.即A=0,B=﹣2,C=1.故选A.【分析】利用正方体及其表面展开图的特点解题.二、<b >填空题</b>11、【答案】﹣1【考点】单项式【解析】【解答】解:∵单项式﹣4a2b的系数为x=﹣4,次数为y=3,∴x+y=﹣1.故答案为:﹣1.【分析】直接利用单项式的次数与系数的定义得出答案.12、【答案】154°20′【考点】余角和补角【解析】【解答】解:∠α的补角=180°﹣25°40′=154°20′.故答案为154°20′.【分析】根据余角的定义计算180°﹣25°40′即可.13、【答案】﹣2【考点】有理数大小比较【解析】【解答】解:根据有理数比较大小的方法,可得﹣2>﹣2.15,∴比﹣2.15大的最小整数是﹣2.故答案为:﹣2.【分析】根据有理数大小比较法则解答即可.14、【答案】﹣5【考点】绝对值【解析】【解答】解:因为|x|=2,|y|=3,所以x=±2,y=±3,又因为xy<0,x+y>0,所以x=﹣2,y=3,所以x﹣y=﹣5.故答案为:﹣5.【分析】根据绝对值的意义和性质可知x、y的值,代入即可求出x﹣y的值.15、【答案】0或4【考点】一元一次方程的解【解析】【解答】解:由kx=5﹣x,得x= .由关于x的方程kx=5﹣x,有正整数解,得5是(k+1)的倍数,得k+1=1或k+1=5.解得k=0或k=4,故答案为:0或4.【分析】根据方程的解是正整数,可得5的约数.16、【答案】30①12+22+32+42+…+n2【考点】探索图形规律【解析】【解答】解:在1×1的网格中,有1=12个正方形;在2×2的网格中,有5=12+22个正方形;在3×3的网格中,有14=12+22+32个正方形;…,依此规律,在4×4的网格中,有12+22+32+42=30个正方形,在n×n的网格中,有12+22+32+42+…+n2个正方形.故答案为:30,12+22+32+42+…+n2【分析】仔细观察图形,找到所有图形中正方形个数的通项公式即可确定正方形的个数.三、<b >解答题</b>17、【答案】(1)解:原式=20+7﹣2=25(2)解:原式=﹣1﹣×(﹣7)=﹣1+ =【考点】有理数的混合运算【解析】【分析】(1)原式先利用减法法则及绝对值的代数意义化简,计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.18、【答案】(1)解:移项合并得:8x=2,解得:x=0.25(2)解:方程整理得:﹣=1,去分母得:10x﹣3﹣20x﹣8=4,移项合并得:﹣10x=15,解得:x=﹣1.5【考点】解一元一次方程【解析】【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.19、【答案】(1)解:∵A=3ax3﹣bx,B=﹣ax3﹣2bx+8,∴A+B=3ax3﹣bx﹣ax3﹣2bx+8=2ax3﹣3bx+8(2)解:把x=﹣1代入得:A+B=﹣2a+3b+8=10,整理得:3b﹣2a=2【考点】代数式求值【解析】【分析】(1)把A与B代入A+B中,去括号合并即可得到结果;(2)把x=﹣1代入A+B中,使其值为10,求出3b﹣2a的值即可.20、【答案】(1)解:周一收盘价是:10+0.28=10.28(元);周二收盘价是:10.28﹣2.36=7.92(元);周三收盘价是:7.92+1.80=9.72(元);周四收盘价是:9.72﹣0.35=9.37(元);周五收盘价是:9.37+0.08=9.45(元)(2)下跌(3)周一①周二②2.36元【考点】正数和负数,有理数的加减混合运算【解析】【解答】解:(2)由(1)可知,本周末的收盘价比上周末收盘价是下跌了;(3)由(1)可知,周一最高,周二最低,相差2.36元.故本题答案为:下跌,周一,周二,2.36元.【分析】(1)根据每天涨跌的情况,分别列出算式并计算;(2)(3)根据(1)的计算结果,分别回答问题.21、【答案】(1)解:如图所示:(2)解:∠A与∠EDF相等,理由:∵∠B+∠BDF=90°,∠A+∠B=90°,∴∠A=∠BDF,∵DF平分∠BDE,∴∠BDF=∠EDF,∴∠A=∠EDF【考点】作图—复杂作图【解析】【分析】(1)直接利用角平分线的作法得出符合题意的图形;(2)直接利用互余的性质结合角平分线的性质得出,∠A与∠EDF的关系.22、【答案】解:由C,D两点把线段AB分成1:5:2三部分,设AC=m,CD=5m,DB=2m.由线段的和差,得AB=AC+CD+DB=m+5m+2m=8m.由M为AB的中点,得AM=MB=4m.由线段的和差,得MB﹣DB=MD,即4m﹣2m=2,解得m=1.CM=AM﹣AC=4m﹣m=3m=3cm;AB=8m=8cm,CM的长为8cm,AB的长为3cm【考点】两点间的距离【解析】【分析】根据线段中点的性质,可得MB,AM,根据线段的和差,可得关于m的方程,根据解方程,可得m,根据线段的和差,可得答案.23、【答案】(1)解:设美国人均淡水资源占有量为xm3,中国人均淡水资源占有量为xm3,依题意得:x+ x=13800,解得x=11500,则x=2300.答:中、美两国人均淡水资源占有量各为2300m3, 11500m3(2)解:设完成这批零件共用x天.根据题意,得:10÷40+30÷60+(1÷40+1÷60)(x﹣40)=1,解得:x=46.答:完成这批零件一共用了46天【考点】一元一次方程的应用【解析】【分析】(1)设美国人均淡水资源占有量为xm3,中国人均淡水资源占有量为xm3,根据题意所述等量关系得出方程,解出即可得出答案.(2)可设完成这批零件共用x天,根据工作总量为1的等量关系列出方程求解即可.24、【答案】(1)90(2)解:如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°(3)解:(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒)【考点】角的计算,旋转的性质【解析】【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON 在∠AOC内部时,旋转角是240°.广州市七年级上学期期末考试数学试卷(三)一、单选题1、﹣3的绝对值是()A、3B、-3C、D、-2、下列图形中不是正方体展开图的是()A、B、C、D、3、2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A、3×106B、3×105C、0.3×106D、30×1044、若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为()A、-1B、0C、1D、5、下面说法错误的是()A、两点确定一条直线B、同角的补角相等C、等角的余角相等D、射线AB也可以写作射线BA6、如果2x2y3与x2y n+1是同类项,那么n的值是()A、1B、2C、3D、47、下列叙述:①几个非零数相乘,如果有偶数个负因数,则积为正数;②相反数等于本身的数只有0;③倒数等于本身的数是0和±1;④﹣>﹣.错误的个数是()A、0B、1C、2D、38、已知一个多项式减去﹣2m结果等于m2+3m+2,这个多项式是()A、m2+5m+2B、m2﹣m﹣2C、m2﹣5m﹣2D、m2+m+29、一艘轮船行驶在B处同时测得小岛A,C的方向分别为北偏西30°和西南方向,则∠ABC的度数是()A、135°B、115°C、105°D、95°10、形如式子叫作二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算的结果为()A、-5B、-11C、5D、11二、填空题11、若某天的最高气温是为6℃,最低气温是﹣3℃,则这天的最高气温比最低气温高________ ℃.12、已知∠A=35°35′,则∠A的补角等于________13、化简(x+y)﹣(x﹣y)的结果是________14、如果|a﹣1|+(b+2)2=0,则(a+b)2016的值是________15、服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的进价为________ 元.16、线段AB的长为10,点C为线段AB的中点,点D在直线AB上,且DB=3,则线段CD的长为________ .三、计算题17、计算:﹣12﹣(1﹣0.5)÷3×[2﹣(﹣3)2].18、解方程:2-=x-19、多项式(a﹣2)m2+(2b+1)mn﹣m+n﹣7是关于m,n的多项式,若该多项式不含二次项,求3a+2b.四、解答题20、先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=﹣,y=.21、某自相车厂一周计划生产1400量自行车,平均每天生产200量,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负);)根据记录可知前三天共生产________辆;(2)产量最多的一天比产量最少的一天多生产________ 辆;(3)该厂实行计件工资制,每辆车60元,超额完成任务每辆奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是________OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?23、泰兴市自来水公司为限制开发区单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费3元,超计划部分每吨按4元收费.(1)用代数式表示(所填结果需化简):设用水量为x吨,当用水量小于等于300吨,需付款________ 元;当用水量大于300吨,需付款________ 元.(2)某月该单位用水350吨,水费是________ 元;若用水260吨,水费________ 元.(3)若某月该单位缴纳水费1300元,则该单位用水________ 吨?24、观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;…请解答下列问题:=________.(1)按以上规律列出第5个等式:a5(2)用含有n的代数式表示第n个等式:an=________(n为正整数)(3)求a1+a2+a3+a4+…+a100的值.(4)探究计算:25、如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数位1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?答案解析部分一、单选题1、【答案】A【考点】绝对值【解析】【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【分析】根据一个负数的绝对值等于它的相反数得出.2、【答案】D【考点】几何体的展开图【解析】【解答】解:选项A,B,C都可以围成正方体,只有选项D无法围成立方体.故选:D.【分析】由平面图形的折叠及正方体的展开图解题.3、【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将300000用科学记数法表示为:3×105.故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.4、【答案】A【考点】一元一次方程的解【解析】【解答】解:∵x=2是关于x的方程2x+3m﹣1=0的解,∴2×2+3m﹣1=0,解得:m=﹣1.故选:A.【分析】根据方程的解的定义,把x=2代入方程2x+3m﹣1=0即可求出m的值.5、【答案】D【考点】余角和补角【解析】【解答】解:A、两点确定一条直线,故本选项错误;B、同角的补角相等,故本选项错误;C、等角的余角相等,故本选项错误;D、射线AB和射线BA是表示不同的射线,故本选项正确;故选D.【分析】根据余角、补角,直线、射线、线段,直线的性质逐个进行判断,即可得出选项.6、【答案】B【考点】同类项、合并同类项【解析】【解答】解:∵2x2y3与x2y n+1是同类项,∴n+1=3,解得:n=2.故选B.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出n的值.7、【答案】B【考点】有理数的乘法【解析】【解答】解:①几个非零数相乘,如果有偶数个负因数,则积为正数,正确;②相反数等于本身的数只有0,正确;③倒数等于本身的数是±1,错误;④﹣>﹣,正确,则错误的个数为1.故选B【分析】各项计算得到结果,即可做出判断.8、【答案】D【考点】整式的加减【解析】【解答】解:设这个多项式为A,则A=(m2+3m+2)+(﹣2m)=m2+3m+2﹣2m=m2+m+2.故选D.【分析】设这个多项式为A,再根据题意列出多项式相加减的式子,去括号,合并同类项即可.9、【答案】C【考点】解直角三角形的应用-方向角问题【解析】【解答】解:根据条件可得:∠ABD=60°,∠DBC=45°∴∠ABC=∠ABD+∠DBC=60°+45°=105°.故选C.。
2020-2021学年广东省广州市黄埔区七年级上期末数学试卷解析版
2020-2021学年广东省广州市黄埔区七年级上期末数学试卷
解析版
一.选择题(共10小题,满分20分,每小题2分)
1.相反数等于它本身的数是()
A.1B.0C.﹣1D.0或±1
【解答】解:相反数等于它本身的数是0.
故选:B.
2.下列各单项式中,与xy2是同类项的是()
A.x2y B.x2y2 C.x2yz D.9xy2
【解答】解:与xy2是同类项的是9xy2.
故选:D.
3.如图,下列图形全部属于柱体的是()
A.B.
C.D.
【解答】解:A、左边的图形属于锥体,故本选项错误;
B、上面的图形是圆锥,属于锥体,故本选项错误;
C、三个图形都属于柱体,故本选项正确;
D、上面的图形不属于柱体,故本选项错误.
故选:C.
4.下列等式变形错误的是()
A.若a=b,则a
1+x =
b
1+x
B.若a=b,则3a=3b
C.若a=b,则ax=bx
第 1 页共9 页。
2019-2020学年广州市黄埔区七年级上册期末数学试卷(有答案)【精品版】
2019-2020学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=.三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q 对应的数各是多少?2019-2020学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40°.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为2.【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=1.【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=﹣27.【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q 对应的数各是多少?【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27.。
广州市黄埔区七年级上期末数学试卷(有答案)
广州市黄埔区七年级上期末数学试卷(有答案)广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分) 3的倒数等于()。
A。
3 B。
1/3 C。
-3 D。
-1/32.(2分) 下列各式不正确的是()。
A。
|-2| = 2 B。
-2 = -|-2| C。
-(-2) = |-2| D。
-|2| = |-2|3.(2分) 下列各组整式中是同类项的是()。
A。
a^3和b^3 B。
2a^2b和- a^2b C。
-ab^2c和-5b^2c D。
x^2和2x4.(2分) 下列运算正确的是()。
A。
3m + 3n = 6mn B。
4x^3 - 3x^3 = 1 C。
-xy + xy = 0 D。
a^4 + a^2 = a^65.(2分) 方程 -x = 9 的解是()。
A。
x = -27 B。
x = 27 C。
x = -3 D。
x = 36.(2分) 下列方程移项正确的是()。
A。
4x - 2 = -5 移项,得4x = 5 - 2 B。
4x - 2 = -5 移项,得4x = -5 - 2 C。
3x + 2 = 4x 移项,得3x - 4x = 2 D。
3x + 2 = 4x移项,得4x - 3x = 27.(2分) 下列说法中,错误的是()。
A。
经过一点可以作出无数条直线 B。
经过两点只能作出一条直线C。
射线AB和射线BA是同一条射线D。
两点之间,线段最短8.(2分) 如图所示的几何体,从正面看到的平面图形是()。
A。
B。
C。
D。
9.(2分) 下列表达错误的是()。
A。
比a的2倍大1的数是2a + 1 B。
a的相反数与b的和是 -a + b C。
比a的平方小的数是a^2 - 1 D。
a的2倍与b的差的3倍是2a - 3b10.(2分) 已知a、b、c在数轴上位置如图,则|a+b|+|a+c|-|b-c| =()。
A。
2a - 2b B。
2c - 2b C。
2b - 2c D。
广州市七年级第一学期期末统一考试数学检测题(含答案)
环境保护表扬建议房产建筑道路交通其他投诉奇闻铁事40%35%30%25%20%15%10%5%0广州市初一上学期期末试卷班级________ 学号________ 姓名____________一、填空题:(每题3分,共30分)1、13-的倒数是_____________,相反数是___________________.2、比较大小(用”>”或”<”表示):3| 1.8|_____();2----11()_____()22---+.3、用代数式表示:(1)a 与b 的差的平方:_____________;(2)a 的立方的2倍与1-的和________________________.4、若a-b=1,则代数式a-(b-2)的值是_______;若a+b=1,则代数式5-a-b 的值是________.5、时钟指向5:30,则时针与分针所成较小的那个角的度数为__________度.6、如图,A 、B 、C 三点在同一直线上.(1)用上述字母表示的不同线段共有_________条;(2)用上述字母表示的不同射线共有_____条.7、22.5°=______度_____分;12°24′=____________°.8、已知点B 在直线AC 上,AB=8cm ,AC=18cm ,P 、Q 分别是AB 、AC 的中点,则PQ = _______.9、图1是某晚报“百姓热线”一周内接到的热线电话的统计图,其中有关环境保护问题最多,共有70个,请回答下列问题:(1)本周“百姓热线”共接到热线电话____________个;(2)有关交通问题的电话有_______个10、图2是一个数值转换机的示意图,若输入x 的值为3,y 的值为-2时,则输出的结果为:_________________.图1 图2二、选择题(每题3分,共24分)1、下列语句正确的是 ( ) B CA .1是最小的自然数;B .平方等于它本身的数只有1C .绝对值最小的数是0;D .任何有理数都有倒数2、下列各式中运算正确的是 ( )A .6a-5a=1B .a 2+a 2=a 4C .3a 2+2a 3=5a 5D .3a 2b-4ba 2=-a 2b3、下列判断的语句不正确的是 ( )A .若点C 在线段BA 的延长线上,则BA=AC -BCB .若点C在线段AB上,则AB=AC+BCC .若AC+BC>AB,则点C一定在线段BA外D .若A、B、C三点不在一直线上,则AB<AC+BC4、给出下列判断正确的是( )①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab ,12x +,4a 都是整式; ④x 2-xy+y 2是按字母y 的升幂排列的多项式,A .①②B .②③C .③④D .①④5、下列说法正确的个数是( )①两条直线相交,有公共顶点而没有公共边的两个角是对顶角;②如果两条线段没有交点,那么这两条线段所在直线也没有交点;③邻补角的两条角平分线构成一个直角; ④直线外一点与直线上各点连接的所有线段中,垂线段最短。
广东省广州市黄埔区2022年数学七年级第一学期期末调研试题含解析
2022-2023学年七上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆锥侧面展开图可能是下列图中的( )A .B .C .D .2.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .3.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个. A .1 B .2 C .3 D .44.下列有理数大小关系判断正确的是( )A .10.01-<-B .4556>C .33-<+D .23-<-5.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A .8×1012B .8×1013C .8×1014D .0.8×10136.a ,b ,c 是三个有理数,且abc <0,a +b <0,a +b +c ﹣1=0,下列式子正确的是( )A .|a |>|b +c |B .c ﹣1<0C .|a +b ﹣c |﹣|a +b ﹣1|=c ﹣1D .b +c >07.下面四个图形是多面体的展开图,属于三棱柱的展开图的是( )A .B .C .D .8.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型办卡费用(元) 每次收费(元) A 类1500 100 B 类3000 60 C 类 4000 40例如,购买A 类会员年卡,一年内健身20次,消费1500+100×20=3500元.若一年内在该健身俱乐部健身55次,则最省钱的方式为( )A .购买C 类会员年卡B .购买B 类会员年卡C .购买A 类会员年卡D .不购买会员年卡9.商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折( )A .7折B .7.5折C .8折D .8.5折10.下列变形中,正确的是( )A .若x 2=5x ,则x =5B .若a 2x =a 2y ,则x =yC .若382y -=,则y =﹣12 D .若2211x y a a =++,则x =y 11.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥;③经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线;其中可用“两点之间线段最短”来解释的现象是( )A .①B .②C .①②D .②③12.如图,A 、B 两点在数轴上表示的数分别为a 、b ,以下结论:①a ﹣b >0;②a+b <0;③(b ﹣1)(a+1)>0;④10|1|b a ->-.其中结论正确的是( )A .①②B .③④C .①③D .①②④二、填空题(每题4分,满分20分,将答案填在答题纸上)13.2π-=__________.14.若单项式﹣x 1﹣a y 8与3214b x y 是同类项,则a b =_____. 15.如图,将一个长方形纸片的一角折叠,使顶点B 落在P 处,EF 为折痕,如果EP 恰好平分FEA ∠,则FEB ∠的度数为________.16.当a =_________时,两方程232x a +=与22x a +=的解相同.17.某公司有员工800人举行元旦庆祝活动,A 、B 、C 分别表示参加各种活动的人数的百分比(如图),规定每人都要参加且只能参加其中一项活动,则下围棋的员工共有______人.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图所示,B 在线段AC 上,E 在线段BC 上,D 是线段AB 的中点若BC =3AB ,BE =2EC ,且DE =7.1.求AC 的长.19.(5分)如图,数阵是由50个偶数排成的.(1)在数阵中任意做一类似于图中的框,设其中最小的数为x ,那么其他3个数怎样表示?(2)如果这四个数的和是172,能否求出这四个数?(3)如果扩充数阵的数据,框中的四个数的和可以是2019吗?为什么?20.(8分)若一个三位数的百位数字是a+2b,十位数字是3c﹣2a,个位数字是2c﹣b.(1)请列出表示这个三位数的代数式,并化简;(2)当a=2,b=3,c=4时,求出这个三位数.21.(10分)已知有理数a,b,c在数轴上对应的点从左到右顺次为A,B,C,其中b是最小的正整数,a在最大的负整数左侧1个单位长度,BC=2AB.(1)填空:a=,b=,c=(2)点D从点A开始,点E从点B开始,点F从点C开始,分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动,点F追上点D时停止动,设运动时间为t秒.试问:①当三点开始运动以后,t为何值时,这三个点中恰好有一点为另外两点的中点?+⋅的值与它们的运动时间无关,为定值.若存在,请求出k和这②F在追上E点前,是否存在常数k,使得DF k EF个定值;若不存在,请说明理由.22.(10分)某学校党支部组织该校的6个党小组进行《新党章》知识竞赛活动,共设20道选择题,各题得分相同,每题必答.下表是6个党小组的得分情况:党小组答对题数答错题数得分第一组16 4 72第二组20 0 100第三组19 1 93第四组18 2 86第五组79第六组90?(1)根据表格数据可知,答对一题得_____分,答错一题得_______分;(2)如第五组得79分,求出第五组答对题数是多少(用方程作答)?(3)第六组组长说他们组得90分.你认为可能吗?为什么?23.(12分)数轴上点A表示的数为11,点M,N分别以每秒a个单位长度、每秒b个单位长度的速度沿数轴运动,a,b满足|a-3|+(b-4)2=1.(1)请直接写出a=,b=;(2)如图1,若点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为94时,求此时点M对应的数.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、D【解析】本题考查的是圆锥的侧面展开图根据圆锥的侧面展开图是一个扇形即可得到结果.圆锥的侧面展开图是一个扇形,故选D.2、B【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【详解】解:当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P 点由B 运动到C 点时,即2<x <4时,y =12×2×2=2, 符合题意的函数关系的图象是B ;故选B .【点睛】 本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围. 3、C【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.4、A【分析】同为负数,绝对值大的反而小;同为正数,绝对值越大自身就越大,据此进行大小比较即可.【详解】A :∵0.011-<-,∴10.01-<-,选项正确;B :∵424=530,525=630,∴2430<2530,∴4556<,选项错误; C :∵3=3-,3=3+,∴3=3-+,选项错误;D :23-<-,∴23->-,选项错误;故选:A.【点睛】本题主要考查了有理数的大小比较,熟练掌握相关方法是解题关键.5、B【解析】80万亿用科学记数法表示为8×1.故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.6、C【解析】由a +b +c ﹣1=0,表示出a +b =1﹣c ,再由a +b 小于0,列出关于c 的不等式,求出不等式的解集确定出c 大于1,将a +b =1﹣c ,a +b ﹣1=c 代入|a +b ﹣c |﹣|a +b +1|中,利用绝对值的代数意义化简,去括号合并得到结果为c ﹣1,即可得答案.【详解】∵a +b +c ﹣1=0,a +b <0,∴a +b =1﹣c <0,即c >1,则|a +b ﹣c |﹣|a +b ﹣1|=|1﹣2c |﹣|c |=2c ﹣1﹣(c ﹣1)=2c ﹣1﹣c =c ﹣1,故选C .【点睛】本题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算. 7、D【分析】根据三棱柱的展开图的特点作答.【详解】A 、是正方体的平面展开图;故不符合题意;B 、是四棱锥的展开图,故不符合题意;C 、是四棱柱的展开图,故不符合题意;D 、是三棱柱的展开图,故符合题意;故选:D .【点睛】熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.8、A【分析】首先求出一年内在该健身俱乐部健身55次,购买A 类、B 类、C 类会员年卡的情况下各消费多少元;然后把它和不购买会员年卡的情况下健身55次的费用比较大小即可.【详解】解:购买A 类会员年卡,一年内健身55次,消费:1500+100×55=7000(元)购买B 类会员年卡,一年内健身55次,消费:3000+60×55=6300(元)购买C 类会员年卡,一年内健身55次,消费:4000+40×55=6200(元)不购买会员年卡,一年内健身55次,消费:180×55=9900(元)∵6200<6300<7000<9900,∴最省钱的方式为购买C 类会员年卡.故选:A .【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.9、C【分析】设这件商品销售时打x 折,根据利润=售价-进价,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设这件商品销售时打x 折,依题意,得100×(1+10%)×10010044%10x -=⨯, 解得:x=1.故选:C .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10、D【分析】直接利用等式的性质分别判断得出答案.【详解】A 、∵x 2=5x ,解得:x 1=0,x 2=5,故此选项错误;B 、若a 2x =a 2y ,则x =y (应加条件a≠0),故此选项错误;C 、若382y -=,则y =163-,故此选项错误; D 、若2211x y a a =++,则x =y ,正确. 故选:D .【点睛】本题考查等式的性质,解题的关键是掌握等式的性质.11、B【分析】直接利用两点之间线段最短分析得出答案.【详解】解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释;②过马路时,行人选择横穿马路而不走人行天桥,可以用“两点之间线段最短”来解释;③经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,不能用“两点之间线段最短”来解释,依据是“两点确定一条直线”.故选:B .【点睛】本题考查的知识点是“两点之间线段最短”定理,充分理解定理是解此题的关键.12、B【分析】先根据a 、b 在数轴上的位置判断出a 、b 的取值范围,再比较出各数的大小即可.【详解】由a 、b 的数轴上的位置可知,﹣1<a <0,b >1,①∵a <0,b >0,∴a ﹣b <0,故本小题错误;②∵﹣1<a <0,b >1,∴a+b >0,故本小题错误;③∵﹣1<a <0,b >1,∴b ﹣1>0,a+1>0,∴(b ﹣1)(a+1)>0,故本小题正确;④∵b >1,∴b ﹣1>0,∵|a ﹣1|>0, ∴10|1|b a ->-,故本小题正确. 故选:B .【点睛】本题考查数轴的特点,根据a 、b 两点在数轴上的位置判断出其取值范围是解答此题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、2π-【分析】先判断出2π-是负数,根据负数的绝对值是它的相反数,可得答案. 【详解】解:2π-= 2π-,故答案为:2π-.【点睛】本题考查了实数的性质,负数的绝对值是它的相反数.14、1.【分析】根据同类项定义可得1﹣a=3,2b=8,再解即可.【详解】解:由题意得:1﹣a=3,2b=8,解得:a=﹣2,b=4,a b=1,故答案为1.【点睛】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.15、60︒【解析】根据将长方形纸片的一角作折叠,使顶点B落在P处,EF为折痕,若EP恰好平分FEA∠,可以求得∠PEA 和∠PEF、∠BEF之间的关系,从而可以得到∠FEB的度数.【详解】∵将长方形纸片的一角作折叠,使顶点B落在P处,EF为折痕,∴∠PEF=∠BEF,∵EP恰好平分FEA∠,∴∠PEA=∠PEF,∴∠PEA=∠PEF=∠BEF,∵∠PEA+∠PEF+∠BEF=180︒,∴∠PEA=∠PEF=∠BEF=60︒,故答案为:60︒.【点睛】本题考查角的计算、翻折问题,解题的关键是明确题意,找出各个角之间的关系,然后找出所求问题需要的条件.16、5 3【分析】先求出每个方程的解,根据同解方程得出关于a的方程,求出即可.【详解】解2x+3=2a得:232ax-=,解2x+a=2得:22ax-=,∵方程2x+3=2a与2x+a=2的解相同,∴223 22a a--=,解得:53a= .【点睛】本题考查了一元一次方程相同解问题,根据两个方程的解相同建立关于a的方程是解决本题的关键.17、160【分析】用员工总数乘以下围棋的百分比即可求出答案.【详解】下围棋的员工共有800(138%42%)160⨯--=(人),故答案为:160.【点睛】此题考查利用扇形统计图的百分比求某部分的数量,掌握求部分数量是计算公式是解题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、AC =3【分析】根据线段中点的定义和线段的和差倍分即可得到结论.【详解】解:∵D 是线段AB 的中点,∴BD =12AB , ∵BC =3AB ,BE =2EC , ∴BE =23BC =2AB , ∴DE =BD+BE =12AB+2AB =52AB =2.1, ∴AB =3, ∴BE =2AB =6,CE =12BE =3, ∴AC =AB+BE+CE =3.【点睛】本题考查两点间的距离,线段的中点,能够用几何式子正确表示相关线段,结合图形进行线段的和差计算是解题的关键.19、(1)设其中最小的数为x ,则另外三个数分别为x +2,x +12,x +1.(2)这四个数分别为36,38,48,2.(3)不可以,理由见解析.【分析】(1)设其中最小的数为x ,观察数阵可得出另外三个数分别为21214x x x +++,,;(2)由(1)的结论结合四个数之和为172,即可得出关于x 的一元一次方程,解之即可得出结论;(3)由(1)的结论结合四个数之和为3,即可得出关于x 的一元一次方程,解之即可得出x 的值,由该值不为偶数,即可得出框中的四个数的和不可以是3.【详解】(1)设其中最小的数为x ,则另外三个数分别为x +2,x +12,x +1.(2)依题意,得:x +x +2+x +12+x +1=172,解得:x =36,∴x +2=38,x +12=48,x +1=2.答:这四个数分别为36,38,48,2.(3)不可以,理由如下:依题意,得:x +x +2+x +12+x +1=3,解得:x =49734. ∵x 为偶数,∴不符合题意,即框中的四个数的和不可以是3.【点睛】本题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.20、(1)80a +199b +32c ;(2)1【分析】(1)把百位数字乘100加上十位数字乘10,再加上个位数字即可;(2)把2a =,5b =,4c =代入(1)中是式子计算即可.【详解】解:(1)根据题意得:100(a +2b )+10(3c ﹣2a )+2c ﹣b =80a +199b +32c ;(2)当a =2,b =3,c =4时,80a +199b +32c =160+597+128=1,故这个三位数是1.【点睛】本题考查了代数式的求值,列代数式,正确的理解题意是解题的关键.21、(1)-2,1,7;(2)①t=1或t=52;②k=-1 【分析】(1)根据有理数的性质,A 、B 、C 三点位置,数轴上两点的距公式及点的平移规律回答即可;(2)①分E 是DF 的中点和点F 是DE 的中点两种情况计论;②先用含t的代数式表示DF k EF +⋅,()9633DF k EF k k t +⋅=+-+,由3+3k=0求出k 问题即可求解【详解】解:(1)∵最小正数为1.最大的负整数为小-1,a 在最大的负整数左侧1个单位长度∴点A 表示的数a 为-1-1=-2,点B 表示的数b 为1,∴AB=1-(-2)=3∵223=6BC AB ==⨯,∴点C 表示的数为c=1+6=7,故答案为:-2,1,7;(2)①依题意,点F 的运动距离为4t ,点D 、E 运动的距离为t,∴点D 、E 、F 分别表示的数为-2-t ,1-t , 7-4t,当点F 追上点D 时,必将超过点B ,∴存在两种情况,即DE=EF 和DF=EF ,如图,当DE=EF ,即E 为DF 的中点时,()21=274t t t ----+,解得,t=1,如图,当EF=DF ,即F 为DE 中点时,()74=21t t t ---+-2,解得t=52,综上所述,当t=1秒和t=52时,满足题意. ②存在,理由: 点D 、E 、F 分别表示的数为-2-t ,1-t ,7-4t,如图,F 在追上E 点前, ()74-2=93DF t t t =----,()74-1=63EF t t t =---,()()93639633DF k EF t k t k k t +⋅=-+-=+-+,当DF k EF +⋅与t 无关时,需满足3+3k=0,即k=-1时,满足条件.【点睛】本题考查了数有理数的性质,数轴上点与数的对应关系及两点的距离,点的平移及线段的中点及分类讨论思想,正确理解点的运动与点的平移的关系是解本题的关键.22、(1)5分,-2分;(2)答对了17道;(3)不可能.【解析】(1)从第二组的得分可以求出答对一题的得分,一题的得分=总分÷全答对的题数,再由第三组的成绩就可以得出答错一题的得分;(2)设第五组答对了x 道题,则答错了(20-x )道题,根据答对的得分+加上答错的得分79分建立方程求出其解即可.(3)假设第六组得了90分,设答对了y道题,则答错了(20-y)道题,根据答对的得分+加上答错的得分=90分建立方程求出其解检验即可.【详解】(1)答对一题得:100÷20=5(分),答错一题得:93-19×5=-2(分);(2)设第五组答对了x道题,则答错了(20-x)道题,由题意得5x-2(20-x)=79,解之得x=17,∴第五组答对了17道题;(3)设答对了y道题,则答错了(20-y)道题,由题意得5y-2(20-y)=90,解之得y=130 7,∵x是正整数,∴y=1307不合题意,∴第六组不可能得90分.【点睛】本题考查了列一元一次方程解实际问题的运用,根据图表可知答对一题得5分,答错一题得–2分,答对的得分加上答错的得分等于总得分是关键.23、(1)a=3,b=4;(2)t=52或154;(3)此时点M对应的数为2.【分析】(1)根据非负数的性质解答;(2)分三种情况解答:①点M未到达O时(1<t≤2时),NP=OP=3t,AM=5t,OM=11-5t;②点M到达O返回时当(2<t≤4时),OM=5t-11,AM=21-5t;③点M到达O返回时,即t>4时,不成立;(3)分两种情况,根据两点间的距离公式列出方程并解答.【详解】(1)∵|a-3|+(b-4)2=1.∴a-3=1,b-4=1∴a=3,b=4(2)①点M未到达O时(1<t≤103时),NP=OP=2t,AM=3t,OM=11-3t,即2t+11-3t=3t,解得t=5 2②点M到达O返回时(103<t≤203时),OM=3t-11,AM=21-3t,即2t+3t-11=21-3t,解得t=15 4③点M到达O返回时,即t>203时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=4t+3t+(11-3t)+7t+11+(11+4t)=15t+31=94,解得t=6415>103,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=4t+11+(3t-11)+(4t+11)+3t+7t=94,解得 t=4,点M对应的数为2答:此时点M对应的数为2.【点睛】此题考查一元一次的应用,非负性偶次方,数轴,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.。
2023-2024学年广东省广州市七年级(上)期末数学试卷及答案解析
2023-2024学年广东省广州市七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一1.(3分)﹣的相反数是()A.﹣B.C.﹣5D.52.(3分)2023年9月21日,在距离地球400000米的中国空间站,“天宫课堂”第四课开讲,之所以选择400000米的飞行高度,其中一个原因是可以对空间站进行保护,使其避免受到地球磁场的干扰,从而保护宇航员.数据400000用科学记数法表示为()A.4×106B.4×105C.40×104D.453.(3分)若﹣x3y a与x b y是同类项,则a+b的值为()A.2B.3C.4D.54.(3分)已知x=3是方程2(x﹣1)﹣a=0的解,则a的值是()A.B.C.4D.﹣45.(3分)计算:﹣24+(﹣2)4=()A.﹣32B.﹣16C.32D.06.(3分)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.7.(3分)如图,∠AOB=15°,∠AOC=90°,点B,O,D在同一直线上,则∠COD的度数为()A.75°B.15°C.105°D.165°8.(3分)已知线段AB=14cm,点C是直线AB上一点,BC=2cm,若M是AC的中点,N 是BC的中点,则线段MN的长度是()A.7cm B.9cm C.7cm或5cm D.6cm或8cm 9.(3分)甲,乙两超市为了促销一种定价相同的同种商品,甲超市连续两次降价,每次降价都是10%,乙超市一次性降价20%.现要购买这种商品,价格较低的是()A.甲超市B.乙超市C.甲、乙超市的价格相同D.不确定10.(3分)如图所示,用棋子摆成英文字母“H”字样,按照这样的规律摆下去,摆成第2024个“H”需要()个棋子.A.10117B.10120C.10122D.10125二、填空题(本大题共6小题,每小题3分,满分18分.)11.(3分)|﹣5|﹣3的值是.12.(3分)已知a﹣4与﹣2互为相反数,则代数式的值是.13.(3分)多项式3x2y a﹣4y2+2x是五次三项式,则a的值为;二次项系数为.14.(3分)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为度.15.(3分)如图,C,D是线段AB上两点,若CB=3cm,DB=7cm,且D是AC的中点,则AB的长为.16.(3分)已知A=x2+xy﹣2x﹣3,B=﹣x2+3xy﹣9.若3A﹣B的值等于﹣2,则代数式x2﹣x+3的值是.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.(4分)如图,已知三点A,B,C,按下列要求画图:(1)画射线AC;(2)延长CB至D,使得CD=BC+AB.18.(4分)计算:.19.(6分)解方程:.20.(6分)先化简,再求值:,其中,.21.(8分)整理一批图书,由一个人做要48小时完成,现在计划由一部分人先做4小时,再增加3人和他们一起做6小时完成这项工作.假设这些人的工作效率相同.(1)具体应先安排多少人工作?(2)若一开始就以增加后的人数工作,则需要多少小时完成?22.(10分)快递员王师傅配送快件,在东西向某段路进行配送快递,若规定向东为正,向西为负,王师傅从单位出发配送的10户的里程如下:﹣10,﹣3,+14,﹣2,﹣8,+6,﹣4,+12,+8,﹣5(单位:千米).(1)请问王师傅最后所在的位置在单位的什么地方,距离单位多远?(2)如果小电车每千米耗电量0.02度电,想问王师傅这一上午耗电量多少?23.(10分)已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,OC与OD在直线AB的同侧.①若∠COE=20°,则∠DOB的度数为;②若∠COE=α,求∠DOB的度数.(2)如图2,OC与OD在直线AB的异侧,直接写出∠COE和∠DOB之间的数量关系,不必说明理由.24.(12分)定义一种新运算:观察下列各式,并解决问题.1△4=1×3+4=7,2△7=2×3+7=13,5△(﹣1)=5×3+(﹣1)=14.请你想一想:(1)5△8=,a△b=;(2)已知(﹣5)△(m△3)=12,求m的值;(3)判断a△b与b△a的大小关系,并说明理由.25.(12分)在数轴上,点A在原点O的左侧,点B在原点O的右侧,点A距离原点12个单位长度,点B距离原点2个单位长度.(1)A点表示的数为,B点表示的数为,两点之间的距离为;(2)若点P为数轴上一点,且BP=2,求AP的值;(3)若点P、Q、M同时向数轴负方向运动,点P从点A出发,点Q从原点出发,点M 从点B出发,且点P的运动速度是每秒6个单位长度,点Q的运动速度是每秒8个单位长度,点M的运动速度是每秒2个单位长度.运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?2023-2024学年广东省广州市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一1.【分析】的相反数是,再化简即可.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,掌握相反数的定义是解答本题的关键.2.【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:400000=4×105,故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.3.【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选:C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.4.【分析】使方程两边左右相等的未知数的值叫做方程的解.【解答】解:将x=3代入方程得,2×(3﹣1)﹣a=0,解得:a=4,故选:C.【点评】本题考查方程的解的定义.熟练掌握方程解的定义是解答本题的关键.5.【分析】先算乘方,再算加减,即可解答.【解答】解:﹣24+(﹣2)4=﹣16+16=0,故选:D.【点评】本题考查了有理数的混合运算,准确熟练地进行计算是解题的关键.6.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.故选:A.【点评】此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.7.【分析】先利用角的和差关系可得∠BOC=75°,然后再利用平角定义进行计算即可解答.【解答】解:∵∠AOB=15°,∠AOC=90°,∴∠BOC=∠AOC﹣∠AOB=75°,∴∠COD=180°﹣∠BOC=105°,故选:C.【点评】本题考查了角的计算,角的概念,根据题目的已知条件并结合图形进行分析是解题的关键.8.【分析】本题需要分两种情况讨论,①当点C在线段AB上时,②当点C在线段AB的延长线上时,根据线段中点的定义,计算即可.【解答】解:①当点C在线段AB上时,如图所示:∵AB=14cm,BC=2cm,∴AC=14﹣2=12(cm),∵M是AC的中点,N是BC的中点,∴,,∴MN=MC+CN=6+1=7(cm);②当点C在线段AB的延长线上时,如图所示:∵AB=14cm,BC=2cm,∴AC=14+2=16(cm),∵M是AC的中点,N是BC的中点,∴,,∴MN=MC﹣CN=8﹣1=7(cm);综上所述,线段MN的长度是7cm,故A正确.故选:A.【点评】本题主要考查了线段上两点间的距离,主要利用了线段中点的定义,难点在于要分情况讨论.9.【分析】设相同商品原定价为a元,然后根据降价分别求出两个超市的价格,比较即可得解.【解答】解:设相同商品原定价为a元,甲超市连续两次降价10%,价格为:a×(1﹣10%)×(1﹣10%)=0.81a,乙超市一次性降价20%,价格为:a×(1﹣20%)=0.8a,∵0.81a>0.8a,∴价格较低的是乙超市.故选:B.【点评】本题考查了列代数式,列出两超市降价后的价格是解题的关键.10.【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【解答】解:图形①用棋子的个数=2×(2×1+1)+1;图形②用棋子的个数=2×(2×2+1)+2;图形③用棋子的个数=2×(2×3+1)+3;…,摆成第2024个“H”字需要棋子的个数=2×(2×2024+1)+2024=10122(个).故选:C.【点评】本题考查图形变化的规律,能根据所给图形发现所需棋子的个数依次增加4是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分.)11.【分析】先根据绝对值的性质去掉绝对值符号,再利用有理数的加减法则进行计算即可.【解答】解:原式=5﹣3=2,故答案为:2.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握绝对值的性质和有理数的加减法则.12.【分析】根据相反数的性质列方程求得a的值后代入代数式中计算即可.【解答】解:∵a﹣4与﹣2互为相反数,∴a﹣4﹣2=0,解得:a=6,原式=﹣1=﹣,故答案为:﹣.【点评】本题考查代数式求值及解一元一次方程,结合已知条件求得a的值是解题的关键.13.【分析】根据多项式的项与次数即可求得答案.【解答】解:∵多项式3x2y a﹣4y2+2x是五次三项式,∴2+a=5,解得:a=3,其二次项系数为﹣4,故答案为:3;﹣4.【点评】本题考查多项式,熟练掌握相关定义是解题的关键.14.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,再根据平角的度数是180°,∠ABE=20°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点评】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.15.【分析】先利用线段的和差关系可得DC=4cm,然后利用线段的中点定义可得AC=8cm,从而利用线段的和差关系进行计算,即可解答.【解答】解:∵CB=3cm,DB=7cm,∴DC=BD﹣BC=7﹣3=4(cm),∵D是AC的中点,∴AC=2CD=8(cm),∴AB=AC+BC=8+3=11(cm),故答案为:11cm.【点评】本题考查了两点间的距离,根据题目的已知条件并结合图形进行分析是解题的关键.16.【分析】把A与B代入3A﹣B=﹣2中,去括号合并求出2x2﹣3x的值,原式变形后代入计算即可求出值.【解答】解:∵A=x2+xy﹣2x﹣3,B=﹣x2+3xy﹣9,∴3A﹣B=3(x2+xy﹣2x﹣3)﹣(﹣x2+3xy﹣9)=3x2+3xy﹣6x﹣9+x2﹣3xy+9=4x2﹣6x =﹣2,即2x2﹣3x=﹣1,则原式=(2x2﹣3x)+3=﹣+3=2,故答案为:2.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17.【分析】(1)根据射线的定义画出图形;(2)根据要求作出图形.【解答】解:(1)如图,射线AC即为所求;(2)如图线段BC,BD即为所求.【点评】本题考查作图﹣复杂作图,两点之间的距离等知识,解题的关键是漏解射线,线段的定义.18.【分析】先算乘方,再算乘除,最后算加减即可.【解答】解:原式=﹣1﹣2×9÷=﹣1﹣18×3=﹣1﹣54=﹣55.【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.19.【分析】按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:,去分母得:4(2x﹣6)﹣3(x+18)=12,去括号得:8x﹣24﹣3x﹣54=12,移项得:8x﹣3x=12+24+54,合并同类项得:5x=90,系数化为1得:x=18.【点评】本题主要考查了解一元一次方程,掌握解一元一次方程的步骤是关键.20.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣,y=时,原式=﹣3×(﹣)+()2=1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.【分析】(1)根据题意可得,每个人每小时完成,设具体先安排x人工作,根据题意的工作方式可得出方程,解出即可;(2)设需要t小时完成,根据工作总量一定列出方程即可求出答案.【解答】解:由题意可得,每个人每小时完成,设具体先安排x人工作,则x×4+×(x+3)×6=1,解得:x=3.答:具体应先安排3人工作;(2)依题意得:(3+3)t=48,解得:t=8,答:需要8小时完成.【点评】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,找到等量关系,然后运用方程求解.22.【分析】(1)将所有里程加起来,再根据向东为正,向西为负判断王师傅最后所在的位置在单位的什么地方,距离单位多远;(2)不关注于配送方向,只算最终共跑了多少里程,然后再用总里程数×0.02度电,即可.【解答】解:(1)根据题意可得:﹣10+(﹣3)+14+(﹣2)+(﹣8)+6+(﹣4)+12+8+(﹣5)=8(km),∵向东为正,向西为负,∴王师傅最后所在的位置在单位的东边位置,距离单位有8km远,答:王师傅最后所在的位置在单位的东边位置,距离单位有8km远.(2)0.02×(10+3+14+2+8+6+4+12+8+5)=0.02×72=1.44(度),答:王师傅这一上午耗电量为1.44度.【点评】本题考查了数轴、正数与负数的相关知识,解题的关键在于灵活运用数轴知识与读懂题意.23.【分析】(1)①由∠COD为直角,∠COE=20°可求得∠EOD的度数.再由OE平分∠AOD,以及∠AOD和∠BOD为邻补角即可求出∠BOD.②同①可得结论;(2)设∠COE=α,可以求出∠EOD,再由角平分线以及邻补角可求出∠BOD,得出∠BOD和∠COE的关系.【解答】解:(1)①∵∠COD为直角,∴∠COD=90°.∵∠COE=20°,∴∠EOD=∠COD﹣∠COE=90°﹣20°=70°.∵OE平分∠AOD,∴∠AOD=2∠EOD=140°.∴∠BOD=180°﹣∠AOD=180°﹣140°=40°.②∵∠COD为直角,∴∠COD=90°.∵∠COE=α,∴∠EOD=∠COD﹣∠COE=90°﹣α.∵OE平分∠AOD,∴∠AOD=2∠EOD=180°﹣2α.∴∠BOD=180°﹣∠AOD=180°﹣(180°﹣2α)=2α.(2)设∠COE=α,∴∠EOD=∠COD﹣∠COE=90°﹣α,∵OE平分∠AOD,∴∠AOD=2∠EOD=180°﹣2α.∴∠DOB=180°﹣∠AOD=2α,∴∠DOB=2∠COE.【点评】本题考查角度的计算,主要涉及角平分线,垂直,邻补角的相关知识,计算过程中注意合理利用已知条件,利用角的和差来求解要求的角.24.【分析】(1)根据题目中的例子,可以计算出所求式子的值;(2)根据(﹣5)△(m△3)=12,可以得到关于m的方程,再求解即可;(3)先判断a△b与b△a的大小关系,再根据作差法说明理由即可.【解答】解:(1)由题目中的例子可得,5△8=5×3+8=23,a△b=3a+b,故答案为:23,3a+b;(2)∵(﹣5)△(m△3)=12,∴(﹣5)△(3m+3)=12,∴(﹣5)×3+3m+3=12,解得m=8;(3)当a>b时,a﹣b>0,此时a△b>b△a;当a=b时,a﹣b=0,此时a△b=b△a;当a<b时,a﹣b<0,此时a△b<b△a.理由:∵a△b=3a+b,b△a=3b+a,∴a△b﹣b△a=3a+b﹣3b﹣a=2a﹣2b=2(a﹣b),∴当a>b时,a﹣b>0,此时a△b>b△a;当a=b时,a﹣b=0,此时a△b=b△a;当a<b时,a﹣b<0,此时a△b<b△a.【点评】本题考查有理数的混合运算、新定义,解答本题的关键是明确题意,利用新定义解答.25.【分析】(1)先由点A在原点的左边,距离原点12个单位长度确定点A对应的数是﹣12,同理可得点B表示的数,根据右边的数﹣左边的数=两点的距离可得A,B两点的距离;(2)分点P在点B的左边和右边,根据线段的和差可得AP的长;(3)设移动的时间为t秒,分别表示三个动点P,Q,M表示的数,分三种情况讨论,列等式可解答.【解答】解:(1)∵点A在原点的左边,距离原点12个单位长度,∴点A对应的数是﹣12,同理可得点B表示的数为2,∴A,B两点之间的距离为:2﹣(﹣12)=2+12=14,故答案为:﹣12,2,14;(2)分两种情况:①当点P在点B的右边时,AP=AB+BP=14+2=16;②当点P在点B的左边时,AP=AB﹣BP=14﹣2=12;综上,AP的值是16或12;(3)设移动的时间为t秒,则动点P,Q,M对应的数分别为﹣12﹣6t,﹣8t,2﹣2t,分三种情况:①点Q是PM的中点时,PQ=QM,∴﹣8t﹣(﹣12﹣6t)=2﹣2t﹣(﹣8t),∴t=,此时,点P表示的数为:﹣12﹣6×=﹣19.5,点Q表示的数为:﹣8×=﹣10,点M表示的数为:2﹣2×=﹣0.5.②点P是QM的中点时,PQ=MP,∴﹣12﹣6t﹣(﹣8t)=2﹣2t﹣(﹣12﹣6t),∴t=﹣13(舍),③点M是PQ的中点时,因为点M的速度小,所以此种情况不存在.【点评】此题重点考查解一元一次方程,列一元一次方程解应用题,数轴上的动点问题的求解等知识与方法,正确地用代数式表示移动过程中的点对应的数是解题的关键。
广东省广州市黄埔区七年级上学期期末考试数学试卷
第 1 页 共 10 页 2019-2020学年广东省广州市黄埔区七年级上学期期末考试
数学试卷解析版
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的)
1.2020的相反数是( )
A .2020
B .﹣2020
C .12020
D .−12020 【解答】解:2020的相反数是:﹣2020.
故选:B .
2.下列式子中,与﹣3a 2b 是同类项的是( )
A .﹣3ab 2
B .﹣ba 2
C .2ab 2
D .2a 3b
【解答】解:与﹣3a 2b 是同类项的是﹣ba 2,
故选:B .
3.下列图形不是立体图形的是( )
A .球
B .圆柱
C .圆锥
D .圆
【解答】解:由题意得:只有D 选项符合题意.
故选:D .
4.下列变形正确的是( )
A .若x ﹣3=6,则x =6﹣3
B .若﹣3x =﹣2,则x =23
C .若3x ﹣2=x +1,则3x ﹣x =1﹣2
D .若13x =3,则x =1 【解答】解:A 、等式的两边都加上3,得x =6+3,原变形错误,故A 不符合题意;
B 、等式两边同时除以﹣3,得x =23,原变形正确,故B 符合题意;
C 、由3x ﹣2=x +1,得3x ﹣x =1+2,原变形错误,故C 不符合题意;
D 、等式的两边同时乘以3,得x =9,原变形错误,故D 不符合题意;
故选:B .
5.下列计算正确的是( )
A .﹣2+4=﹣2
B .(﹣2)×(﹣4)=﹣8。
2019-2020学年广东省广州市黄埔区七年级(上)期末数学试卷(含解析)
2019-2020学年广东省广州市黄浦区七年级(上)期末数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列式子中,与﹣3a2b是同类项的是()A.﹣3ab2B.﹣ba2C.2ab2D.2a3b3.下列图形不是立体图形的是()A.球B.圆柱C.圆锥D.圆4.下列变形正确的是()A.若x﹣3=6,则x=6﹣3B.若﹣3x=﹣2,则C.若3x﹣2=x+1,则3x﹣x=1﹣2D.若,则x=15.下列计算正确的是()A.﹣2+4=﹣2 B.(﹣2)×(﹣4)=﹣8C.﹣4÷2=﹣2 D.(﹣4)2=86.下列各式中,去括号正确的是()A.﹣(2x+y)=﹣2x+y B.2(x﹣y)=2x﹣yC.3x﹣(2y+z)=3x﹣2y﹣z D.x﹣(﹣y+z)=x﹣y﹣z7.用10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,若设大水杯的单价为x元,下列所列的方程正确的是()A.10x=15(x+5)B.10x=15(x﹣5)C.15x=10(x+5)D.15x=10(x﹣5)8.已知点O是直线AB上一点,∠AOC=50°,OD平分∠AOC,∠BOE=90°,下列结果,不正确的是()A.∠BOC=130°B.∠AOD=25°C.∠BOD=155°D.∠COE=45°9.下列说法不正确的是()A.因为M是线段AB的中点,所以AM=MB=ABB.在线段AM延长线上取一点B,如果AB=2AM,那么点M是线段AB的中点C.因为A,M,B在同一直线上,且AM=MB,所以M是线段AB的中点D.因为AM=MB,所以点M是AB的中点10.若a≠2,则我们把称为a的“哈利数”,如3的“哈利数”是,﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,……,依此类推,则a2020=()A.3 B.﹣2 C.D.二、填空题(每小题3分,共18分)11.如果收入100元记作+100元,那么支出120元记作元.12.当x=3,y=2时,x2﹣y2=.13.比较38°15′与38.15°的大小:38°15′38.15°(用“>”、“<”或“=”填空)14.已知方程与关于x的方程3n﹣1=3(x+n)﹣2n的解互为相反数,则n的值为.15.在同一平面内∠AOB=35°,∠BOC=42°,则锐角∠AOC的度数为.16.如图,点C是线段AB的中点,点E在线段AB上,点D是线段AE的中点,若线段AB=a,CE=b,则线段CD的长为.三、解答题(共72分)17.(6分)如图,平面内有A、B、C、D四点.按下列语句画图.(1)画直线AB,射线BD,线段BC;(2)连接AC,交射线BD于点E.18.(12分)(1)(﹣20)﹣(+3)﹣(﹣5)﹣(+7)(2)(﹣12)÷(﹣4)÷(﹣1)(3)2×(﹣3)2﹣4×(﹣32)﹣1519.(8分)计算:(1)(5a+4c+7b)+(5c﹣3b﹣6a)(2)(2a2b﹣ab2)﹣2(ab2+3a2b)20.(10分)解方程:(1)5x+5=9﹣3x (2)21.(7分)已知有理数a、b、c在数轴上的位置如图所示:(1)判断正负,用“>”、“<”或“=”填空:a+b 0,a﹣b 0,a+b+c 0;(2)化简:|a+c|﹣|a+b+c|+|a﹣b|.22.(7分)已知a+b=﹣2,ab=3,求2[ab+(﹣3a)]﹣3(2b﹣ab)的值.23.(8分)如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON=80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).24.(10分)某市公共交通收费如下:公交票价里程(千米)票价(元)刷卡优惠后付款(元)0﹣10 2 110﹣15 3 1.515﹣20 4 220﹣25 5 2.525﹣30 6 3以后每增加5千米增加1元增加0.5元地铁票价里程(千米)票价(元)0﹣6 36﹣12 412﹣22 522﹣32 632﹣52 752﹣72 8以后每增加20千米增加1元(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题:①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少?②若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么?1.【解答】解:2020的相反数是:﹣2020.故选:C.2.【解答】解:与﹣3a2b是同类项的是﹣ba2,故选:B.3.【解答】解:由题意得:只有D选项符合题意.故选:D.4.【解答】解:A、等式的两边都加上3,得x=6+3,原变形错误,故A不符合题意;B、等式两边同时除以﹣3,得x=,原变形正确,故B符合题意;C、由3x﹣6=x+1,得3x﹣x=1+2,原变形错误,故C不符合题意;D、等式的两边同时乘以5,得x=9,原变形错误,故D不符合题意;故选:B.5.【解答】解:A、原式=+(4﹣2)=2,不符合题意;B、原式=2×4=8,不符合题意;C、原式=﹣2,符合题意;D、原式=16,不符合题意,故选:C.6.【解答】解:A、原式=﹣2x﹣y,故本选项错误;B、原式=2x﹣2y,故本选项错误;C、原式=3x﹣2y﹣z,故本选项正确;D、原式=x+y﹣z,故本选项错误;故选:C.7.【解答】解:设大水杯的单价为x元,则小水杯的单价为(x﹣5)元,由题意得:10x=15(x﹣5),故选:B.8.【解答】解:∵∠AOC=50°,∴∠BOC=180°﹣∠AOC=130°,A选项正确;∴∠AOD=∠AOC=×50°=25°,B选项正确;∵∠BOE=90°,∠AOC=50°,故选:D.9.【解答】解:A、因为M是线段AB的中点,所以AM=MB=AB,故本选项正确;B、如图,由AB=2AM,得AM=MB;故本选项正确;C、根据线段中点的定义判断,故本选项正确;D、如图,当点M不在线段AB时,因为AM=MB,所以点M不一定是AB的中点,故本选项错误;故选:D.10.【解答】解:∵a1=3,∴a2=,a4==,……∵2020÷4=505,故选:D.11.【解答】解:“正”和“负”相对,所以,如果收入100元记作+100元,那么支出120元记作﹣120元.故答案为:﹣12012.【解答】解:当x=3,y=2时,原式=32﹣22=9﹣4=5,故答案为:513.【解答】解:38°15′=38.25°,∵38.25>38.15,故答案为:>.14.【解答】解:第一个方程去分母得:3(2x﹣3)=10x﹣45,去括号得:6x﹣9=10x﹣45,解得:x=2,去括号得:3n﹣1=3n﹣27﹣7n,解得:n=﹣13.故答案为:﹣1315.【解答】解:当OC在∠AOB外靠OA一边时,如图1所示.∴∠AOC=∠BOC﹣∠AOB=7°;∵∠AOB=35°,∠BOC=42°,故答案为:7°或77°.16.【解答】解:∵点C为线段AB的中点,AB=a,CE=b,∴AC=AB=a,∵点D为线段AE的中点,∴CD=DE﹣CE=a+b﹣b=a﹣b,故答案为:a﹣b.17.【解答】解:(1)如图所示,直线AB,射线BD,线段BC即为所求;(2)连接AC,点E即为所求.18.【解答】解:(1)原式=﹣20﹣3+5﹣7=﹣23﹣2(5)原式=﹣12××(3)原式=7×9﹣4×(﹣9)﹣15=54﹣15=39.19.【解答】解:(1)(5a+4c+7b)+(5c﹣5b﹣6a)=5a+4c+7b+5c﹣3b﹣4a(2)(2a2b﹣ab2)﹣7(ab2+3a5b)=﹣4a2b﹣3ab2.20.【解答】解:(1)移项合并得:8x=4,解得:x=0.5;去括号得:2x+2﹣4=8+2﹣x,解得:x=5.21.【解答】解:(1)根据数轴可知:0<a<1,﹣1<b<0,c<﹣5,且|a|<|b|,则a+b<0,a﹣b>0,a+b+c<0;(4)|a+c|﹣|a+b+c|+|a﹣b|=a.22.【解答】解:原式=5ab﹣6a﹣6b=5ab﹣6(a+b),将a+b=﹣2,ab=7代入得:5ab﹣6a﹣6b=5ab﹣6(a+b)=27.23.【解答】解:(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.24.【解答】解:(1)①由表格中的数据可得,乘坐公交车行驶24千米,需要车票为5元,乘坐地铁需要6元,②乘坐公交车行驶路程为:(10﹣2)×5+10=50千米,因此乘坐地铁行驶路程较远;当行驶路程为x=85千米时,公交车票价为8.3元,而地铁为9元,因此有:①当距景点距离x≤85千米时,选择乘坐公交车省钱,②当距景点距离超过85<x≤90千米时,两种交通工具均可,③当距景点距离90<x≤120千米时,选择地铁省钱。
2020-2021学年广州市黄埔区七年级上学期期末数学试卷(附解析)
2020-2021学年广州市黄埔区七年级上学期期末数学试卷一、选择题(本大题共10小题,共20.0分)1.如图示,数轴上点A所表示的数的绝对值的相反数为()A. 2B. −2C. ±2D. 以上均不对2.下列各组代数式中,是同类项的是()A. 5x2y与15xy B. 83与x3 C. 5ax2与15yx2 D. −5x2y与15yx2 3.把立方体的六个面分别涂上六种不同颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况列表如下.现将上述大小相同,颜色、花朵分布完全一样的四个立方体拼成一个水平放置的长方体,如图所示,那么长方体的下底面共有()朵花.A. 15B. 16C. 21D. 174.下列等式从左到右的变形正确的是()A. b2x =by2xyB. −(a−b)−(a+b)=a+ba−bC. 0.2x−10.4x+3=2x−14x+30D. aba2=ba5.下列式子可以用等号连接是()A. 5+4____12−5;B. 7+(−4)___7−(−4)C. 2+4×(−2)__−12;D. −2×(4−3)__−2×3+46.下列运算正确的是()A. 3x+3y=6xyB.C. 3(x+8)=3x+8D. −(6x+2y)=−6x−2y7.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:“有100个和尚分100只馒头正好分完.如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?”设小和尚有x人,则可列方程为()A. 13x+3(100−x)=100 B. 13(100−x)+3x=100C. x3+100−x=100 D. x+100−x3=1008.如图:∠AOB=80°,OC是∠AOB内的任一条射线,OD平分∠AOC,OE平分∠COB,则∠DOE=()A. 30°B. 45°C. 40°D. 60°9.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A. 1个B. 2个C. 3个D. 4个10.观察下面的一列单项式的特点:−x,2x2,−4x3,8x4,−16x5,…,写出第10个单项式.为了解决这个问题,特提供下面的解题思路:(1)先观察这组单项式系数的符号的规律;(2)再看系数绝对值的规律;(3)然后看这组单项式次数的规律.根据其中的规律,得出的第10个单项式是()A. 29x9B. −29x9 C. 29x10D. −29x10二、填空题(本大题共6小题,共12.0分)11.我国在数的发展史上有辉煌的成就.早在东汉初,我国著名的数学书《九章算术》明确提出了“正负术”.如果“盈5”记为“+5”,那么“亏7”可以记为______.12.有一数值转换器,其转换原理如图所示,若开始输入x的值是9,可发现第1次输出的结果是14,第2次输出的结果是7,第3次输出的结果是12,…,依次继续下去,第2020次输出的结果是______.13.25.14°=______ °______ ′______ ″;38°15′=______ °.14.若x=−2是方程3x+4=x2−a的解,则a100−1a100的值是______ .15.拿一张长方形纸片,按图中所示的方法折叠一角,得到折痕EF,如果∠DFE=35°,则∠DFA=______ 度.16.如图,A、B、C、D在同一条直线上,AB=6,AD=13AB,CD=1,则BC=______ .三、解答题(本大题共8小题,共68.0分)17.如图,已知平面上三点A,B,C,请按要求完成:(1)画射线AC.直线BC;(2)连接AB,并用圆规在线段AB的延长线上截取BD=BC,连接CD(保留画图痕迹).18.对于任意的实数m,n,定义运算“∧”,有m∧n=|m−n|+m+n2.(1)计算:3∧(−1);(2)若m=|x−1|,n=|x+2|,求m∧n(用含x的式子表示);(3)若m=x2+2x−3,n=−x−3,m∧n=−2,求x的值.19.先化简,再求值:3(m+1)2−5(m+1)(m−1)+2m(m−1),其中m=−1.20.解方程:(1)2(2x+1)=1−5(x−2)(2)x+12−1=2+3x3.21.阅读下面材料:小明在数学课外小组活动时遇到这样一个问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集.小明同学的思路如下:先根据绝对值的定义,求出|x|恰好是3时x的值,并在数轴上表示为点A,B,如图所示.观察数轴发现,以点A,B为分界点把数轴分为三部分:点A左边的点表示的数的绝对值大于3;点A,B之间的点表示的数的绝对值小于3;点B右边的点表示的数的绝对值大于3.因此,小明得出结论绝对值不等式|x|>3的解集为:x<−3或x>3.参照小明的思路,解决下列问题:(1)请你直接写出下列绝对值不等式的解集.①|x|>1的解集是______________.②|x|<2.5的解集是________________.(2)求绝对值不等式2|x−3|+5>13的解集.(3)直接写出不等式x2>4的解集是______________.22. 先化简,再求值:3a+abc−13(c2+9a)+13c2,其中a=16,b=2,c=−3.23. 如图,已知∠AOB和射线OP,且∠AOB=180°.(1)用直尺和圆规作出∠BOP的平分线OC(保留作图痕迹,并写出结论);(2)在第(1)小题的前提下,当∠AOP=60°时,在图中找出所有与∠AOP互补的角,这些角是______;(3)如果∠BOP比∠AOP的34大54°,那么∠AOP=______°.24. 小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元).星期一二三四五六七收入+65+68+50+66+50+75+74支出−60−64−63−58−60−64−65(1)到这个周末,小李有多少节余?(2)按以上的支出水平,估计小李一个月(按30天计算)至少有多少收入才能维持正常开支?。
2019-2020学年广东省广州市黄埔区七年级(上)期末数学试卷
2019-2020学年广东省广州市黄埔区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的) 1.(2分)2020的相反数是( ) A .2020B .2020-C .12020D .12020-2.(2分)下列式子中,与23a b -是同类项的是( ) A .23ab -B .2ba -C .22abD .32a b3.(2分)下列图形不是立体图形的是( ) A .球B .圆柱C .圆锥D .圆4.(2分)下列变形正确的是( ) A .若36x -=,则63x =- B .若32x -=-,则23x =C .若321x x -=+,则312x x -=-D .若133x =,则1x =5.(2分)下列计算正确的是( ) A .242-+=-B .(2)(4)8-⨯-=-C .422-÷=-D .2(4)8-=6.(2分)下列各式中,去括号正确的是( ) A .(2)2x y x y -+=-+ B .2()2x y x y -=- C .3(2)32x y z x y z -+=--D .()x y z x y z --+=--7.(2分)用10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,若设大水杯的单价为x 元,下列所列的方程正确的是( ) A .1015(5)x x =+B .1015(5)x x =-C .1510(5)x x =+D .1510(5)x x =-8.(2分)已知点O 是直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90BOE ∠=︒,下列结果,不正确的是( )A .130BOC ∠=︒B .25AOD ∠=︒C .155BOD ∠=︒ D .45COE ∠=︒9.(2分)下列说法不正确的是( )A .因为M 是线段AB 的中点,所以12AM MB AB ==B .在线段AM 延长线上取一点B ,如果2AB AM =,那么点M 是线段AB 的中点C .因为A ,M ,B 在同一直线上,且AM MB =,所以M 是线段AB 的中点D .因为AM MB =,所以点M 是AB 的中点 10.(2分)若2a ≠,则我们把22a -称为a 的“哈利数”,如3的“哈利数”是2223=--,2-的“哈利数”是212(2)2=--,已知13a =,2a 是1a 的“哈利数”, 3a 是2a 的“哈利数”, 4a 是3a 的“哈利数”, ⋯⋯,依此类推,则2020(a = ) A .3B .2-C .12D .43二、填空题(本大题共6小题,每小题2分,共12分)11.(2分)如果收入100元记作100+元,那么支出120元记作 元. 12.(2分)当3x =,2y =时,22x y -= .13.(2分)比较3815︒'与38.15︒的大小:3815︒' 38.15︒(用“>”、“ <”或“=”填空)14.(2分)已知方程232353x x -=-与关于x 的方程313()2n x n n -=+-的解互为相反数,则n 的值为 .15.(2分)在同一平面内35AOB ∠=︒,42BOC ∠=︒,则锐角AOC ∠的度数为 . 16.(2分)如图,点C 是线段AB 的中点,点E 在线段AB 上,点D 是线段AE 的中点,若线段AB a =,CE b =,则线段CD 的长为 .三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.) 17.(6分)如图,平面内有A 、B 、C 、D 四点.按下列语句画图. (1)画直线AB ,射线BD ,线段BC ; (2)连接AC ,交射线BD 于点E .18.(12分)(1)(20)(3)(5)(7)--+---+(2)1(12)(4)(1)5-÷-÷-(3)222(3)4(3)15⨯--⨯-- 19.(8分)计算:(1)(547)(536)a c b c b a +++-- (2)2222(2)2(3)a b ab ab a b --+ 20.(10分)解方程: (1)5593x x +=- (2)121224x x+--=+21.(7分)已知有理数a 、b 、c 在数轴上的位置如图所示:(1)判断正负,用“>”、“ <”或“=”填空:a b + 0,a b - 0,a b c ++ 0; (2)化简:||||||a c a b c a b +-+++-.22.(7分)已知2a b +=-,3ab =,求2[(3)]3(2)ab a b ab +---的值.23.(8分)如图,OB 、OC 是AOD ∠内部的两条射线,OM 平分AOB ∠,ON 平分COD ∠,80MON ∠=︒(1)若40BOC ∠=︒,求AOD ∠的度数;(2)若AOD x ∠=︒,求BOC ∠的度数(用含x 的代数式表示)24.(10分)某市公共交通收费如下:(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题:①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少?②若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么?2019-2020学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选择项中,只有一项是符合题目要求的) 1.(2分)2020的相反数是( ) A .2020B .2020-C .12020D .12020-【解答】解:2020的相反数是:2020-. 故选:B .2.(2分)下列式子中,与23a b -是同类项的是( ) A .23ab -B .2ba -C .22abD .32a b【解答】解:与23a b -是同类项的是2ba -, 故选:B .3.(2分)下列图形不是立体图形的是( ) A .球B .圆柱C .圆锥D .圆【解答】解:由题意得:只有D 选项符合题意. 故选:D .4.(2分)下列变形正确的是( ) A .若36x -=,则63x =- B .若32x -=-,则23x =C .若321x x -=+,则312x x -=-D .若133x =,则1x =【解答】解:A 、等式的两边都加上3,得63x =+,原变形错误,故A 不符合题意;B 、等式两边同时除以3-,得23x =,原变形正确,故B 符合题意; C 、由321x x -=+,得312x x -=+,原变形错误,故C 不符合题意;D 、等式的两边同时乘以3,得9x =,原变形错误,故D 不符合题意;故选:B .5.(2分)下列计算正确的是( ) A .242-+=-B .(2)(4)8-⨯-=-C .422-÷=-D .2(4)8-=【解答】解:A 、原式(42)2=+-=,不符合题意;B 、原式248=⨯=,不符合题意;C 、原式2=-,符合题意;D 、原式16=,不符合题意,故选:C .6.(2分)下列各式中,去括号正确的是( ) A .(2)2x y x y -+=-+ B .2()2x y x y -=- C .3(2)32x y z x y z -+=--D .()x y z x y z --+=--【解答】解:A 、原式2x y =--,故本选项错误;B 、原式22x y =-,故本选项错误;C 、原式32x y z =--,故本选项正确;D 、原式x y z =+-,故本选项错误;故选:C .7.(2分)用10个大水杯的钱,可以买15个小水杯,大水杯比小水杯的单价多5元,若设大水杯的单价为x 元,下列所列的方程正确的是( ) A .1015(5)x x =+B .1015(5)x x =-C .1510(5)x x =+D .1510(5)x x =-【解答】解:设大水杯的单价为x 元,则小水杯的单价为(5)x -元, 由题意得:1015(5)x x =-, 故选:B .8.(2分)已知点O 是直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90BOE ∠=︒,下列结果,不正确的是( )A .130BOC ∠=︒B .25AOD ∠=︒C .155BOD ∠=︒D .45COE ∠=︒【解答】解:50AOC ∠=︒Q ,180130BOC AOC ∴∠=︒-∠=︒,A 选项正确; OD Q 平分AOC ∠,11502522AOD AOC ∴∠=∠=⨯︒=︒,B 选项正确;180155BOD AOD ∴∠=︒-∠=︒,C 选项正确; 90BOE ∠=︒Q ,50AOC ∠=︒,18040COE AOC BOE ∴∠=︒-∠-∠=︒,故D 选项错误; 故选:D .9.(2分)下列说法不正确的是( )A .因为M 是线段AB 的中点,所以12AM MB AB ==B .在线段AM 延长线上取一点B ,如果2AB AM =,那么点M 是线段AB 的中点C .因为A ,M ,B 在同一直线上,且AM MB =,所以M 是线段AB 的中点D .因为AM MB =,所以点M 是AB 的中点【解答】解:A 、因为M 是线段AB 的中点,所以12AM MB AB ==,故本选项正确; B 、如图,由2AB AM =,得AM MB =;故本选项正确;C 、根据线段中点的定义判断,故本选项正确;D 、如图,当点M 不在线段AB 时,因为AM MB =,所以点M 不一定是AB 的中点,故本选项错误;故选:D .10.(2分)若2a ≠,则我们把22a -称为a 的“哈利数”,如3的“哈利数”是2223=--,2-的“哈利数”是212(2)2=--,已知13a =,2a 是1a 的“哈利数”, 3a 是2a 的“哈利数”, 4a 是3a 的“哈利数”, ⋯⋯,依此类推,则2020(a = ) A .3B .2-C .12D .43【解答】解:13a =Q ,22223a ∴==--,321222a ==+, 4241322a ==-, 523423a ==-,⋯⋯发现规律:这些数每四个数循环一次,20204505÷=Q , 2020443a a ∴==,故选:D .二、填空题(本大题共6小题,每小题2分,共12分)11.(2分)如果收入100元记作100+元,那么支出120元记作 120- 元.【解答】解:“正”和“负”相对,所以,如果收入100元记作100+元,那么支出120元记作120-元. 故答案为:120-12.(2分)当3x =,2y =时,22x y -= 5 .【解答】解:当3x =,2y =时,原式2232945=-=-=, 故答案为:513.(2分)比较3815︒'与38.15︒的大小:3815︒' > 38.15︒(用“>”、“ <”或“=”填空)【解答】解:381538.25︒'=︒,38.2538.15>Q , 381538.15∴︒'>︒, 故答案为:>. 14.(2分)已知方程232353x x -=-与关于x 的方程313()2n x n n -=+-的解互为相反数,则n 的值为 13- .【解答】解:第一个方程去分母得:3(23)1045x x -=-, 去括号得:691045x x -=-,移项合并得:436x -=-, 解得:9x =,把9x =-代入第二个方程得:313(9)2n n n -=--, 去括号得:313272n n n -=--, 移项合并得:226n =-, 解得:13n =-. 故答案为:13-15.(2分)在同一平面内35AOB ∠=︒,42BOC ∠=︒,则锐角AOC ∠的度数为 7︒或77︒ . 【解答】解:当OC 在AOB ∠外靠OA 一边时,如图1所示.35AOB ∠=︒Q ,42BOC ∠=︒, 7AOC BOC AOB ∴∠=∠-∠=︒;当OC 在AOB ∠外靠OB 一边时,如图2所示.35AOB ∠=︒Q ,42BOC ∠=︒, 77AOC AOB BOC ∴∠=∠+∠=︒. 故答案为:7︒或77︒.16.(2分)如图,点C 是线段AB 的中点,点E 在线段AB 上,点D 是线段AE 的中点,若线段AB a =,CE b =,则线段CD 的长为1142a b - .【解答】解:Q 点C 为线段AB 的中点,AB a =,CE b =,1122AC AB a ∴==, 12AE AC CE a b ∴=+=+,Q 点D 为线段AE 的中点,111242DE AE a b ∴==+,11114242CD DE CE a b b a b ∴=-=+-=-,故答案为:1142a b -.三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.) 17.(6分)如图,平面内有A 、B 、C 、D 四点.按下列语句画图. (1)画直线AB ,射线BD ,线段BC ; (2)连接AC ,交射线BD 于点E .【解答】解:(1)如图所示,直线AB ,射线BD ,线段BC 即为所求;(2)连接AC ,点E 即为所求. 18.(12分)(1)(20)(3)(5)(7)--+---+(2)1(12)(4)(1)5-÷-÷-(3)222(3)4(3)15⨯--⨯--【解答】解:(1)原式20357=--+-232=--25=-;(2)原式151246=-⨯⨯52=-;(3)原式294(9)15=⨯-⨯--183615=+-5415=-39=.19.(8分)计算:(1)(547)(536)a c b c b a +++-- (2)2222(2)2(3)a b ab ab a b --+【解答】解:(1)(547)(536)a c b c b a +++--547536a c b c b a =+++--49a b c =-++;(2)2222(2)2(3)a b ab ab a b --+2222226a b ab ab a b =--- 2243a b ab =--. 20.(10分)解方程: (1)5593x x +=- (2)121224x x+--=+【解答】解:(1)移项合并得:84x =, 解得:0.5x =;(2)去分母得:2(1)482x x +-=+-, 去括号得:22482x x +-=+-, 移项合并得:312x =, 解得:4x =.21.(7分)已知有理数a 、b 、c 在数轴上的位置如图所示:(1)判断正负,用“>”、“ <”或“=”填空:a b + < 0,a b - 0,a b c ++ 0; (2)化简:||||||a c a b c a b +-+++-.【解答】解:(1)根据数轴可知:01a <<,10b -<<,1c <-,且||||a b <, 则0a b +<,0a b ->,0a b c ++<;故答案为:<,>,<.(2)||||||a c a b c a b +-+++-a c abc a b =--++++- a =.22.(7分)已知2a b +=-,3ab =,求2[(3)]3(2)ab a b ab +---的值. 【解答】解:原式56656()ab a b ab a b =--=-+,将2a b +=-,3ab =代入得:56656()27ab a b ab a b --=-+=.23.(8分)如图,OB 、OC 是AOD ∠内部的两条射线,OM 平分AOB ∠,ON 平分COD ∠,80MON ∠=︒(1)若40BOC ∠=︒,求AOD ∠的度数;(2)若AOD x ∠=︒,求BOC ∠的度数(用含x 的代数式表示)【解答】解:(1)MON BOC BOM CON ∠-∠=∠+∠Q ,40BOC ∠=︒,80MON ∠=︒,804040BOM CON ∴∠+∠=︒-︒=︒, OM Q 平分AOB ∠,ON 平分COD ∠, AOM BOM ∴∠=∠,DON CON ∠=∠, 40AOM DON ∴∠+∠=︒,8040120AOD MON AOM DON ∴∠=∠+∠+∠=︒+︒=︒; (2)AOD x ∠=︒Q ,80MON ∠=︒,(80)AOM DON AOD MON x ∴∠+∠=∠-∠=-︒, (80)BOM CON AOM DON x ∠+∠=∠+∠=-︒Q ,()80(80)(160)BOC MON BOM CON x x ∴∠=∠-∠+∠=︒--︒=-︒. 24.(10分)某市公共交通收费如下:公交票价(公交票价10千米(含)内2元,不足10千米按10千米计算,其他里程类同;地铁票价6千米(含)内3元,不足6千米按6千米计算,其他里程类同)(1)张阿姨周日去看望父母,可是张阿姨忘了带一卡通,请你帮助张阿姨思考两个问题:①若到父母家无论乘公交车还是地铁距离都是24千米,选择哪种公交交通工具费用较少?②若只用10元钱乘坐公交或地铁,选择哪种公共交通工具乘坐的里程更远?(2)张阿姨下周日计划使用一卡通刷卡乘公共交通到景点游玩,若里程小于120千米,公交、地铁均可直达.请问:选择公交还是选择地铁出行更省钱?为什么?【解答】解:(1)①由表格中的数据可得,乘坐公交车行驶24千米,需要车票为5元,乘坐地铁需要6元, 因此选择乘坐公交车费用较少;②乘坐公交车行驶路程为:(102)51050-⨯+=千米, 乘坐地铁行驶的路程为:(106)2032112-⨯+=千米, 因此乘坐地铁行驶路程较远;(2)根据表格中数据变化可得,行驶路程x 千米,当行驶路程为85x =千米时,公交车票价为8.5元,而地铁为9元, 当8590x <„时公交车票价为9元,此时地铁票价为9元, 因此有:①当距景点距离85x „千米时,选择乘坐公交车省钱, ②当距景点距离超过8590x <„千米时,两种交通工具均可, ③当距景点距离90120x <„千米时,选择地铁省钱.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年广东省广州市黄埔区七年级(上)期末测试数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣x y+xy=0 D.a4+a2=a65.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=36.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=27.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为.12.(3分)若∠α=50°,则它的余角是°.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是(填序号).14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=.三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.21.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?2017-2018学年广东省广州市黄埔区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)3倒数等于()A.3 B.C.﹣3 D.﹣【解答】解:3倒数等于,故选:B.2.(2分)下列各式不正确的是()A.|﹣2|=2 B.﹣2=﹣|﹣2|C.﹣(﹣2)=|﹣2|D.﹣|2|=|﹣2|【解答】解:A、|﹣2|=2,正确;B、﹣2=﹣|﹣2|,正确;C、﹣(﹣2)=|﹣2|,正确;D、﹣|2|=﹣2,|﹣2|=2,错误;故选D3.(2分)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2b C.﹣ab2c与﹣5b2c D.x2与2x【解答】解:a3与b3所含的字母不同,不是同类项;2a2b与﹣a2b是同类项;﹣ab2c与﹣5b2c所含字母不同,不是同类项;x2与2x相同字母的指数不相同,不是同类项.故选B.4.(2分)下列运算正确的是()A.3m+3n=6mn B.4x3﹣3x3=1 C.﹣xy+xy=0 D.a4+a2=a6【解答】解:A、3m+3n=6mn,错误;B、4x3﹣3x3=1,错误,4x3﹣3x3=x3;C、﹣xy+xy=0,正确;D、a4+a2=a6,错误;故选C.5.(2分)方程﹣x=9的解是()A.x=﹣27 B.x=27 C.x=﹣3 D.x=3【解答】解:方程两边都乘以﹣3得,x=﹣27.故选A.6.(2分)下列方程移项正确的是()A.4x﹣2=﹣5移项,得4x=5﹣2 B.4x﹣2=﹣5移项,得4x=﹣5﹣2 C.3x+2=4x移项,得3x﹣4x=2 D.3x+2=4x移项,得4x﹣3x=2【解答】解:A、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;B、4x﹣2=﹣5移项,得4x=﹣5+2,故本选项错误;C、3x+2=4x移项,得3x﹣4x=﹣2,故本选项错误;D、3x+2=4x移项,得3x﹣4x=﹣2,所以,4x﹣3x=2,故本选项正确.故选D.7.(2分)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【解答】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.8.(2分)如图所示的几何体,从正面看到的平面图形是()A.B.C.D.【解答】解:从正面看易得此几何体的主视图是一个梯形.故选C9.(2分)下列表达错误的是()A.比a的2倍大1的数是2a+1B.a的相反数与b的和是﹣a+bC.比a的平方小的数是a2﹣1D.a的2倍与b的差的3倍是2a﹣3b【解答】解:A、依题意得:2a+1,故本选项不符合题意;B、依题意得:﹣a+b,故本选项不符合题意;C、依题意得:a2﹣1,故本选项不符合题意;D、依题意得:3(2a﹣b),故本选项符合题意;故选:D.10.(2分)已知a、b、c在数轴上位置如图,则|a+b|+|a+c|﹣|b﹣c|=()A.0 B.2a+2b C.2b﹣2c D.2a+2c【解答】解:由图可知,c<a<0<b,|c|>|b|>|a|,则|a+b|+|a+c|﹣|b﹣c|=a+b﹣a﹣c﹣b+c=0.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用科学记数法表示这个数235 000 000为 2.35×108.【解答】解:235 000 000为2.35×108,故答案为:2.35×108.12.(3分)若∠α=50°,则它的余角是40°.【解答】解:∵∠α=50°,∴它的余角是90°﹣50°=40°.故答案为:40.13.(3分)下列算式①﹣3﹣2=﹣5;②﹣3×(﹣2)=6;③(﹣2)2=﹣4,其中正确的是①②(填序号).【解答】解:∵﹣3﹣2=﹣5,故①正确,∵﹣3×(﹣2)=3×2=6,故②正确,∵(﹣2)2=4,故③错误,故答案为:①②.14.(3分)C、D在线段AB上,C为线段AB的中点,若AB=12,DB=8,则CD的长为2.【解答】解:∵C为线段AB的中点,AB=12,∴BC=AB=6,∵DB=8,∴CD=BD﹣BC=8﹣6=2,故答案为:2.15.(3分)若4x2y3+2ax2y3=4bx2y3,则3+a﹣2b=1.【解答】解:∵4x2y3+2ax2y3=4bx2y3,∴4+2a=4b,则2a﹣4b=﹣4,a﹣2b=﹣2,∴3+a﹣2b=3﹣2=1,故答案为:1.16.(3分)定义新运算,若a▽b=a﹣2b,则[(3▽2)▽1]▽[2▽(3▽4)]=﹣27.【解答】解:根据题中的新定义得:原式=[(﹣1)▽1]▽[2▽(﹣5)]=(﹣3)▽12=﹣3﹣24=﹣27,故答案为:﹣27三、解答题(本大题共8小题,满分62分,解答用写出文字说明、证明过程或演算步骤)17.(6分)尺规作图:如图,已知线段a、b,作一条线段,使它等于2a﹣b.(保留作图痕迹)【解答】解:如图,线段AD即为所求18.(6分)下列有理数:﹣1,2,5,﹣1(1)将上列各数在如上图的数轴上表示出来;(2)将上列各数从小到大排列,并用“<”符号连接.【解答】解:(1)将各数表示在数轴上,如图所示:(2)根据题意得:﹣1<﹣1<2<5.19.(8分)计算:(1)14﹣(﹣16)+(﹣9)﹣13;(2)﹣1×﹣÷8.【解答】解:(1)原式=14+16﹣9﹣13=30﹣22=8;(2)原式=﹣﹣=﹣.20.(8分)先化简,再求值:(1)﹣3x2+3x+1+2x2﹣2x,其中x=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=.【解答】解:(1)﹣3x2+3x+1+2x2﹣2x=﹣x2+x+1当x=﹣1时,原式=﹣(﹣1)2﹣1+1=﹣1.(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7)=a2﹣ab﹣7+4a2﹣2ab﹣7=5a2﹣3ab﹣14当a=2,b=时,原式=5×22﹣3×2×﹣14=20﹣9﹣14=﹣321.(8分)解方程:(1)7x﹣4=4x+5;(2)=1﹣.【解答】解:(1)7x﹣4x=5+4,3x=9,x=3;(2)4(2x﹣1)=12﹣3(x+2),8x﹣4=12﹣3x﹣6,8x+3x=12﹣6+4,11x=10,x=22.(8分)某校购买了A、B两种教具共138件,共花了5400元,其中A种教具每件30元,B种教具每件50元,两种教具各买了多少件?【解答】解:设A种教具买了x件,则B两种教具买了(138﹣x)件,由题意得,30x+50(138﹣x)=5400,解得:x=75,138﹣75=63,答:A、B两种教具各买了75件,63件.23.(8分)如图,点O是直线AB上一点,OC平分∠AOD,∠AOE=∠DOE.(1)若∠AOC=35°,求∠BOD的度数;(2)若∠COE=80°,求∠BOD的度数.【解答】解:(1)∵OC平分∠AOD,∠AOC=35°,∴∠AOD=70°,∴∠BOD=180°﹣70°=110°;(2)设∠COD=x,则∠AOD=2x,∵∠AOE=∠DOE,∴,解得,x=()°,∴∠BOD=180°﹣2x=()°.24.(10分)已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?..........【解答】解:(1)﹣3+4=1.故点N所对应的数是1;(2)(5﹣4)÷2=0.5,①﹣3﹣0.5=﹣3.5,②1+0.5=1.5.故点P所对应的数是﹣3.5或1.5.(3)①(4+2×5﹣2)÷(3﹣2)=12÷1=12(秒),点P对应的数是﹣3+12×2=21,点Q对应的数是21﹣2=19;②(4+2×5+2)÷(3﹣2)=16÷1=16(秒);点P对应的数是﹣3+16×2=29,点Q对应的数是29﹣2=27...........。